dragonfly/core/dash.h

636 lines
21 KiB
C++

// Copyright 2021, Roman Gershman. All rights reserved.
// See LICENSE for licensing terms.
//
#pragma once
#include <memory_resource>
#include <vector>
#include "core/dash_internal.h"
namespace dfly {
// DASH: Dynamic And Scalable Hashing.
// TODO: We could name it DACHE: Dynamic and Adaptive caCHE.
// After all, we added additionaly improvements we added as part of the dragonfly project,
// that probably justify a right to choose our own name for this data structure.
struct BasicDashPolicy {
enum { kSlotNum = 12, kBucketNum = 64, kStashBucketNum = 2 };
static constexpr bool kUseVersion = false;
template <typename U> static void DestroyValue(const U&) {
}
template <typename U> static void DestroyKey(const U&) {
}
template <typename U, typename V> static bool Equal(U&& u, V&& v) {
return u == v;
}
};
template <typename _Key, typename _Value, typename Policy>
class DashTable : public detail::DashTableBase {
DashTable(const DashTable&) = delete;
DashTable& operator=(const DashTable&) = delete;
struct SegmentPolicy {
static constexpr unsigned NUM_SLOTS = Policy::kSlotNum;
static constexpr unsigned BUCKET_CNT = Policy::kBucketNum;
static constexpr unsigned STASH_BUCKET_NUM = Policy::kStashBucketNum;
static constexpr bool USE_VERSION = Policy::kUseVersion;
};
using Base = detail::DashTableBase;
using SegmentType = detail::Segment<_Key, _Value, SegmentPolicy>;
using SegmentIterator = typename SegmentType::Iterator;
public:
using Key_t = _Key;
using Value_t = _Value;
//! Number of "official" buckets that are used to position a key. In other words, does not include
//! stash buckets.
static constexpr unsigned kLogicalBucketNum = Policy::kBucketNum;
//! Total number of buckets in a segment (including stash).
static constexpr unsigned kPhysicalBucketNum = SegmentType::kTotalBuckets;
static constexpr unsigned kBucketSize = Policy::kSlotNum;
static constexpr double kTaxAmount = SegmentType::kTaxSize;
static constexpr size_t kSegBytes = sizeof(SegmentType);
static constexpr size_t kSegCapacity = SegmentType::capacity();
static constexpr bool kUseVersion = Policy::kUseVersion;
// if IsSingleBucket is true - iterates only over a single bucket.
template <bool IsConst, bool IsSingleBucket = false> class Iterator {
using Owner = std::conditional_t<IsConst, const DashTable, DashTable>;
Owner* owner_;
uint32_t seg_id_;
uint8_t bucket_id_;
uint8_t slot_id_;
friend class DashTable;
Iterator(Owner* me, uint32_t seg_id, uint8_t bid, uint8_t sid)
: owner_(me), seg_id_(seg_id), bucket_id_(bid), slot_id_(sid) {
}
void FindValid() {
if constexpr (IsSingleBucket) {
const auto& b = owner_->segment_[seg_id_]->GetBucket(bucket_id_);
uint32_t mask = b.GetBusy() >> slot_id_;
if (mask) {
int slot = __builtin_ctz(mask);
slot_id_ += slot;
return;
}
} else {
while (seg_id_ < owner_->segment_.size()) {
auto seg_it = owner_->segment_[seg_id_]->FindValidStartingFrom(bucket_id_, slot_id_);
if (seg_it.found()) {
bucket_id_ = seg_it.index;
slot_id_ = seg_it.slot;
return;
}
seg_id_ = owner_->NextSeg(seg_id_);
bucket_id_ = slot_id_ = 0;
}
}
owner_ = nullptr;
}
public:
using iterator_category = std::forward_iterator_tag;
using difference_type = std::ptrdiff_t;
// Copy constructor from iterator to const_iterator.
template <bool TIsConst = IsConst, bool TIsSingleB,
typename std::enable_if<TIsConst>::type* = nullptr>
Iterator(const Iterator<!TIsConst, TIsSingleB>& other) noexcept
: owner_(other.owner_), seg_id_(other.seg_id_), bucket_id_(other.bucket_id_),
slot_id_(other.slot_id_) {
}
// Copy constructor from bucket_iterator to iterator.
template <bool TIsSingleB>
Iterator(const Iterator<IsConst, TIsSingleB>& other) noexcept
: owner_(other.owner_), seg_id_(other.seg_id_), bucket_id_(other.bucket_id_),
slot_id_(other.slot_id_) {
}
Iterator() : owner_(nullptr), seg_id_(0), bucket_id_(0), slot_id_(0) {
}
Iterator(const Iterator& other) = default;
Iterator(Iterator&& other) = default;
Iterator& operator=(const Iterator& other) = default;
Iterator& operator=(Iterator&& other) = default;
// pre
Iterator& operator++() {
++slot_id_;
FindValid();
return *this;
}
Iterator& operator+=(int delta) {
slot_id_ += delta;
FindValid();
return *this;
}
detail::IteratorPair<Key_t, Value_t> operator->() {
auto* seg = owner_->segment_[seg_id_];
return detail::IteratorPair<Key_t, Value_t>{seg->Key(bucket_id_, slot_id_),
seg->Value(bucket_id_, slot_id_)};
}
const detail::IteratorPair<Key_t, Value_t> operator->() const {
auto* seg = owner_->segment_[seg_id_];
return detail::IteratorPair<Key_t, Value_t>{seg->Key(bucket_id_, slot_id_),
seg->Value(bucket_id_, slot_id_)};
}
// Make it self-contained. Does not need container::end().
bool is_done() const {
return owner_ == nullptr;
}
template <bool B = Policy::kUseVersion> std::enable_if_t<B, uint64_t> GetVersion() const {
return owner_->segment_[seg_id_]->GetVersion(bucket_id_, slot_id_);
}
// Returns the minimum version of the physical bucket that this iterator points to.
// Note: In an ideal world I would introduce a bucket iterator...
template <bool B = Policy::kUseVersion> std::enable_if_t<B, uint64_t> MinVersion() const {
return owner_->segment_[seg_id_]->MinVersion(bucket_id_);
}
template <bool B = Policy::kUseVersion> std::enable_if_t<B> SetVersion(uint64_t v) {
return owner_->segment_[seg_id_]->SetVersion(bucket_id_, slot_id_, v);
}
friend bool operator==(const Iterator& lhs, const Iterator& rhs) {
if (lhs.owner_ == nullptr && rhs.owner_ == nullptr)
return true;
return lhs.owner_ == rhs.owner_ && lhs.seg_id_ == rhs.seg_id_ &&
lhs.bucket_id_ == rhs.bucket_id_ && lhs.slot_id_ == rhs.slot_id_;
}
friend bool operator!=(const Iterator& lhs, const Iterator& rhs) {
return !(lhs == rhs);
}
// debug accessors.
unsigned bucket_id() const {
return bucket_id_;
}
unsigned slot_id() const {
return slot_id_;
}
unsigned segment_id() const {
return seg_id_;
}
};
using const_iterator = Iterator<true>;
using iterator = Iterator<false>;
using const_bucket_iterator = Iterator<true, true>;
using bucket_iterator = Iterator<false, true>;
struct EvictionCandidates {
bucket_iterator iter[2 + Policy::kStashBucketNum];
uint64_t key_hash; // key_hash of a key that we try to insert.
};
// EvictionCb is called when Insertion needs to evict items in a segment to make room for a new
// item.
using EvictionCb = std::function<unsigned(const EvictionCandidates&)>;
struct EvictionPolicy {
EvictionCb evict_cb;
size_t max_capacity = UINT64_MAX;
};
DashTable(size_t capacity_log = 1, const Policy& policy = Policy{},
std::pmr::memory_resource* mr = std::pmr::get_default_resource());
~DashTable();
void Reserve(size_t size);
// false for duplicate, true if inserted.
template <typename U, typename V> std::pair<iterator, bool> Insert(U&& key, V&& value) {
return InsertInternal(std::forward<U>(key), std::forward<V>(value), EvictionPolicy{});
}
template <typename U, typename V>
std::pair<iterator, bool> Insert(U&& key, V&& value, const EvictionPolicy& ev) {
return InsertInternal(std::forward<U>(key), std::forward<V>(value), ev);
}
template <typename U> const_iterator Find(U&& key) const;
template <typename U> iterator Find(U&& key);
// it must be valid.
void Erase(iterator it);
size_t Erase(const Key_t& k);
iterator begin() {
iterator it{this, 0, 0, 0};
it.FindValid();
return it;
}
const_iterator cbegin() const {
const_iterator it{this, 0, 0, 0};
it.FindValid();
return it;
}
iterator end() const {
return iterator{};
}
const_iterator cend() const {
return const_iterator{};
}
using Base::depth;
using Base::size;
using Base::unique_segments;
template <typename U> uint64_t DoHash(const U& k) const {
return policy_.HashFn(k);
}
// Flat memory usage (allocated) of the table, not including the the memory allocated
// by the hosted objects.
size_t mem_usage() const {
return segment_.capacity() * sizeof(void*) + sizeof(SegmentType) * unique_segments_;
}
size_t bucket_count() const {
return unique_segments_ * SegmentType::capacity();
}
double load_factor() const {
return double(size()) / (SegmentType::capacity() * unique_segments());
}
// Traverses over a single bucket in table and calls cb(iterator) 0 or more
// times. if cursor=0 starts traversing from the beginning, otherwise continues from where it
// stopped. returns 0 if the supplied cursor reached end of traversal. Traverse iterates at bucket
// granularity, which means for each non-empty bucket it calls cb per each entry in the bucket
// before returning. Unlike begin/end interface, traverse is more stable during table mutations.
// It guarantees that if key exists at the beginning of traversal, stays in the table during the
// traversal, it will eventually reach it even when the table shrinks or grows.
// Returns: cursor that is guaranteed to be less than 2^40.
template <typename Cb> uint64_t Traverse(uint64_t cursor, Cb&& cb);
// Takes an iterator pointing to an entry in a dash bucket and traverses all bucket's entries by
// calling cb(iterator) for every non-empty slot. The iteration goes over a physical bucket.
template <typename Cb> void TraverseBucket(const_iterator it, Cb&& cb);
static const_bucket_iterator bucket_it(const_iterator it) {
return const_bucket_iterator{it.owner_, it.seg_id_, it.bucket_id_, 0};
}
// Capture Version Change. Runs cb(it) on every bucket! (not entry) in the table whose version
// would potentially change upon insertion of 'k'.
// In practice traversal is limited to a single segment. The operation is read-only and
// simulates insertion process. 'cb' must accept const_iterator. Note: the interface a bit hacky
// since the iterator may point to non-existing slot. In practice it only can be sent to
// TraverseBucket function.
// The function returns any bucket that is touched by the insertion flow. In practice, we
// could tighten estimates by taking the new version into account.
// Not sure how important this is though.
template <typename U, typename Cb> void CVCUponInsert(const U& key, Cb&& cb) const;
void Clear();
private:
template <typename U, typename V>
std::pair<iterator, bool> InsertInternal(U&& key, V&& value, const EvictionPolicy& policy);
void IncreaseDepth(unsigned new_depth);
void Split(uint32_t seg_id);
template <typename Cb> void IterateUnique(Cb&& cb);
size_t NextSeg(size_t sid) const {
size_t delta = (1u << (global_depth_ - segment_[sid]->local_depth()));
return sid + delta;
}
auto EqPred() const {
return [p = &policy_](const auto& a, const auto& b) -> bool { return p->Equal(a, b); };
}
Policy policy_;
std::pmr::vector<SegmentType*> segment_;
};
template <typename _Key, typename _Value, typename Policy>
DashTable<_Key, _Value, Policy>::DashTable(size_t capacity_log, const Policy& policy,
std::pmr::memory_resource* mr)
: Base(capacity_log), policy_(policy), segment_(mr) {
segment_.resize(unique_segments_);
std::pmr::polymorphic_allocator<SegmentType> pa(mr);
for (auto& ptr : segment_) {
ptr = pa.allocate(1);
pa.construct(ptr, global_depth_); // new SegmentType(global_depth_);
}
}
template <typename _Key, typename _Value, typename Policy>
DashTable<_Key, _Value, Policy>::~DashTable() {
Clear();
auto* resource = segment_.get_allocator().resource();
std::pmr::polymorphic_allocator<SegmentType> pa(resource);
IterateUnique([&](SegmentType* seg) {
pa.destroy(seg);
pa.deallocate(seg, 1);
return false;
});
}
template <typename _Key, typename _Value, typename Policy>
template <typename U, typename Cb>
void DashTable<_Key, _Value, Policy>::CVCUponInsert(const U& key, Cb&& cb) const {
uint64_t key_hash = DoHash(key);
uint32_t seg_id = SegmentId(key_hash);
assert(seg_id < segment_.size());
const SegmentType* target = segment_[seg_id];
uint8_t bids[2];
unsigned num_touched = target->CVCOnInsert(key_hash, bids);
if (num_touched > 0) {
for (unsigned i = 0; i < num_touched; ++i) {
cb(const_iterator{this, seg_id, bids[i], 0});
}
return;
}
static_assert(kPhysicalBucketNum < 0xFF, "");
// Segment is full, we need to return the whole segment, because it can be split
// and its entries can be reshuffled into different buckets.
for (uint8_t i = 0; i < kPhysicalBucketNum; ++i) {
cb(const_iterator{this, seg_id, i, 0});
}
}
template <typename _Key, typename _Value, typename Policy>
void DashTable<_Key, _Value, Policy>::Clear() {
auto cb = [this](SegmentType* seg) {
seg->TraverseAll([this, seg](const SegmentIterator& it) {
policy_.DestroyKey(seg->Key(it.index, it.slot));
policy_.DestroyValue(seg->Value(it.index, it.slot));
});
seg->Clear();
return false;
};
IterateUnique(cb);
size_ = 0;
}
template <typename _Key, typename _Value, typename Policy>
template <typename Cb>
void DashTable<_Key, _Value, Policy>::IterateUnique(Cb&& cb) {
size_t i = 0;
while (i < segment_.size()) {
auto* seg = segment_[i];
size_t next_id = NextSeg(i);
if (cb(seg))
break;
i = next_id;
}
}
template <typename _Key, typename _Value, typename Policy>
template <typename U>
auto DashTable<_Key, _Value, Policy>::Find(U&& key) const -> const_iterator {
uint64_t key_hash = DoHash(key);
size_t seg_id = SegmentId(key_hash); // seg_id takes up global_depth_ high bits.
const auto* target = segment_[seg_id];
// Hash structure is like this: [SSUUUUBF], where S is segment id, U - unused,
// B - bucket id and F is a fingerprint. Segment id is needed to identify the correct segment.
// Once identified, the segment instance uses the lower part of hash to locate the key.
// It uses 8 least significant bits for a fingerprint and few more bits for bucket id.
auto seg_it = target->FindIt(key, key_hash, EqPred());
if (seg_it.found()) {
return const_iterator{this, seg_id, seg_it.index, seg_it.slot};
}
return const_iterator{};
}
template <typename _Key, typename _Value, typename Policy>
template <typename U>
auto DashTable<_Key, _Value, Policy>::Find(U&& key) -> iterator {
uint64_t key_hash = DoHash(key);
size_t x = SegmentId(key_hash);
const auto* target = segment_[x];
auto seg_it = target->FindIt(key, key_hash, EqPred());
if (seg_it.found()) {
return iterator{this, uint32_t(x), seg_it.index, seg_it.slot};
}
return iterator{};
}
template <typename _Key, typename _Value, typename Policy>
size_t DashTable<_Key, _Value, Policy>::Erase(const Key_t& key) {
uint64_t key_hash = DoHash(key);
size_t x = SegmentId(key_hash);
auto* target = segment_[x];
auto it = target->FindIt(key, key_hash, EqPred());
if (!it.found())
return 0;
policy_.DestroyKey(target->Key(it.index, it.slot));
policy_.DestroyValue(target->Value(it.index, it.slot));
target->Delete(it, key_hash);
--size_;
return 1;
}
template <typename _Key, typename _Value, typename Policy>
void DashTable<_Key, _Value, Policy>::Erase(iterator it) {
auto* target = segment_[it.seg_id_];
uint64_t key_hash = DoHash(it->first);
SegmentIterator sit{it.bucket_id_, it.slot_id_};
policy_.DestroyKey(it->first);
policy_.DestroyValue(it->second);
target->Delete(sit, key_hash);
--size_;
}
template <typename _Key, typename _Value, typename Policy>
void DashTable<_Key, _Value, Policy>::Reserve(size_t size) {
if (size <= bucket_count())
return;
size_t sg_floor = (size - 1) / SegmentType::capacity();
if (sg_floor < segment_.size()) {
return;
}
assert(sg_floor > 1u);
unsigned new_depth = 1 + (63 ^ __builtin_clzll(sg_floor));
IncreaseDepth(new_depth);
}
template <typename _Key, typename _Value, typename Policy>
template <typename U, typename V>
auto DashTable<_Key, _Value, Policy>::InsertInternal(U&& key, V&& value, const EvictionPolicy& ev)
-> std::pair<iterator, bool> {
uint64_t key_hash = DoHash(key);
uint32_t seg_id = SegmentId(key_hash);
while (true) {
// Keep last global_depth_ msb bits of the hash.
assert(seg_id < segment_.size());
SegmentType* target = segment_[seg_id];
auto [it, res] =
target->Insert(std::forward<U>(key), std::forward<V>(value), key_hash, EqPred());
if (res) { // success
++size_;
return std::make_pair(iterator{this, seg_id, it.index, it.slot}, true);
}
/*duplicate insert, insertion failure*/
if (it.found()) {
return std::make_pair(iterator{this, seg_id, it.index, it.slot}, false);
}
// We need to resize the table but first check if we need to trigger
// eviction policy.
if (SegmentType::capacity() + bucket_count() > ev.max_capacity) {
if (ev.evict_cb) {
// Try eviction.
uint8_t bid[2];
SegmentType::FillProbeArray(key_hash, bid);
EvictionCandidates candidates;
candidates.key_hash = key_hash;
candidates.iter[0] = bucket_iterator{this, seg_id, bid[0], 0};
candidates.iter[1] = bucket_iterator{this, seg_id, bid[1], 0};
for (unsigned i = 0; i < Policy::kStashBucketNum; ++i) {
candidates.iter[2 + i] = bucket_iterator{this, seg_id, uint8_t(kLogicalBucketNum + i), 0};
}
unsigned deleted = ev.evict_cb(candidates);
if (deleted) {
continue; // Succeed to evict - retry insertion.
}
}
break; // stop, we can not grow
}
// Split the segment.
if (target->local_depth() == global_depth_) {
IncreaseDepth(global_depth_ + 1);
seg_id = SegmentId(key_hash);
assert(seg_id < segment_.size() && segment_[seg_id] == target);
}
Split(seg_id);
}
return std::make_pair(iterator{}, false);
}
template <typename _Key, typename _Value, typename Policy>
void DashTable<_Key, _Value, Policy>::IncreaseDepth(unsigned new_depth) {
assert(!segment_.empty());
assert(new_depth > global_depth_);
size_t prev_sz = segment_.size();
size_t repl_cnt = 1ul << (new_depth - global_depth_);
segment_.resize(1ul << new_depth);
for (int i = prev_sz - 1; i >= 0; --i) {
size_t offs = i * repl_cnt;
std::fill(segment_.begin() + offs, segment_.begin() + offs + repl_cnt, segment_[i]);
}
global_depth_ = new_depth;
}
template <typename _Key, typename _Value, typename Policy>
void DashTable<_Key, _Value, Policy>::Split(uint32_t seg_id) {
SegmentType* source = segment_[seg_id];
size_t chunk_size = 1u << (global_depth_ - source->local_depth());
size_t start_idx = seg_id & (~(chunk_size - 1));
assert(segment_[start_idx] == source && segment_[start_idx + chunk_size - 1] == source);
std::pmr::polymorphic_allocator<SegmentType> alloc(segment_.get_allocator().resource());
SegmentType* target = alloc.allocate(1);
alloc.construct(target, source->local_depth() + 1);
auto cb = [this](const auto& k) { return policy_.HashFn(k); };
source->Split(std::move(cb), target); // increases the depth.
++unique_segments_;
for (size_t i = start_idx + chunk_size / 2; i < start_idx + chunk_size; ++i) {
segment_[i] = target;
}
}
template <typename _Key, typename _Value, typename Policy>
template <typename Cb>
uint64_t DashTable<_Key, _Value, Policy>::Traverse(uint64_t cursor, Cb&& cb) {
unsigned bid = cursor & 0xFF;
if (bid >= kLogicalBucketNum) // sanity.
return 0;
uint32_t sid = cursor >> (40 - global_depth_);
auto hash_fun = [this](const auto& k) { return policy_.HashFn(k); };
bool fetched = false;
// We fix bid and go over all segments. Once we reach the end we increase bid and repeat.
do {
SegmentType& s = *segment_[sid];
auto dt_cb = [&](const SegmentIterator& it) { cb(iterator{this, sid, it.index, it.slot}); };
fetched = s.TraverseLogicalBucket(bid, hash_fun, std::move(dt_cb));
sid = NextSeg(sid);
if (sid >= segment_.size()) {
sid = 0;
++bid;
if (bid >= kLogicalBucketNum)
return 0; // "End of traversal" cursor.
}
} while (!fetched);
return (uint64_t(sid) << (40 - global_depth_)) | bid;
}
template <typename _Key, typename _Value, typename Policy>
template <typename Cb>
void DashTable<_Key, _Value, Policy>::TraverseBucket(const_iterator it, Cb&& cb) {
SegmentType& s = *segment_[it.seg_id_];
const auto& b = s.GetBucket(it.bucket_id_);
b.ForEachSlot([&](uint8_t slot, bool probe) {
cb(iterator{this, it.seg_id_, it.bucket_id_, slot});
});
}
} // namespace dfly