django1/docs/ref/contrib/gis/geoquerysets.txt

1237 lines
35 KiB
Plaintext

.. _ref-geoquerysets:
=========================
GeoQuerySet API Reference
=========================
.. currentmodule:: django.contrib.gis.db.models
.. class:: GeoQuerySet([model=None])
.. _spatial-lookups:
Spatial Lookups
===============
Just like when using the :ref:`queryset-api`, interaction
with ``GeoQuerySet`` by :ref:`chaining filters <chaining-filters>`.
Instead of the regular Django :ref:`field-lookups`, the
spatial lookups in this section are available for :class:`GeometryField`.
For an introduction, see the :ref:`spatial lookups introduction
<spatial-lookups-intro>`. For an overview of what lookups are
compatible with a particular spatial backend, refer to the
:ref:`spatial lookup compatibility table <spatial-lookup-compatibility>`.
.. fieldlookup:: bbcontains
bbcontains
----------
*Availability*: PostGIS, MySQL, SpatiaLite
Tests if the geometry field's bounding box completely contains the lookup
geometry's bounding box.
Example::
Zipcode.objects.filter(poly__bbcontains=geom)
========== ==========================
Backend SQL Equivalent
========== ==========================
PostGIS ``poly ~ geom``
MySQL ``MBRContains(poly, geom)``
SpatiaLite ``MbrContains(poly, geom)``
========== ==========================
.. fieldlookup:: bboverlaps
bboverlaps
----------
*Availability*: PostGIS, MySQL, SpatiaLite
Tests if the geometry field's bounding box overlaps the lookup geometry's
bounding box.
Example::
Zipcode.objects.filter(poly__bboverlaps=geom)
========== ==========================
Backend SQL Equivalent
========== ==========================
PostGIS ``poly && geom``
MySQL ``MBROverlaps(poly, geom)``
SpatiaLite ``MbrOverlaps(poly, geom)``
========== ==========================
.. fieldlookup:: contained
contained
---------
*Availability*: PostGIS, MySQL, SpatiaLite
Tests if the geometry field's bounding box is completely contained by the
lookup geometry's bounding box.
Example::
Zipcode.objects.filter(poly__contained=geom)
========== ==========================
Backend SQL Equivalent
========== ==========================
PostGIS ``poly @ geom``
MySQL ``MBRWithin(poly, geom)``
SpatiaLite ``MbrWithin(poly, geom)``
========== ==========================
.. fieldlookup:: gis-contains
contains
--------
*Availability*: PostGIS, Oracle, MySQL, SpatiaLite
Tests if the geometry field spatially contains the lookup geometry.
Example::
Zipcode.objects.filter(poly__contains=geom)
========== ============================
Backend SQL Equivalent
========== ============================
PostGIS ``ST_Contains(poly, geom)``
Oracle ``SDO_CONTAINS(poly, geom)``
MySQL ``MBRContains(poly, geom)``
SpatiaLite ``Contains(poly, geom)``
========== ============================
.. fieldlookup:: contains_properly
contains_properly
-----------------
*Availability*: PostGIS
Returns true if the lookup geometry intersects the interior of the
geometry field, but not the boundary (or exterior). [#fncontainsproperly]_
Example::
Zipcode.objects.filter(poly__contains_properly=geom)
========== ===================================
Backend SQL Equivalent
========== ===================================
PostGIS ``ST_ContainsProperly(poly, geom)``
========== ===================================
.. fieldlookup:: coveredby
coveredby
---------
*Availability*: PostGIS, Oracle
Tests if no point in the geometry field is outside the lookup geometry.
[#fncovers]_
Example::
Zipcode.objects.filter(poly__coveredby=geom)
========== =============================
Backend SQL Equivalent
========== =============================
PostGIS ``ST_CoveredBy(poly, geom)``
Oracle ``SDO_COVEREDBY(poly, geom)``
========== =============================
.. fieldlookup:: covers
covers
------
*Availability*: PostGIS, Oracle
Tests if no point in the lookup geometry is outside the geometry field.
[#fncovers]_
Example::
Zipcode.objects.filter(poly__covers=geom)
========== ==========================
Backend SQL Equivalent
========== ==========================
PostGIS ``ST_Covers(poly, geom)``
Oracle ``SDO_COVERS(poly, geom)``
========== ==========================
.. fieldlookup:: crosses
crosses
-------
*Availability*: PostGIS, SpatiaLite
Tests if the geometry field spatially crosses the lookup geometry.
Example::
Zipcode.objects.filter(poly__crosses=geom)
========== ==========================
Backend SQL Equivalent
========== ==========================
PostGIS ``ST_Crosses(poly, geom)``
SpatiaLite ``Crosses(poly, geom)``
========== ==========================
.. fieldlookup:: disjoint
disjoint
--------
*Availability*: PostGIS, Oracle, MySQL, SpatiaLite
Tests if the geometry field is spatially disjoint from the lookup geometry.
Example::
Zipcode.objects.filter(poly__disjoint=geom)
========== =================================================
Backend SQL Equivalent
========== =================================================
PostGIS ``ST_Disjoint(poly, geom)``
Oracle ``SDO_GEOM.RELATE(poly, 'DISJOINT', geom, 0.05)``
MySQL ``MBRDisjoint(poly, geom)``
SpatiaLite ``Disjoint(poly, geom)``
========== =================================================
equals
------
*Availability*: PostGIS, Oracle, MySQL, SpatiaLite
.. fieldlookup:: exact
.. fieldlookup:: same_as
exact, same_as
--------------
*Availability*: PostGIS, Oracle, MySQL, SpatiaLite
.. fieldlookup:: intersects
intersects
----------
*Availability*: PostGIS, Oracle, MySQL, SpatiaLite
Tests if the geometry field spatially intersects the lookup geometry.
Example::
Zipcode.objects.filter(poly__intersects=geom)
========== =================================================
Backend SQL Equivalent
========== =================================================
PostGIS ``ST_Intersects(poly, geom)``
Oracle ``SDO_OVERLAPBDYINTERSECT(poly, geom)``
MySQL ``MBRIntersects(poly, geom)``
SpatiaLite ``Intersects(poly, geom)``
========== =================================================
.. fieldlookup:: overlaps
overlaps
--------
*Availability*: PostGIS, Oracle, MySQL, SpatiaLite
.. fieldlookup:: relate
relate
------
*Availability*: PostGIS, Oracle, SpatiaLite
Tests if the geometry field is spatially related to the lookup geometry by
the values given in the given pattern. This lookup requires a tuple parameter,
``(geom, pattern)``; the form of ``pattern`` will depend on the spatial backend:
PostGIS & SpatiaLite
~~~~~~~~~~~~~~~~~~~~
On these spatial backends the intersection pattern is a string comprising
nine characters, which define intersections between the interior, boundary,
and exterior of the geometry field and the lookup geometry.
The intersection pattern matrix may only use the following characters:
``1``, ``2``, ``T``, ``F``, or ``*``. This lookup type allows users to "fine tune"
a specific geometric relationship consistent with the DE-9IM model. [#fnde9im]_
Example::
# A tuple lookup parameter is used to specify the geometry and
# the intersection pattern (the pattern here is for 'contains').
Zipcode.objects.filter(poly__relate(geom, 'T*T***FF*'))
PostGIS SQL equivalent::
SELECT ... WHERE ST_Relate(poly, geom, 'T*T***FF*')
SpatiaLite SQL equivalent::
SELECT ... WHERE Relate(poly, geom, 'T*T***FF*')
Oracle
~~~~~~
Here the relation pattern is comprised at least one of the nine relation
strings: ``TOUCH``, ``OVERLAPBDYDISJOINT``, ``OVERLAPBDYINTERSECT``,
``EQUAL``, ``INSIDE``, ``COVEREDBY``, ``CONTAINS``, ``COVERS``, ``ON``, and
``ANYINTERACT``. Multiple strings may be combined with the logical Boolean
operator OR, for example, ``'inside+touch'``. [#fnsdorelate]_ The relation
strings are case-insensitive.
Example::
Zipcode.objects.filter(poly__relate(geom, 'anyinteract'))
Oracle SQL equivalent::
SELECT ... WHERE SDO_RELATE(poly, geom, 'anyinteract')
.. fieldlookup:: touches
touches
-------
*Availability*: PostGIS, Oracle, MySQL, SpatiaLite
Tests if the geometry field spatially touches the lookup geometry.
Example::
Zipcode.objects.filter(poly__touches=geom)
========== ==========================
Backend SQL Equivalent
========== ==========================
PostGIS ``ST_Touches(poly, geom)``
MySQL ``MBRTouches(poly, geom)``
Oracle ``SDO_TOUCH(poly, geom)``
SpatiaLite ``Touches(poly, geom)``
========== ==========================
.. fieldlookup:: within
within
------
*Availability*: PostGIS, Oracle, MySQL, SpatiaLite
Tests if the geometry field is spatially within the lookup geometry.
Example::
Zipcode.objects.filter(poly__within=geom)
========== ==========================
Backend SQL Equivalent
========== ==========================
PostGIS ``ST_Within(poly, geom)``
MySQL ``MBRWithin(poly, geom)``
Oracle ``SDO_INSIDE(poly, geom)``
SpatiaLite ``Within(poly, geom)``
========== ==========================
.. fieldlookup:: left
left
----
*Availability*: PostGIS
Tests if the geometry field's bounding box is strictly to the left of the
lookup geometry's bounding box.
Example::
Zipcode.objects.filter(poly__left=geom)
PostGIS equivalent::
SELECT ... WHERE poly << geom
.. fieldlookup:: right
right
-----
*Availability*: PostGIS
Tests if the geometry field's bounding box is strictly to the right of the
lookup geometry's bounding box.
Example::
Zipcode.objects.filter(poly__right=geom)
PostGIS equivalent::
SELECT ... WHERE poly >> geom
.. fieldlookup:: overlaps_left
overlaps_left
-------------
*Availability*: PostGIS
Tests if the geometry field's bounding box overlaps or is to the left of the lookup
geometry's bounding box.
Example::
Zipcode.objects.filter(poly__overlaps_left=geom)
PostGIS equivalent::
SELECT ... WHERE poly &< geom
.. fieldlookup:: overlaps_right
overlaps_right
--------------
*Availability*: PostGIS
Tests if the geometry field's bounding box overlaps or is to the right of the lookup
geometry's bounding box.
Example::
Zipcode.objects.filter(poly__overlaps_right=geom)
PostGIS equivalent::
SELECT ... WHERE poly &> geom
.. fieldlookup:: overlaps_above
overlaps_above
--------------
*Availability*: PostGIS
Tests if the geometry field's bounding box overlaps or is above the lookup
geometry's bounding box.
Example::
Zipcode.objects.filter(poly__overlaps_above=geom)
PostGIS equivalent::
SELECT ... WHERE poly |&> geom
.. fieldlookup:: overlaps_below
overlaps_below
--------------
*Availability*: PostGIS
Tests if the geometry field's bounding box overlaps or is below the lookup
geometry's bounding box.
Example::
Zipcode.objects.filter(poly__overlaps_below=geom)
PostGIS equivalent::
SELECT ... WHERE poly &<| geom
.. fieldlookup:: strictly_above
strictly_above
--------------
*Availability*: PostGIS
Tests if the geometry field's bounding box is strictly above the lookup
geometry's bounding box.
Example::
Zipcode.objects.filter(poly__strictly_above=geom)
PostGIS equivalent::
SELECT ... WHERE poly |>> geom
.. fieldlookup:: strictly_below
strictly_below
--------------
*Availability*: PostGIS
Tests if the geometry field's bounding box is strictly below the lookup
geometry's bounding box.
Example::
Zipcode.objects.filter(poly__strictly_below=geom)
PostGIS equivalent::
SELECT ... WHERE poly <<| geom
.. _distance-lookups:
Distance Lookups
================
*Availability*: PostGIS, Oracle, SpatiaLite
For an overview on performing distance queries, please refer to
the :ref:`distance queries introduction <distance-queries>`.
Distance lookups take the following form::
<field>__<distance lookup>=(<geometry>, <distance value>[, 'spheroid'])
The value passed into a distance lookup is a tuple; the first two
values are mandatory, and are the geometry to calculate distances to,
and a distance value (either a number in units of the field or a
:class:`~django.contrib.gis.measure.Distance` object). On every
distance lookup but :lookup:`dwithin`, an optional
third element, ``'spheroid'``, may be included to tell GeoDjango
to use the more accurate spheroid distance calculation functions on
fields with a geodetic coordinate system (e.g., ``ST_Distance_Spheroid``
would be used instead of ``ST_Distance_Sphere``).
.. fieldlookup:: distance_gt
distance_gt
-----------
Returns models where the distance to the geometry field from the lookup
geometry is greater than the given distance value.
Example::
Zipcode.objects.filter(poly__distance_gt=(geom, D(m=5)))
========== ===============================================
Backend SQL Equivalent
========== ===============================================
PostGIS ``ST_Distance(poly, geom) > 5``
Oracle ``SDO_GEOM.SDO_DISTANCE(poly, geom, 0.05) > 5``
SpatiaLite ``Distance(poly, geom) > 5``
========== ===============================================
.. fieldlookup:: distance_gte
distance_gte
------------
Returns models where the distance to the geometry field from the lookup
geometry is greater than or equal to the given distance value.
Example::
Zipcode.objects.filter(poly__distance_gte=(geom, D(m=5)))
========== ================================================
Backend SQL Equivalent
========== ================================================
PostGIS ``ST_Distance(poly, geom) >= 5``
Oracle ``SDO_GEOM.SDO_DISTANCE(poly, geom, 0.05) >= 5``
SpatiaLite ``Distance(poly, geom) >= 5``
========== ================================================
.. fieldlookup:: distance_lt
distance_lt
-----------
Returns models where the distance to the geometry field from the lookup
geometry is less than the given distance value.
Example::
Zipcode.objects.filter(poly__distance_lt=(geom, D(m=5)))
========== ===============================================
Backend SQL Equivalent
========== ===============================================
PostGIS ``ST_Distance(poly, geom) < 5``
Oracle ``SDO_GEOM.SDO_DISTANCE(poly, geom, 0.05) < 5``
SpatiaLite ``Distance(poly, geom) < 5``
========== ===============================================
.. fieldlookup:: distance_lte
distance_lte
------------
Returns models where the distance to the geometry field from the lookup
geometry is less than or equal to the given distance value.
Example::
Zipcode.objects.filter(poly__distance_lte=(geom, D(m=5)))
========== ================================================
Backend SQL Equivalent
========== ================================================
PostGIS ``ST_Distance(poly, geom) <= 5``
Oracle ``SDO_GEOM.SDO_DISTANCE(poly, geom, 0.05) <= 5``
SpatiaLite ``Distance(poly, geom) <= 5``
========== ================================================
.. fieldlookup:: dwithin
dwithin
-------
Returns models where the distance to the geometry field from the lookup
geometry are within the given distance from one another. Note that you can only
provide :class:`~django.contrib.gis.measure.Distance` objects if the targeted
geometries are in a projected system. For geographic geometries, you should use
units of the geometry field (e.g. degrees for ``WGS84``) .
Example::
Zipcode.objects.filter(poly__dwithin=(geom, D(m=5)))
========== ======================================
Backend SQL Equivalent
========== ======================================
PostGIS ``ST_DWithin(poly, geom, 5)``
Oracle ``SDO_WITHIN_DISTANCE(poly, geom, 5)``
========== ======================================
.. note::
This lookup is not available on SpatiaLite.
.. fieldlookup:: equals
``GeoQuerySet`` Methods
=======================
``GeoQuerySet`` methods specify that a spatial operation be performed
on each spatial operation on each geographic
field in the queryset and store its output in a new attribute on the model
(which is generally the name of the ``GeoQuerySet`` method).
There are also aggregate ``GeoQuerySet`` methods which return a single value
instead of a queryset. This section will describe the API and availability
of every ``GeoQuerySet`` method available in GeoDjango.
.. note::
What methods are available depend on your spatial backend. See
the :ref:`compatibility table <geoqueryset-method-compatibility>`
for more details.
With a few exceptions, the following keyword arguments may be used with all
``GeoQuerySet`` methods:
===================== =====================================================
Keyword Argument Description
===================== =====================================================
``field_name`` By default, ``GeoQuerySet`` methods use the first
geographic field encountered in the model. This
keyword should be used to specify another
geographic field (e.g., ``field_name='point2'``)
when there are multiple geographic fields in a model.
On PostGIS, the ``field_name`` keyword may also be
used on geometry fields in models that are related
via a ``ForeignKey`` relation (e.g.,
``field_name='related__point'``).
``model_att`` By default, ``GeoQuerySet`` methods typically attach
their output in an attribute with the same name as
the ``GeoQuerySet`` method. Setting this keyword
with the desired attribute name will override this
default behavior. For example,
``qs = Zipcode.objects.centroid(model_att='c')`` will
attach the centroid of the ``Zipcode`` geometry field
in a ``c`` attribute on every model rather than in a
``centroid`` attribute.
This keyword is required if
a method name clashes with an existing
``GeoQuerySet`` method -- if you wanted to use the
``area()`` method on model with a ``PolygonField``
named ``area``, for example.
===================== =====================================================
Measurement
-----------
*Availability*: PostGIS, Oracle, SpatiaLite
``area``
~~~~~~~~
.. method:: GeoQuerySet.area(**kwargs)
Returns the area of the geographic field in an ``area`` attribute on
each element of this GeoQuerySet.
``distance``
~~~~~~~~~~~~
.. method:: GeoQuerySet.distance(geom, **kwargs)
This method takes a geometry as a parameter, and attaches a ``distance``
attribute to every model in the returned queryset that contains the
distance (as a :class:`~django.contrib.gis.measure.Distance` object) to the given geometry.
In the following example (taken from the `GeoDjango distance tests`__),
the distance from the `Tasmanian`__ city of Hobart to every other
:class:`PointField` in the ``AustraliaCity`` queryset is calculated::
>>> pnt = AustraliaCity.objects.get(name='Hobart').point
>>> for city in AustraliaCity.objects.distance(pnt): print(city.name, city.distance)
Wollongong 990071.220408 m
Shellharbour 972804.613941 m
Thirroul 1002334.36351 m
Mittagong 975691.632637 m
Batemans Bay 834342.185561 m
Canberra 598140.268959 m
Melbourne 575337.765042 m
Sydney 1056978.87363 m
Hobart 0.0 m
Adelaide 1162031.83522 m
Hillsdale 1049200.46122 m
.. note::
Because the ``distance`` attribute is a
:class:`~django.contrib.gis.measure.Distance` object, you can easily express
the value in the units of your choice. For example, ``city.distance.mi`` is
the distance value in miles and ``city.distance.km`` is the distance value
in kilometers. See the :ref:`ref-measure` for usage details and the list of
:ref:`supported_units`.
__ https://github.com/django/django/blob/master/django/contrib/gis/tests/distapp/models.py
__ http://en.wikipedia.org/wiki/Tasmania
``length``
~~~~~~~~~~
.. method:: GeoQuerySet.length(**kwargs)
Returns the length of the geometry field in a ``length`` attribute
(a :class:`~django.contrib.gis.measure.Distance` object) on each model in
the queryset.
``perimeter``
~~~~~~~~~~~~~
.. method:: GeoQuerySet.perimeter(**kwargs)
Returns the perimeter of the geometry field in a ``perimeter`` attribute
(a :class:`~django.contrib.gis.measure.Distance` object) on each model in
the queryset.
Geometry Relationships
----------------------
The following methods take no arguments, and attach geometry objects
each element of the :class:`GeoQuerySet` that is the result of relationship
function evaluated on the geometry field.
``centroid``
~~~~~~~~~~~~
.. method:: GeoQuerySet.centroid(**kwargs)
*Availability*: PostGIS, Oracle, SpatiaLite
Returns the ``centroid`` value for the geographic field in a ``centroid``
attribute on each element of the ``GeoQuerySet``.
``envelope``
~~~~~~~~~~~~
.. method:: GeoQuerySet.envelope(**kwargs)
*Availability*: PostGIS, SpatiaLite
Returns a geometry representing the bounding box of the geometry field in
an ``envelope`` attribute on each element of the ``GeoQuerySet``.
``point_on_surface``
~~~~~~~~~~~~~~~~~~~~
.. method:: GeoQuerySet.point_on_surface(**kwargs)
*Availability*: PostGIS, Oracle, SpatiaLite
Returns a Point geometry guaranteed to lie on the surface of the
geometry field in a ``point_on_surface`` attribute on each element
of the queryset; otherwise sets with None.
Geometry Editors
----------------
``force_rhr``
~~~~~~~~~~~~~
.. method:: GeoQuerySet.force_rhr(**kwargs)
*Availability*: PostGIS
Returns a modified version of the polygon/multipolygon in which all
of the vertices follow the Right-Hand-Rule, and attaches as a
``force_rhr`` attribute on each element of the queryset.
``reverse_geom``
~~~~~~~~~~~~~~~~
.. method:: GeoQuerySet.reverse_geom(**kwargs)
*Availability*: PostGIS, Oracle
Reverse the coordinate order of the geometry field, and attaches as a
``reverse`` attribute on each element of the queryset.
``scale``
~~~~~~~~~
.. method:: GeoQuerySet.scale(x, y, z=0.0, **kwargs)
*Availability*: PostGIS, SpatiaLite
``snap_to_grid``
~~~~~~~~~~~~~~~~
.. method:: GeoQuerySet.snap_to_grid(*args, **kwargs)
Snap all points of the input geometry to the grid. How the
geometry is snapped to the grid depends on how many numeric
(either float, integer, or long) arguments are given.
=================== =====================================================
Number of Arguments Description
=================== =====================================================
1 A single size to snap bot the X and Y grids to.
2 X and Y sizes to snap the grid to.
4 X, Y sizes and the corresponding X, Y origins.
=================== =====================================================
``transform``
~~~~~~~~~~~~~
.. method:: GeoQuerySet.transform(srid=4326, **kwargs)
*Availability*: PostGIS, Oracle, SpatiaLite
The ``transform`` method transforms the geometry field of a model to the spatial
reference system specified by the ``srid`` parameter. If no ``srid`` is given,
then 4326 (WGS84) is used by default.
.. note::
Unlike other ``GeoQuerySet`` methods, ``transform`` stores its output
"in-place". In other words, no new attribute for the transformed
geometry is placed on the models.
.. note::
What spatial reference system an integer SRID corresponds to may depend on
the spatial database used. In other words, the SRID numbers used for Oracle
are not necessarily the same as those used by PostGIS.
Example::
>>> qs = Zipcode.objects.all().transform() # Transforms to WGS84
>>> qs = Zipcode.objects.all().transform(32140) # Transforming to "NAD83 / Texas South Central"
>>> print(qs[0].poly.srid)
32140
>>> print(qs[0].poly)
POLYGON ((234055.1698884720099159 4937796.9232223574072123 ...
``translate``
~~~~~~~~~~~~~
.. method:: GeoQuerySet.translate(x, y, z=0.0, **kwargs)
*Availability*: PostGIS, SpatiaLite
Translates the geometry field to a new location using the given numeric
parameters as offsets.
Geometry Operations
-------------------
*Availability*: PostGIS, Oracle, SpatiaLite
The following methods all take a geometry as a parameter and attach a geometry
to each element of the ``GeoQuerySet`` that is the result of the operation.
``difference``
~~~~~~~~~~~~~~
.. method:: GeoQuerySet.difference(geom)
Returns the spatial difference of the geographic field with the given
geometry in a ``difference`` attribute on each element of the
``GeoQuerySet``.
``intersection``
~~~~~~~~~~~~~~~~
.. method:: GeoQuerySet.intersection(geom)
Returns the spatial intersection of the geographic field with the
given geometry in an ``intersection`` attribute on each element of the
``GeoQuerySet``.
``sym_difference``
~~~~~~~~~~~~~~~~~~
.. method:: GeoQuerySet.sym_difference(geom)
Returns the symmetric difference of the geographic field with the
given geometry in a ``sym_difference`` attribute on each element of the
``GeoQuerySet``.
``union``
~~~~~~~~~
.. method:: GeoQuerySet.union(geom)
Returns the union of the geographic field with the given
geometry in an ``union`` attribute on each element of the
``GeoQuerySet``.
Geometry Output
---------------
The following ``GeoQuerySet`` methods will return an attribute that has the value
of the geometry field in each model converted to the requested output format.
``geohash``
~~~~~~~~~~~
.. method:: GeoQuerySet.geohash(precision=20, **kwargs)
Attaches a ``geohash`` attribute to every model the queryset
containing the `GeoHash`__ representation of the geometry.
__ http://geohash.org/
``geojson``
~~~~~~~~~~~
.. method:: GeoQuerySet.geojson(**kwargs)
*Availability*: PostGIS, SpatiaLite
Attaches a ``geojson`` attribute to every model in the queryset that contains the
`GeoJSON`__ representation of the geometry.
===================== =====================================================
Keyword Argument Description
===================== =====================================================
``precision`` It may be used to specify the number of significant
digits for the coordinates in the GeoJSON
representation -- the default value is 8.
``crs`` Set this to ``True`` if you want the coordinate
reference system to be included in the returned
GeoJSON.
``bbox`` Set this to ``True`` if you want the bounding box
to be included in the returned GeoJSON.
===================== =====================================================
__ http://geojson.org/
``gml``
~~~~~~~
.. method:: GeoQuerySet.gml(**kwargs)
*Availability*: PostGIS, Oracle, SpatiaLite
Attaches a ``gml`` attribute to every model in the queryset that contains the
`Geographic Markup Language (GML)`__ representation of the geometry.
Example::
>>> qs = Zipcode.objects.all().gml()
>>> print(qs[0].gml)
<gml:Polygon srsName="EPSG:4326"><gml:OuterBoundaryIs>-147.78711,70.245363 ... -147.78711,70.245363</gml:OuterBoundaryIs></gml:Polygon>
===================== =====================================================
Keyword Argument Description
===================== =====================================================
``precision`` This keyword is for PostGIS only. It may be used
to specify the number of significant digits for the
coordinates in the GML representation -- the default
value is 8.
``version`` This keyword is for PostGIS only. It may be used to
specify the GML version used, and may only be values
of 2 or 3. The default value is 2.
===================== =====================================================
__ http://en.wikipedia.org/wiki/Geography_Markup_Language
``kml``
~~~~~~~
.. method:: GeoQuerySet.kml(**kwargs)
*Availability*: PostGIS, SpatiaLite
Attaches a ``kml`` attribute to every model in the queryset that contains the
`Keyhole Markup Language (KML)`__ representation of the geometry fields. It
should be noted that the contents of the KML are transformed to WGS84 if
necessary.
Example::
>>> qs = Zipcode.objects.all().kml()
>>> print(qs[0].kml)
<Polygon><outerBoundaryIs><LinearRing><coordinates>-103.04135,36.217596,0 ... -103.04135,36.217596,0</coordinates></LinearRing></outerBoundaryIs></Polygon>
===================== =====================================================
Keyword Argument Description
===================== =====================================================
``precision`` This keyword may be used to specify the number of
significant digits for the coordinates in the KML
representation -- the default value is 8.
===================== =====================================================
__ https://developers.google.com/kml/documentation/
``svg``
~~~~~~~
.. method:: GeoQuerySet.svg(**kwargs)
*Availability*: PostGIS, SpatiaLite
Attaches a ``svg`` attribute to every model in the queryset that contains
the `Scalable Vector Graphics (SVG)`__ path data of the geometry fields.
===================== =====================================================
Keyword Argument Description
===================== =====================================================
``relative`` If set to ``True``, the path data will be implemented
in terms of relative moves. Defaults to ``False``,
meaning that absolute moves are used instead.
``precision`` This keyword may be used to specify the number of
significant digits for the coordinates in the SVG
representation -- the default value is 8.
===================== =====================================================
__ http://www.w3.org/Graphics/SVG/
Miscellaneous
-------------
``mem_size``
~~~~~~~~~~~~
.. method:: GeoQuerySet.mem_size(**kwargs)
*Availability*: PostGIS
Returns the memory size (number of bytes) that the geometry field takes
in a ``mem_size`` attribute on each element of the ``GeoQuerySet``.
``num_geom``
~~~~~~~~~~~~
.. method:: GeoQuerySet.num_geom(**kwargs)
*Availability*: PostGIS, Oracle, SpatiaLite
Returns the number of geometries in a ``num_geom`` attribute on
each element of the ``GeoQuerySet`` if the geometry field is a
collection (e.g., a ``GEOMETRYCOLLECTION`` or ``MULTI*`` field);
otherwise sets with ``None``.
``num_points``
~~~~~~~~~~~~~~
.. method:: GeoQuerySet.num_points(**kwargs)
*Availability*: PostGIS, Oracle, SpatiaLite
Returns the number of points in the first linestring in the
geometry field in a ``num_points`` attribute on each element of
the ``GeoQuerySet``; otherwise sets with ``None``.
Spatial Aggregates
==================
Aggregate Methods
-----------------
``collect``
~~~~~~~~~~~
.. method:: GeoQuerySet.collect(**kwargs)
*Availability*: PostGIS, Spatialite (>=3.0)
Returns a ``GEOMETRYCOLLECTION`` or a ``MULTI`` geometry object from the geometry
column. This is analogous to a simplified version of the :meth:`GeoQuerySet.unionagg` method,
except it can be several orders of magnitude faster than performing a union because
it simply rolls up geometries into a collection or multi object, not caring about
dissolving boundaries.
``extent``
~~~~~~~~~~
.. method:: GeoQuerySet.extent(**kwargs)
*Availability*: PostGIS, Oracle, Spatialite (>=3.0)
Returns the extent of the ``GeoQuerySet`` as a four-tuple, comprising the
lower left coordinate and the upper right coordinate.
Example::
>>> qs = City.objects.filter(name__in=('Houston', 'Dallas'))
>>> print(qs.extent())
(-96.8016128540039, 29.7633724212646, -95.3631439208984, 32.782058715820)
``extent3d``
~~~~~~~~~~~~
.. method:: GeoQuerySet.extent3d(**kwargs)
*Availability*: PostGIS
Returns the 3D extent of the ``GeoQuerySet`` as a six-tuple, comprising
the lower left coordinate and upper right coordinate.
Example::
>>> qs = City.objects.filter(name__in=('Houston', 'Dallas'))
>>> print(qs.extent3d())
(-96.8016128540039, 29.7633724212646, 0, -95.3631439208984, 32.782058715820, 0)
``make_line``
~~~~~~~~~~~~~
.. method:: GeoQuerySet.make_line(**kwargs)
*Availability*: PostGIS
Returns a ``LineString`` constructed from the point field geometries in the
``GeoQuerySet``. Currently, ordering the queryset has no effect.
Example::
>>> print(City.objects.filter(name__in=('Houston', 'Dallas')).make_line())
LINESTRING (-95.3631510000000020 29.7633739999999989, -96.8016109999999941 32.7820570000000018)
``unionagg``
~~~~~~~~~~~~
.. method:: GeoQuerySet.unionagg(**kwargs)
*Availability*: PostGIS, Oracle, SpatiaLite
This method returns a :class:`~django.contrib.gis.geos.GEOSGeometry` object
comprising the union of every geometry in the queryset. Please note that
use of ``unionagg`` is processor intensive and may take a significant amount
of time on large querysets.
.. note::
If the computation time for using this method is too expensive,
consider using :meth:`GeoQuerySet.collect` instead.
Example::
>>> u = Zipcode.objects.unionagg() # This may take a long time.
>>> u = Zipcode.objects.filter(poly__within=bbox).unionagg() # A more sensible approach.
===================== =====================================================
Keyword Argument Description
===================== =====================================================
``tolerance`` This keyword is for Oracle only. It is for the
tolerance value used by the ``SDOAGGRTYPE``
procedure; the `Oracle documentation`__ has more
details.
===================== =====================================================
__ http://docs.oracle.com/html/B14255_01/sdo_intro.htm#sthref150
Aggregate Functions
-------------------
Example::
>>> from django.contrib.gis.db.models import Extent, Union
>>> WorldBorder.objects.aggregate(Extent('mpoly'), Union('mpoly'))
``Collect``
~~~~~~~~~~~
.. class:: Collect(geo_field)
Returns the same as the :meth:`GeoQuerySet.collect` aggregate method.
``Extent``
~~~~~~~~~~
.. class:: Extent(geo_field)
Returns the same as the :meth:`GeoQuerySet.extent` aggregate method.
``Extent3D``
~~~~~~~~~~~~
.. class:: Extent3D(geo_field)
Returns the same as the :meth:`GeoQuerySet.extent3d` aggregate method.
``MakeLine``
~~~~~~~~~~~~
.. class:: MakeLine(geo_field)
Returns the same as the :meth:`GeoQuerySet.make_line` aggregate method.
``Union``
~~~~~~~~~
.. class:: Union(geo_field)
Returns the same as the :meth:`GeoQuerySet.union` aggregate method.
.. rubric:: Footnotes
.. [#fnde9im] *See* `OpenGIS Simple Feature Specification For SQL <http://www.opengis.org/docs/99-049.pdf>`_, at Ch. 2.1.13.2, p. 2-13 (The Dimensionally Extended Nine-Intersection Model).
.. [#fnsdorelate] *See* `SDO_RELATE documentation <http://docs.oracle.com/cd/B19306_01/appdev.102/b14255/sdo_operat.htm#sthref845>`_, from Ch. 11 of the Oracle Spatial User's Guide and Manual.
.. [#fncovers] For an explanation of this routine, read `Quirks of the "Contains" Spatial Predicate <http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html>`_ by Martin Davis (a PostGIS developer).
.. [#fncontainsproperly] Refer to the PostGIS ``ST_ContainsProperly`` `documentation <http://postgis.refractions.net/documentation/manual-1.4/ST_ContainsProperly.html>`_ for more details.