777 lines
31 KiB
Python
777 lines
31 KiB
Python
import random, unittest, sys
|
|
from ctypes import ArgumentError
|
|
from django.contrib.gis.geos import *
|
|
from django.contrib.gis.geos.base import HAS_GDAL
|
|
from django.contrib.gis.tests.geometries import *
|
|
|
|
if HAS_NUMPY: from numpy import array
|
|
if HAS_GDAL: from django.contrib.gis.gdal import OGRGeometry, SpatialReference, CoordTransform, GEOJSON
|
|
|
|
class GEOSTest(unittest.TestCase):
|
|
|
|
@property
|
|
def null_srid(self):
|
|
"""
|
|
Returns the proper null SRID depending on the GEOS version.
|
|
See the comments in `test15_srid` for more details.
|
|
"""
|
|
info = geos_version_info()
|
|
if info['version'] == '3.0.0' and info['release_candidate']:
|
|
return -1
|
|
else:
|
|
return None
|
|
|
|
def test01a_wkt(self):
|
|
"Testing WKT output."
|
|
for g in wkt_out:
|
|
geom = fromstr(g.wkt)
|
|
self.assertEqual(g.ewkt, geom.wkt)
|
|
|
|
def test01b_hex(self):
|
|
"Testing HEX output."
|
|
for g in hex_wkt:
|
|
geom = fromstr(g.wkt)
|
|
self.assertEqual(g.hex, geom.hex)
|
|
|
|
def test01c_kml(self):
|
|
"Testing KML output."
|
|
for tg in wkt_out:
|
|
geom = fromstr(tg.wkt)
|
|
kml = getattr(tg, 'kml', False)
|
|
if kml: self.assertEqual(kml, geom.kml)
|
|
|
|
def test01d_errors(self):
|
|
"Testing the Error handlers."
|
|
# string-based
|
|
print "\nBEGIN - expecting GEOS_ERROR; safe to ignore.\n"
|
|
for err in errors:
|
|
try:
|
|
g = fromstr(err.wkt)
|
|
except (GEOSException, ValueError):
|
|
pass
|
|
print "\nEND - expecting GEOS_ERROR; safe to ignore.\n"
|
|
|
|
class NotAGeometry(object):
|
|
pass
|
|
|
|
# Some other object
|
|
self.assertRaises(TypeError, GEOSGeometry, NotAGeometry())
|
|
# None
|
|
self.assertRaises(TypeError, GEOSGeometry, None)
|
|
# Bad WKB
|
|
self.assertRaises(GEOSException, GEOSGeometry, buffer('0'))
|
|
|
|
def test01e_wkb(self):
|
|
"Testing WKB output."
|
|
from binascii import b2a_hex
|
|
for g in hex_wkt:
|
|
geom = fromstr(g.wkt)
|
|
wkb = geom.wkb
|
|
self.assertEqual(b2a_hex(wkb).upper(), g.hex)
|
|
|
|
def test01f_create_hex(self):
|
|
"Testing creation from HEX."
|
|
for g in hex_wkt:
|
|
geom_h = GEOSGeometry(g.hex)
|
|
# we need to do this so decimal places get normalised
|
|
geom_t = fromstr(g.wkt)
|
|
self.assertEqual(geom_t.wkt, geom_h.wkt)
|
|
|
|
def test01g_create_wkb(self):
|
|
"Testing creation from WKB."
|
|
from binascii import a2b_hex
|
|
for g in hex_wkt:
|
|
wkb = buffer(a2b_hex(g.hex))
|
|
geom_h = GEOSGeometry(wkb)
|
|
# we need to do this so decimal places get normalised
|
|
geom_t = fromstr(g.wkt)
|
|
self.assertEqual(geom_t.wkt, geom_h.wkt)
|
|
|
|
def test01h_ewkt(self):
|
|
"Testing EWKT."
|
|
srid = 32140
|
|
for p in polygons:
|
|
ewkt = 'SRID=%d;%s' % (srid, p.wkt)
|
|
poly = fromstr(ewkt)
|
|
self.assertEqual(srid, poly.srid)
|
|
self.assertEqual(srid, poly.shell.srid)
|
|
self.assertEqual(srid, fromstr(poly.ewkt).srid) # Checking export
|
|
|
|
def test01i_json(self):
|
|
"Testing GeoJSON input/output (via GDAL)."
|
|
if not HAS_GDAL or not GEOJSON: return
|
|
for g in json_geoms:
|
|
geom = GEOSGeometry(g.wkt)
|
|
if not hasattr(g, 'not_equal'):
|
|
self.assertEqual(g.json, geom.json)
|
|
self.assertEqual(g.json, geom.geojson)
|
|
self.assertEqual(GEOSGeometry(g.wkt), GEOSGeometry(geom.json))
|
|
|
|
def test01j_eq(self):
|
|
"Testing equivalence."
|
|
p = fromstr('POINT(5 23)')
|
|
self.assertEqual(p, p.wkt)
|
|
self.assertNotEqual(p, 'foo')
|
|
ls = fromstr('LINESTRING(0 0, 1 1, 5 5)')
|
|
self.assertEqual(ls, ls.wkt)
|
|
self.assertNotEqual(p, 'bar')
|
|
# Error shouldn't be raise on equivalence testing with
|
|
# an invalid type.
|
|
for g in (p, ls):
|
|
self.assertNotEqual(g, None)
|
|
self.assertNotEqual(g, {'foo' : 'bar'})
|
|
self.assertNotEqual(g, False)
|
|
|
|
def test02a_points(self):
|
|
"Testing Point objects."
|
|
prev = fromstr('POINT(0 0)')
|
|
for p in points:
|
|
# Creating the point from the WKT
|
|
pnt = fromstr(p.wkt)
|
|
self.assertEqual(pnt.geom_type, 'Point')
|
|
self.assertEqual(pnt.geom_typeid, 0)
|
|
self.assertEqual(p.x, pnt.x)
|
|
self.assertEqual(p.y, pnt.y)
|
|
self.assertEqual(True, pnt == fromstr(p.wkt))
|
|
self.assertEqual(False, pnt == prev)
|
|
|
|
# Making sure that the point's X, Y components are what we expect
|
|
self.assertAlmostEqual(p.x, pnt.tuple[0], 9)
|
|
self.assertAlmostEqual(p.y, pnt.tuple[1], 9)
|
|
|
|
# Testing the third dimension, and getting the tuple arguments
|
|
if hasattr(p, 'z'):
|
|
self.assertEqual(True, pnt.hasz)
|
|
self.assertEqual(p.z, pnt.z)
|
|
self.assertEqual(p.z, pnt.tuple[2], 9)
|
|
tup_args = (p.x, p.y, p.z)
|
|
set_tup1 = (2.71, 3.14, 5.23)
|
|
set_tup2 = (5.23, 2.71, 3.14)
|
|
else:
|
|
self.assertEqual(False, pnt.hasz)
|
|
self.assertEqual(None, pnt.z)
|
|
tup_args = (p.x, p.y)
|
|
set_tup1 = (2.71, 3.14)
|
|
set_tup2 = (3.14, 2.71)
|
|
|
|
# Centroid operation on point should be point itself
|
|
self.assertEqual(p.centroid, pnt.centroid.tuple)
|
|
|
|
# Now testing the different constructors
|
|
pnt2 = Point(tup_args) # e.g., Point((1, 2))
|
|
pnt3 = Point(*tup_args) # e.g., Point(1, 2)
|
|
self.assertEqual(True, pnt == pnt2)
|
|
self.assertEqual(True, pnt == pnt3)
|
|
|
|
# Now testing setting the x and y
|
|
pnt.y = 3.14
|
|
pnt.x = 2.71
|
|
self.assertEqual(3.14, pnt.y)
|
|
self.assertEqual(2.71, pnt.x)
|
|
|
|
# Setting via the tuple/coords property
|
|
pnt.tuple = set_tup1
|
|
self.assertEqual(set_tup1, pnt.tuple)
|
|
pnt.coords = set_tup2
|
|
self.assertEqual(set_tup2, pnt.coords)
|
|
|
|
prev = pnt # setting the previous geometry
|
|
|
|
def test02b_multipoints(self):
|
|
"Testing MultiPoint objects."
|
|
for mp in multipoints:
|
|
mpnt = fromstr(mp.wkt)
|
|
self.assertEqual(mpnt.geom_type, 'MultiPoint')
|
|
self.assertEqual(mpnt.geom_typeid, 4)
|
|
|
|
self.assertAlmostEqual(mp.centroid[0], mpnt.centroid.tuple[0], 9)
|
|
self.assertAlmostEqual(mp.centroid[1], mpnt.centroid.tuple[1], 9)
|
|
|
|
self.assertRaises(GEOSIndexError, mpnt.__getitem__, len(mpnt))
|
|
self.assertEqual(mp.centroid, mpnt.centroid.tuple)
|
|
self.assertEqual(mp.points, tuple(m.tuple for m in mpnt))
|
|
for p in mpnt:
|
|
self.assertEqual(p.geom_type, 'Point')
|
|
self.assertEqual(p.geom_typeid, 0)
|
|
self.assertEqual(p.empty, False)
|
|
self.assertEqual(p.valid, True)
|
|
|
|
def test03a_linestring(self):
|
|
"Testing LineString objects."
|
|
prev = fromstr('POINT(0 0)')
|
|
for l in linestrings:
|
|
ls = fromstr(l.wkt)
|
|
self.assertEqual(ls.geom_type, 'LineString')
|
|
self.assertEqual(ls.geom_typeid, 1)
|
|
self.assertEqual(ls.empty, False)
|
|
self.assertEqual(ls.ring, False)
|
|
if hasattr(l, 'centroid'):
|
|
self.assertEqual(l.centroid, ls.centroid.tuple)
|
|
if hasattr(l, 'tup'):
|
|
self.assertEqual(l.tup, ls.tuple)
|
|
|
|
self.assertEqual(True, ls == fromstr(l.wkt))
|
|
self.assertEqual(False, ls == prev)
|
|
self.assertRaises(GEOSIndexError, ls.__getitem__, len(ls))
|
|
prev = ls
|
|
|
|
# Creating a LineString from a tuple, list, and numpy array
|
|
self.assertEqual(ls, LineString(ls.tuple)) # tuple
|
|
self.assertEqual(ls, LineString(*ls.tuple)) # as individual arguments
|
|
self.assertEqual(ls, LineString([list(tup) for tup in ls.tuple])) # as list
|
|
self.assertEqual(ls.wkt, LineString(*tuple(Point(tup) for tup in ls.tuple)).wkt) # Point individual arguments
|
|
if HAS_NUMPY: self.assertEqual(ls, LineString(array(ls.tuple))) # as numpy array
|
|
|
|
def test03b_multilinestring(self):
|
|
"Testing MultiLineString objects."
|
|
prev = fromstr('POINT(0 0)')
|
|
for l in multilinestrings:
|
|
ml = fromstr(l.wkt)
|
|
self.assertEqual(ml.geom_type, 'MultiLineString')
|
|
self.assertEqual(ml.geom_typeid, 5)
|
|
|
|
self.assertAlmostEqual(l.centroid[0], ml.centroid.x, 9)
|
|
self.assertAlmostEqual(l.centroid[1], ml.centroid.y, 9)
|
|
|
|
self.assertEqual(True, ml == fromstr(l.wkt))
|
|
self.assertEqual(False, ml == prev)
|
|
prev = ml
|
|
|
|
for ls in ml:
|
|
self.assertEqual(ls.geom_type, 'LineString')
|
|
self.assertEqual(ls.geom_typeid, 1)
|
|
self.assertEqual(ls.empty, False)
|
|
|
|
self.assertRaises(GEOSIndexError, ml.__getitem__, len(ml))
|
|
self.assertEqual(ml.wkt, MultiLineString(*tuple(s.clone() for s in ml)).wkt)
|
|
self.assertEqual(ml, MultiLineString(*tuple(LineString(s.tuple) for s in ml)))
|
|
|
|
def test04_linearring(self):
|
|
"Testing LinearRing objects."
|
|
for rr in linearrings:
|
|
lr = fromstr(rr.wkt)
|
|
self.assertEqual(lr.geom_type, 'LinearRing')
|
|
self.assertEqual(lr.geom_typeid, 2)
|
|
self.assertEqual(rr.n_p, len(lr))
|
|
self.assertEqual(True, lr.valid)
|
|
self.assertEqual(False, lr.empty)
|
|
|
|
# Creating a LinearRing from a tuple, list, and numpy array
|
|
self.assertEqual(lr, LinearRing(lr.tuple))
|
|
self.assertEqual(lr, LinearRing(*lr.tuple))
|
|
self.assertEqual(lr, LinearRing([list(tup) for tup in lr.tuple]))
|
|
if HAS_NUMPY: self.assertEqual(lr, LinearRing(array(lr.tuple)))
|
|
|
|
def test05a_polygons(self):
|
|
"Testing Polygon objects."
|
|
prev = fromstr('POINT(0 0)')
|
|
for p in polygons:
|
|
# Creating the Polygon, testing its properties.
|
|
poly = fromstr(p.wkt)
|
|
self.assertEqual(poly.geom_type, 'Polygon')
|
|
self.assertEqual(poly.geom_typeid, 3)
|
|
self.assertEqual(poly.empty, False)
|
|
self.assertEqual(poly.ring, False)
|
|
self.assertEqual(p.n_i, poly.num_interior_rings)
|
|
self.assertEqual(p.n_i + 1, len(poly)) # Testing __len__
|
|
self.assertEqual(p.n_p, poly.num_points)
|
|
|
|
# Area & Centroid
|
|
self.assertAlmostEqual(p.area, poly.area, 9)
|
|
self.assertAlmostEqual(p.centroid[0], poly.centroid.tuple[0], 9)
|
|
self.assertAlmostEqual(p.centroid[1], poly.centroid.tuple[1], 9)
|
|
|
|
# Testing the geometry equivalence
|
|
self.assertEqual(True, poly == fromstr(p.wkt))
|
|
self.assertEqual(False, poly == prev) # Should not be equal to previous geometry
|
|
self.assertEqual(True, poly != prev)
|
|
|
|
# Testing the exterior ring
|
|
ring = poly.exterior_ring
|
|
self.assertEqual(ring.geom_type, 'LinearRing')
|
|
self.assertEqual(ring.geom_typeid, 2)
|
|
if p.ext_ring_cs:
|
|
self.assertEqual(p.ext_ring_cs, ring.tuple)
|
|
self.assertEqual(p.ext_ring_cs, poly[0].tuple) # Testing __getitem__
|
|
|
|
# Testing __getitem__ and __setitem__ on invalid indices
|
|
self.assertRaises(GEOSIndexError, poly.__getitem__, len(poly))
|
|
self.assertRaises(GEOSIndexError, poly.__setitem__, len(poly), False)
|
|
self.assertRaises(GEOSIndexError, poly.__getitem__, -1)
|
|
|
|
# Testing __iter__
|
|
for r in poly:
|
|
self.assertEqual(r.geom_type, 'LinearRing')
|
|
self.assertEqual(r.geom_typeid, 2)
|
|
|
|
# Testing polygon construction.
|
|
self.assertRaises(TypeError, Polygon.__init__, 0, [1, 2, 3])
|
|
self.assertRaises(TypeError, Polygon.__init__, 'foo')
|
|
|
|
# Polygon(shell, (hole1, ... holeN))
|
|
rings = tuple(r for r in poly)
|
|
self.assertEqual(poly, Polygon(rings[0], rings[1:]))
|
|
|
|
# Polygon(shell_tuple, hole_tuple1, ... , hole_tupleN)
|
|
ring_tuples = tuple(r.tuple for r in poly)
|
|
self.assertEqual(poly, Polygon(*ring_tuples))
|
|
|
|
# Constructing with tuples of LinearRings.
|
|
self.assertEqual(poly.wkt, Polygon(*tuple(r for r in poly)).wkt)
|
|
self.assertEqual(poly.wkt, Polygon(*tuple(LinearRing(r.tuple) for r in poly)).wkt)
|
|
|
|
def test05b_multipolygons(self):
|
|
"Testing MultiPolygon objects."
|
|
print "\nBEGIN - expecting GEOS_NOTICE; safe to ignore.\n"
|
|
prev = fromstr('POINT (0 0)')
|
|
for mp in multipolygons:
|
|
mpoly = fromstr(mp.wkt)
|
|
self.assertEqual(mpoly.geom_type, 'MultiPolygon')
|
|
self.assertEqual(mpoly.geom_typeid, 6)
|
|
self.assertEqual(mp.valid, mpoly.valid)
|
|
|
|
if mp.valid:
|
|
self.assertEqual(mp.num_geom, mpoly.num_geom)
|
|
self.assertEqual(mp.n_p, mpoly.num_coords)
|
|
self.assertEqual(mp.num_geom, len(mpoly))
|
|
self.assertRaises(GEOSIndexError, mpoly.__getitem__, len(mpoly))
|
|
for p in mpoly:
|
|
self.assertEqual(p.geom_type, 'Polygon')
|
|
self.assertEqual(p.geom_typeid, 3)
|
|
self.assertEqual(p.valid, True)
|
|
self.assertEqual(mpoly.wkt, MultiPolygon(*tuple(poly.clone() for poly in mpoly)).wkt)
|
|
|
|
print "\nEND - expecting GEOS_NOTICE; safe to ignore.\n"
|
|
|
|
def test06a_memory_hijinks(self):
|
|
"Testing Geometry __del__() on rings and polygons."
|
|
#### Memory issues with rings and polygons
|
|
|
|
# These tests are needed to ensure sanity with writable geometries.
|
|
|
|
# Getting a polygon with interior rings, and pulling out the interior rings
|
|
poly = fromstr(polygons[1].wkt)
|
|
ring1 = poly[0]
|
|
ring2 = poly[1]
|
|
|
|
# These deletes should be 'harmless' since they are done on child geometries
|
|
del ring1
|
|
del ring2
|
|
ring1 = poly[0]
|
|
ring2 = poly[1]
|
|
|
|
# Deleting the polygon
|
|
del poly
|
|
|
|
# Access to these rings is OK since they are clones.
|
|
s1, s2 = str(ring1), str(ring2)
|
|
|
|
# The previous hijinks tests are now moot because only clones are
|
|
# now used =)
|
|
|
|
def test08_coord_seq(self):
|
|
"Testing Coordinate Sequence objects."
|
|
for p in polygons:
|
|
if p.ext_ring_cs:
|
|
# Constructing the polygon and getting the coordinate sequence
|
|
poly = fromstr(p.wkt)
|
|
cs = poly.exterior_ring.coord_seq
|
|
|
|
self.assertEqual(p.ext_ring_cs, cs.tuple) # done in the Polygon test too.
|
|
self.assertEqual(len(p.ext_ring_cs), len(cs)) # Making sure __len__ works
|
|
|
|
# Checks __getitem__ and __setitem__
|
|
for i in xrange(len(p.ext_ring_cs)):
|
|
c1 = p.ext_ring_cs[i] # Expected value
|
|
c2 = cs[i] # Value from coordseq
|
|
self.assertEqual(c1, c2)
|
|
|
|
# Constructing the test value to set the coordinate sequence with
|
|
if len(c1) == 2: tset = (5, 23)
|
|
else: tset = (5, 23, 8)
|
|
cs[i] = tset
|
|
|
|
# Making sure every set point matches what we expect
|
|
for j in range(len(tset)):
|
|
cs[i] = tset
|
|
self.assertEqual(tset[j], cs[i][j])
|
|
|
|
def test09_relate_pattern(self):
|
|
"Testing relate() and relate_pattern()."
|
|
g = fromstr('POINT (0 0)')
|
|
self.assertRaises(GEOSException, g.relate_pattern, 0, 'invalid pattern, yo')
|
|
for i in xrange(len(relate_geoms)):
|
|
g_tup = relate_geoms[i]
|
|
a = fromstr(g_tup[0].wkt)
|
|
b = fromstr(g_tup[1].wkt)
|
|
pat = g_tup[2]
|
|
result = g_tup[3]
|
|
self.assertEqual(result, a.relate_pattern(b, pat))
|
|
self.assertEqual(pat, a.relate(b))
|
|
|
|
def test10_intersection(self):
|
|
"Testing intersects() and intersection()."
|
|
for i in xrange(len(topology_geoms)):
|
|
g_tup = topology_geoms[i]
|
|
a = fromstr(g_tup[0].wkt)
|
|
b = fromstr(g_tup[1].wkt)
|
|
i1 = fromstr(intersect_geoms[i].wkt)
|
|
self.assertEqual(True, a.intersects(b))
|
|
i2 = a.intersection(b)
|
|
self.assertEqual(i1, i2)
|
|
self.assertEqual(i1, a & b) # __and__ is intersection operator
|
|
a &= b # testing __iand__
|
|
self.assertEqual(i1, a)
|
|
|
|
def test11_union(self):
|
|
"Testing union()."
|
|
for i in xrange(len(topology_geoms)):
|
|
g_tup = topology_geoms[i]
|
|
a = fromstr(g_tup[0].wkt)
|
|
b = fromstr(g_tup[1].wkt)
|
|
u1 = fromstr(union_geoms[i].wkt)
|
|
u2 = a.union(b)
|
|
self.assertEqual(u1, u2)
|
|
self.assertEqual(u1, a | b) # __or__ is union operator
|
|
a |= b # testing __ior__
|
|
self.assertEqual(u1, a)
|
|
|
|
def test12_difference(self):
|
|
"Testing difference()."
|
|
for i in xrange(len(topology_geoms)):
|
|
g_tup = topology_geoms[i]
|
|
a = fromstr(g_tup[0].wkt)
|
|
b = fromstr(g_tup[1].wkt)
|
|
d1 = fromstr(diff_geoms[i].wkt)
|
|
d2 = a.difference(b)
|
|
self.assertEqual(d1, d2)
|
|
self.assertEqual(d1, a - b) # __sub__ is difference operator
|
|
a -= b # testing __isub__
|
|
self.assertEqual(d1, a)
|
|
|
|
def test13_symdifference(self):
|
|
"Testing sym_difference()."
|
|
for i in xrange(len(topology_geoms)):
|
|
g_tup = topology_geoms[i]
|
|
a = fromstr(g_tup[0].wkt)
|
|
b = fromstr(g_tup[1].wkt)
|
|
d1 = fromstr(sdiff_geoms[i].wkt)
|
|
d2 = a.sym_difference(b)
|
|
self.assertEqual(d1, d2)
|
|
self.assertEqual(d1, a ^ b) # __xor__ is symmetric difference operator
|
|
a ^= b # testing __ixor__
|
|
self.assertEqual(d1, a)
|
|
|
|
def test14_buffer(self):
|
|
"Testing buffer()."
|
|
for i in xrange(len(buffer_geoms)):
|
|
g_tup = buffer_geoms[i]
|
|
g = fromstr(g_tup[0].wkt)
|
|
|
|
# The buffer we expect
|
|
exp_buf = fromstr(g_tup[1].wkt)
|
|
|
|
# Can't use a floating-point for the number of quadsegs.
|
|
self.assertRaises(ArgumentError, g.buffer, g_tup[2], float(g_tup[3]))
|
|
|
|
# Constructing our buffer
|
|
buf = g.buffer(g_tup[2], g_tup[3])
|
|
self.assertEqual(exp_buf.num_coords, buf.num_coords)
|
|
self.assertEqual(len(exp_buf), len(buf))
|
|
|
|
# Now assuring that each point in the buffer is almost equal
|
|
for j in xrange(len(exp_buf)):
|
|
exp_ring = exp_buf[j]
|
|
buf_ring = buf[j]
|
|
self.assertEqual(len(exp_ring), len(buf_ring))
|
|
for k in xrange(len(exp_ring)):
|
|
# Asserting the X, Y of each point are almost equal (due to floating point imprecision)
|
|
self.assertAlmostEqual(exp_ring[k][0], buf_ring[k][0], 9)
|
|
self.assertAlmostEqual(exp_ring[k][1], buf_ring[k][1], 9)
|
|
|
|
def test15_srid(self):
|
|
"Testing the SRID property and keyword."
|
|
# Testing SRID keyword on Point
|
|
pnt = Point(5, 23, srid=4326)
|
|
self.assertEqual(4326, pnt.srid)
|
|
pnt.srid = 3084
|
|
self.assertEqual(3084, pnt.srid)
|
|
self.assertRaises(ArgumentError, pnt.set_srid, '4326')
|
|
|
|
# Testing SRID keyword on fromstr(), and on Polygon rings.
|
|
poly = fromstr(polygons[1].wkt, srid=4269)
|
|
self.assertEqual(4269, poly.srid)
|
|
for ring in poly: self.assertEqual(4269, ring.srid)
|
|
poly.srid = 4326
|
|
self.assertEqual(4326, poly.shell.srid)
|
|
|
|
# Testing SRID keyword on GeometryCollection
|
|
gc = GeometryCollection(Point(5, 23), LineString((0, 0), (1.5, 1.5), (3, 3)), srid=32021)
|
|
self.assertEqual(32021, gc.srid)
|
|
for i in range(len(gc)): self.assertEqual(32021, gc[i].srid)
|
|
|
|
# GEOS may get the SRID from HEXEWKB
|
|
# 'POINT(5 23)' at SRID=4326 in hex form -- obtained from PostGIS
|
|
# using `SELECT GeomFromText('POINT (5 23)', 4326);`.
|
|
hex = '0101000020E610000000000000000014400000000000003740'
|
|
p1 = fromstr(hex)
|
|
self.assertEqual(4326, p1.srid)
|
|
|
|
# In GEOS 3.0.0rc1-4 when the EWKB and/or HEXEWKB is exported,
|
|
# the SRID information is lost and set to -1 -- this is not a
|
|
# problem on the 3.0.0 version (another reason to upgrade).
|
|
exp_srid = self.null_srid
|
|
|
|
p2 = fromstr(p1.hex)
|
|
self.assertEqual(exp_srid, p2.srid)
|
|
p3 = fromstr(p1.hex, srid=-1) # -1 is intended.
|
|
self.assertEqual(-1, p3.srid)
|
|
|
|
def test16_mutable_geometries(self):
|
|
"Testing the mutability of Polygons and Geometry Collections."
|
|
### Testing the mutability of Polygons ###
|
|
for p in polygons:
|
|
poly = fromstr(p.wkt)
|
|
|
|
# Should only be able to use __setitem__ with LinearRing geometries.
|
|
self.assertRaises(TypeError, poly.__setitem__, 0, LineString((1, 1), (2, 2)))
|
|
|
|
# Constructing the new shell by adding 500 to every point in the old shell.
|
|
shell_tup = poly.shell.tuple
|
|
new_coords = []
|
|
for point in shell_tup: new_coords.append((point[0] + 500., point[1] + 500.))
|
|
new_shell = LinearRing(*tuple(new_coords))
|
|
|
|
# Assigning polygon's exterior ring w/the new shell
|
|
poly.exterior_ring = new_shell
|
|
s = str(new_shell) # new shell is still accessible
|
|
self.assertEqual(poly.exterior_ring, new_shell)
|
|
self.assertEqual(poly[0], new_shell)
|
|
|
|
### Testing the mutability of Geometry Collections
|
|
for tg in multipoints:
|
|
mp = fromstr(tg.wkt)
|
|
for i in range(len(mp)):
|
|
# Creating a random point.
|
|
pnt = mp[i]
|
|
new = Point(random.randint(1, 100), random.randint(1, 100))
|
|
# Testing the assignment
|
|
mp[i] = new
|
|
s = str(new) # what was used for the assignment is still accessible
|
|
self.assertEqual(mp[i], new)
|
|
self.assertEqual(mp[i].wkt, new.wkt)
|
|
self.assertNotEqual(pnt, mp[i])
|
|
|
|
# MultiPolygons involve much more memory management because each
|
|
# Polygon w/in the collection has its own rings.
|
|
for tg in multipolygons:
|
|
mpoly = fromstr(tg.wkt)
|
|
for i in xrange(len(mpoly)):
|
|
poly = mpoly[i]
|
|
old_poly = mpoly[i]
|
|
# Offsetting the each ring in the polygon by 500.
|
|
for j in xrange(len(poly)):
|
|
r = poly[j]
|
|
for k in xrange(len(r)): r[k] = (r[k][0] + 500., r[k][1] + 500.)
|
|
poly[j] = r
|
|
|
|
self.assertNotEqual(mpoly[i], poly)
|
|
# Testing the assignment
|
|
mpoly[i] = poly
|
|
s = str(poly) # Still accessible
|
|
self.assertEqual(mpoly[i], poly)
|
|
self.assertNotEqual(mpoly[i], old_poly)
|
|
|
|
# Extreme (!!) __setitem__ -- no longer works, have to detect
|
|
# in the first object that __setitem__ is called in the subsequent
|
|
# objects -- maybe mpoly[0, 0, 0] = (3.14, 2.71)?
|
|
#mpoly[0][0][0] = (3.14, 2.71)
|
|
#self.assertEqual((3.14, 2.71), mpoly[0][0][0])
|
|
# Doing it more slowly..
|
|
#self.assertEqual((3.14, 2.71), mpoly[0].shell[0])
|
|
#del mpoly
|
|
|
|
def test17_threed(self):
|
|
"Testing three-dimensional geometries."
|
|
# Testing a 3D Point
|
|
pnt = Point(2, 3, 8)
|
|
self.assertEqual((2.,3.,8.), pnt.coords)
|
|
self.assertRaises(TypeError, pnt.set_coords, (1.,2.))
|
|
pnt.coords = (1.,2.,3.)
|
|
self.assertEqual((1.,2.,3.), pnt.coords)
|
|
|
|
# Testing a 3D LineString
|
|
ls = LineString((2., 3., 8.), (50., 250., -117.))
|
|
self.assertEqual(((2.,3.,8.), (50.,250.,-117.)), ls.tuple)
|
|
self.assertRaises(TypeError, ls.__setitem__, 0, (1.,2.))
|
|
ls[0] = (1.,2.,3.)
|
|
self.assertEqual((1.,2.,3.), ls[0])
|
|
|
|
def test18_distance(self):
|
|
"Testing the distance() function."
|
|
# Distance to self should be 0.
|
|
pnt = Point(0, 0)
|
|
self.assertEqual(0.0, pnt.distance(Point(0, 0)))
|
|
|
|
# Distance should be 1
|
|
self.assertEqual(1.0, pnt.distance(Point(0, 1)))
|
|
|
|
# Distance should be ~ sqrt(2)
|
|
self.assertAlmostEqual(1.41421356237, pnt.distance(Point(1, 1)), 11)
|
|
|
|
# Distances are from the closest vertex in each geometry --
|
|
# should be 3 (distance from (2, 2) to (5, 2)).
|
|
ls1 = LineString((0, 0), (1, 1), (2, 2))
|
|
ls2 = LineString((5, 2), (6, 1), (7, 0))
|
|
self.assertEqual(3, ls1.distance(ls2))
|
|
|
|
def test19_length(self):
|
|
"Testing the length property."
|
|
# Points have 0 length.
|
|
pnt = Point(0, 0)
|
|
self.assertEqual(0.0, pnt.length)
|
|
|
|
# Should be ~ sqrt(2)
|
|
ls = LineString((0, 0), (1, 1))
|
|
self.assertAlmostEqual(1.41421356237, ls.length, 11)
|
|
|
|
# Should be circumfrence of Polygon
|
|
poly = Polygon(LinearRing((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)))
|
|
self.assertEqual(4.0, poly.length)
|
|
|
|
# Should be sum of each element's length in collection.
|
|
mpoly = MultiPolygon(poly.clone(), poly)
|
|
self.assertEqual(8.0, mpoly.length)
|
|
|
|
def test20_emptyCollections(self):
|
|
"Testing empty geometries and collections."
|
|
gc1 = GeometryCollection([])
|
|
gc2 = fromstr('GEOMETRYCOLLECTION EMPTY')
|
|
pnt = fromstr('POINT EMPTY')
|
|
ls = fromstr('LINESTRING EMPTY')
|
|
poly = fromstr('POLYGON EMPTY')
|
|
mls = fromstr('MULTILINESTRING EMPTY')
|
|
mpoly1 = fromstr('MULTIPOLYGON EMPTY')
|
|
mpoly2 = MultiPolygon(())
|
|
|
|
for g in [gc1, gc2, pnt, ls, poly, mls, mpoly1, mpoly2]:
|
|
self.assertEqual(True, g.empty)
|
|
|
|
# Testing len() and num_geom.
|
|
if isinstance(g, Polygon):
|
|
self.assertEqual(1, len(g)) # Has one empty linear ring
|
|
self.assertEqual(1, g.num_geom)
|
|
self.assertEqual(0, len(g[0]))
|
|
elif isinstance(g, (Point, LineString)):
|
|
self.assertEqual(1, g.num_geom)
|
|
self.assertEqual(0, len(g))
|
|
else:
|
|
self.assertEqual(0, g.num_geom)
|
|
self.assertEqual(0, len(g))
|
|
|
|
# Testing __getitem__ (doesn't work on Point or Polygon)
|
|
if isinstance(g, Point):
|
|
self.assertRaises(GEOSIndexError, g.get_x)
|
|
elif isinstance(g, Polygon):
|
|
lr = g.shell
|
|
self.assertEqual('LINEARRING EMPTY', lr.wkt)
|
|
self.assertEqual(0, len(lr))
|
|
self.assertEqual(True, lr.empty)
|
|
self.assertRaises(GEOSIndexError, lr.__getitem__, 0)
|
|
else:
|
|
self.assertRaises(GEOSIndexError, g.__getitem__, 0)
|
|
|
|
def test21_test_gdal(self):
|
|
"Testing `ogr` and `srs` properties."
|
|
if not HAS_GDAL: return
|
|
g1 = fromstr('POINT(5 23)')
|
|
self.assertEqual(True, isinstance(g1.ogr, OGRGeometry))
|
|
self.assertEqual(g1.srs, None)
|
|
|
|
g2 = fromstr('LINESTRING(0 0, 5 5, 23 23)', srid=4326)
|
|
self.assertEqual(True, isinstance(g2.ogr, OGRGeometry))
|
|
self.assertEqual(True, isinstance(g2.srs, SpatialReference))
|
|
self.assertEqual(g2.hex, g2.ogr.hex)
|
|
self.assertEqual('WGS 84', g2.srs.name)
|
|
|
|
def test22_copy(self):
|
|
"Testing use with the Python `copy` module."
|
|
import copy
|
|
poly = GEOSGeometry('POLYGON((0 0, 0 23, 23 23, 23 0, 0 0), (5 5, 5 10, 10 10, 10 5, 5 5))')
|
|
cpy1 = copy.copy(poly)
|
|
cpy2 = copy.deepcopy(poly)
|
|
self.assertNotEqual(poly._ptr, cpy1._ptr)
|
|
self.assertNotEqual(poly._ptr, cpy2._ptr)
|
|
|
|
def test23_transform(self):
|
|
"Testing `transform` method."
|
|
if not HAS_GDAL: return
|
|
orig = GEOSGeometry('POINT (-104.609 38.255)', 4326)
|
|
trans = GEOSGeometry('POINT (992385.4472045 481455.4944650)', 2774)
|
|
|
|
# Using a srid, a SpatialReference object, and a CoordTransform object
|
|
# for transformations.
|
|
t1, t2, t3 = orig.clone(), orig.clone(), orig.clone()
|
|
t1.transform(trans.srid)
|
|
t2.transform(SpatialReference('EPSG:2774'))
|
|
ct = CoordTransform(SpatialReference('WGS84'), SpatialReference(2774))
|
|
t3.transform(ct)
|
|
|
|
# Testing use of the `clone` keyword.
|
|
k1 = orig.clone()
|
|
k2 = k1.transform(trans.srid, clone=True)
|
|
self.assertEqual(k1, orig)
|
|
self.assertNotEqual(k1, k2)
|
|
|
|
prec = 3
|
|
for p in (t1, t2, t3, k2):
|
|
self.assertAlmostEqual(trans.x, p.x, prec)
|
|
self.assertAlmostEqual(trans.y, p.y, prec)
|
|
|
|
def test24_extent(self):
|
|
"Testing `extent` method."
|
|
# The xmin, ymin, xmax, ymax of the MultiPoint should be returned.
|
|
mp = MultiPoint(Point(5, 23), Point(0, 0), Point(10, 50))
|
|
self.assertEqual((0.0, 0.0, 10.0, 50.0), mp.extent)
|
|
pnt = Point(5.23, 17.8)
|
|
# Extent of points is just the point itself repeated.
|
|
self.assertEqual((5.23, 17.8, 5.23, 17.8), pnt.extent)
|
|
# Testing on the 'real world' Polygon.
|
|
poly = fromstr(polygons[3].wkt)
|
|
ring = poly.shell
|
|
x, y = ring.x, ring.y
|
|
xmin, ymin = min(x), min(y)
|
|
xmax, ymax = max(x), max(y)
|
|
self.assertEqual((xmin, ymin, xmax, ymax), poly.extent)
|
|
|
|
def test25_pickle(self):
|
|
"Testing pickling and unpickling support."
|
|
# Using both pickle and cPickle -- just 'cause.
|
|
import pickle, cPickle
|
|
|
|
# Creating a list of test geometries for pickling,
|
|
# and setting the SRID on some of them.
|
|
def get_geoms(lst, srid=None):
|
|
return [GEOSGeometry(tg.wkt, srid) for tg in lst]
|
|
tgeoms = get_geoms(points)
|
|
tgeoms.extend(get_geoms(multilinestrings, 4326))
|
|
tgeoms.extend(get_geoms(polygons, 3084))
|
|
tgeoms.extend(get_geoms(multipolygons, 900913))
|
|
|
|
# The SRID won't be exported in GEOS 3.0 release candidates.
|
|
no_srid = self.null_srid == -1
|
|
for geom in tgeoms:
|
|
s1, s2 = cPickle.dumps(geom), pickle.dumps(geom)
|
|
g1, g2 = cPickle.loads(s1), pickle.loads(s2)
|
|
for tmpg in (g1, g2):
|
|
self.assertEqual(geom, tmpg)
|
|
if not no_srid: self.assertEqual(geom.srid, tmpg.srid)
|
|
|
|
def suite():
|
|
s = unittest.TestSuite()
|
|
s.addTest(unittest.makeSuite(GEOSTest))
|
|
return s
|
|
|
|
def run(verbosity=2):
|
|
unittest.TextTestRunner(verbosity=verbosity).run(suite())
|