django1/django/contrib/gis/db/models/lookups.py

356 lines
11 KiB
Python

from __future__ import unicode_literals
import re
from django.core.exceptions import FieldDoesNotExist
from django.db.models.constants import LOOKUP_SEP
from django.db.models.expressions import Col, Expression
from django.db.models.lookups import Lookup
from django.utils import six
gis_lookups = {}
class GISLookup(Lookup):
sql_template = None
transform_func = None
distance = False
def __init__(self, *args, **kwargs):
super(GISLookup, self).__init__(*args, **kwargs)
self.template_params = {}
@classmethod
def _check_geo_field(cls, opts, lookup):
"""
Utility for checking the given lookup with the given model options.
The lookup is a string either specifying the geographic field, e.g.
'point, 'the_geom', or a related lookup on a geographic field like
'address__point'.
If a GeometryField exists according to the given lookup on the model
options, it will be returned. Otherwise returns None.
"""
from django.contrib.gis.db.models.fields import GeometryField
# This takes into account the situation where the lookup is a
# lookup to a related geographic field, e.g., 'address__point'.
field_list = lookup.split(LOOKUP_SEP)
# Reversing so list operates like a queue of related lookups,
# and popping the top lookup.
field_list.reverse()
fld_name = field_list.pop()
try:
geo_fld = opts.get_field(fld_name)
# If the field list is still around, then it means that the
# lookup was for a geometry field across a relationship --
# thus we keep on getting the related model options and the
# model field associated with the next field in the list
# until there's no more left.
while len(field_list):
opts = geo_fld.remote_field.model._meta
geo_fld = opts.get_field(field_list.pop())
except (FieldDoesNotExist, AttributeError):
return False
# Finally, make sure we got a Geographic field and return.
if isinstance(geo_fld, GeometryField):
return geo_fld
else:
return False
def get_db_prep_lookup(self, value, connection):
# get_db_prep_lookup is called by process_rhs from super class
if isinstance(value, (tuple, list)):
# First param is assumed to be the geometric object
params = [connection.ops.Adapter(value[0])] + list(value)[1:]
else:
params = [connection.ops.Adapter(value)]
return ('%s', params)
def process_rhs(self, compiler, connection):
rhs, rhs_params = super(GISLookup, self).process_rhs(compiler, connection)
if hasattr(self.rhs, '_as_sql'):
# If rhs is some QuerySet, don't touch it
return rhs, rhs_params
geom = self.rhs
if isinstance(self.rhs, Col):
# Make sure the F Expression destination field exists, and
# set an `srid` attribute with the same as that of the
# destination.
geo_fld = self.rhs.output_field
if not hasattr(geo_fld, 'srid'):
raise ValueError('No geographic field found in expression.')
self.rhs.srid = geo_fld.srid
elif isinstance(self.rhs, Expression):
raise ValueError('Complex expressions not supported for GeometryField')
elif isinstance(self.rhs, (list, tuple)):
geom = self.rhs[0]
rhs = connection.ops.get_geom_placeholder(self.lhs.output_field, geom, compiler)
return rhs, rhs_params
def get_rhs_op(self, connection, rhs):
# Unlike BuiltinLookup, the GIS get_rhs_op() implementation should return
# an object (SpatialOperator) with an as_sql() method to allow for more
# complex computations (where the lhs part can be mixed in).
return connection.ops.gis_operators[self.lookup_name]
def as_sql(self, compiler, connection):
lhs_sql, sql_params = self.process_lhs(compiler, connection)
rhs_sql, rhs_params = self.process_rhs(compiler, connection)
sql_params.extend(rhs_params)
template_params = {'lhs': lhs_sql, 'rhs': rhs_sql, 'value': '%s'}
template_params.update(self.template_params)
rhs_op = self.get_rhs_op(connection, rhs_sql)
return rhs_op.as_sql(connection, self, template_params, sql_params)
# ------------------
# Geometry operators
# ------------------
class OverlapsLeftLookup(GISLookup):
"""
The overlaps_left operator returns true if A's bounding box overlaps or is to the
left of B's bounding box.
"""
lookup_name = 'overlaps_left'
gis_lookups['overlaps_left'] = OverlapsLeftLookup
class OverlapsRightLookup(GISLookup):
"""
The 'overlaps_right' operator returns true if A's bounding box overlaps or is to the
right of B's bounding box.
"""
lookup_name = 'overlaps_right'
gis_lookups['overlaps_right'] = OverlapsRightLookup
class OverlapsBelowLookup(GISLookup):
"""
The 'overlaps_below' operator returns true if A's bounding box overlaps or is below
B's bounding box.
"""
lookup_name = 'overlaps_below'
gis_lookups['overlaps_below'] = OverlapsBelowLookup
class OverlapsAboveLookup(GISLookup):
"""
The 'overlaps_above' operator returns true if A's bounding box overlaps or is above
B's bounding box.
"""
lookup_name = 'overlaps_above'
gis_lookups['overlaps_above'] = OverlapsAboveLookup
class LeftLookup(GISLookup):
"""
The 'left' operator returns true if A's bounding box is strictly to the left
of B's bounding box.
"""
lookup_name = 'left'
gis_lookups['left'] = LeftLookup
class RightLookup(GISLookup):
"""
The 'right' operator returns true if A's bounding box is strictly to the right
of B's bounding box.
"""
lookup_name = 'right'
gis_lookups['right'] = RightLookup
class StrictlyBelowLookup(GISLookup):
"""
The 'strictly_below' operator returns true if A's bounding box is strictly below B's
bounding box.
"""
lookup_name = 'strictly_below'
gis_lookups['strictly_below'] = StrictlyBelowLookup
class StrictlyAboveLookup(GISLookup):
"""
The 'strictly_above' operator returns true if A's bounding box is strictly above B's
bounding box.
"""
lookup_name = 'strictly_above'
gis_lookups['strictly_above'] = StrictlyAboveLookup
class SameAsLookup(GISLookup):
"""
The "~=" operator is the "same as" operator. It tests actual geometric
equality of two features. So if A and B are the same feature,
vertex-by-vertex, the operator returns true.
"""
lookup_name = 'same_as'
gis_lookups['same_as'] = SameAsLookup
class ExactLookup(SameAsLookup):
# Alias of same_as
lookup_name = 'exact'
gis_lookups['exact'] = ExactLookup
class BBContainsLookup(GISLookup):
"""
The 'bbcontains' operator returns true if A's bounding box completely contains
by B's bounding box.
"""
lookup_name = 'bbcontains'
gis_lookups['bbcontains'] = BBContainsLookup
class BBOverlapsLookup(GISLookup):
"""
The 'bboverlaps' operator returns true if A's bounding box overlaps B's bounding box.
"""
lookup_name = 'bboverlaps'
gis_lookups['bboverlaps'] = BBOverlapsLookup
class ContainedLookup(GISLookup):
"""
The 'contained' operator returns true if A's bounding box is completely contained
by B's bounding box.
"""
lookup_name = 'contained'
gis_lookups['contained'] = ContainedLookup
# ------------------
# Geometry functions
# ------------------
class ContainsLookup(GISLookup):
lookup_name = 'contains'
gis_lookups['contains'] = ContainsLookup
class ContainsProperlyLookup(GISLookup):
lookup_name = 'contains_properly'
gis_lookups['contains_properly'] = ContainsProperlyLookup
class CoveredByLookup(GISLookup):
lookup_name = 'coveredby'
gis_lookups['coveredby'] = CoveredByLookup
class CoversLookup(GISLookup):
lookup_name = 'covers'
gis_lookups['covers'] = CoversLookup
class CrossesLookup(GISLookup):
lookup_name = 'crosses'
gis_lookups['crosses'] = CrossesLookup
class DisjointLookup(GISLookup):
lookup_name = 'disjoint'
gis_lookups['disjoint'] = DisjointLookup
class EqualsLookup(GISLookup):
lookup_name = 'equals'
gis_lookups['equals'] = EqualsLookup
class IntersectsLookup(GISLookup):
lookup_name = 'intersects'
gis_lookups['intersects'] = IntersectsLookup
class OverlapsLookup(GISLookup):
lookup_name = 'overlaps'
gis_lookups['overlaps'] = OverlapsLookup
class RelateLookup(GISLookup):
lookup_name = 'relate'
sql_template = '%(func)s(%(lhs)s, %(rhs)s, %%s)'
pattern_regex = re.compile(r'^[012TF\*]{9}$')
def get_db_prep_lookup(self, value, connection):
if len(value) != 2:
raise ValueError('relate must be passed a two-tuple')
# Check the pattern argument
backend_op = connection.ops.gis_operators[self.lookup_name]
if hasattr(backend_op, 'check_relate_argument'):
backend_op.check_relate_argument(value[1])
else:
pattern = value[1]
if not isinstance(pattern, six.string_types) or not self.pattern_regex.match(pattern):
raise ValueError('Invalid intersection matrix pattern "%s".' % pattern)
return super(RelateLookup, self).get_db_prep_lookup(value, connection)
gis_lookups['relate'] = RelateLookup
class TouchesLookup(GISLookup):
lookup_name = 'touches'
gis_lookups['touches'] = TouchesLookup
class WithinLookup(GISLookup):
lookup_name = 'within'
gis_lookups['within'] = WithinLookup
class DistanceLookupBase(GISLookup):
distance = True
sql_template = '%(func)s(%(lhs)s, %(rhs)s) %(op)s %(value)s'
def process_rhs(self, compiler, connection):
if not isinstance(self.rhs, (tuple, list)) or not 2 <= len(self.rhs) <= 3:
raise ValueError("2 or 3-element tuple required for '%s' lookup." % self.lookup_name)
params = [connection.ops.Adapter(self.rhs[0])]
# Getting the distance parameter in the units of the field.
dist_param = self.rhs[1]
if hasattr(dist_param, 'resolve_expression'):
dist_param = dist_param.resolve_expression(compiler.query)
sql, expr_params = compiler.compile(dist_param)
self.template_params['value'] = sql
params.extend(expr_params)
else:
params += connection.ops.get_distance(
self.lhs.output_field, (dist_param,) + self.rhs[2:],
self.lookup_name, handle_spheroid=False
)
rhs = connection.ops.get_geom_placeholder(self.lhs.output_field, params[0], compiler)
return (rhs, params)
class DWithinLookup(DistanceLookupBase):
lookup_name = 'dwithin'
sql_template = '%(func)s(%(lhs)s, %(rhs)s, %%s)'
gis_lookups['dwithin'] = DWithinLookup
class DistanceGTLookup(DistanceLookupBase):
lookup_name = 'distance_gt'
gis_lookups['distance_gt'] = DistanceGTLookup
class DistanceGTELookup(DistanceLookupBase):
lookup_name = 'distance_gte'
gis_lookups['distance_gte'] = DistanceGTELookup
class DistanceLTLookup(DistanceLookupBase):
lookup_name = 'distance_lt'
gis_lookups['distance_lt'] = DistanceLTLookup
class DistanceLTELookup(DistanceLookupBase):
lookup_name = 'distance_lte'
gis_lookups['distance_lte'] = DistanceLTELookup