django1/django/db/models/query_utils.py

208 lines
7.2 KiB
Python

"""
Various data structures used in query construction.
Factored out from django.db.models.query to avoid making the main module very
large and/or so that they can be used by other modules without getting into
circular import difficulties.
"""
from __future__ import unicode_literals
from django.db.backends import utils
from django.utils import six
from django.utils import tree
class InvalidQuery(Exception):
"""
The query passed to raw isn't a safe query to use with raw.
"""
pass
class QueryWrapper(object):
"""
A type that indicates the contents are an SQL fragment and the associate
parameters. Can be used to pass opaque data to a where-clause, for example.
"""
def __init__(self, sql, params):
self.data = sql, list(params)
def as_sql(self, qn=None, connection=None):
return self.data
class Q(tree.Node):
"""
Encapsulates filters as objects that can then be combined logically (using
& and |).
"""
# Connection types
AND = 'AND'
OR = 'OR'
default = AND
def __init__(self, *args, **kwargs):
super(Q, self).__init__(children=list(args) + list(six.iteritems(kwargs)))
def _combine(self, other, conn):
if not isinstance(other, Q):
raise TypeError(other)
obj = type(self)()
obj.connector = conn
obj.add(self, conn)
obj.add(other, conn)
return obj
def __or__(self, other):
return self._combine(other, self.OR)
def __and__(self, other):
return self._combine(other, self.AND)
def __invert__(self):
obj = type(self)()
obj.add(self, self.AND)
obj.negate()
return obj
def clone(self):
clone = self.__class__._new_instance(
children=[], connector=self.connector, negated=self.negated)
for child in self.children:
if hasattr(child, 'clone'):
clone.children.append(child.clone())
else:
clone.children.append(child)
return clone
class DeferredAttribute(object):
"""
A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.
"""
def __init__(self, field_name, model):
self.field_name = field_name
def __get__(self, instance, owner):
"""
Retrieves and caches the value from the datastore on the first lookup.
Returns the cached value.
"""
from django.db.models.fields import FieldDoesNotExist
non_deferred_model = instance._meta.proxy_for_model
opts = non_deferred_model._meta
assert instance is not None
data = instance.__dict__
if data.get(self.field_name, self) is self:
# self.field_name is the attname of the field, but only() takes the
# actual name, so we need to translate it here.
try:
f = opts.get_field_by_name(self.field_name)[0]
except FieldDoesNotExist:
f = [f for f in opts.fields if f.attname == self.field_name][0]
name = f.name
# Let's see if the field is part of the parent chain. If so we
# might be able to reuse the already loaded value. Refs #18343.
val = self._check_parent_chain(instance, name)
if val is None:
# We use only() instead of values() here because we want the
# various data coersion methods (to_python(), etc.) to be
# called here.
val = getattr(
non_deferred_model._base_manager.only(name).using(
instance._state.db).get(pk=instance.pk),
self.field_name
)
data[self.field_name] = val
return data[self.field_name]
def __set__(self, instance, value):
"""
Deferred loading attributes can be set normally (which means there will
never be a database lookup involved.
"""
instance.__dict__[self.field_name] = value
def _check_parent_chain(self, instance, name):
"""
Check if the field value can be fetched from a parent field already
loaded in the instance. This can be done if the to-be fetched
field is a primary key field.
"""
opts = instance._meta
f = opts.get_field_by_name(name)[0]
link_field = opts.get_ancestor_link(f.model)
if f.primary_key and f != link_field:
return getattr(instance, link_field.attname)
return None
def select_related_descend(field, restricted, requested, load_fields, reverse=False):
"""
Returns True if this field should be used to descend deeper for
select_related() purposes. Used by both the query construction code
(sql.query.fill_related_selections()) and the model instance creation code
(query.get_klass_info()).
Arguments:
* field - the field to be checked
* restricted - a boolean field, indicating if the field list has been
manually restricted using a requested clause)
* requested - The select_related() dictionary.
* load_fields - the set of fields to be loaded on this model
* reverse - boolean, True if we are checking a reverse select related
"""
if not field.rel:
return False
if field.rel.parent_link and not reverse:
return False
if restricted:
if reverse and field.related_query_name() not in requested:
return False
if not reverse and field.name not in requested:
return False
if not restricted and field.null:
return False
if load_fields:
if field.name not in load_fields:
if restricted and field.name in requested:
raise InvalidQuery("Field %s.%s cannot be both deferred"
" and traversed using select_related"
" at the same time." %
(field.model._meta.object_name, field.name))
return False
return True
# This function is needed because data descriptors must be defined on a class
# object, not an instance, to have any effect.
def deferred_class_factory(model, attrs):
"""
Returns a class object that is a copy of "model" with the specified "attrs"
being replaced with DeferredAttribute objects. The "pk_value" ties the
deferred attributes to a particular instance of the model.
"""
class Meta:
proxy = True
app_label = model._meta.app_label
# The app registry wants a unique name for each model, otherwise the new
# class won't be created (we get an old one back). Therefore, we generate
# the name using the passed in attrs. It's OK to reuse an existing class
# object if the attrs are identical.
name = "%s_Deferred_%s" % (model.__name__, '_'.join(sorted(list(attrs))))
name = utils.truncate_name(name, 80, 32)
overrides = dict((attr, DeferredAttribute(attr, model)) for attr in attrs)
overrides["Meta"] = Meta
overrides["__module__"] = model.__module__
overrides["_deferred"] = True
return type(str(name), (model,), overrides)
# The above function is also used to unpickle model instances with deferred
# fields.
deferred_class_factory.__safe_for_unpickling__ = True