166 lines
6.5 KiB
Python
166 lines
6.5 KiB
Python
from __future__ import unicode_literals
|
|
|
|
from django.contrib.gis.geos import GEOSGeometry, LinearRing, Polygon, Point
|
|
from django.contrib.gis.maps.google.gmap import GoogleMapException
|
|
from django.utils.six.moves import xrange
|
|
from math import pi, sin, log, exp, atan
|
|
|
|
# Constants used for degree to radian conversion, and vice-versa.
|
|
DTOR = pi / 180.
|
|
RTOD = 180. / pi
|
|
|
|
|
|
class GoogleZoom(object):
|
|
"""
|
|
GoogleZoom is a utility for performing operations related to the zoom
|
|
levels on Google Maps.
|
|
|
|
This class is inspired by the OpenStreetMap Mapnik tile generation routine
|
|
`generate_tiles.py`, and the article "How Big Is the World" (Hack #16) in
|
|
"Google Maps Hacks" by Rich Gibson and Schuyler Erle.
|
|
|
|
`generate_tiles.py` may be found at:
|
|
http://trac.openstreetmap.org/browser/applications/rendering/mapnik/generate_tiles.py
|
|
|
|
"Google Maps Hacks" may be found at http://safari.oreilly.com/0596101619
|
|
"""
|
|
|
|
def __init__(self, num_zoom=19, tilesize=256):
|
|
"Initializes the Google Zoom object."
|
|
# Google's tilesize is 256x256, square tiles are assumed.
|
|
self._tilesize = tilesize
|
|
|
|
# The number of zoom levels
|
|
self._nzoom = num_zoom
|
|
|
|
# Initializing arrays to hold the parameters for each one of the
|
|
# zoom levels.
|
|
self._degpp = [] # Degrees per pixel
|
|
self._radpp = [] # Radians per pixel
|
|
self._npix = [] # 1/2 the number of pixels for a tile at the given zoom level
|
|
|
|
# Incrementing through the zoom levels and populating the parameter arrays.
|
|
z = tilesize # The number of pixels per zoom level.
|
|
for i in xrange(num_zoom):
|
|
# Getting the degrees and radians per pixel, and the 1/2 the number of
|
|
# for every zoom level.
|
|
self._degpp.append(z / 360.) # degrees per pixel
|
|
self._radpp.append(z / (2 * pi)) # radians per pixel
|
|
self._npix.append(z / 2) # number of pixels to center of tile
|
|
|
|
# Multiplying `z` by 2 for the next iteration.
|
|
z *= 2
|
|
|
|
def __len__(self):
|
|
"Returns the number of zoom levels."
|
|
return self._nzoom
|
|
|
|
def get_lon_lat(self, lonlat):
|
|
"Unpacks longitude, latitude from GEOS Points and 2-tuples."
|
|
if isinstance(lonlat, Point):
|
|
lon, lat = lonlat.coords
|
|
else:
|
|
lon, lat = lonlat
|
|
return lon, lat
|
|
|
|
def lonlat_to_pixel(self, lonlat, zoom):
|
|
"Converts a longitude, latitude coordinate pair for the given zoom level."
|
|
# Setting up, unpacking the longitude, latitude values and getting the
|
|
# number of pixels for the given zoom level.
|
|
lon, lat = self.get_lon_lat(lonlat)
|
|
npix = self._npix[zoom]
|
|
|
|
# Calculating the pixel x coordinate by multiplying the longitude value
|
|
# with with the number of degrees/pixel at the given zoom level.
|
|
px_x = round(npix + (lon * self._degpp[zoom]))
|
|
|
|
# Creating the factor, and ensuring that 1 or -1 is not passed in as the
|
|
# base to the logarithm. Here's why:
|
|
# if fac = -1, we'll get log(0) which is undefined;
|
|
# if fac = 1, our logarithm base will be divided by 0, also undefined.
|
|
fac = min(max(sin(DTOR * lat), -0.9999), 0.9999)
|
|
|
|
# Calculating the pixel y coordinate.
|
|
px_y = round(npix + (0.5 * log((1 + fac) / (1 - fac)) * (-1.0 * self._radpp[zoom])))
|
|
|
|
# Returning the pixel x, y to the caller of the function.
|
|
return (px_x, px_y)
|
|
|
|
def pixel_to_lonlat(self, px, zoom):
|
|
"Converts a pixel to a longitude, latitude pair at the given zoom level."
|
|
if len(px) != 2:
|
|
raise TypeError('Pixel should be a sequence of two elements.')
|
|
|
|
# Getting the number of pixels for the given zoom level.
|
|
npix = self._npix[zoom]
|
|
|
|
# Calculating the longitude value, using the degrees per pixel.
|
|
lon = (px[0] - npix) / self._degpp[zoom]
|
|
|
|
# Calculating the latitude value.
|
|
lat = RTOD * (2 * atan(exp((px[1] - npix) / (-1.0 * self._radpp[zoom]))) - 0.5 * pi)
|
|
|
|
# Returning the longitude, latitude coordinate pair.
|
|
return (lon, lat)
|
|
|
|
def tile(self, lonlat, zoom):
|
|
"""
|
|
Returns a Polygon corresponding to the region represented by a fictional
|
|
Google Tile for the given longitude/latitude pair and zoom level. This
|
|
tile is used to determine the size of a tile at the given point.
|
|
"""
|
|
# The given lonlat is the center of the tile.
|
|
delta = self._tilesize / 2
|
|
|
|
# Getting the pixel coordinates corresponding to the
|
|
# the longitude/latitude.
|
|
px = self.lonlat_to_pixel(lonlat, zoom)
|
|
|
|
# Getting the lower-left and upper-right lat/lon coordinates
|
|
# for the bounding box of the tile.
|
|
ll = self.pixel_to_lonlat((px[0] - delta, px[1] - delta), zoom)
|
|
ur = self.pixel_to_lonlat((px[0] + delta, px[1] + delta), zoom)
|
|
|
|
# Constructing the Polygon, representing the tile and returning.
|
|
return Polygon(LinearRing(ll, (ll[0], ur[1]), ur, (ur[0], ll[1]), ll), srid=4326)
|
|
|
|
def get_zoom(self, geom):
|
|
"Returns the optimal Zoom level for the given geometry."
|
|
# Checking the input type.
|
|
if not isinstance(geom, GEOSGeometry) or geom.srid != 4326:
|
|
raise TypeError('get_zoom() expects a GEOS Geometry with an SRID of 4326.')
|
|
|
|
# Getting the envelope for the geometry, and its associated width, height
|
|
# and centroid.
|
|
env = geom.envelope
|
|
env_w, env_h = self.get_width_height(env.extent)
|
|
center = env.centroid
|
|
|
|
for z in xrange(self._nzoom):
|
|
# Getting the tile at the zoom level.
|
|
tile_w, tile_h = self.get_width_height(self.tile(center, z).extent)
|
|
|
|
# When we span more than one tile, this is an approximately good
|
|
# zoom level.
|
|
if (env_w > tile_w) or (env_h > tile_h):
|
|
if z == 0:
|
|
raise GoogleMapException('Geometry width and height should not exceed that of the Earth.')
|
|
return z - 1
|
|
|
|
# Otherwise, we've zoomed in to the max.
|
|
return self._nzoom - 1
|
|
|
|
def get_width_height(self, extent):
|
|
"""
|
|
Returns the width and height for the given extent.
|
|
"""
|
|
# Getting the lower-left, upper-left, and upper-right
|
|
# coordinates from the extent.
|
|
ll = Point(extent[:2])
|
|
ul = Point(extent[0], extent[3])
|
|
ur = Point(extent[2:])
|
|
# Calculating the width and height.
|
|
height = ll.distance(ul)
|
|
width = ul.distance(ur)
|
|
return width, height
|