django1/tests/gis_tests/geos_tests/test_geos.py

1448 lines
57 KiB
Python

import ctypes
import itertools
import json
import pickle
import random
from binascii import a2b_hex
from io import BytesIO
from unittest import mock, skipIf
from django.contrib.gis import gdal
from django.contrib.gis.geos import (
GeometryCollection, GEOSException, GEOSGeometry, LinearRing, LineString,
MultiLineString, MultiPoint, MultiPolygon, Point, Polygon, fromfile,
fromstr,
)
from django.contrib.gis.geos.libgeos import geos_version_tuple
from django.contrib.gis.shortcuts import numpy
from django.template import Context
from django.template.engine import Engine
from django.test import SimpleTestCase
from ..test_data import TestDataMixin
class GEOSTest(SimpleTestCase, TestDataMixin):
def test_wkt(self):
"Testing WKT output."
for g in self.geometries.wkt_out:
geom = fromstr(g.wkt)
if geom.hasz:
self.assertEqual(g.ewkt, geom.wkt)
def test_hex(self):
"Testing HEX output."
for g in self.geometries.hex_wkt:
geom = fromstr(g.wkt)
self.assertEqual(g.hex, geom.hex.decode())
def test_hexewkb(self):
"Testing (HEX)EWKB output."
# For testing HEX(EWKB).
ogc_hex = b'01010000000000000000000000000000000000F03F'
ogc_hex_3d = b'01010000800000000000000000000000000000F03F0000000000000040'
# `SELECT ST_AsHEXEWKB(ST_GeomFromText('POINT(0 1)', 4326));`
hexewkb_2d = b'0101000020E61000000000000000000000000000000000F03F'
# `SELECT ST_AsHEXEWKB(ST_GeomFromEWKT('SRID=4326;POINT(0 1 2)'));`
hexewkb_3d = b'01010000A0E61000000000000000000000000000000000F03F0000000000000040'
pnt_2d = Point(0, 1, srid=4326)
pnt_3d = Point(0, 1, 2, srid=4326)
# OGC-compliant HEX will not have SRID value.
self.assertEqual(ogc_hex, pnt_2d.hex)
self.assertEqual(ogc_hex_3d, pnt_3d.hex)
# HEXEWKB should be appropriate for its dimension -- have to use an
# a WKBWriter w/dimension set accordingly, else GEOS will insert
# garbage into 3D coordinate if there is none.
self.assertEqual(hexewkb_2d, pnt_2d.hexewkb)
self.assertEqual(hexewkb_3d, pnt_3d.hexewkb)
self.assertIs(GEOSGeometry(hexewkb_3d).hasz, True)
# Same for EWKB.
self.assertEqual(memoryview(a2b_hex(hexewkb_2d)), pnt_2d.ewkb)
self.assertEqual(memoryview(a2b_hex(hexewkb_3d)), pnt_3d.ewkb)
# Redundant sanity check.
self.assertEqual(4326, GEOSGeometry(hexewkb_2d).srid)
def test_kml(self):
"Testing KML output."
for tg in self.geometries.wkt_out:
geom = fromstr(tg.wkt)
kml = getattr(tg, 'kml', False)
if kml:
self.assertEqual(kml, geom.kml)
def test_errors(self):
"Testing the Error handlers."
# string-based
for err in self.geometries.errors:
with self.assertRaises((GEOSException, ValueError)):
fromstr(err.wkt)
# Bad WKB
with self.assertRaises(GEOSException):
GEOSGeometry(memoryview(b'0'))
class NotAGeometry:
pass
# Some other object
with self.assertRaises(TypeError):
GEOSGeometry(NotAGeometry())
# None
with self.assertRaises(TypeError):
GEOSGeometry(None)
def test_wkb(self):
"Testing WKB output."
for g in self.geometries.hex_wkt:
geom = fromstr(g.wkt)
wkb = geom.wkb
self.assertEqual(wkb.hex().upper(), g.hex)
def test_create_hex(self):
"Testing creation from HEX."
for g in self.geometries.hex_wkt:
geom_h = GEOSGeometry(g.hex)
# we need to do this so decimal places get normalized
geom_t = fromstr(g.wkt)
self.assertEqual(geom_t.wkt, geom_h.wkt)
def test_create_wkb(self):
"Testing creation from WKB."
for g in self.geometries.hex_wkt:
wkb = memoryview(bytes.fromhex(g.hex))
geom_h = GEOSGeometry(wkb)
# we need to do this so decimal places get normalized
geom_t = fromstr(g.wkt)
self.assertEqual(geom_t.wkt, geom_h.wkt)
def test_ewkt(self):
"Testing EWKT."
srids = (-1, 32140)
for srid in srids:
for p in self.geometries.polygons:
ewkt = 'SRID=%d;%s' % (srid, p.wkt)
poly = fromstr(ewkt)
self.assertEqual(srid, poly.srid)
self.assertEqual(srid, poly.shell.srid)
self.assertEqual(srid, fromstr(poly.ewkt).srid) # Checking export
def test_json(self):
"Testing GeoJSON input/output (via GDAL)."
for g in self.geometries.json_geoms:
geom = GEOSGeometry(g.wkt)
if not hasattr(g, 'not_equal'):
# Loading jsons to prevent decimal differences
self.assertEqual(json.loads(g.json), json.loads(geom.json))
self.assertEqual(json.loads(g.json), json.loads(geom.geojson))
self.assertEqual(GEOSGeometry(g.wkt, 4326), GEOSGeometry(geom.json))
def test_json_srid(self):
geojson_data = {
"type": "Point",
"coordinates": [2, 49],
"crs": {
"type": "name",
"properties": {
"name": "urn:ogc:def:crs:EPSG::4322"
}
}
}
self.assertEqual(GEOSGeometry(json.dumps(geojson_data)), Point(2, 49, srid=4322))
def test_fromfile(self):
"Testing the fromfile() factory."
ref_pnt = GEOSGeometry('POINT(5 23)')
wkt_f = BytesIO()
wkt_f.write(ref_pnt.wkt.encode())
wkb_f = BytesIO()
wkb_f.write(bytes(ref_pnt.wkb))
# Other tests use `fromfile()` on string filenames so those
# aren't tested here.
for fh in (wkt_f, wkb_f):
fh.seek(0)
pnt = fromfile(fh)
self.assertEqual(ref_pnt, pnt)
def test_eq(self):
"Testing equivalence."
p = fromstr('POINT(5 23)')
self.assertEqual(p, p.wkt)
self.assertNotEqual(p, 'foo')
ls = fromstr('LINESTRING(0 0, 1 1, 5 5)')
self.assertEqual(ls, ls.wkt)
self.assertNotEqual(p, 'bar')
self.assertEqual(p, 'POINT(5.0 23.0)')
# Error shouldn't be raise on equivalence testing with
# an invalid type.
for g in (p, ls):
self.assertIsNotNone(g)
self.assertNotEqual(g, {'foo': 'bar'})
self.assertIsNot(g, False)
def test_hash(self):
point_1 = Point(5, 23)
point_2 = Point(5, 23, srid=4326)
point_3 = Point(5, 23, srid=32632)
multipoint_1 = MultiPoint(point_1, srid=4326)
multipoint_2 = MultiPoint(point_2)
multipoint_3 = MultiPoint(point_3)
self.assertNotEqual(hash(point_1), hash(point_2))
self.assertNotEqual(hash(point_1), hash(point_3))
self.assertNotEqual(hash(point_2), hash(point_3))
self.assertNotEqual(hash(multipoint_1), hash(multipoint_2))
self.assertEqual(hash(multipoint_2), hash(multipoint_3))
self.assertNotEqual(hash(multipoint_1), hash(point_1))
self.assertNotEqual(hash(multipoint_2), hash(point_2))
self.assertNotEqual(hash(multipoint_3), hash(point_3))
def test_eq_with_srid(self):
"Testing non-equivalence with different srids."
p0 = Point(5, 23)
p1 = Point(5, 23, srid=4326)
p2 = Point(5, 23, srid=32632)
# GEOS
self.assertNotEqual(p0, p1)
self.assertNotEqual(p1, p2)
# EWKT
self.assertNotEqual(p0, p1.ewkt)
self.assertNotEqual(p1, p0.ewkt)
self.assertNotEqual(p1, p2.ewkt)
# Equivalence with matching SRIDs
self.assertEqual(p2, p2)
self.assertEqual(p2, p2.ewkt)
# WKT contains no SRID so will not equal
self.assertNotEqual(p2, p2.wkt)
# SRID of 0
self.assertEqual(p0, 'SRID=0;POINT (5 23)')
self.assertNotEqual(p1, 'SRID=0;POINT (5 23)')
def test_points(self):
"Testing Point objects."
prev = fromstr('POINT(0 0)')
for p in self.geometries.points:
# Creating the point from the WKT
pnt = fromstr(p.wkt)
self.assertEqual(pnt.geom_type, 'Point')
self.assertEqual(pnt.geom_typeid, 0)
self.assertEqual(pnt.dims, 0)
self.assertEqual(p.x, pnt.x)
self.assertEqual(p.y, pnt.y)
self.assertEqual(pnt, fromstr(p.wkt))
self.assertIs(pnt == prev, False) # Use assertIs() to test __eq__.
# Making sure that the point's X, Y components are what we expect
self.assertAlmostEqual(p.x, pnt.tuple[0], 9)
self.assertAlmostEqual(p.y, pnt.tuple[1], 9)
# Testing the third dimension, and getting the tuple arguments
if hasattr(p, 'z'):
self.assertIs(pnt.hasz, True)
self.assertEqual(p.z, pnt.z)
self.assertEqual(p.z, pnt.tuple[2], 9)
tup_args = (p.x, p.y, p.z)
set_tup1 = (2.71, 3.14, 5.23)
set_tup2 = (5.23, 2.71, 3.14)
else:
self.assertIs(pnt.hasz, False)
self.assertIsNone(pnt.z)
tup_args = (p.x, p.y)
set_tup1 = (2.71, 3.14)
set_tup2 = (3.14, 2.71)
# Centroid operation on point should be point itself
self.assertEqual(p.centroid, pnt.centroid.tuple)
# Now testing the different constructors
pnt2 = Point(tup_args) # e.g., Point((1, 2))
pnt3 = Point(*tup_args) # e.g., Point(1, 2)
self.assertEqual(pnt, pnt2)
self.assertEqual(pnt, pnt3)
# Now testing setting the x and y
pnt.y = 3.14
pnt.x = 2.71
self.assertEqual(3.14, pnt.y)
self.assertEqual(2.71, pnt.x)
# Setting via the tuple/coords property
pnt.tuple = set_tup1
self.assertEqual(set_tup1, pnt.tuple)
pnt.coords = set_tup2
self.assertEqual(set_tup2, pnt.coords)
prev = pnt # setting the previous geometry
def test_point_reverse(self):
point = GEOSGeometry('POINT(144.963 -37.8143)', 4326)
self.assertEqual(point.srid, 4326)
point.reverse()
self.assertEqual(point.ewkt, 'SRID=4326;POINT (-37.8143 144.963)')
def test_multipoints(self):
"Testing MultiPoint objects."
for mp in self.geometries.multipoints:
mpnt = fromstr(mp.wkt)
self.assertEqual(mpnt.geom_type, 'MultiPoint')
self.assertEqual(mpnt.geom_typeid, 4)
self.assertEqual(mpnt.dims, 0)
self.assertAlmostEqual(mp.centroid[0], mpnt.centroid.tuple[0], 9)
self.assertAlmostEqual(mp.centroid[1], mpnt.centroid.tuple[1], 9)
with self.assertRaises(IndexError):
mpnt.__getitem__(len(mpnt))
self.assertEqual(mp.centroid, mpnt.centroid.tuple)
self.assertEqual(mp.coords, tuple(m.tuple for m in mpnt))
for p in mpnt:
self.assertEqual(p.geom_type, 'Point')
self.assertEqual(p.geom_typeid, 0)
self.assertIs(p.empty, False)
self.assertIs(p.valid, True)
def test_linestring(self):
"Testing LineString objects."
prev = fromstr('POINT(0 0)')
for line in self.geometries.linestrings:
ls = fromstr(line.wkt)
self.assertEqual(ls.geom_type, 'LineString')
self.assertEqual(ls.geom_typeid, 1)
self.assertEqual(ls.dims, 1)
self.assertIs(ls.empty, False)
self.assertIs(ls.ring, False)
if hasattr(line, 'centroid'):
self.assertEqual(line.centroid, ls.centroid.tuple)
if hasattr(line, 'tup'):
self.assertEqual(line.tup, ls.tuple)
self.assertEqual(ls, fromstr(line.wkt))
self.assertIs(ls == prev, False) # Use assertIs() to test __eq__.
with self.assertRaises(IndexError):
ls.__getitem__(len(ls))
prev = ls
# Creating a LineString from a tuple, list, and numpy array
self.assertEqual(ls, LineString(ls.tuple)) # tuple
self.assertEqual(ls, LineString(*ls.tuple)) # as individual arguments
self.assertEqual(ls, LineString([list(tup) for tup in ls.tuple])) # as list
# Point individual arguments
self.assertEqual(ls.wkt, LineString(*tuple(Point(tup) for tup in ls.tuple)).wkt)
if numpy:
self.assertEqual(ls, LineString(numpy.array(ls.tuple))) # as numpy array
with self.assertRaisesMessage(TypeError, 'Each coordinate should be a sequence (list or tuple)'):
LineString((0, 0))
with self.assertRaisesMessage(ValueError, 'LineString requires at least 2 points, got 1.'):
LineString([(0, 0)])
if numpy:
with self.assertRaisesMessage(ValueError, 'LineString requires at least 2 points, got 1.'):
LineString(numpy.array([(0, 0)]))
with mock.patch('django.contrib.gis.geos.linestring.numpy', False):
with self.assertRaisesMessage(TypeError, 'Invalid initialization input for LineStrings.'):
LineString('wrong input')
# Test __iter__().
self.assertEqual(list(LineString((0, 0), (1, 1), (2, 2))), [(0, 0), (1, 1), (2, 2)])
def test_linestring_reverse(self):
line = GEOSGeometry('LINESTRING(144.963 -37.8143,151.2607 -33.887)', 4326)
self.assertEqual(line.srid, 4326)
line.reverse()
self.assertEqual(line.ewkt, 'SRID=4326;LINESTRING (151.2607 -33.887, 144.963 -37.8143)')
def _test_is_counterclockwise(self):
lr = LinearRing((0, 0), (1, 0), (0, 1), (0, 0))
self.assertIs(lr.is_counterclockwise, True)
lr.reverse()
self.assertIs(lr.is_counterclockwise, False)
msg = 'Orientation of an empty LinearRing cannot be determined.'
with self.assertRaisesMessage(ValueError, msg):
LinearRing().is_counterclockwise
@skipIf(geos_version_tuple() < (3, 7), 'GEOS >= 3.7.0 is required')
def test_is_counterclockwise(self):
self._test_is_counterclockwise()
@skipIf(geos_version_tuple() < (3, 7), 'GEOS >= 3.7.0 is required')
def test_is_counterclockwise_geos_error(self):
with mock.patch('django.contrib.gis.geos.prototypes.cs_is_ccw') as mocked:
mocked.return_value = 0
mocked.func_name = 'GEOSCoordSeq_isCCW'
msg = 'Error encountered in GEOS C function "GEOSCoordSeq_isCCW".'
with self.assertRaisesMessage(GEOSException, msg):
LinearRing((0, 0), (1, 0), (0, 1), (0, 0)).is_counterclockwise
@mock.patch('django.contrib.gis.geos.libgeos.geos_version', lambda: b'3.6.9')
def test_is_counterclockwise_fallback(self):
self._test_is_counterclockwise()
def test_multilinestring(self):
"Testing MultiLineString objects."
prev = fromstr('POINT(0 0)')
for line in self.geometries.multilinestrings:
ml = fromstr(line.wkt)
self.assertEqual(ml.geom_type, 'MultiLineString')
self.assertEqual(ml.geom_typeid, 5)
self.assertEqual(ml.dims, 1)
self.assertAlmostEqual(line.centroid[0], ml.centroid.x, 9)
self.assertAlmostEqual(line.centroid[1], ml.centroid.y, 9)
self.assertEqual(ml, fromstr(line.wkt))
self.assertIs(ml == prev, False) # Use assertIs() to test __eq__.
prev = ml
for ls in ml:
self.assertEqual(ls.geom_type, 'LineString')
self.assertEqual(ls.geom_typeid, 1)
self.assertIs(ls.empty, False)
with self.assertRaises(IndexError):
ml.__getitem__(len(ml))
self.assertEqual(ml.wkt, MultiLineString(*tuple(s.clone() for s in ml)).wkt)
self.assertEqual(ml, MultiLineString(*tuple(LineString(s.tuple) for s in ml)))
def test_linearring(self):
"Testing LinearRing objects."
for rr in self.geometries.linearrings:
lr = fromstr(rr.wkt)
self.assertEqual(lr.geom_type, 'LinearRing')
self.assertEqual(lr.geom_typeid, 2)
self.assertEqual(lr.dims, 1)
self.assertEqual(rr.n_p, len(lr))
self.assertIs(lr.valid, True)
self.assertIs(lr.empty, False)
# Creating a LinearRing from a tuple, list, and numpy array
self.assertEqual(lr, LinearRing(lr.tuple))
self.assertEqual(lr, LinearRing(*lr.tuple))
self.assertEqual(lr, LinearRing([list(tup) for tup in lr.tuple]))
if numpy:
self.assertEqual(lr, LinearRing(numpy.array(lr.tuple)))
with self.assertRaisesMessage(ValueError, 'LinearRing requires at least 4 points, got 3.'):
LinearRing((0, 0), (1, 1), (0, 0))
with self.assertRaisesMessage(ValueError, 'LinearRing requires at least 4 points, got 1.'):
LinearRing([(0, 0)])
if numpy:
with self.assertRaisesMessage(ValueError, 'LinearRing requires at least 4 points, got 1.'):
LinearRing(numpy.array([(0, 0)]))
def test_linearring_json(self):
self.assertJSONEqual(
LinearRing((0, 0), (0, 1), (1, 1), (0, 0)).json,
'{"coordinates": [[0, 0], [0, 1], [1, 1], [0, 0]], "type": "LineString"}',
)
def test_polygons_from_bbox(self):
"Testing `from_bbox` class method."
bbox = (-180, -90, 180, 90)
p = Polygon.from_bbox(bbox)
self.assertEqual(bbox, p.extent)
# Testing numerical precision
x = 3.14159265358979323
bbox = (0, 0, 1, x)
p = Polygon.from_bbox(bbox)
y = p.extent[-1]
self.assertEqual(format(x, '.13f'), format(y, '.13f'))
def test_polygons(self):
"Testing Polygon objects."
prev = fromstr('POINT(0 0)')
for p in self.geometries.polygons:
# Creating the Polygon, testing its properties.
poly = fromstr(p.wkt)
self.assertEqual(poly.geom_type, 'Polygon')
self.assertEqual(poly.geom_typeid, 3)
self.assertEqual(poly.dims, 2)
self.assertIs(poly.empty, False)
self.assertIs(poly.ring, False)
self.assertEqual(p.n_i, poly.num_interior_rings)
self.assertEqual(p.n_i + 1, len(poly)) # Testing __len__
self.assertEqual(p.n_p, poly.num_points)
# Area & Centroid
self.assertAlmostEqual(p.area, poly.area, 9)
self.assertAlmostEqual(p.centroid[0], poly.centroid.tuple[0], 9)
self.assertAlmostEqual(p.centroid[1], poly.centroid.tuple[1], 9)
# Testing the geometry equivalence
self.assertEqual(poly, fromstr(p.wkt))
# Should not be equal to previous geometry
self.assertIs(poly == prev, False) # Use assertIs() to test __eq__.
self.assertIs(poly != prev, True) # Use assertIs() to test __ne__.
# Testing the exterior ring
ring = poly.exterior_ring
self.assertEqual(ring.geom_type, 'LinearRing')
self.assertEqual(ring.geom_typeid, 2)
if p.ext_ring_cs:
self.assertEqual(p.ext_ring_cs, ring.tuple)
self.assertEqual(p.ext_ring_cs, poly[0].tuple) # Testing __getitem__
# Testing __getitem__ and __setitem__ on invalid indices
with self.assertRaises(IndexError):
poly.__getitem__(len(poly))
with self.assertRaises(IndexError):
poly.__setitem__(len(poly), False)
with self.assertRaises(IndexError):
poly.__getitem__(-1 * len(poly) - 1)
# Testing __iter__
for r in poly:
self.assertEqual(r.geom_type, 'LinearRing')
self.assertEqual(r.geom_typeid, 2)
# Testing polygon construction.
with self.assertRaises(TypeError):
Polygon(0, [1, 2, 3])
with self.assertRaises(TypeError):
Polygon('foo')
# Polygon(shell, (hole1, ... holeN))
ext_ring, *int_rings = poly
self.assertEqual(poly, Polygon(ext_ring, int_rings))
# Polygon(shell_tuple, hole_tuple1, ... , hole_tupleN)
ring_tuples = tuple(r.tuple for r in poly)
self.assertEqual(poly, Polygon(*ring_tuples))
# Constructing with tuples of LinearRings.
self.assertEqual(poly.wkt, Polygon(*tuple(r for r in poly)).wkt)
self.assertEqual(poly.wkt, Polygon(*tuple(LinearRing(r.tuple) for r in poly)).wkt)
def test_polygons_templates(self):
# Accessing Polygon attributes in templates should work.
engine = Engine()
template = engine.from_string('{{ polygons.0.wkt }}')
polygons = [fromstr(p.wkt) for p in self.geometries.multipolygons[:2]]
content = template.render(Context({'polygons': polygons}))
self.assertIn('MULTIPOLYGON (((100', content)
def test_polygon_comparison(self):
p1 = Polygon(((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)))
p2 = Polygon(((0, 0), (0, 1), (1, 0), (0, 0)))
self.assertGreater(p1, p2)
self.assertLess(p2, p1)
p3 = Polygon(((0, 0), (0, 1), (1, 1), (2, 0), (0, 0)))
p4 = Polygon(((0, 0), (0, 1), (2, 2), (1, 0), (0, 0)))
self.assertGreater(p4, p3)
self.assertLess(p3, p4)
def test_multipolygons(self):
"Testing MultiPolygon objects."
fromstr('POINT (0 0)')
for mp in self.geometries.multipolygons:
mpoly = fromstr(mp.wkt)
self.assertEqual(mpoly.geom_type, 'MultiPolygon')
self.assertEqual(mpoly.geom_typeid, 6)
self.assertEqual(mpoly.dims, 2)
self.assertEqual(mp.valid, mpoly.valid)
if mp.valid:
self.assertEqual(mp.num_geom, mpoly.num_geom)
self.assertEqual(mp.n_p, mpoly.num_coords)
self.assertEqual(mp.num_geom, len(mpoly))
with self.assertRaises(IndexError):
mpoly.__getitem__(len(mpoly))
for p in mpoly:
self.assertEqual(p.geom_type, 'Polygon')
self.assertEqual(p.geom_typeid, 3)
self.assertIs(p.valid, True)
self.assertEqual(mpoly.wkt, MultiPolygon(*tuple(poly.clone() for poly in mpoly)).wkt)
def test_memory_hijinks(self):
"Testing Geometry __del__() on rings and polygons."
# #### Memory issues with rings and poly
# These tests are needed to ensure sanity with writable geometries.
# Getting a polygon with interior rings, and pulling out the interior rings
poly = fromstr(self.geometries.polygons[1].wkt)
ring1 = poly[0]
ring2 = poly[1]
# These deletes should be 'harmless' since they are done on child geometries
del ring1
del ring2
ring1 = poly[0]
ring2 = poly[1]
# Deleting the polygon
del poly
# Access to these rings is OK since they are clones.
str(ring1)
str(ring2)
def test_coord_seq(self):
"Testing Coordinate Sequence objects."
for p in self.geometries.polygons:
if p.ext_ring_cs:
# Constructing the polygon and getting the coordinate sequence
poly = fromstr(p.wkt)
cs = poly.exterior_ring.coord_seq
self.assertEqual(p.ext_ring_cs, cs.tuple) # done in the Polygon test too.
self.assertEqual(len(p.ext_ring_cs), len(cs)) # Making sure __len__ works
# Checks __getitem__ and __setitem__
for i in range(len(p.ext_ring_cs)):
c1 = p.ext_ring_cs[i] # Expected value
c2 = cs[i] # Value from coordseq
self.assertEqual(c1, c2)
# Constructing the test value to set the coordinate sequence with
if len(c1) == 2:
tset = (5, 23)
else:
tset = (5, 23, 8)
cs[i] = tset
# Making sure every set point matches what we expect
for j in range(len(tset)):
cs[i] = tset
self.assertEqual(tset[j], cs[i][j])
def test_relate_pattern(self):
"Testing relate() and relate_pattern()."
g = fromstr('POINT (0 0)')
with self.assertRaises(GEOSException):
g.relate_pattern(0, 'invalid pattern, yo')
for rg in self.geometries.relate_geoms:
a = fromstr(rg.wkt_a)
b = fromstr(rg.wkt_b)
self.assertEqual(rg.result, a.relate_pattern(b, rg.pattern))
self.assertEqual(rg.pattern, a.relate(b))
def test_intersection(self):
"Testing intersects() and intersection()."
for i in range(len(self.geometries.topology_geoms)):
a = fromstr(self.geometries.topology_geoms[i].wkt_a)
b = fromstr(self.geometries.topology_geoms[i].wkt_b)
i1 = fromstr(self.geometries.intersect_geoms[i].wkt)
self.assertIs(a.intersects(b), True)
i2 = a.intersection(b)
self.assertTrue(i1.equals(i2))
self.assertTrue(i1.equals(a & b)) # __and__ is intersection operator
a &= b # testing __iand__
self.assertTrue(i1.equals(a))
def test_union(self):
"Testing union()."
for i in range(len(self.geometries.topology_geoms)):
a = fromstr(self.geometries.topology_geoms[i].wkt_a)
b = fromstr(self.geometries.topology_geoms[i].wkt_b)
u1 = fromstr(self.geometries.union_geoms[i].wkt)
u2 = a.union(b)
self.assertTrue(u1.equals(u2))
self.assertTrue(u1.equals(a | b)) # __or__ is union operator
a |= b # testing __ior__
self.assertTrue(u1.equals(a))
def test_unary_union(self):
"Testing unary_union."
for i in range(len(self.geometries.topology_geoms)):
a = fromstr(self.geometries.topology_geoms[i].wkt_a)
b = fromstr(self.geometries.topology_geoms[i].wkt_b)
u1 = fromstr(self.geometries.union_geoms[i].wkt)
u2 = GeometryCollection(a, b).unary_union
self.assertTrue(u1.equals(u2))
def test_difference(self):
"Testing difference()."
for i in range(len(self.geometries.topology_geoms)):
a = fromstr(self.geometries.topology_geoms[i].wkt_a)
b = fromstr(self.geometries.topology_geoms[i].wkt_b)
d1 = fromstr(self.geometries.diff_geoms[i].wkt)
d2 = a.difference(b)
self.assertTrue(d1.equals(d2))
self.assertTrue(d1.equals(a - b)) # __sub__ is difference operator
a -= b # testing __isub__
self.assertTrue(d1.equals(a))
def test_symdifference(self):
"Testing sym_difference()."
for i in range(len(self.geometries.topology_geoms)):
a = fromstr(self.geometries.topology_geoms[i].wkt_a)
b = fromstr(self.geometries.topology_geoms[i].wkt_b)
d1 = fromstr(self.geometries.sdiff_geoms[i].wkt)
d2 = a.sym_difference(b)
self.assertTrue(d1.equals(d2))
self.assertTrue(d1.equals(a ^ b)) # __xor__ is symmetric difference operator
a ^= b # testing __ixor__
self.assertTrue(d1.equals(a))
def test_buffer(self):
bg = self.geometries.buffer_geoms[0]
g = fromstr(bg.wkt)
# Can't use a floating-point for the number of quadsegs.
with self.assertRaises(ctypes.ArgumentError):
g.buffer(bg.width, quadsegs=1.1)
self._test_buffer(self.geometries.buffer_geoms, 'buffer')
def test_buffer_with_style(self):
bg = self.geometries.buffer_with_style_geoms[0]
g = fromstr(bg.wkt)
# Can't use a floating-point for the number of quadsegs.
with self.assertRaises(ctypes.ArgumentError):
g.buffer_with_style(bg.width, quadsegs=1.1)
# Can't use a floating-point for the end cap style.
with self.assertRaises(ctypes.ArgumentError):
g.buffer_with_style(bg.width, end_cap_style=1.2)
# Can't use a end cap style that is not in the enum.
with self.assertRaises(GEOSException):
g.buffer_with_style(bg.width, end_cap_style=55)
# Can't use a floating-point for the join style.
with self.assertRaises(ctypes.ArgumentError):
g.buffer_with_style(bg.width, join_style=1.3)
# Can't use a join style that is not in the enum.
with self.assertRaises(GEOSException):
g.buffer_with_style(bg.width, join_style=66)
self._test_buffer(
itertools.chain(self.geometries.buffer_geoms, self.geometries.buffer_with_style_geoms),
'buffer_with_style',
)
def _test_buffer(self, geometries, buffer_method_name):
for bg in geometries:
g = fromstr(bg.wkt)
# The buffer we expect
exp_buf = fromstr(bg.buffer_wkt)
# Constructing our buffer
buf_kwargs = {
kwarg_name: getattr(bg, kwarg_name)
for kwarg_name in ('width', 'quadsegs', 'end_cap_style', 'join_style', 'mitre_limit')
if hasattr(bg, kwarg_name)
}
buf = getattr(g, buffer_method_name)(**buf_kwargs)
self.assertEqual(exp_buf.num_coords, buf.num_coords)
self.assertEqual(len(exp_buf), len(buf))
# Now assuring that each point in the buffer is almost equal
for j in range(len(exp_buf)):
exp_ring = exp_buf[j]
buf_ring = buf[j]
self.assertEqual(len(exp_ring), len(buf_ring))
for k in range(len(exp_ring)):
# Asserting the X, Y of each point are almost equal (due to floating point imprecision)
self.assertAlmostEqual(exp_ring[k][0], buf_ring[k][0], 9)
self.assertAlmostEqual(exp_ring[k][1], buf_ring[k][1], 9)
def test_covers(self):
poly = Polygon(((0, 0), (0, 10), (10, 10), (10, 0), (0, 0)))
self.assertTrue(poly.covers(Point(5, 5)))
self.assertFalse(poly.covers(Point(100, 100)))
def test_closed(self):
ls_closed = LineString((0, 0), (1, 1), (0, 0))
ls_not_closed = LineString((0, 0), (1, 1))
self.assertFalse(ls_not_closed.closed)
self.assertTrue(ls_closed.closed)
def test_srid(self):
"Testing the SRID property and keyword."
# Testing SRID keyword on Point
pnt = Point(5, 23, srid=4326)
self.assertEqual(4326, pnt.srid)
pnt.srid = 3084
self.assertEqual(3084, pnt.srid)
with self.assertRaises(ctypes.ArgumentError):
pnt.srid = '4326'
# Testing SRID keyword on fromstr(), and on Polygon rings.
poly = fromstr(self.geometries.polygons[1].wkt, srid=4269)
self.assertEqual(4269, poly.srid)
for ring in poly:
self.assertEqual(4269, ring.srid)
poly.srid = 4326
self.assertEqual(4326, poly.shell.srid)
# Testing SRID keyword on GeometryCollection
gc = GeometryCollection(Point(5, 23), LineString((0, 0), (1.5, 1.5), (3, 3)), srid=32021)
self.assertEqual(32021, gc.srid)
for i in range(len(gc)):
self.assertEqual(32021, gc[i].srid)
# GEOS may get the SRID from HEXEWKB
# 'POINT(5 23)' at SRID=4326 in hex form -- obtained from PostGIS
# using `SELECT GeomFromText('POINT (5 23)', 4326);`.
hex = '0101000020E610000000000000000014400000000000003740'
p1 = fromstr(hex)
self.assertEqual(4326, p1.srid)
p2 = fromstr(p1.hex)
self.assertIsNone(p2.srid)
p3 = fromstr(p1.hex, srid=-1) # -1 is intended.
self.assertEqual(-1, p3.srid)
# Testing that geometry SRID could be set to its own value
pnt_wo_srid = Point(1, 1)
pnt_wo_srid.srid = pnt_wo_srid.srid
# Input geometries that have an SRID.
self.assertEqual(GEOSGeometry(pnt.ewkt, srid=pnt.srid).srid, pnt.srid)
self.assertEqual(GEOSGeometry(pnt.ewkb, srid=pnt.srid).srid, pnt.srid)
with self.assertRaisesMessage(ValueError, 'Input geometry already has SRID: %d.' % pnt.srid):
GEOSGeometry(pnt.ewkt, srid=1)
with self.assertRaisesMessage(ValueError, 'Input geometry already has SRID: %d.' % pnt.srid):
GEOSGeometry(pnt.ewkb, srid=1)
def test_custom_srid(self):
"""Test with a null srid and a srid unknown to GDAL."""
for srid in [None, 999999]:
pnt = Point(111200, 220900, srid=srid)
self.assertTrue(pnt.ewkt.startswith(("SRID=%s;" % srid if srid else '') + "POINT (111200"))
self.assertIsInstance(pnt.ogr, gdal.OGRGeometry)
self.assertIsNone(pnt.srs)
# Test conversion from custom to a known srid
c2w = gdal.CoordTransform(
gdal.SpatialReference(
'+proj=mill +lat_0=0 +lon_0=0 +x_0=0 +y_0=0 +R_A +ellps=WGS84 '
'+datum=WGS84 +units=m +no_defs'
),
gdal.SpatialReference(4326))
new_pnt = pnt.transform(c2w, clone=True)
self.assertEqual(new_pnt.srid, 4326)
self.assertAlmostEqual(new_pnt.x, 1, 1)
self.assertAlmostEqual(new_pnt.y, 2, 1)
def test_mutable_geometries(self):
"Testing the mutability of Polygons and Geometry Collections."
# ### Testing the mutability of Polygons ###
for p in self.geometries.polygons:
poly = fromstr(p.wkt)
# Should only be able to use __setitem__ with LinearRing geometries.
with self.assertRaises(TypeError):
poly.__setitem__(0, LineString((1, 1), (2, 2)))
# Constructing the new shell by adding 500 to every point in the old shell.
shell_tup = poly.shell.tuple
new_coords = []
for point in shell_tup:
new_coords.append((point[0] + 500., point[1] + 500.))
new_shell = LinearRing(*tuple(new_coords))
# Assigning polygon's exterior ring w/the new shell
poly.exterior_ring = new_shell
str(new_shell) # new shell is still accessible
self.assertEqual(poly.exterior_ring, new_shell)
self.assertEqual(poly[0], new_shell)
# ### Testing the mutability of Geometry Collections
for tg in self.geometries.multipoints:
mp = fromstr(tg.wkt)
for i in range(len(mp)):
# Creating a random point.
pnt = mp[i]
new = Point(random.randint(21, 100), random.randint(21, 100))
# Testing the assignment
mp[i] = new
str(new) # what was used for the assignment is still accessible
self.assertEqual(mp[i], new)
self.assertEqual(mp[i].wkt, new.wkt)
self.assertNotEqual(pnt, mp[i])
# MultiPolygons involve much more memory management because each
# Polygon w/in the collection has its own rings.
for tg in self.geometries.multipolygons:
mpoly = fromstr(tg.wkt)
for i in range(len(mpoly)):
poly = mpoly[i]
old_poly = mpoly[i]
# Offsetting the each ring in the polygon by 500.
for j in range(len(poly)):
r = poly[j]
for k in range(len(r)):
r[k] = (r[k][0] + 500., r[k][1] + 500.)
poly[j] = r
self.assertNotEqual(mpoly[i], poly)
# Testing the assignment
mpoly[i] = poly
str(poly) # Still accessible
self.assertEqual(mpoly[i], poly)
self.assertNotEqual(mpoly[i], old_poly)
# Extreme (!!) __setitem__ -- no longer works, have to detect
# in the first object that __setitem__ is called in the subsequent
# objects -- maybe mpoly[0, 0, 0] = (3.14, 2.71)?
# mpoly[0][0][0] = (3.14, 2.71)
# self.assertEqual((3.14, 2.71), mpoly[0][0][0])
# Doing it more slowly..
# self.assertEqual((3.14, 2.71), mpoly[0].shell[0])
# del mpoly
def test_point_list_assignment(self):
p = Point(0, 0)
p[:] = (1, 2, 3)
self.assertEqual(p, Point(1, 2, 3))
p[:] = ()
self.assertEqual(p.wkt, Point())
p[:] = (1, 2)
self.assertEqual(p.wkt, Point(1, 2))
with self.assertRaises(ValueError):
p[:] = (1,)
with self.assertRaises(ValueError):
p[:] = (1, 2, 3, 4, 5)
def test_linestring_list_assignment(self):
ls = LineString((0, 0), (1, 1))
ls[:] = ()
self.assertEqual(ls, LineString())
ls[:] = ((0, 0), (1, 1), (2, 2))
self.assertEqual(ls, LineString((0, 0), (1, 1), (2, 2)))
with self.assertRaises(ValueError):
ls[:] = (1,)
def test_linearring_list_assignment(self):
ls = LinearRing((0, 0), (0, 1), (1, 1), (0, 0))
ls[:] = ()
self.assertEqual(ls, LinearRing())
ls[:] = ((0, 0), (0, 1), (1, 1), (1, 0), (0, 0))
self.assertEqual(ls, LinearRing((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)))
with self.assertRaises(ValueError):
ls[:] = ((0, 0), (1, 1), (2, 2))
def test_polygon_list_assignment(self):
pol = Polygon()
pol[:] = (((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)),)
self.assertEqual(pol, Polygon(((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)),))
pol[:] = ()
self.assertEqual(pol, Polygon())
def test_geometry_collection_list_assignment(self):
p = Point()
gc = GeometryCollection()
gc[:] = [p]
self.assertEqual(gc, GeometryCollection(p))
gc[:] = ()
self.assertEqual(gc, GeometryCollection())
def test_threed(self):
"Testing three-dimensional geometries."
# Testing a 3D Point
pnt = Point(2, 3, 8)
self.assertEqual((2., 3., 8.), pnt.coords)
with self.assertRaises(TypeError):
pnt.tuple = (1., 2.)
pnt.coords = (1., 2., 3.)
self.assertEqual((1., 2., 3.), pnt.coords)
# Testing a 3D LineString
ls = LineString((2., 3., 8.), (50., 250., -117.))
self.assertEqual(((2., 3., 8.), (50., 250., -117.)), ls.tuple)
with self.assertRaises(TypeError):
ls.__setitem__(0, (1., 2.))
ls[0] = (1., 2., 3.)
self.assertEqual((1., 2., 3.), ls[0])
def test_distance(self):
"Testing the distance() function."
# Distance to self should be 0.
pnt = Point(0, 0)
self.assertEqual(0.0, pnt.distance(Point(0, 0)))
# Distance should be 1
self.assertEqual(1.0, pnt.distance(Point(0, 1)))
# Distance should be ~ sqrt(2)
self.assertAlmostEqual(1.41421356237, pnt.distance(Point(1, 1)), 11)
# Distances are from the closest vertex in each geometry --
# should be 3 (distance from (2, 2) to (5, 2)).
ls1 = LineString((0, 0), (1, 1), (2, 2))
ls2 = LineString((5, 2), (6, 1), (7, 0))
self.assertEqual(3, ls1.distance(ls2))
def test_length(self):
"Testing the length property."
# Points have 0 length.
pnt = Point(0, 0)
self.assertEqual(0.0, pnt.length)
# Should be ~ sqrt(2)
ls = LineString((0, 0), (1, 1))
self.assertAlmostEqual(1.41421356237, ls.length, 11)
# Should be circumference of Polygon
poly = Polygon(LinearRing((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)))
self.assertEqual(4.0, poly.length)
# Should be sum of each element's length in collection.
mpoly = MultiPolygon(poly.clone(), poly)
self.assertEqual(8.0, mpoly.length)
def test_emptyCollections(self):
"Testing empty geometries and collections."
geoms = [
GeometryCollection([]),
fromstr('GEOMETRYCOLLECTION EMPTY'),
GeometryCollection(),
fromstr('POINT EMPTY'),
Point(),
fromstr('LINESTRING EMPTY'),
LineString(),
fromstr('POLYGON EMPTY'),
Polygon(),
fromstr('MULTILINESTRING EMPTY'),
MultiLineString(),
fromstr('MULTIPOLYGON EMPTY'),
MultiPolygon(()),
MultiPolygon(),
]
if numpy:
geoms.append(LineString(numpy.array([])))
for g in geoms:
self.assertIs(g.empty, True)
# Testing len() and num_geom.
if isinstance(g, Polygon):
self.assertEqual(1, len(g)) # Has one empty linear ring
self.assertEqual(1, g.num_geom)
self.assertEqual(0, len(g[0]))
elif isinstance(g, (Point, LineString)):
self.assertEqual(1, g.num_geom)
self.assertEqual(0, len(g))
else:
self.assertEqual(0, g.num_geom)
self.assertEqual(0, len(g))
# Testing __getitem__ (doesn't work on Point or Polygon)
if isinstance(g, Point):
with self.assertRaises(IndexError):
g.x
elif isinstance(g, Polygon):
lr = g.shell
self.assertEqual('LINEARRING EMPTY', lr.wkt)
self.assertEqual(0, len(lr))
self.assertIs(lr.empty, True)
with self.assertRaises(IndexError):
lr.__getitem__(0)
else:
with self.assertRaises(IndexError):
g.__getitem__(0)
def test_collection_dims(self):
gc = GeometryCollection([])
self.assertEqual(gc.dims, -1)
gc = GeometryCollection(Point(0, 0))
self.assertEqual(gc.dims, 0)
gc = GeometryCollection(LineString((0, 0), (1, 1)), Point(0, 0))
self.assertEqual(gc.dims, 1)
gc = GeometryCollection(LineString((0, 0), (1, 1)), Polygon(((0, 0), (0, 1), (1, 1), (0, 0))), Point(0, 0))
self.assertEqual(gc.dims, 2)
def test_collections_of_collections(self):
"Testing GeometryCollection handling of other collections."
# Creating a GeometryCollection WKT string composed of other
# collections and polygons.
coll = [mp.wkt for mp in self.geometries.multipolygons if mp.valid]
coll.extend(mls.wkt for mls in self.geometries.multilinestrings)
coll.extend(p.wkt for p in self.geometries.polygons)
coll.extend(mp.wkt for mp in self.geometries.multipoints)
gc_wkt = 'GEOMETRYCOLLECTION(%s)' % ','.join(coll)
# Should construct ok from WKT
gc1 = GEOSGeometry(gc_wkt)
# Should also construct ok from individual geometry arguments.
gc2 = GeometryCollection(*tuple(g for g in gc1))
# And, they should be equal.
self.assertEqual(gc1, gc2)
def test_gdal(self):
"Testing `ogr` and `srs` properties."
g1 = fromstr('POINT(5 23)')
self.assertIsInstance(g1.ogr, gdal.OGRGeometry)
self.assertIsNone(g1.srs)
g1_3d = fromstr('POINT(5 23 8)')
self.assertIsInstance(g1_3d.ogr, gdal.OGRGeometry)
self.assertEqual(g1_3d.ogr.z, 8)
g2 = fromstr('LINESTRING(0 0, 5 5, 23 23)', srid=4326)
self.assertIsInstance(g2.ogr, gdal.OGRGeometry)
self.assertIsInstance(g2.srs, gdal.SpatialReference)
self.assertEqual(g2.hex, g2.ogr.hex)
self.assertEqual('WGS 84', g2.srs.name)
def test_copy(self):
"Testing use with the Python `copy` module."
import copy
poly = GEOSGeometry('POLYGON((0 0, 0 23, 23 23, 23 0, 0 0), (5 5, 5 10, 10 10, 10 5, 5 5))')
cpy1 = copy.copy(poly)
cpy2 = copy.deepcopy(poly)
self.assertNotEqual(poly._ptr, cpy1._ptr)
self.assertNotEqual(poly._ptr, cpy2._ptr)
def test_transform(self):
"Testing `transform` method."
orig = GEOSGeometry('POINT (-104.609 38.255)', 4326)
trans = GEOSGeometry('POINT (992385.4472045 481455.4944650)', 2774)
# Using a srid, a SpatialReference object, and a CoordTransform object
# for transformations.
t1, t2, t3 = orig.clone(), orig.clone(), orig.clone()
t1.transform(trans.srid)
t2.transform(gdal.SpatialReference('EPSG:2774'))
ct = gdal.CoordTransform(gdal.SpatialReference('WGS84'), gdal.SpatialReference(2774))
t3.transform(ct)
# Testing use of the `clone` keyword.
k1 = orig.clone()
k2 = k1.transform(trans.srid, clone=True)
self.assertEqual(k1, orig)
self.assertNotEqual(k1, k2)
# Different PROJ versions use different transformations, all are
# correct as having a 1 meter accuracy.
prec = -1
for p in (t1, t2, t3, k2):
self.assertAlmostEqual(trans.x, p.x, prec)
self.assertAlmostEqual(trans.y, p.y, prec)
def test_transform_3d(self):
p3d = GEOSGeometry('POINT (5 23 100)', 4326)
p3d.transform(2774)
self.assertAlmostEqual(p3d.z, 100, 3)
def test_transform_noop(self):
""" Testing `transform` method (SRID match) """
# transform() should no-op if source & dest SRIDs match,
# regardless of whether GDAL is available.
g = GEOSGeometry('POINT (-104.609 38.255)', 4326)
gt = g.tuple
g.transform(4326)
self.assertEqual(g.tuple, gt)
self.assertEqual(g.srid, 4326)
g = GEOSGeometry('POINT (-104.609 38.255)', 4326)
g1 = g.transform(4326, clone=True)
self.assertEqual(g1.tuple, g.tuple)
self.assertEqual(g1.srid, 4326)
self.assertIsNot(g1, g, "Clone didn't happen")
def test_transform_nosrid(self):
""" Testing `transform` method (no SRID or negative SRID) """
g = GEOSGeometry('POINT (-104.609 38.255)', srid=None)
with self.assertRaises(GEOSException):
g.transform(2774)
g = GEOSGeometry('POINT (-104.609 38.255)', srid=None)
with self.assertRaises(GEOSException):
g.transform(2774, clone=True)
g = GEOSGeometry('POINT (-104.609 38.255)', srid=-1)
with self.assertRaises(GEOSException):
g.transform(2774)
g = GEOSGeometry('POINT (-104.609 38.255)', srid=-1)
with self.assertRaises(GEOSException):
g.transform(2774, clone=True)
def test_extent(self):
"Testing `extent` method."
# The xmin, ymin, xmax, ymax of the MultiPoint should be returned.
mp = MultiPoint(Point(5, 23), Point(0, 0), Point(10, 50))
self.assertEqual((0.0, 0.0, 10.0, 50.0), mp.extent)
pnt = Point(5.23, 17.8)
# Extent of points is just the point itself repeated.
self.assertEqual((5.23, 17.8, 5.23, 17.8), pnt.extent)
# Testing on the 'real world' Polygon.
poly = fromstr(self.geometries.polygons[3].wkt)
ring = poly.shell
x, y = ring.x, ring.y
xmin, ymin = min(x), min(y)
xmax, ymax = max(x), max(y)
self.assertEqual((xmin, ymin, xmax, ymax), poly.extent)
def test_pickle(self):
"Testing pickling and unpickling support."
# Creating a list of test geometries for pickling,
# and setting the SRID on some of them.
def get_geoms(lst, srid=None):
return [GEOSGeometry(tg.wkt, srid) for tg in lst]
tgeoms = get_geoms(self.geometries.points)
tgeoms.extend(get_geoms(self.geometries.multilinestrings, 4326))
tgeoms.extend(get_geoms(self.geometries.polygons, 3084))
tgeoms.extend(get_geoms(self.geometries.multipolygons, 3857))
tgeoms.append(Point(srid=4326))
tgeoms.append(Point())
for geom in tgeoms:
s1 = pickle.dumps(geom)
g1 = pickle.loads(s1)
self.assertEqual(geom, g1)
self.assertEqual(geom.srid, g1.srid)
def test_prepared(self):
"Testing PreparedGeometry support."
# Creating a simple multipolygon and getting a prepared version.
mpoly = GEOSGeometry('MULTIPOLYGON(((0 0,0 5,5 5,5 0,0 0)),((5 5,5 10,10 10,10 5,5 5)))')
prep = mpoly.prepared
# A set of test points.
pnts = [Point(5, 5), Point(7.5, 7.5), Point(2.5, 7.5)]
for pnt in pnts:
# Results should be the same (but faster)
self.assertEqual(mpoly.contains(pnt), prep.contains(pnt))
self.assertEqual(mpoly.intersects(pnt), prep.intersects(pnt))
self.assertEqual(mpoly.covers(pnt), prep.covers(pnt))
self.assertTrue(prep.crosses(fromstr('LINESTRING(1 1, 15 15)')))
self.assertTrue(prep.disjoint(Point(-5, -5)))
poly = Polygon(((-1, -1), (1, 1), (1, 0), (-1, -1)))
self.assertTrue(prep.overlaps(poly))
poly = Polygon(((-5, 0), (-5, 5), (0, 5), (-5, 0)))
self.assertTrue(prep.touches(poly))
poly = Polygon(((-1, -1), (-1, 11), (11, 11), (11, -1), (-1, -1)))
self.assertTrue(prep.within(poly))
# Original geometry deletion should not crash the prepared one (#21662)
del mpoly
self.assertTrue(prep.covers(Point(5, 5)))
def test_line_merge(self):
"Testing line merge support"
ref_geoms = (fromstr('LINESTRING(1 1, 1 1, 3 3)'),
fromstr('MULTILINESTRING((1 1, 3 3), (3 3, 4 2))'),
)
ref_merged = (fromstr('LINESTRING(1 1, 3 3)'),
fromstr('LINESTRING (1 1, 3 3, 4 2)'),
)
for geom, merged in zip(ref_geoms, ref_merged):
self.assertEqual(merged, geom.merged)
def test_valid_reason(self):
"Testing IsValidReason support"
g = GEOSGeometry("POINT(0 0)")
self.assertTrue(g.valid)
self.assertIsInstance(g.valid_reason, str)
self.assertEqual(g.valid_reason, "Valid Geometry")
g = GEOSGeometry("LINESTRING(0 0, 0 0)")
self.assertFalse(g.valid)
self.assertIsInstance(g.valid_reason, str)
self.assertTrue(g.valid_reason.startswith("Too few points in geometry component"))
def test_linearref(self):
"Testing linear referencing"
ls = fromstr('LINESTRING(0 0, 0 10, 10 10, 10 0)')
mls = fromstr('MULTILINESTRING((0 0, 0 10), (10 0, 10 10))')
self.assertEqual(ls.project(Point(0, 20)), 10.0)
self.assertEqual(ls.project(Point(7, 6)), 24)
self.assertEqual(ls.project_normalized(Point(0, 20)), 1.0 / 3)
self.assertEqual(ls.interpolate(10), Point(0, 10))
self.assertEqual(ls.interpolate(24), Point(10, 6))
self.assertEqual(ls.interpolate_normalized(1.0 / 3), Point(0, 10))
self.assertEqual(mls.project(Point(0, 20)), 10)
self.assertEqual(mls.project(Point(7, 6)), 16)
self.assertEqual(mls.interpolate(9), Point(0, 9))
self.assertEqual(mls.interpolate(17), Point(10, 7))
def test_deconstructible(self):
"""
Geometry classes should be deconstructible.
"""
point = Point(4.337844, 50.827537, srid=4326)
path, args, kwargs = point.deconstruct()
self.assertEqual(path, 'django.contrib.gis.geos.point.Point')
self.assertEqual(args, (4.337844, 50.827537))
self.assertEqual(kwargs, {'srid': 4326})
ls = LineString(((0, 0), (1, 1)))
path, args, kwargs = ls.deconstruct()
self.assertEqual(path, 'django.contrib.gis.geos.linestring.LineString')
self.assertEqual(args, (((0, 0), (1, 1)),))
self.assertEqual(kwargs, {})
ls2 = LineString([Point(0, 0), Point(1, 1)], srid=4326)
path, args, kwargs = ls2.deconstruct()
self.assertEqual(path, 'django.contrib.gis.geos.linestring.LineString')
self.assertEqual(args, ([Point(0, 0), Point(1, 1)],))
self.assertEqual(kwargs, {'srid': 4326})
ext_coords = ((0, 0), (0, 1), (1, 1), (1, 0), (0, 0))
int_coords = ((0.4, 0.4), (0.4, 0.6), (0.6, 0.6), (0.6, 0.4), (0.4, 0.4))
poly = Polygon(ext_coords, int_coords)
path, args, kwargs = poly.deconstruct()
self.assertEqual(path, 'django.contrib.gis.geos.polygon.Polygon')
self.assertEqual(args, (ext_coords, int_coords))
self.assertEqual(kwargs, {})
lr = LinearRing((0, 0), (0, 1), (1, 1), (0, 0))
path, args, kwargs = lr.deconstruct()
self.assertEqual(path, 'django.contrib.gis.geos.linestring.LinearRing')
self.assertEqual(args, ((0, 0), (0, 1), (1, 1), (0, 0)))
self.assertEqual(kwargs, {})
mp = MultiPoint(Point(0, 0), Point(1, 1))
path, args, kwargs = mp.deconstruct()
self.assertEqual(path, 'django.contrib.gis.geos.collections.MultiPoint')
self.assertEqual(args, (Point(0, 0), Point(1, 1)))
self.assertEqual(kwargs, {})
ls1 = LineString((0, 0), (1, 1))
ls2 = LineString((2, 2), (3, 3))
mls = MultiLineString(ls1, ls2)
path, args, kwargs = mls.deconstruct()
self.assertEqual(path, 'django.contrib.gis.geos.collections.MultiLineString')
self.assertEqual(args, (ls1, ls2))
self.assertEqual(kwargs, {})
p1 = Polygon(((0, 0), (0, 1), (1, 1), (0, 0)))
p2 = Polygon(((1, 1), (1, 2), (2, 2), (1, 1)))
mp = MultiPolygon(p1, p2)
path, args, kwargs = mp.deconstruct()
self.assertEqual(path, 'django.contrib.gis.geos.collections.MultiPolygon')
self.assertEqual(args, (p1, p2))
self.assertEqual(kwargs, {})
poly = Polygon(((0, 0), (0, 1), (1, 1), (0, 0)))
gc = GeometryCollection(Point(0, 0), MultiPoint(Point(0, 0), Point(1, 1)), poly)
path, args, kwargs = gc.deconstruct()
self.assertEqual(path, 'django.contrib.gis.geos.collections.GeometryCollection')
self.assertEqual(args, (Point(0, 0), MultiPoint(Point(0, 0), Point(1, 1)), poly))
self.assertEqual(kwargs, {})
def test_subclassing(self):
"""
GEOSGeometry subclass may itself be subclassed without being forced-cast
to the parent class during `__init__`.
"""
class ExtendedPolygon(Polygon):
def __init__(self, *args, data=0, **kwargs):
super().__init__(*args, **kwargs)
self._data = data
def __str__(self):
return "EXT_POLYGON - data: %d - %s" % (self._data, self.wkt)
ext_poly = ExtendedPolygon(((0, 0), (0, 1), (1, 1), (0, 0)), data=3)
self.assertEqual(type(ext_poly), ExtendedPolygon)
# ExtendedPolygon.__str__ should be called (instead of Polygon.__str__).
self.assertEqual(str(ext_poly), "EXT_POLYGON - data: 3 - POLYGON ((0 0, 0 1, 1 1, 0 0))")
self.assertJSONEqual(
ext_poly.json,
'{"coordinates": [[[0, 0], [0, 1], [1, 1], [0, 0]]], "type": "Polygon"}',
)
def test_geos_version_tuple(self):
versions = (
(b'3.0.0rc4-CAPI-1.3.3', (3, 0, 0)),
(b'3.0.0-CAPI-1.4.1', (3, 0, 0)),
(b'3.4.0dev-CAPI-1.8.0', (3, 4, 0)),
(b'3.4.0dev-CAPI-1.8.0 r0', (3, 4, 0)),
(b'3.6.2-CAPI-1.10.2 4d2925d6', (3, 6, 2)),
)
for version_string, version_tuple in versions:
with self.subTest(version_string=version_string):
with mock.patch('django.contrib.gis.geos.libgeos.geos_version', lambda: version_string):
self.assertEqual(geos_version_tuple(), version_tuple)
def test_from_gml(self):
self.assertEqual(
GEOSGeometry('POINT(0 0)'),
GEOSGeometry.from_gml(
'<gml:Point gml:id="p21" srsName="http://www.opengis.net/def/crs/EPSG/0/4326">'
' <gml:pos srsDimension="2">0 0</gml:pos>'
'</gml:Point>'
),
)
def test_from_ewkt(self):
self.assertEqual(GEOSGeometry.from_ewkt('SRID=1;POINT(1 1)'), Point(1, 1, srid=1))
self.assertEqual(GEOSGeometry.from_ewkt('POINT(1 1)'), Point(1, 1))
def test_from_ewkt_empty_string(self):
msg = 'Expected WKT but got an empty string.'
with self.assertRaisesMessage(ValueError, msg):
GEOSGeometry.from_ewkt('')
with self.assertRaisesMessage(ValueError, msg):
GEOSGeometry.from_ewkt('SRID=1;')
def test_from_ewkt_invalid_srid(self):
msg = 'EWKT has invalid SRID part.'
with self.assertRaisesMessage(ValueError, msg):
GEOSGeometry.from_ewkt('SRUD=1;POINT(1 1)')
with self.assertRaisesMessage(ValueError, msg):
GEOSGeometry.from_ewkt('SRID=WGS84;POINT(1 1)')
def test_fromstr_scientific_wkt(self):
self.assertEqual(GEOSGeometry('POINT(1.0e-1 1.0e+1)'), Point(.1, 10))
def test_normalize(self):
g = MultiPoint(Point(0, 0), Point(2, 2), Point(1, 1))
self.assertIsNone(g.normalize())
self.assertTrue(g.equals_exact(MultiPoint(Point(2, 2), Point(1, 1), Point(0, 0))))
def test_empty_point(self):
p = Point(srid=4326)
self.assertEqual(p.ogr.ewkt, p.ewkt)
self.assertEqual(p.transform(2774, clone=True), Point(srid=2774))
p.transform(2774)
self.assertEqual(p, Point(srid=2774))
def test_linestring_iter(self):
ls = LineString((0, 0), (1, 1))
it = iter(ls)
# Step into CoordSeq iterator.
next(it)
ls[:] = []
with self.assertRaises(IndexError):
next(it)