django1/django/contrib/gis/gdal/raster/source.py

406 lines
14 KiB
Python

import json
import os
from ctypes import addressof, byref, c_double, c_void_p
from django.contrib.gis.gdal.base import GDALBase
from django.contrib.gis.gdal.driver import Driver
from django.contrib.gis.gdal.error import GDALException
from django.contrib.gis.gdal.prototypes import raster as capi
from django.contrib.gis.gdal.raster.band import BandList
from django.contrib.gis.gdal.raster.const import GDAL_RESAMPLE_ALGORITHMS
from django.contrib.gis.gdal.srs import SpatialReference, SRSException
from django.contrib.gis.geometry.regex import json_regex
from django.utils.encoding import force_bytes, force_text
from django.utils.functional import cached_property
class TransformPoint(list):
indices = {
'origin': (0, 3),
'scale': (1, 5),
'skew': (2, 4),
}
def __init__(self, raster, prop):
x = raster.geotransform[self.indices[prop][0]]
y = raster.geotransform[self.indices[prop][1]]
list.__init__(self, [x, y])
self._raster = raster
self._prop = prop
@property
def x(self):
return self[0]
@x.setter
def x(self, value):
gtf = self._raster.geotransform
gtf[self.indices[self._prop][0]] = value
self._raster.geotransform = gtf
@property
def y(self):
return self[1]
@y.setter
def y(self, value):
gtf = self._raster.geotransform
gtf[self.indices[self._prop][1]] = value
self._raster.geotransform = gtf
class GDALRaster(GDALBase):
"""
Wrap a raster GDAL Data Source object.
"""
destructor = capi.close_ds
def __init__(self, ds_input, write=False):
self._write = 1 if write else 0
Driver.ensure_registered()
# Preprocess json inputs. This converts json strings to dictionaries,
# which are parsed below the same way as direct dictionary inputs.
if isinstance(ds_input, str) and json_regex.match(ds_input):
ds_input = json.loads(ds_input)
# If input is a valid file path, try setting file as source.
if isinstance(ds_input, str):
if not os.path.exists(ds_input):
raise GDALException('Unable to read raster source input "{}"'.format(ds_input))
try:
# GDALOpen will auto-detect the data source type.
self._ptr = capi.open_ds(force_bytes(ds_input), self._write)
except GDALException as err:
raise GDALException('Could not open the datasource at "{}" ({}).'.format(ds_input, err))
elif isinstance(ds_input, dict):
# A new raster needs to be created in write mode
self._write = 1
# Create driver (in memory by default)
driver = Driver(ds_input.get('driver', 'MEM'))
# For out of memory drivers, check filename argument
if driver.name != 'MEM' and 'name' not in ds_input:
raise GDALException('Specify name for creation of raster with driver "{}".'.format(driver.name))
# Check if width and height where specified
if 'width' not in ds_input or 'height' not in ds_input:
raise GDALException('Specify width and height attributes for JSON or dict input.')
# Check if srid was specified
if 'srid' not in ds_input:
raise GDALException('Specify srid for JSON or dict input.')
# Create GDAL Raster
self._ptr = capi.create_ds(
driver._ptr,
force_bytes(ds_input.get('name', '')),
ds_input['width'],
ds_input['height'],
ds_input.get('nr_of_bands', len(ds_input.get('bands', []))),
ds_input.get('datatype', 6),
None
)
# Set band data if provided
for i, band_input in enumerate(ds_input.get('bands', [])):
band = self.bands[i]
if 'nodata_value' in band_input:
band.nodata_value = band_input['nodata_value']
# Instantiate band filled with nodata values if only
# partial input data has been provided.
if band.nodata_value is not None and (
'data' not in band_input or
'size' in band_input or
'shape' in band_input):
band.data(data=(band.nodata_value,), shape=(1, 1))
# Set band data values from input.
band.data(
data=band_input.get('data'),
size=band_input.get('size'),
shape=band_input.get('shape'),
offset=band_input.get('offset'),
)
# Set SRID
self.srs = ds_input.get('srid')
# Set additional properties if provided
if 'origin' in ds_input:
self.origin.x, self.origin.y = ds_input['origin']
if 'scale' in ds_input:
self.scale.x, self.scale.y = ds_input['scale']
if 'skew' in ds_input:
self.skew.x, self.skew.y = ds_input['skew']
elif isinstance(ds_input, c_void_p):
# Instantiate the object using an existing pointer to a gdal raster.
self._ptr = ds_input
else:
raise GDALException('Invalid data source input type: "{}".'.format(type(ds_input)))
def __str__(self):
return self.name
def __repr__(self):
"""
Short-hand representation because WKB may be very large.
"""
return '<Raster object at %s>' % hex(addressof(self._ptr))
def _flush(self):
"""
Flush all data from memory into the source file if it exists.
The data that needs flushing are geotransforms, coordinate systems,
nodata_values and pixel values. This function will be called
automatically wherever it is needed.
"""
# Raise an Exception if the value is being changed in read mode.
if not self._write:
raise GDALException('Raster needs to be opened in write mode to change values.')
capi.flush_ds(self._ptr)
@property
def name(self):
"""
Return the name of this raster. Corresponds to filename
for file-based rasters.
"""
return force_text(capi.get_ds_description(self._ptr))
@cached_property
def driver(self):
"""
Return the GDAL Driver used for this raster.
"""
ds_driver = capi.get_ds_driver(self._ptr)
return Driver(ds_driver)
@property
def width(self):
"""
Width (X axis) in pixels.
"""
return capi.get_ds_xsize(self._ptr)
@property
def height(self):
"""
Height (Y axis) in pixels.
"""
return capi.get_ds_ysize(self._ptr)
@property
def srs(self):
"""
Return the SpatialReference used in this GDALRaster.
"""
try:
wkt = capi.get_ds_projection_ref(self._ptr)
if not wkt:
return None
return SpatialReference(wkt, srs_type='wkt')
except SRSException:
return None
@srs.setter
def srs(self, value):
"""
Set the spatial reference used in this GDALRaster. The input can be
a SpatialReference or any parameter accepted by the SpatialReference
constructor.
"""
if isinstance(value, SpatialReference):
srs = value
elif isinstance(value, (int, str)):
srs = SpatialReference(value)
else:
raise ValueError('Could not create a SpatialReference from input.')
capi.set_ds_projection_ref(self._ptr, srs.wkt.encode())
self._flush()
@property
def srid(self):
"""
Shortcut to access the srid of this GDALRaster.
"""
return self.srs.srid
@srid.setter
def srid(self, value):
"""
Shortcut to set this GDALRaster's srs from an srid.
"""
self.srs = value
@property
def geotransform(self):
"""
Return the geotransform of the data source.
Return the default geotransform if it does not exist or has not been
set previously. The default is [0.0, 1.0, 0.0, 0.0, 0.0, -1.0].
"""
# Create empty ctypes double array for data
gtf = (c_double * 6)()
capi.get_ds_geotransform(self._ptr, byref(gtf))
return list(gtf)
@geotransform.setter
def geotransform(self, values):
"Set the geotransform for the data source."
if len(values) != 6 or not all(isinstance(x, (int, float)) for x in values):
raise ValueError('Geotransform must consist of 6 numeric values.')
# Create ctypes double array with input and write data
values = (c_double * 6)(*values)
capi.set_ds_geotransform(self._ptr, byref(values))
self._flush()
@property
def origin(self):
"""
Coordinates of the raster origin.
"""
return TransformPoint(self, 'origin')
@property
def scale(self):
"""
Pixel scale in units of the raster projection.
"""
return TransformPoint(self, 'scale')
@property
def skew(self):
"""
Skew of pixels (rotation parameters).
"""
return TransformPoint(self, 'skew')
@property
def extent(self):
"""
Return the extent as a 4-tuple (xmin, ymin, xmax, ymax).
"""
# Calculate boundary values based on scale and size
xval = self.origin.x + self.scale.x * self.width
yval = self.origin.y + self.scale.y * self.height
# Calculate min and max values
xmin = min(xval, self.origin.x)
xmax = max(xval, self.origin.x)
ymin = min(yval, self.origin.y)
ymax = max(yval, self.origin.y)
return xmin, ymin, xmax, ymax
@property
def bands(self):
return BandList(self)
def warp(self, ds_input, resampling='NearestNeighbour', max_error=0.0):
"""
Return a warped GDALRaster with the given input characteristics.
The input is expected to be a dictionary containing the parameters
of the target raster. Allowed values are width, height, SRID, origin,
scale, skew, datatype, driver, and name (filename).
By default, the warp functions keeps all parameters equal to the values
of the original source raster. For the name of the target raster, the
name of the source raster will be used and appended with
_copy. + source_driver_name.
In addition, the resampling algorithm can be specified with the "resampling"
input parameter. The default is NearestNeighbor. For a list of all options
consult the GDAL_RESAMPLE_ALGORITHMS constant.
"""
# Get the parameters defining the geotransform, srid, and size of the raster
if 'width' not in ds_input:
ds_input['width'] = self.width
if 'height' not in ds_input:
ds_input['height'] = self.height
if 'srid' not in ds_input:
ds_input['srid'] = self.srs.srid
if 'origin' not in ds_input:
ds_input['origin'] = self.origin
if 'scale' not in ds_input:
ds_input['scale'] = self.scale
if 'skew' not in ds_input:
ds_input['skew'] = self.skew
# Get the driver, name, and datatype of the target raster
if 'driver' not in ds_input:
ds_input['driver'] = self.driver.name
if 'name' not in ds_input:
ds_input['name'] = self.name + '_copy.' + self.driver.name
if 'datatype' not in ds_input:
ds_input['datatype'] = self.bands[0].datatype()
# Instantiate raster bands filled with nodata values.
ds_input['bands'] = [{'nodata_value': bnd.nodata_value} for bnd in self.bands]
# Create target raster
target = GDALRaster(ds_input, write=True)
# Select resampling algorithm
algorithm = GDAL_RESAMPLE_ALGORITHMS[resampling]
# Reproject image
capi.reproject_image(
self._ptr, self.srs.wkt.encode(),
target._ptr, target.srs.wkt.encode(),
algorithm, 0.0, max_error,
c_void_p(), c_void_p(), c_void_p()
)
# Make sure all data is written to file
target._flush()
return target
def transform(self, srid, driver=None, name=None, resampling='NearestNeighbour',
max_error=0.0):
"""
Return a copy of this raster reprojected into the given SRID.
"""
# Convert the resampling algorithm name into an algorithm id
algorithm = GDAL_RESAMPLE_ALGORITHMS[resampling]
# Instantiate target spatial reference system
target_srs = SpatialReference(srid)
# Create warped virtual dataset in the target reference system
target = capi.auto_create_warped_vrt(
self._ptr, self.srs.wkt.encode(), target_srs.wkt.encode(),
algorithm, max_error, c_void_p()
)
target = GDALRaster(target)
# Construct the target warp dictionary from the virtual raster
data = {
'srid': srid,
'width': target.width,
'height': target.height,
'origin': [target.origin.x, target.origin.y],
'scale': [target.scale.x, target.scale.y],
'skew': [target.skew.x, target.skew.y],
}
# Set the driver and filepath if provided
if driver:
data['driver'] = driver
if name:
data['name'] = name
# Warp the raster into new srid
return self.warp(data, resampling=resampling, max_error=max_error)