dragonfly/core/compact_object.cc

485 lines
10 KiB
C++

// Copyright 2022, Roman Gershman. All rights reserved.
// See LICENSE for licensing terms.
//
#include "core/compact_object.h"
// #define XXH_INLINE_ALL
#include <xxhash.h>
extern "C" {
#include "redis/object.h"
#include "redis/util.h"
#include "redis/zmalloc.h" // for non-string objects.
}
#include <absl/strings/str_cat.h>
#include "base/logging.h"
namespace dfly {
using namespace std;
namespace {
constexpr XXH64_hash_t kHashSeed = 24061983;
size_t QlUsedSize(quicklist* ql) {
size_t res = ql->len * sizeof(quicklistNode) + znallocx(sizeof(quicklist));
quicklistNode* ptr = ql->head;
while (ptr) {
res += ptr->sz;
ptr = ptr->next;
}
return res;
}
thread_local robj tmp_robj{
.type = 0, .encoding = 0, .lru = 0, .refcount = OBJ_STATIC_REFCOUNT, .ptr = nullptr};
} // namespace
static_assert(sizeof(CompactObj) == 18);
namespace detail {
CompactBlob::CompactBlob(std::string_view s, pmr::memory_resource* mr)
: ptr_(nullptr), sz(s.size()) {
if (sz) {
ptr_ = mr->allocate(sz);
memcpy(ptr_, s.data(), s.size());
}
}
void CompactBlob::Assign(std::string_view s, std::pmr::memory_resource* mr) {
if (s.size() > sz) {
size_t cur_cap = capacity();
if (s.size() > cur_cap)
MakeRoom(cur_cap, s.size(), mr);
}
memcpy(ptr_, s.data(), s.size());
sz = s.size();
}
void CompactBlob::Free(pmr::memory_resource* mr) {
mr->deallocate(ptr_, 0); // we do not keep the allocated size.
sz = 0;
ptr_ = nullptr;
}
void CompactBlob::MakeRoom(size_t current_cap, size_t desired, std::pmr::memory_resource* mr) {
if (current_cap * 2 > desired) {
if (desired < SDS_MAX_PREALLOC)
desired *= 2;
else
desired += SDS_MAX_PREALLOC;
}
void* newp = mr->allocate(desired);
if (sz) {
memcpy(newp, ptr_, sz);
}
if (current_cap) {
mr->deallocate(ptr_, current_cap);
}
ptr_ = newp;
}
// here we break pmr model since we use non-pmr api of fetching usable size based on pointer.
size_t CompactBlob::capacity() const {
return malloc_usable_size(ptr_);
}
size_t RobjWrapper::MallocUsed() const {
void* ptr = blob.ptr();
if (!ptr)
return 0;
switch (type) {
case OBJ_STRING:
DVLOG(2) << "Freeing string object";
CHECK_EQ(OBJ_ENCODING_RAW, encoding);
return blob.capacity();
break;
case OBJ_LIST:
CHECK_EQ(encoding, OBJ_ENCODING_QUICKLIST);
return QlUsedSize((quicklist*)ptr);
default:
LOG(FATAL) << "Not supported " << type;
}
return 0;
}
size_t RobjWrapper::Size() const {
switch (type) {
case OBJ_STRING:
DVLOG(2) << "Freeing string object";
DCHECK_EQ(OBJ_ENCODING_RAW, encoding);
return blob.size();
break;
default:;
}
return 0;
}
void RobjWrapper::Free(std::pmr::memory_resource* mr) {
void* ptr = blob.ptr();
if (!ptr)
return;
switch (type) {
case OBJ_STRING:
DVLOG(2) << "Freeing string object";
if (encoding == OBJ_ENCODING_RAW) {
blob.Free(mr);
} else {
CHECK_EQ(OBJ_ENCODING_INT, encoding);
}
break;
case OBJ_LIST:
CHECK_EQ(encoding, OBJ_ENCODING_QUICKLIST);
quicklistRelease((quicklist*)ptr);
break;
case OBJ_SET:
LOG(FATAL) << "TBD";
break;
case OBJ_ZSET:
LOG(FATAL) << "TBD";
break;
case OBJ_HASH:
LOG(FATAL) << "Unsupported HASH type";
break;
case OBJ_MODULE:
LOG(FATAL) << "Unsupported OBJ_MODULE type";
break;
case OBJ_STREAM:
LOG(FATAL) << "Unsupported OBJ_STREAM type";
break;
default:
LOG(FATAL) << "Unknown object type";
break;
}
blob.Set(nullptr, 0);
}
uint64_t RobjWrapper::HashCode() const {
switch (type) {
case OBJ_STRING:
DCHECK_EQ(OBJ_ENCODING_RAW, encoding);
{
auto str = blob.AsView();
return XXH3_64bits_withSeed(str.data(), str.size(), kHashSeed);
}
break;
default:
LOG(FATAL) << "Unsupported type for hashcode " << type;
}
}
bool RobjWrapper::Equal(const RobjWrapper& ow) const {
if (ow.type != type || ow.encoding != encoding)
return false;
if (type == OBJ_STRING) {
DCHECK_EQ(OBJ_ENCODING_RAW, encoding);
return blob.AsView() == ow.blob.AsView();
}
LOG(FATAL) << "Unsupported type " << type;
return false;
}
bool RobjWrapper::Equal(std::string_view sv) const {
if (type != OBJ_STRING)
return false;
DCHECK_EQ(OBJ_ENCODING_RAW, encoding);
return blob.AsView() == sv;
}
} // namespace detail
using namespace std;
CompactObj::~CompactObj() {
if (HasAllocated()) {
Free();
}
}
CompactObj& CompactObj::operator=(CompactObj&& o) noexcept {
SetMeta(o.taglen_, o.mask_); // Frees underlying resources if needed.
memcpy(&u_, &o.u_, sizeof(u_));
// SetMeta deallocates the object and we only want reset it.
o.taglen_ = 0;
o.mask_ = 0;
return *this;
}
size_t CompactObj::StrSize() const {
if (IsInline()) {
return taglen_;
}
if (taglen_ == ROBJ_TAG) {
return u_.r_obj.Size();
}
LOG(DFATAL) << "Should not reach " << int(taglen_);
return 0;
}
uint64_t CompactObj::HashCode() const {
if (IsInline()) {
return XXH3_64bits_withSeed(u_.inline_str, taglen_, kHashSeed);
}
switch (taglen_) {
case ROBJ_TAG:
return u_.r_obj.HashCode();
case INT_TAG: {
absl::AlphaNum an(u_.ival);
return XXH3_64bits_withSeed(an.data(), an.size(), kHashSeed);
}
}
LOG(DFATAL) << "Should not reach " << int(taglen_);
return 0;
}
uint64_t CompactObj::HashCode(std::string_view str) {
return XXH3_64bits_withSeed(str.data(), str.size(), kHashSeed);
}
unsigned CompactObj::ObjType() const {
if (IsInline() || taglen_ == INT_TAG)
return OBJ_STRING;
if (taglen_ == ROBJ_TAG)
return u_.r_obj.type;
LOG(FATAL) << "TBD " << taglen_;
return 0;
}
unsigned CompactObj::Encoding() const {
switch (taglen_) {
case ROBJ_TAG:
return u_.r_obj.encoding;
case INT_TAG:
return OBJ_ENCODING_INT;
default:
return OBJ_ENCODING_RAW;
}
}
quicklist* CompactObj::GetQL() const {
CHECK_EQ(taglen_, ROBJ_TAG);
CHECK_EQ(u_.r_obj.type, OBJ_LIST);
CHECK_EQ(u_.r_obj.encoding, OBJ_ENCODING_QUICKLIST);
return (quicklist*)u_.r_obj.blob.ptr();
}
// Takes ownership over o.
void CompactObj::ImportRObj(robj* o) {
CHECK(1 == o->refcount || o->refcount == OBJ_STATIC_REFCOUNT);
CHECK_NE(o->encoding, OBJ_ENCODING_EMBSTR); // need regular one
SetMeta(ROBJ_TAG);
u_.r_obj.type = o->type;
u_.r_obj.encoding = o->encoding;
u_.r_obj.lru_unneeded = o->lru;
if (o->type == OBJ_STRING) {
std::string_view src((char*)o->ptr, sdslen((sds)o->ptr));
u_.r_obj.blob.Assign(src, pmr::get_default_resource());
decrRefCount(o);
} else { // Non-string objects we move as is and release Robj wrapper.
u_.r_obj.blob.Set(o->ptr, 0);
if (o->refcount == 1)
zfree(o);
}
}
robj* CompactObj::AsRObj() const {
CHECK_EQ(ROBJ_TAG, taglen_);
tmp_robj.encoding = u_.r_obj.encoding;
tmp_robj.type = u_.r_obj.type;
tmp_robj.lru = u_.r_obj.lru_unneeded;
tmp_robj.ptr = u_.r_obj.blob.ptr();
return &tmp_robj;
}
void CompactObj::SyncRObj() {
CHECK_EQ(ROBJ_TAG, taglen_);
CHECK_EQ(u_.r_obj.type, tmp_robj.type);
u_.r_obj.encoding = tmp_robj.encoding;
u_.r_obj.blob.Set(tmp_robj.ptr, 0);
}
void CompactObj::SetInt(int64_t val) {
if (INT_TAG != taglen_) {
SetMeta(INT_TAG);
}
u_.ival = val;
}
std::optional<int64_t> CompactObj::TryGetInt() const {
if (taglen_ != INT_TAG)
return std::nullopt;
int64_t val = u_.ival;
return val;
}
void CompactObj::SetString(std::string_view str) {
// Trying auto-detection heuristics first.
if (str.size() <= 20) { // TODO: to move OBJ_ENCODING_INT out of ROBJ logic.
long long ival;
static_assert(sizeof(long long) == 8);
// We use redis string2ll to be compatible with Redis.
if (string2ll(str.data(), str.size(), &ival)) {
SetMeta(INT_TAG);
u_.ival = ival;
return;
}
if (str.size() <= kInlineLen) {
SetMeta(str.size());
memcpy(u_.inline_str, str.data(), str.size());
return;
}
}
std::string_view input = str;
if (str.size() <= kInlineLen) {
SetMeta(str.size(), 0);
return;
}
if (taglen_ != ROBJ_TAG || u_.r_obj.type != OBJ_STRING) {
SetMeta(ROBJ_TAG);
u_.r_obj.type = OBJ_STRING;
u_.r_obj.encoding = OBJ_ENCODING_RAW;
}
DCHECK(taglen_ == ROBJ_TAG && u_.r_obj.type == OBJ_STRING);
CHECK_EQ(OBJ_ENCODING_RAW, u_.r_obj.encoding);
u_.r_obj.blob.Assign(input, pmr::get_default_resource());
}
std::string_view CompactObj::GetSlice(std::string* scratch) const {
if (IsInline()) {
return std::string_view{u_.inline_str, taglen_};
}
if (taglen_ == ROBJ_TAG) {
CHECK_EQ(OBJ_STRING, u_.r_obj.type);
DCHECK_EQ(OBJ_ENCODING_RAW, u_.r_obj.encoding);
return u_.r_obj.blob.AsView();
}
if (taglen_ == INT_TAG) {
absl::AlphaNum an(u_.ival);
scratch->assign(an.Piece());
return *scratch;
}
LOG(FATAL) << "Bad tag " << int(taglen_);
return std::string_view{};
}
bool CompactObj::HasAllocated() const {
if (IsRef() || taglen_ == INT_TAG || IsInline() ||
(taglen_ == ROBJ_TAG && u_.r_obj.blob.ptr() == nullptr))
return false;
DCHECK(taglen_ == ROBJ_TAG);
return true;
}
void CompactObj::GetString(string* res) const {
std::string_view slice = GetSlice(res);
if (res->data() != slice.data()) {
res->assign(slice);
}
}
void CompactObj::Reset() {
if (HasAllocated()) {
Free();
}
taglen_ = 0;
mask_ = 0;
}
// Frees all resources if owns.
void CompactObj::Free() {
DCHECK(HasAllocated());
if (taglen_ == ROBJ_TAG) {
u_.r_obj.Free(pmr::get_default_resource());
} else {
LOG(FATAL) << "Bad compact object type " << int(taglen_);
}
memset(u_.inline_str, 0, kInlineLen);
}
size_t CompactObj::MallocUsed() const {
if (!HasAllocated())
return 0;
if (taglen_ == ROBJ_TAG) {
return u_.r_obj.MallocUsed();
}
LOG(FATAL) << "TBD";
return 0;
}
bool CompactObj::operator==(const CompactObj& o) const {
if (taglen_ == ROBJ_TAG || o.taglen_ == ROBJ_TAG) {
if (o.taglen_ != taglen_)
return false;
return u_.r_obj.Equal(o.u_.r_obj);
}
if (taglen_ != o.taglen_)
return false;
if (taglen_ == INT_TAG)
return u_.ival == o.u_.ival;
DCHECK(IsInline() && o.IsInline());
if (memcmp(u_.inline_str, o.u_.inline_str, taglen_) != 0)
return false;
return true;
}
bool CompactObj::EqualNonInline(std::string_view sv) const {
switch (taglen_) {
case INT_TAG: {
absl::AlphaNum an(u_.ival);
return sv == an.Piece();
}
case ROBJ_TAG:
return u_.r_obj.Equal(sv);
default:
break;
}
return false;
}
} // namespace dfly