nightingale/vendor/github.com/ugorji/go/codec/encode.go

1374 lines
35 KiB
Go

// Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
// Use of this source code is governed by a MIT license found in the LICENSE file.
package codec
import (
"encoding"
"errors"
"fmt"
"io"
"reflect"
"sort"
"strconv"
"time"
)
// defEncByteBufSize is the default size of []byte used
// for bufio buffer or []byte (when nil passed)
const defEncByteBufSize = 1 << 10 // 4:16, 6:64, 8:256, 10:1024
var errEncoderNotInitialized = errors.New("Encoder not initialized")
// encDriver abstracts the actual codec (binc vs msgpack, etc)
type encDriver interface {
EncodeNil()
EncodeInt(i int64)
EncodeUint(i uint64)
EncodeBool(b bool)
EncodeFloat32(f float32)
EncodeFloat64(f float64)
EncodeRawExt(re *RawExt)
EncodeExt(v interface{}, xtag uint64, ext Ext)
// EncodeString using cUTF8, honor'ing StringToRaw flag
EncodeString(v string)
EncodeStringBytesRaw(v []byte)
EncodeTime(time.Time)
WriteArrayStart(length int)
WriteArrayEnd()
WriteMapStart(length int)
WriteMapEnd()
reset()
atEndOfEncode()
encoder() *Encoder
}
type encDriverContainerTracker interface {
WriteArrayElem()
WriteMapElemKey()
WriteMapElemValue()
}
type encodeError struct {
codecError
}
func (e encodeError) Error() string {
return fmt.Sprintf("%s encode error: %v", e.name, e.err)
}
type encDriverNoopContainerWriter struct{}
func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
func (encDriverNoopContainerWriter) WriteArrayEnd() {}
func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
func (encDriverNoopContainerWriter) WriteMapEnd() {}
func (encDriverNoopContainerWriter) atEndOfEncode() {}
// EncodeOptions captures configuration options during encode.
type EncodeOptions struct {
// WriterBufferSize is the size of the buffer used when writing.
//
// if > 0, we use a smart buffer internally for performance purposes.
WriterBufferSize int
// ChanRecvTimeout is the timeout used when selecting from a chan.
//
// Configuring this controls how we receive from a chan during the encoding process.
// - If ==0, we only consume the elements currently available in the chan.
// - if <0, we consume until the chan is closed.
// - If >0, we consume until this timeout.
ChanRecvTimeout time.Duration
// StructToArray specifies to encode a struct as an array, and not as a map
StructToArray bool
// Canonical representation means that encoding a value will always result in the same
// sequence of bytes.
//
// This only affects maps, as the iteration order for maps is random.
//
// The implementation MAY use the natural sort order for the map keys if possible:
//
// - If there is a natural sort order (ie for number, bool, string or []byte keys),
// then the map keys are first sorted in natural order and then written
// with corresponding map values to the strema.
// - If there is no natural sort order, then the map keys will first be
// encoded into []byte, and then sorted,
// before writing the sorted keys and the corresponding map values to the stream.
//
Canonical bool
// CheckCircularRef controls whether we check for circular references
// and error fast during an encode.
//
// If enabled, an error is received if a pointer to a struct
// references itself either directly or through one of its fields (iteratively).
//
// This is opt-in, as there may be a performance hit to checking circular references.
CheckCircularRef bool
// RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
// when checking if a value is empty.
//
// Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
RecursiveEmptyCheck bool
// Raw controls whether we encode Raw values.
// This is a "dangerous" option and must be explicitly set.
// If set, we blindly encode Raw values as-is, without checking
// if they are a correct representation of a value in that format.
// If unset, we error out.
Raw bool
// StringToRaw controls how strings are encoded.
//
// As a go string is just an (immutable) sequence of bytes,
// it can be encoded either as raw bytes or as a UTF string.
//
// By default, strings are encoded as UTF-8.
// but can be treated as []byte during an encode.
//
// Note that things which we know (by definition) to be UTF-8
// are ALWAYS encoded as UTF-8 strings.
// These include encoding.TextMarshaler, time.Format calls, struct field names, etc.
StringToRaw bool
// // AsSymbols defines what should be encoded as symbols.
// //
// // Encoding as symbols can reduce the encoded size significantly.
// //
// // However, during decoding, each string to be encoded as a symbol must
// // be checked to see if it has been seen before. Consequently, encoding time
// // will increase if using symbols, because string comparisons has a clear cost.
// //
// // Sample values:
// // AsSymbolNone
// // AsSymbolAll
// // AsSymbolMapStringKeys
// // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
// AsSymbols AsSymbolFlag
}
// ---------------------------------------------
func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeRawExt(rv2i(rv).(*RawExt))
}
func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn)
}
func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
rv2i(rv).(Selfer).CodecEncodeSelf(e)
}
func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
e.marshalRaw(bs, fnerr)
}
func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
e.marshalUtf8(bs, fnerr)
}
func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
e.marshalAsis(bs, fnerr)
}
func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
e.rawBytes(rv2i(rv).(Raw))
}
func (e *Encoder) kBool(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeBool(rvGetBool(rv))
}
func (e *Encoder) kTime(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeTime(rvGetTime(rv))
}
func (e *Encoder) kString(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeString(rvGetString(rv))
}
func (e *Encoder) kFloat64(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeFloat64(rvGetFloat64(rv))
}
func (e *Encoder) kFloat32(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeFloat32(rvGetFloat32(rv))
}
func (e *Encoder) kInt(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeInt(int64(rvGetInt(rv)))
}
func (e *Encoder) kInt8(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeInt(int64(rvGetInt8(rv)))
}
func (e *Encoder) kInt16(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeInt(int64(rvGetInt16(rv)))
}
func (e *Encoder) kInt32(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeInt(int64(rvGetInt32(rv)))
}
func (e *Encoder) kInt64(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeInt(int64(rvGetInt64(rv)))
}
func (e *Encoder) kUint(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeUint(uint64(rvGetUint(rv)))
}
func (e *Encoder) kUint8(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeUint(uint64(rvGetUint8(rv)))
}
func (e *Encoder) kUint16(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeUint(uint64(rvGetUint16(rv)))
}
func (e *Encoder) kUint32(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeUint(uint64(rvGetUint32(rv)))
}
func (e *Encoder) kUint64(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeUint(uint64(rvGetUint64(rv)))
}
func (e *Encoder) kUintptr(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeUint(uint64(rvGetUintptr(rv)))
}
func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeNil()
}
func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
}
func chanToSlice(rv reflect.Value, rtslice reflect.Type, timeout time.Duration) (rvcs reflect.Value) {
rvcs = reflect.Zero(rtslice)
if timeout < 0 { // consume until close
for {
recv, recvOk := rv.Recv()
if !recvOk {
break
}
rvcs = reflect.Append(rvcs, recv)
}
} else {
cases := make([]reflect.SelectCase, 2)
cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
if timeout == 0 {
cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
} else {
tt := time.NewTimer(timeout)
cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv4i(tt.C)}
}
for {
chosen, recv, recvOk := reflect.Select(cases)
if chosen == 1 || !recvOk {
break
}
rvcs = reflect.Append(rvcs, recv)
}
}
return
}
func (e *Encoder) kSeqFn(rtelem reflect.Type) (fn *codecFn) {
for rtelem.Kind() == reflect.Ptr {
rtelem = rtelem.Elem()
}
// if kind is reflect.Interface, do not pre-determine the
// encoding type, because preEncodeValue may break it down to
// a concrete type and kInterface will bomb.
if rtelem.Kind() != reflect.Interface {
fn = e.h.fn(rtelem)
}
return
}
func (e *Encoder) kSliceWMbs(rv reflect.Value, ti *typeInfo) {
var l = rvGetSliceLen(rv)
if l == 0 {
e.mapStart(0)
} else {
if l%2 == 1 {
e.errorf("mapBySlice requires even slice length, but got %v", l)
return
}
e.mapStart(l / 2)
fn := e.kSeqFn(ti.elem)
for j := 0; j < l; j++ {
if j%2 == 0 {
e.mapElemKey()
} else {
e.mapElemValue()
}
e.encodeValue(rvSliceIndex(rv, j, ti), fn)
}
}
e.mapEnd()
}
func (e *Encoder) kSliceW(rv reflect.Value, ti *typeInfo) {
var l = rvGetSliceLen(rv)
e.arrayStart(l)
if l > 0 {
fn := e.kSeqFn(ti.elem)
for j := 0; j < l; j++ {
e.arrayElem()
e.encodeValue(rvSliceIndex(rv, j, ti), fn)
}
}
e.arrayEnd()
}
func (e *Encoder) kSeqWMbs(rv reflect.Value, ti *typeInfo) {
var l = rv.Len()
if l == 0 {
e.mapStart(0)
} else {
if l%2 == 1 {
e.errorf("mapBySlice requires even slice length, but got %v", l)
return
}
e.mapStart(l / 2)
fn := e.kSeqFn(ti.elem)
for j := 0; j < l; j++ {
if j%2 == 0 {
e.mapElemKey()
} else {
e.mapElemValue()
}
e.encodeValue(rv.Index(j), fn)
}
}
e.mapEnd()
}
func (e *Encoder) kSeqW(rv reflect.Value, ti *typeInfo) {
var l = rv.Len()
e.arrayStart(l)
if l > 0 {
fn := e.kSeqFn(ti.elem)
for j := 0; j < l; j++ {
e.arrayElem()
e.encodeValue(rv.Index(j), fn)
}
}
e.arrayEnd()
}
func (e *Encoder) kChan(f *codecFnInfo, rv reflect.Value) {
if rvIsNil(rv) {
e.e.EncodeNil()
return
}
if f.ti.chandir&uint8(reflect.RecvDir) == 0 {
e.errorf("send-only channel cannot be encoded")
return
}
if !f.ti.mbs && uint8TypId == rt2id(f.ti.elem) {
e.kSliceBytesChan(rv)
return
}
rtslice := reflect.SliceOf(f.ti.elem)
rv = chanToSlice(rv, rtslice, e.h.ChanRecvTimeout)
ti := e.h.getTypeInfo(rt2id(rtslice), rtslice)
if f.ti.mbs {
e.kSliceWMbs(rv, ti)
} else {
e.kSliceW(rv, ti)
}
}
func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
if rvIsNil(rv) {
e.e.EncodeNil()
return
}
if f.ti.mbs {
e.kSliceWMbs(rv, f.ti)
} else {
if f.ti.rtid == uint8SliceTypId || uint8TypId == rt2id(f.ti.elem) {
e.e.EncodeStringBytesRaw(rvGetBytes(rv))
} else {
e.kSliceW(rv, f.ti)
}
}
}
func (e *Encoder) kArray(f *codecFnInfo, rv reflect.Value) {
if f.ti.mbs {
e.kSeqWMbs(rv, f.ti)
} else {
if uint8TypId == rt2id(f.ti.elem) {
e.e.EncodeStringBytesRaw(rvGetArrayBytesRO(rv, e.b[:]))
} else {
e.kSeqW(rv, f.ti)
}
}
}
func (e *Encoder) kSliceBytesChan(rv reflect.Value) {
// do not use range, so that the number of elements encoded
// does not change, and encoding does not hang waiting on someone to close chan.
// for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
// ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.
bs := e.b[:0]
irv := rv2i(rv)
ch, ok := irv.(<-chan byte)
if !ok {
ch = irv.(chan byte)
}
L1:
switch timeout := e.h.ChanRecvTimeout; {
case timeout == 0: // only consume available
for {
select {
case b := <-ch:
bs = append(bs, b)
default:
break L1
}
}
case timeout > 0: // consume until timeout
tt := time.NewTimer(timeout)
for {
select {
case b := <-ch:
bs = append(bs, b)
case <-tt.C:
// close(tt.C)
break L1
}
}
default: // consume until close
for b := range ch {
bs = append(bs, b)
}
}
e.e.EncodeStringBytesRaw(bs)
}
func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
sfn := structFieldNode{v: rv, update: false}
if f.ti.toArray || e.h.StructToArray { // toArray
e.arrayStart(len(f.ti.sfiSrc))
for _, si := range f.ti.sfiSrc {
e.arrayElem()
e.encodeValue(sfn.field(si), nil)
}
e.arrayEnd()
} else {
e.mapStart(len(f.ti.sfiSort))
for _, si := range f.ti.sfiSort {
e.mapElemKey()
e.kStructFieldKey(f.ti.keyType, si.encNameAsciiAlphaNum, si.encName)
e.mapElemValue()
e.encodeValue(sfn.field(si), nil)
}
e.mapEnd()
}
}
func (e *Encoder) kStructFieldKey(keyType valueType, encNameAsciiAlphaNum bool, encName string) {
encStructFieldKey(encName, e.e, e.w(), keyType, encNameAsciiAlphaNum, e.js)
}
func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
var newlen int
toMap := !(f.ti.toArray || e.h.StructToArray)
var mf map[string]interface{}
if f.ti.isFlag(tiflagMissingFielder) {
mf = rv2i(rv).(MissingFielder).CodecMissingFields()
toMap = true
newlen += len(mf)
} else if f.ti.isFlag(tiflagMissingFielderPtr) {
if rv.CanAddr() {
mf = rv2i(rv.Addr()).(MissingFielder).CodecMissingFields()
} else {
// make a new addressable value of same one, and use it
rv2 := reflect.New(rv.Type())
rvSetDirect(rv2.Elem(), rv)
mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
}
toMap = true
newlen += len(mf)
}
newlen += len(f.ti.sfiSrc)
var fkvs = e.slist.get(newlen)
recur := e.h.RecursiveEmptyCheck
sfn := structFieldNode{v: rv, update: false}
var kv sfiRv
var j int
if toMap {
newlen = 0
for _, si := range f.ti.sfiSort { // use sorted array
kv.r = sfn.field(si)
if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
continue
}
kv.v = si // si.encName
fkvs[newlen] = kv
newlen++
}
var mflen int
for k, v := range mf {
if k == "" {
delete(mf, k)
continue
}
if f.ti.infoFieldOmitempty && isEmptyValue(rv4i(v), e.h.TypeInfos, recur, recur) {
delete(mf, k)
continue
}
mflen++
}
// encode it all
e.mapStart(newlen + mflen)
for j = 0; j < newlen; j++ {
kv = fkvs[j]
e.mapElemKey()
e.kStructFieldKey(f.ti.keyType, kv.v.encNameAsciiAlphaNum, kv.v.encName)
e.mapElemValue()
e.encodeValue(kv.r, nil)
}
// now, add the others
for k, v := range mf {
e.mapElemKey()
e.kStructFieldKey(f.ti.keyType, false, k)
e.mapElemValue()
e.encode(v)
}
e.mapEnd()
} else {
newlen = len(f.ti.sfiSrc)
for i, si := range f.ti.sfiSrc { // use unsorted array (to match sequence in struct)
kv.r = sfn.field(si)
// use the zero value.
// if a reference or struct, set to nil (so you do not output too much)
if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
switch kv.r.Kind() {
case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
kv.r = reflect.Value{} //encode as nil
}
}
fkvs[i] = kv
}
// encode it all
e.arrayStart(newlen)
for j = 0; j < newlen; j++ {
e.arrayElem()
e.encodeValue(fkvs[j].r, nil)
}
e.arrayEnd()
}
// do not use defer. Instead, use explicit pool return at end of function.
// defer has a cost we are trying to avoid.
// If there is a panic and these slices are not returned, it is ok.
// spool.end()
e.slist.put(fkvs)
}
func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
if rvIsNil(rv) {
e.e.EncodeNil()
return
}
l := rv.Len()
e.mapStart(l)
if l == 0 {
e.mapEnd()
return
}
// determine the underlying key and val encFn's for the map.
// This eliminates some work which is done for each loop iteration i.e.
// rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
//
// However, if kind is reflect.Interface, do not pre-determine the
// encoding type, because preEncodeValue may break it down to
// a concrete type and kInterface will bomb.
var keyFn, valFn *codecFn
ktypeKind := f.ti.key.Kind()
vtypeKind := f.ti.elem.Kind()
rtval := f.ti.elem
rtvalkind := vtypeKind
for rtvalkind == reflect.Ptr {
rtval = rtval.Elem()
rtvalkind = rtval.Kind()
}
if rtvalkind != reflect.Interface {
valFn = e.h.fn(rtval)
}
var rvv = mapAddressableRV(f.ti.elem, vtypeKind)
if e.h.Canonical {
e.kMapCanonical(f.ti.key, f.ti.elem, rv, rvv, valFn)
e.mapEnd()
return
}
rtkey := f.ti.key
var keyTypeIsString = stringTypId == rt2id(rtkey) // rtkeyid
if !keyTypeIsString {
for rtkey.Kind() == reflect.Ptr {
rtkey = rtkey.Elem()
}
if rtkey.Kind() != reflect.Interface {
keyFn = e.h.fn(rtkey)
}
}
var rvk = mapAddressableRV(f.ti.key, ktypeKind)
var it mapIter
mapRange(&it, rv, rvk, rvv, true)
validKV := it.ValidKV()
var vx reflect.Value
for it.Next() {
e.mapElemKey()
if validKV {
vx = it.Key()
} else {
vx = rvk
}
if keyTypeIsString {
e.e.EncodeString(vx.String())
} else {
e.encodeValue(vx, keyFn)
}
e.mapElemValue()
if validKV {
vx = it.Value()
} else {
vx = rvv
}
e.encodeValue(vx, valFn)
}
it.Done()
e.mapEnd()
}
func (e *Encoder) kMapCanonical(rtkey, rtval reflect.Type, rv, rvv reflect.Value, valFn *codecFn) {
// we previously did out-of-band if an extension was registered.
// This is not necessary, as the natural kind is sufficient for ordering.
mks := rv.MapKeys()
switch rtkey.Kind() {
case reflect.Bool:
mksv := make([]boolRv, len(mks))
for i, k := range mks {
v := &mksv[i]
v.r = k
v.v = k.Bool()
}
sort.Sort(boolRvSlice(mksv))
for i := range mksv {
e.mapElemKey()
e.e.EncodeBool(mksv[i].v)
e.mapElemValue()
e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
}
case reflect.String:
mksv := make([]stringRv, len(mks))
for i, k := range mks {
v := &mksv[i]
v.r = k
v.v = k.String()
}
sort.Sort(stringRvSlice(mksv))
for i := range mksv {
e.mapElemKey()
e.e.EncodeString(mksv[i].v)
e.mapElemValue()
e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
}
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
mksv := make([]uint64Rv, len(mks))
for i, k := range mks {
v := &mksv[i]
v.r = k
v.v = k.Uint()
}
sort.Sort(uint64RvSlice(mksv))
for i := range mksv {
e.mapElemKey()
e.e.EncodeUint(mksv[i].v)
e.mapElemValue()
e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
}
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
mksv := make([]int64Rv, len(mks))
for i, k := range mks {
v := &mksv[i]
v.r = k
v.v = k.Int()
}
sort.Sort(int64RvSlice(mksv))
for i := range mksv {
e.mapElemKey()
e.e.EncodeInt(mksv[i].v)
e.mapElemValue()
e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
}
case reflect.Float32:
mksv := make([]float64Rv, len(mks))
for i, k := range mks {
v := &mksv[i]
v.r = k
v.v = k.Float()
}
sort.Sort(float64RvSlice(mksv))
for i := range mksv {
e.mapElemKey()
e.e.EncodeFloat32(float32(mksv[i].v))
e.mapElemValue()
e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
}
case reflect.Float64:
mksv := make([]float64Rv, len(mks))
for i, k := range mks {
v := &mksv[i]
v.r = k
v.v = k.Float()
}
sort.Sort(float64RvSlice(mksv))
for i := range mksv {
e.mapElemKey()
e.e.EncodeFloat64(mksv[i].v)
e.mapElemValue()
e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
}
case reflect.Struct:
if rtkey == timeTyp {
mksv := make([]timeRv, len(mks))
for i, k := range mks {
v := &mksv[i]
v.r = k
v.v = rv2i(k).(time.Time)
}
sort.Sort(timeRvSlice(mksv))
for i := range mksv {
e.mapElemKey()
e.e.EncodeTime(mksv[i].v)
e.mapElemValue()
e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
}
break
}
fallthrough
default:
// out-of-band
// first encode each key to a []byte first, then sort them, then record
var mksv []byte = e.blist.get(len(mks) * 16)[:0]
e2 := NewEncoderBytes(&mksv, e.hh)
mksbv := make([]bytesRv, len(mks))
for i, k := range mks {
v := &mksbv[i]
l := len(mksv)
e2.MustEncode(k)
v.r = k
v.v = mksv[l:]
}
sort.Sort(bytesRvSlice(mksbv))
for j := range mksbv {
e.mapElemKey()
e.encWr.writeb(mksbv[j].v) // e.asis(mksbv[j].v)
e.mapElemValue()
e.encodeValue(mapGet(rv, mksbv[j].r, rvv), valFn)
}
e.blist.put(mksv)
}
}
// Encoder writes an object to an output stream in a supported format.
//
// Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
// concurrently in multiple goroutines.
//
// However, as Encoder could be allocation heavy to initialize, a Reset method is provided
// so its state can be reused to decode new input streams repeatedly.
// This is the idiomatic way to use.
type Encoder struct {
panicHdl
e encDriver
h *BasicHandle
// hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
encWr
// ---- cpu cache line boundary
hh Handle
blist bytesFreelist
err error
// ---- cpu cache line boundary
// ---- writable fields during execution --- *try* to keep in sep cache line
ci set // holds set of addresses found during an encoding (if CheckCircularRef=true)
slist sfiRvFreelist
b [(2 * 8)]byte // for encoding chan byte, (non-addressable) [N]byte, etc
// ---- cpu cache line boundary?
}
// NewEncoder returns an Encoder for encoding into an io.Writer.
//
// For efficiency, Users are encouraged to configure WriterBufferSize on the handle
// OR pass in a memory buffered writer (eg bufio.Writer, bytes.Buffer).
func NewEncoder(w io.Writer, h Handle) *Encoder {
e := h.newEncDriver().encoder()
e.Reset(w)
return e
}
// NewEncoderBytes returns an encoder for encoding directly and efficiently
// into a byte slice, using zero-copying to temporary slices.
//
// It will potentially replace the output byte slice pointed to.
// After encoding, the out parameter contains the encoded contents.
func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
e := h.newEncDriver().encoder()
e.ResetBytes(out)
return e
}
func (e *Encoder) init(h Handle) {
e.err = errEncoderNotInitialized
e.bytes = true
e.hh = h
e.h = basicHandle(h)
e.be = e.hh.isBinary()
}
func (e *Encoder) w() *encWr {
return &e.encWr
}
func (e *Encoder) resetCommon() {
e.e.reset()
if e.ci == nil {
// e.ci = (set)(e.cidef[:0])
} else {
e.ci = e.ci[:0]
}
e.c = 0
e.err = nil
}
// Reset resets the Encoder with a new output stream.
//
// This accommodates using the state of the Encoder,
// where it has "cached" information about sub-engines.
func (e *Encoder) Reset(w io.Writer) {
if w == nil {
return
}
e.bytes = false
if e.wf == nil {
e.wf = new(bufioEncWriter)
}
e.wf.reset(w, e.h.WriterBufferSize, &e.blist)
e.resetCommon()
}
// ResetBytes resets the Encoder with a new destination output []byte.
func (e *Encoder) ResetBytes(out *[]byte) {
if out == nil {
return
}
var in []byte = *out
if in == nil {
in = make([]byte, defEncByteBufSize)
}
e.bytes = true
e.wb.reset(in, out)
e.resetCommon()
}
// Encode writes an object into a stream.
//
// Encoding can be configured via the struct tag for the fields.
// The key (in the struct tags) that we look at is configurable.
//
// By default, we look up the "codec" key in the struct field's tags,
// and fall bak to the "json" key if "codec" is absent.
// That key in struct field's tag value is the key name,
// followed by an optional comma and options.
//
// To set an option on all fields (e.g. omitempty on all fields), you
// can create a field called _struct, and set flags on it. The options
// which can be set on _struct are:
// - omitempty: so all fields are omitted if empty
// - toarray: so struct is encoded as an array
// - int: so struct key names are encoded as signed integers (instead of strings)
// - uint: so struct key names are encoded as unsigned integers (instead of strings)
// - float: so struct key names are encoded as floats (instead of strings)
// More details on these below.
//
// Struct values "usually" encode as maps. Each exported struct field is encoded unless:
// - the field's tag is "-", OR
// - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
//
// When encoding as a map, the first string in the tag (before the comma)
// is the map key string to use when encoding.
// ...
// This key is typically encoded as a string.
// However, there are instances where the encoded stream has mapping keys encoded as numbers.
// For example, some cbor streams have keys as integer codes in the stream, but they should map
// to fields in a structured object. Consequently, a struct is the natural representation in code.
// For these, configure the struct to encode/decode the keys as numbers (instead of string).
// This is done with the int,uint or float option on the _struct field (see above).
//
// However, struct values may encode as arrays. This happens when:
// - StructToArray Encode option is set, OR
// - the tag on the _struct field sets the "toarray" option
// Note that omitempty is ignored when encoding struct values as arrays,
// as an entry must be encoded for each field, to maintain its position.
//
// Values with types that implement MapBySlice are encoded as stream maps.
//
// The empty values (for omitempty option) are false, 0, any nil pointer
// or interface value, and any array, slice, map, or string of length zero.
//
// Anonymous fields are encoded inline except:
// - the struct tag specifies a replacement name (first value)
// - the field is of an interface type
//
// Examples:
//
// // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
// type MyStruct struct {
// _struct bool `codec:",omitempty"` //set omitempty for every field
// Field1 string `codec:"-"` //skip this field
// Field2 int `codec:"myName"` //Use key "myName" in encode stream
// Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
// Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
// io.Reader //use key "Reader".
// MyStruct `codec:"my1" //use key "my1".
// MyStruct //inline it
// ...
// }
//
// type MyStruct struct {
// _struct bool `codec:",toarray"` //encode struct as an array
// }
//
// type MyStruct struct {
// _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
// Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
// Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
// }
//
// The mode of encoding is based on the type of the value. When a value is seen:
// - If a Selfer, call its CodecEncodeSelf method
// - If an extension is registered for it, call that extension function
// - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
// - Else encode it based on its reflect.Kind
//
// Note that struct field names and keys in map[string]XXX will be treated as symbols.
// Some formats support symbols (e.g. binc) and will properly encode the string
// only once in the stream, and use a tag to refer to it thereafter.
func (e *Encoder) Encode(v interface{}) (err error) {
// tried to use closure, as runtime optimizes defer with no params.
// This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
// Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
// defer func() { e.deferred(&err) }() }
// { x, y := e, &err; defer func() { x.deferred(y) }() }
if e.err != nil {
return e.err
}
if recoverPanicToErr {
defer func() {
// if error occurred during encoding, return that error;
// else if error occurred on end'ing (i.e. during flush), return that error.
err = e.w().endErr()
x := recover()
if x == nil {
if e.err != err {
e.err = err
}
} else {
panicValToErr(e, x, &e.err)
if e.err != err {
err = e.err
}
}
}()
}
// defer e.deferred(&err)
e.mustEncode(v)
return
}
// MustEncode is like Encode, but panics if unable to Encode.
// This provides insight to the code location that triggered the error.
func (e *Encoder) MustEncode(v interface{}) {
if e.err != nil {
panic(e.err)
}
e.mustEncode(v)
}
func (e *Encoder) mustEncode(v interface{}) {
e.calls++
e.encode(v)
e.calls--
if e.calls == 0 {
e.e.atEndOfEncode()
e.w().end()
}
}
// Release releases shared (pooled) resources.
//
// It is important to call Release() when done with an Encoder, so those resources
// are released instantly for use by subsequently created Encoders.
//
// Deprecated: Release is a no-op as pooled resources are not used with an Encoder.
// This method is kept for compatibility reasons only.
func (e *Encoder) Release() {
}
func (e *Encoder) encode(iv interface{}) {
// a switch with only concrete types can be optimized.
// consequently, we deal with nil and interfaces outside the switch.
if iv == nil {
e.e.EncodeNil()
return
}
rv, ok := isNil(iv)
if ok {
e.e.EncodeNil()
return
}
var vself Selfer
switch v := iv.(type) {
// case nil:
// case Selfer:
case Raw:
e.rawBytes(v)
case reflect.Value:
e.encodeValue(v, nil)
case string:
e.e.EncodeString(v)
case bool:
e.e.EncodeBool(v)
case int:
e.e.EncodeInt(int64(v))
case int8:
e.e.EncodeInt(int64(v))
case int16:
e.e.EncodeInt(int64(v))
case int32:
e.e.EncodeInt(int64(v))
case int64:
e.e.EncodeInt(v)
case uint:
e.e.EncodeUint(uint64(v))
case uint8:
e.e.EncodeUint(uint64(v))
case uint16:
e.e.EncodeUint(uint64(v))
case uint32:
e.e.EncodeUint(uint64(v))
case uint64:
e.e.EncodeUint(v)
case uintptr:
e.e.EncodeUint(uint64(v))
case float32:
e.e.EncodeFloat32(v)
case float64:
e.e.EncodeFloat64(v)
case time.Time:
e.e.EncodeTime(v)
case []uint8:
e.e.EncodeStringBytesRaw(v)
case *Raw:
e.rawBytes(*v)
case *string:
e.e.EncodeString(*v)
case *bool:
e.e.EncodeBool(*v)
case *int:
e.e.EncodeInt(int64(*v))
case *int8:
e.e.EncodeInt(int64(*v))
case *int16:
e.e.EncodeInt(int64(*v))
case *int32:
e.e.EncodeInt(int64(*v))
case *int64:
e.e.EncodeInt(*v)
case *uint:
e.e.EncodeUint(uint64(*v))
case *uint8:
e.e.EncodeUint(uint64(*v))
case *uint16:
e.e.EncodeUint(uint64(*v))
case *uint32:
e.e.EncodeUint(uint64(*v))
case *uint64:
e.e.EncodeUint(*v)
case *uintptr:
e.e.EncodeUint(uint64(*v))
case *float32:
e.e.EncodeFloat32(*v)
case *float64:
e.e.EncodeFloat64(*v)
case *time.Time:
e.e.EncodeTime(*v)
case *[]uint8:
if *v == nil {
e.e.EncodeNil()
} else {
e.e.EncodeStringBytesRaw(*v)
}
default:
if vself, ok = iv.(Selfer); ok {
vself.CodecEncodeSelf(e)
} else if !fastpathEncodeTypeSwitch(iv, e) {
if !rv.IsValid() {
rv = rv4i(iv)
}
e.encodeValue(rv, nil)
}
}
}
func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn) {
// if a valid fn is passed, it MUST BE for the dereferenced type of rv
// We considered using a uintptr (a pointer) retrievable via rv.UnsafeAddr.
// However, it is possible for the same pointer to point to 2 different types e.g.
// type T struct { tHelper }
// Here, for var v T; &v and &v.tHelper are the same pointer.
// Consequently, we need a tuple of type and pointer, which interface{} natively provides.
var sptr interface{} // uintptr
var rvp reflect.Value
var rvpValid bool
TOP:
switch rv.Kind() {
case reflect.Ptr:
if rvIsNil(rv) {
e.e.EncodeNil()
return
}
rvpValid = true
rvp = rv
rv = rv.Elem()
if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
sptr = rv2i(rvp) // rv.UnsafeAddr()
break TOP
}
goto TOP
case reflect.Interface:
if rvIsNil(rv) {
e.e.EncodeNil()
return
}
rv = rv.Elem()
goto TOP
case reflect.Slice, reflect.Map:
if rvIsNil(rv) {
e.e.EncodeNil()
return
}
case reflect.Invalid, reflect.Func:
e.e.EncodeNil()
return
}
if sptr != nil && (&e.ci).add(sptr) {
e.errorf("circular reference found: # %p, %T", sptr, sptr)
}
var rt reflect.Type
if fn == nil {
rt = rv.Type()
fn = e.h.fn(rt)
}
if fn.i.addrE {
if rvpValid {
fn.fe(e, &fn.i, rvp)
} else if rv.CanAddr() {
fn.fe(e, &fn.i, rv.Addr())
} else {
if rt == nil {
rt = rv.Type()
}
rv2 := reflect.New(rt)
rvSetDirect(rv2.Elem(), rv)
fn.fe(e, &fn.i, rv2)
}
} else {
fn.fe(e, &fn.i, rv)
}
if sptr != 0 {
(&e.ci).remove(sptr)
}
}
func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
if fnerr != nil {
panic(fnerr)
}
if bs == nil {
e.e.EncodeNil()
} else {
e.e.EncodeString(stringView(bs))
// e.e.EncodeStringEnc(cUTF8, stringView(bs))
}
}
func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
if fnerr != nil {
panic(fnerr)
}
if bs == nil {
e.e.EncodeNil()
} else {
e.encWr.writeb(bs) // e.asis(bs)
}
}
func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
if fnerr != nil {
panic(fnerr)
}
if bs == nil {
e.e.EncodeNil()
} else {
e.e.EncodeStringBytesRaw(bs)
}
}
func (e *Encoder) rawBytes(vv Raw) {
v := []byte(vv)
if !e.h.Raw {
e.errorf("Raw values cannot be encoded: %v", v)
}
e.encWr.writeb(v) // e.asis(v)
}
func (e *Encoder) wrapErr(v interface{}, err *error) {
*err = encodeError{codecError{name: e.hh.Name(), err: v}}
}
// ---- container tracker methods
// Note: We update the .c after calling the callback.
// This way, the callback can know what the last status was.
func (e *Encoder) mapStart(length int) {
e.e.WriteMapStart(length)
e.c = containerMapStart
}
func (e *Encoder) mapElemKey() {
if e.js {
e.jsondriver().WriteMapElemKey()
}
e.c = containerMapKey
}
func (e *Encoder) mapElemValue() {
if e.js {
e.jsondriver().WriteMapElemValue()
}
e.c = containerMapValue
}
func (e *Encoder) mapEnd() {
e.e.WriteMapEnd()
// e.c = containerMapEnd
e.c = 0
}
func (e *Encoder) arrayStart(length int) {
e.e.WriteArrayStart(length)
e.c = containerArrayStart
}
func (e *Encoder) arrayElem() {
if e.js {
e.jsondriver().WriteArrayElem()
}
e.c = containerArrayElem
}
func (e *Encoder) arrayEnd() {
e.e.WriteArrayEnd()
e.c = 0
// e.c = containerArrayEnd
}
// ----------
func (e *Encoder) sideEncode(v interface{}, bs *[]byte) {
rv := baseRV(v)
e2 := NewEncoderBytes(bs, e.hh)
e2.encodeValue(rv, e.h.fnNoExt(rv.Type()))
e2.e.atEndOfEncode()
e2.w().end()
}
func encStructFieldKey(encName string, ee encDriver, w *encWr,
keyType valueType, encNameAsciiAlphaNum bool, js bool) {
var m must
// use if-else-if, not switch (which compiles to binary-search)
// since keyType is typically valueTypeString, branch prediction is pretty good.
if keyType == valueTypeString {
if js && encNameAsciiAlphaNum { // keyType == valueTypeString
w.writeqstr(encName)
} else { // keyType == valueTypeString
ee.EncodeString(encName)
}
} else if keyType == valueTypeInt {
ee.EncodeInt(m.Int(strconv.ParseInt(encName, 10, 64)))
} else if keyType == valueTypeUint {
ee.EncodeUint(m.Uint(strconv.ParseUint(encName, 10, 64)))
} else if keyType == valueTypeFloat {
ee.EncodeFloat64(m.Float(strconv.ParseFloat(encName, 64)))
}
}