dragonfly/server/engine_shard_set.h

247 lines
6.7 KiB
C++

// Copyright 2021, Roman Gershman. All rights reserved.
// See LICENSE for licensing terms.
//
#pragma once
extern "C" {
#include "redis/sds.h"
}
#include <absl/container/btree_map.h>
#include <absl/container/flat_hash_map.h>
#include <xxhash.h>
#include "base/string_view_sso.h"
#include "core/tx_queue.h"
#include "server/db_slice.h"
#include "util/fibers/fiberqueue_threadpool.h"
#include "util/fibers/fibers_ext.h"
#include "util/proactor_pool.h"
namespace dfly {
class EngineShard {
public:
struct Stats {
uint64_t ooo_runs = 0;
uint64_t quick_runs = 0;
};
// EngineShard() is private down below.
~EngineShard();
// Sets up a new EngineShard in the thread.
// If update_db_time is true, initializes periodic time update for its db_slice.
static void InitThreadLocal(util::ProactorBase* pb, bool update_db_time);
static void DestroyThreadLocal();
static EngineShard* tlocal() {
return shard_;
}
ShardId shard_id() const {
return db_slice_.shard_id();
}
DbSlice& db_slice() {
return db_slice_;
}
const DbSlice& db_slice() const {
return db_slice_;
}
::util::fibers_ext::FiberQueue* GetFiberQueue() {
return &queue_;
}
// Processes TxQueue, blocked transactions or any other execution state related to that
// shard. Tries executing the passed transaction if possible (does not guarantee though).
void PollExecution(const char* context, Transaction* trans);
// Returns transaction queue.
TxQueue* txq() {
return &txq_;
}
TxId committed_txid() const {
return committed_txid_;
}
// Signals whether shard-wide lock is active.
// Transactions that conflict with shard locks must subscribe into pending queue.
IntentLock* shard_lock() {
return &shard_lock_;
}
// Iterates over awakened key candidates in each db and moves verified ones into
// global verified_awakened_ array.
// Returns true if there are active awakened keys, false otherwise.
// It has 2 responsibilities.
// 1: to go over potential wakened keys, verify them and activate watch queues.
// 2: if t is awaked and finished running - to remove it from the head
// of the queue and notify the next one.
// If t is null then second part is omitted.
void ProcessAwakened(Transaction* t);
// Blocking API
// TODO: consider moving all watched functions to
// EngineShard with separate per db map.
//! AddWatched adds a transaction to the blocking queue.
void AddWatched(std::string_view key, Transaction* me);
bool RemovedWatched(std::string_view key, Transaction* me);
void GCWatched(const KeyLockArgs& lock_args);
void AwakeWatched(DbIndex db_index, std::string_view key);
bool HasAwakedTransaction() const {
return !awakened_transactions_.empty();
}
// TODO: Awkward interface. I should solve it somehow.
void ShutdownMulti(Transaction* multi);
void WaitForConvergence(TxId notifyid, Transaction* t);
bool HasResultConverged(TxId notifyid) const;
void IncQuickRun() {
stats_.quick_runs++;
}
const Stats& stats() const {
return stats_;
}
// for everyone to use for string transformations during atomic cpu sequences.
sds tmp_str;
private:
EngineShard(util::ProactorBase* pb, bool update_db_time);
struct WatchQueue;
void OnTxFinish();
void NotifyConvergence(Transaction* tx);
/// Returns the notified transaction,
/// or null if all transactions in the queue have expired..
Transaction* NotifyWatchQueue(WatchQueue* wq);
using WatchQueueMap = absl::flat_hash_map<std::string, std::unique_ptr<WatchQueue>>;
// Watch state per db slice.
struct DbWatchTable {
WatchQueueMap queue_map;
// awakened keys point to blocked keys that can potentially be unblocked.
// they reference key objects in queue_map.
absl::flat_hash_set<base::string_view_sso> awakened_keys;
// Returns true if queue_map is empty and DbWatchTable can be removed as well.
bool RemoveEntry(WatchQueueMap::iterator it);
};
absl::flat_hash_map<DbIndex, DbWatchTable> watched_dbs_;
absl::flat_hash_set<DbIndex> awakened_indices_;
absl::flat_hash_set<Transaction*> awakened_transactions_;
absl::btree_multimap<TxId, Transaction*> waiting_convergence_;
::util::fibers_ext::FiberQueue queue_;
::boost::fibers::fiber fiber_q_;
TxQueue txq_;
DbSlice db_slice_;
Stats stats_;
// Logical ts used to order distributed transactions.
TxId committed_txid_ = 0;
Transaction* continuation_trans_ = nullptr;
IntentLock shard_lock_;
uint32_t periodic_task_ = 0;
static thread_local EngineShard* shard_;
};
class EngineShardSet {
public:
explicit EngineShardSet(util::ProactorPool* pp) : pp_(pp) {
}
uint32_t size() const {
return uint32_t(shard_queue_.size());
}
util::ProactorPool* pool() {
return pp_;
}
void Init(uint32_t size);
void InitThreadLocal(util::ProactorBase* pb, bool update_db_time);
// Uses a shard queue to dispatch. Callback runs in a dedicated fiber.
template <typename F> auto Await(ShardId sid, F&& f) {
return shard_queue_[sid]->Await(std::forward<F>(f));
}
// Uses a shard queue to dispatch. Callback runs in a dedicated fiber.
template <typename F> auto Add(ShardId sid, F&& f) {
assert(sid < shard_queue_.size());
return shard_queue_[sid]->Add(std::forward<F>(f));
}
// Runs a brief function on all shards. Waits for it to complete.
template <typename U> void RunBriefInParallel(U&& func) const {
RunBriefInParallel(std::forward<U>(func), [](auto i) { return true; });
}
// Runs a brief function on selected shards. Waits for it to complete.
template <typename U, typename P> void RunBriefInParallel(U&& func, P&& pred) const;
template <typename U> void RunBlockingInParallel(U&& func);
private:
util::ProactorPool* pp_;
std::vector<util::fibers_ext::FiberQueue*> shard_queue_;
};
template <typename U, typename P>
void EngineShardSet::RunBriefInParallel(U&& func, P&& pred) const {
util::fibers_ext::BlockingCounter bc{0};
for (uint32_t i = 0; i < size(); ++i) {
if (!pred(i))
continue;
bc.Add(1);
util::ProactorBase* dest = pp_->at(i);
dest->DispatchBrief([f = std::forward<U>(func), bc]() mutable {
f(EngineShard::tlocal());
bc.Dec();
});
}
bc.Wait();
}
template <typename U> void EngineShardSet::RunBlockingInParallel(U&& func) {
util::fibers_ext::BlockingCounter bc{size()};
for (uint32_t i = 0; i < size(); ++i) {
util::ProactorBase* dest = pp_->at(i);
dest->Dispatch([func, bc]() mutable {
func(EngineShard::tlocal());
bc.Dec();
});
}
bc.Wait();
}
inline ShardId Shard(std::string_view v, ShardId shard_num) {
XXH64_hash_t hash = XXH64(v.data(), v.size(), 120577240643ULL);
return hash % shard_num;
}
} // namespace dfly