nightingale/vendor/github.com/open-falcon/rrdlite/rrd_rpncalc.c

965 lines
31 KiB
C

/****************************************************************************
* RRDtool 1.4.9 Copyright by Tobi Oetiker, 1997-2014
****************************************************************************
* rrd_rpncalc.c RPN calculator functions
****************************************************************************/
#include <limits.h>
#include <locale.h>
#include <stdlib.h>
#include "rrd_tool.h"
#include "rrd_rpncalc.h"
// #include "rrd_graph.h"
short addop2str(
enum op_en op,
enum op_en op_type,
char *op_str,
char **result_str,
unsigned short *offset);
int tzoffset(
time_t); /* used to implement LTIME */
short rpn_compact(
rpnp_t *rpnp,
rpn_cdefds_t **rpnc,
short *count)
{
short i;
*count = 0;
/* count the number of rpn nodes */
while (rpnp[*count].op != OP_END)
(*count)++;
if (++(*count) > DS_CDEF_MAX_RPN_NODES) {
return -RRD_ERR_DATA1;
}
/* allocate memory */
*rpnc = (rpn_cdefds_t *) calloc(*count, sizeof(rpn_cdefds_t));
for (i = 0; rpnp[i].op != OP_END; i++) {
(*rpnc)[i].op = (char) rpnp[i].op;
if (rpnp[i].op == OP_NUMBER) {
/* rpnp.val is a double, rpnc.val is a short */
double temp = floor(rpnp[i].val);
if (temp < SHRT_MIN || temp > SHRT_MAX || temp != rpnp[i].val) {
free(*rpnc);
return -RRD_ERR_DATA2;
}
(*rpnc)[i].val = (short) temp;
} else if (rpnp[i].op == OP_VARIABLE || rpnp[i].op == OP_PREV_OTHER) {
(*rpnc)[i].val = (short) rpnp[i].ptr;
}
}
/* terminate the sequence */
(*rpnc)[(*count) - 1].op = OP_END;
return 0;
}
rpnp_t *rpn_expand( rpn_cdefds_t *rpnc) {
short i;
rpnp_t *rpnp;
/* DS_CDEF_MAX_RPN_NODES is small, so at the expense of some wasted
* memory we avoid any reallocs */
rpnp = (rpnp_t *) calloc(DS_CDEF_MAX_RPN_NODES, sizeof(rpnp_t));
if (rpnp == NULL) {
//RRD_ERR_MALLOC17
return NULL;
}
for (i = 0; rpnc[i].op != OP_END; ++i) {
rpnp[i].op = (enum op_en)rpnc[i].op;
if (rpnp[i].op == OP_NUMBER) {
rpnp[i].val = (double) rpnc[i].val;
} else if (rpnp[i].op == OP_VARIABLE || rpnp[i].op == OP_PREV_OTHER) {
rpnp[i].ptr = (long) rpnc[i].val;
}
}
/* terminate the sequence */
rpnp[i].op = OP_END;
return rpnp;
}
/* rpn_compact2str: convert a compact sequence of RPN operator nodes back
* into a CDEF string. This function is used by rrd_dump.
* arguments:
* rpnc: an array of compact RPN operator nodes
* ds_def: a pointer to the data source definition section of an RRD header
* for lookup of data source names by index
* str: out string, memory is allocated by the function, must be freed by the
* the caller */
void rpn_compact2str( rpn_cdefds_t *rpnc, ds_def_t *ds_def, char **str) {
unsigned short i, offset = 0;
char buffer[7]; /* short as a string */
for (i = 0; rpnc[i].op != OP_END; i++) {
if (i > 0)
(*str)[offset++] = ',';
#define add_op(VV,VVV) \
if (addop2str((enum op_en)(rpnc[i].op), VV, VVV, str, &offset) == 1) continue;
if (rpnc[i].op == OP_NUMBER) {
/* convert a short into a string */
#if defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__)
_itoa(rpnc[i].val, buffer, 10);
#else
sprintf(buffer, "%d", rpnc[i].val);
#endif
add_op(OP_NUMBER, buffer)
}
if (rpnc[i].op == OP_VARIABLE) {
char *ds_name = ds_def[rpnc[i].val].ds_nam;
add_op(OP_VARIABLE, ds_name)
}
if (rpnc[i].op == OP_PREV_OTHER) {
char *ds_name = ds_def[rpnc[i].val].ds_nam;
add_op(OP_VARIABLE, ds_name)
}
#undef add_op
#define add_op(VV,VVV) \
if (addop2str((enum op_en)rpnc[i].op, VV, #VVV, str, &offset) == 1) continue;
add_op(OP_ADD, +)
add_op(OP_SUB, -)
add_op(OP_MUL, *)
add_op(OP_DIV, /)
add_op(OP_MOD, %)
add_op(OP_SIN, SIN)
add_op(OP_COS, COS)
add_op(OP_LOG, LOG)
add_op(OP_FLOOR, FLOOR)
add_op(OP_CEIL, CEIL)
add_op(OP_EXP, EXP)
add_op(OP_DUP, DUP)
add_op(OP_EXC, EXC)
add_op(OP_POP, POP)
add_op(OP_LT, LT)
add_op(OP_LE, LE)
add_op(OP_GT, GT)
add_op(OP_GE, GE)
add_op(OP_EQ, EQ)
add_op(OP_IF, IF)
add_op(OP_MIN, MIN)
add_op(OP_MAX, MAX)
add_op(OP_LIMIT, LIMIT)
add_op(OP_UNKN, UNKN)
add_op(OP_UN, UN)
add_op(OP_NEGINF, NEGINF)
add_op(OP_NE, NE)
add_op(OP_PREV, PREV)
add_op(OP_INF, INF)
add_op(OP_ISINF, ISINF)
add_op(OP_NOW, NOW)
add_op(OP_LTIME, LTIME)
add_op(OP_TIME, TIME)
add_op(OP_ATAN2, ATAN2)
add_op(OP_ATAN, ATAN)
add_op(OP_SQRT, SQRT)
add_op(OP_SORT, SORT)
add_op(OP_REV, REV)
add_op(OP_TREND, TREND)
add_op(OP_TRENDNAN, TRENDNAN)
add_op(OP_PREDICT, PREDICT)
add_op(OP_PREDICTSIGMA, PREDICTSIGMA)
add_op(OP_RAD2DEG, RAD2DEG)
add_op(OP_DEG2RAD, DEG2RAD)
add_op(OP_AVG, AVG)
add_op(OP_ABS, ABS)
add_op(OP_ADDNAN, ADDNAN)
add_op(OP_MINNAN, MINNAN)
add_op(OP_MAXNAN, MAXNAN)
#undef add_op
}
(*str)[offset] = '\0';
}
short addop2str( enum op_en op, enum op_en op_type, char *op_str,
char **result_str, unsigned short *offset) {
if (op == op_type) {
short op_len;
op_len = strlen(op_str);
*result_str = (char *) rrd_realloc(*result_str,
(op_len + 1 +
*offset) * sizeof(char));
if (*result_str == NULL) {
return -RRD_ERR_MALLOC16;
}
strncpy(&((*result_str)[*offset]), op_str, op_len);
*offset += op_len;
return 1;
}
return 0;
}
int parseCDEF_DS( const char *def, rrd_t *rrd, int ds_idx) {
rpnp_t *rpnp = NULL;
rpn_cdefds_t *rpnc = NULL;
short count, i;
rpnp = rpn_parse((void *) rrd, def, &lookup_DS);
if (rpnp == NULL) {
return -RRD_ERR_PARSE1;
}
/* Check for OP nodes not permitted in COMPUTE DS.
* Moved this check from within rpn_compact() because it really is
* COMPUTE DS specific. This is less efficient, but creation doesn't
* occur too often. */
for (i = 0; rpnp[i].op != OP_END; i++) {
if (rpnp[i].op == OP_TIME || rpnp[i].op == OP_LTIME ||
rpnp[i].op == OP_PREV || rpnp[i].op == OP_COUNT ||
rpnp[i].op == OP_TREND || rpnp[i].op == OP_TRENDNAN ||
rpnp[i].op == OP_PREDICT || rpnp[i].op == OP_PREDICTSIGMA ) {
free(rpnp);
return -RRD_ERR_DS;
}
}
if (rpn_compact(rpnp, &rpnc, &count) == -1) {
free(rpnp);
return 0;
}
/* copy the compact rpn representation over the ds_def par array */
memcpy((void *) &(rrd->ds_def[ds_idx].par[DS_cdef]),
(void *) rpnc, count * sizeof(rpn_cdefds_t));
free(rpnp);
free(rpnc);
return 0;
}
/* lookup a data source name in the rrd struct and return the index,
* should use ds_match() here except:
* (1) need a void * pointer to the rrd
* (2) error handling is left to the caller
*/
long lookup_DS(
void *rrd_vptr,
char *ds_name)
{
unsigned int i;
rrd_t *rrd;
rrd = (rrd_t *) rrd_vptr;
for (i = 0; i < rrd->stat_head->ds_cnt; ++i) {
if (strcmp(ds_name, rrd->ds_def[i].ds_nam) == 0)
return i;
}
/* the caller handles a bad data source name in the rpn string */
return -1;
}
/* rpn_parse : parse a string and generate a rpnp array; modified
* str2rpn() originally included in rrd_graph.c
* arguments:
* key_hash: a transparent argument passed to lookup(); conceptually this
* is a hash object for lookup of a numeric key given a variable name
* expr: the string RPN expression, including variable names
* lookup(): a function that retrieves a numeric key given a variable name
*/
rpnp_t *rpn_parse( void *key_hash, const char *const expr_const,
long (*lookup) (void *, char *)) {
int pos = 0;
char *expr;
long steps = -1;
rpnp_t *rpnp;
char vname[MAX_VNAME_LEN + 10];
char *old_locale;
int r, ret = 0;
old_locale = setlocale(LC_NUMERIC, "C");
rpnp = NULL;
expr = (char *) expr_const;
while (*expr) {
if ((rpnp = (rpnp_t *) rrd_realloc(rpnp, (++steps + 2) *
sizeof(rpnp_t))) == NULL) {
setlocale(LC_NUMERIC, old_locale);
return NULL;
}
else if ((sscanf(expr, "%lf%n", &rpnp[steps].val, &pos) == 1)
&& (expr[pos] == ',')) {
rpnp[steps].op = OP_NUMBER;
expr += pos;
}
#define match_op(VV,VVV) \
else if (strncmp(expr, #VVV, strlen(#VVV))==0 && ( expr[strlen(#VVV)] == ',' || expr[strlen(#VVV)] == '\0' )){ \
rpnp[steps].op = VV; \
expr+=strlen(#VVV); \
}
#define match_op_param(VV,VVV) \
else if (sscanf(expr, #VVV "(" DEF_NAM_FMT ")",vname) == 1) { \
int length = 0; \
if ((length = strlen(#VVV)+strlen(vname)+2, \
expr[length] == ',' || expr[length] == '\0') ) { \
rpnp[steps].op = VV; \
rpnp[steps].ptr = (*lookup)(key_hash,vname); \
if (rpnp[steps].ptr < 0) { \
if(!ret) \
ret = RRD_ERR_UNKNOWN_DATA1; \
free(rpnp); \
return NULL; \
} else expr+=length; \
} \
}
match_op(OP_ADD, +)
match_op(OP_SUB, -)
match_op(OP_MUL, *)
match_op(OP_DIV, /)
match_op(OP_MOD, %)
match_op(OP_SIN, SIN)
match_op(OP_COS, COS)
match_op(OP_LOG, LOG)
match_op(OP_FLOOR, FLOOR)
match_op(OP_CEIL, CEIL)
match_op(OP_EXP, EXP)
match_op(OP_DUP, DUP)
match_op(OP_EXC, EXC)
match_op(OP_POP, POP)
match_op(OP_LTIME, LTIME)
match_op(OP_LT, LT)
match_op(OP_LE, LE)
match_op(OP_GT, GT)
match_op(OP_GE, GE)
match_op(OP_EQ, EQ)
match_op(OP_IF, IF)
match_op(OP_MIN, MIN)
match_op(OP_MAX, MAX)
match_op(OP_LIMIT, LIMIT)
/* order is important here ! .. match longest first */
match_op(OP_UNKN, UNKN)
match_op(OP_UN, UN)
match_op(OP_NEGINF, NEGINF)
match_op(OP_NE, NE)
match_op(OP_COUNT, COUNT)
match_op_param(OP_PREV_OTHER, PREV)
match_op(OP_PREV, PREV)
match_op(OP_INF, INF)
match_op(OP_ISINF, ISINF)
match_op(OP_NOW, NOW)
match_op(OP_TIME, TIME)
match_op(OP_ATAN2, ATAN2)
match_op(OP_ATAN, ATAN)
match_op(OP_SQRT, SQRT)
match_op(OP_SORT, SORT)
match_op(OP_REV, REV)
match_op(OP_TREND, TREND)
match_op(OP_TRENDNAN, TRENDNAN)
match_op(OP_PREDICT, PREDICT)
match_op(OP_PREDICTSIGMA, PREDICTSIGMA)
match_op(OP_RAD2DEG, RAD2DEG)
match_op(OP_DEG2RAD, DEG2RAD)
match_op(OP_AVG, AVG)
match_op(OP_ABS, ABS)
match_op(OP_ADDNAN, ADDNAN)
match_op(OP_MINNAN, MINNAN)
match_op(OP_MAXNAN, MAXNAN)
#undef match_op
else if ((sscanf(expr, DEF_NAM_FMT "%n", vname, &pos) == 1)
&& ((rpnp[steps].ptr = (*lookup) (key_hash, vname)) !=
-1)) {
rpnp[steps].op = OP_VARIABLE;
expr += pos;
}
else {
setlocale(LC_NUMERIC, old_locale);
free(rpnp);
return NULL;
}
if (*expr == 0)
break;
if (*expr == ',')
expr++;
else {
setlocale(LC_NUMERIC, old_locale);
free(rpnp);
return NULL;
}
}
rpnp[steps + 1].op = OP_END;
setlocale(LC_NUMERIC, old_locale);
return rpnp;
}
void rpnstack_init( rpnstack_t *rpnstack) {
rpnstack->s = NULL;
rpnstack->dc_stacksize = 0;
rpnstack->dc_stackblock = 100;
}
void rpnstack_free( rpnstack_t *rpnstack) {
if (rpnstack->s != NULL)
free(rpnstack->s);
rpnstack->dc_stacksize = 0;
}
static int rpn_compare_double( const void *x, const void *y) {
double diff = *((const double *) x) - *((const double *) y);
return (diff < 0) ? -1 : (diff > 0) ? 1 : 0;
}
/* rpn_calc: run the RPN calculator; also performs variable substitution;
* moved and modified from data_calc() originally included in rrd_graph.c
* arguments:
* rpnp : an array of RPN operators (including variable references)
* rpnstack : the initialized stack
* data_idx : when data_idx is a multiple of rpnp.step, the rpnp.data pointer
* is advanced by rpnp.ds_cnt; used only for variable substitution
* output : an array of output values; OP_PREV assumes this array contains
* the "previous" value at index position output_idx-1; the definition of
* "previous" depends on the calling environment
* output_idx : an index into the output array in which to store the output
* of the RPN calculator
* returns: -1 if the computation failed (also calls rrd_set_error)
* 0 on success
*/
short rpn_calc( rpnp_t *rpnp, rpnstack_t *rpnstack, long data_idx,
rrd_value_t *output, int output_idx) {
int rpi;
long stptr = -1;
/* process each op from the rpn in turn */
for (rpi = 0; rpnp[rpi].op != OP_END; rpi++) {
/* allocate or grow the stack */
if (stptr + 5 > rpnstack->dc_stacksize) {
/* could move this to a separate function */
rpnstack->dc_stacksize += rpnstack->dc_stackblock;
rpnstack->s = (double*)rrd_realloc(rpnstack->s,
(rpnstack->dc_stacksize) *
sizeof(*(rpnstack->s)));
if (rpnstack->s == NULL) {
return -RRD_ERR_STACK;
}
}
#define stackunderflow(MINSIZE) \
if(stptr<MINSIZE){ \
return -RRD_ERR_STACK1; \
}
switch (rpnp[rpi].op) {
case OP_NUMBER:
rpnstack->s[++stptr] = rpnp[rpi].val;
break;
case OP_VARIABLE:
case OP_PREV_OTHER:
/* Sanity check: VDEFs shouldn't make it here */
if (rpnp[rpi].ds_cnt == 0) {
return -RRD_ERR_ABORT;
} else {
/* make sure we pull the correct value from
* the *.data array. Adjust the pointer into
* the array acordingly. Advance the ptr one
* row in the rra (skip over non-relevant
* data sources)
*/
if (rpnp[rpi].op == OP_VARIABLE) {
rpnstack->s[++stptr] = *(rpnp[rpi].data);
} else {
if ((output_idx) <= 0) {
rpnstack->s[++stptr] = DNAN;
} else {
rpnstack->s[++stptr] =
*(rpnp[rpi].data - rpnp[rpi].ds_cnt);
}
}
if (data_idx % rpnp[rpi].step == 0) {
rpnp[rpi].data += rpnp[rpi].ds_cnt;
}
}
break;
case OP_COUNT:
rpnstack->s[++stptr] = (output_idx + 1); /* Note: Counter starts at 1 */
break;
case OP_PREV:
if ((output_idx) <= 0) {
rpnstack->s[++stptr] = DNAN;
} else {
rpnstack->s[++stptr] = output[output_idx - 1];
}
break;
case OP_UNKN:
rpnstack->s[++stptr] = DNAN;
break;
case OP_INF:
rpnstack->s[++stptr] = DINF;
break;
case OP_NEGINF:
rpnstack->s[++stptr] = -DINF;
break;
case OP_NOW:
rpnstack->s[++stptr] = (double) time(NULL);
break;
case OP_TIME:
/* HACK: this relies on the data_idx being the time,
** which the within-function scope is unaware of */
rpnstack->s[++stptr] = (double) data_idx;
break;
case OP_LTIME:
rpnstack->s[++stptr] =
(double) tzoffset(data_idx) + (double) data_idx;
break;
case OP_ADD:
stackunderflow(1);
rpnstack->s[stptr - 1] = rpnstack->s[stptr - 1]
+ rpnstack->s[stptr];
stptr--;
break;
case OP_ADDNAN:
stackunderflow(1);
if (isnan(rpnstack->s[stptr - 1])) {
rpnstack->s[stptr - 1] = rpnstack->s[stptr];
} else if (isnan(rpnstack->s[stptr])) {
/* NOOP */
/* rpnstack->s[stptr - 1] = rpnstack->s[stptr - 1]; */
} else {
rpnstack->s[stptr - 1] = rpnstack->s[stptr - 1]
+ rpnstack->s[stptr];
}
stptr--;
break;
case OP_SUB:
stackunderflow(1);
rpnstack->s[stptr - 1] = rpnstack->s[stptr - 1]
- rpnstack->s[stptr];
stptr--;
break;
case OP_MUL:
stackunderflow(1);
rpnstack->s[stptr - 1] = (rpnstack->s[stptr - 1])
* (rpnstack->s[stptr]);
stptr--;
break;
case OP_DIV:
stackunderflow(1);
rpnstack->s[stptr - 1] = rpnstack->s[stptr - 1]
/ rpnstack->s[stptr];
stptr--;
break;
case OP_MOD:
stackunderflow(1);
rpnstack->s[stptr - 1] = fmod(rpnstack->s[stptr - 1]
, rpnstack->s[stptr]);
stptr--;
break;
case OP_SIN:
stackunderflow(0);
rpnstack->s[stptr] = sin(rpnstack->s[stptr]);
break;
case OP_ATAN:
stackunderflow(0);
rpnstack->s[stptr] = atan(rpnstack->s[stptr]);
break;
case OP_RAD2DEG:
stackunderflow(0);
rpnstack->s[stptr] = 57.29577951 * rpnstack->s[stptr];
break;
case OP_DEG2RAD:
stackunderflow(0);
rpnstack->s[stptr] = 0.0174532952 * rpnstack->s[stptr];
break;
case OP_ATAN2:
stackunderflow(1);
rpnstack->s[stptr - 1] = atan2(rpnstack->s[stptr - 1],
rpnstack->s[stptr]);
stptr--;
break;
case OP_COS:
stackunderflow(0);
rpnstack->s[stptr] = cos(rpnstack->s[stptr]);
break;
case OP_CEIL:
stackunderflow(0);
rpnstack->s[stptr] = ceil(rpnstack->s[stptr]);
break;
case OP_FLOOR:
stackunderflow(0);
rpnstack->s[stptr] = floor(rpnstack->s[stptr]);
break;
case OP_LOG:
stackunderflow(0);
rpnstack->s[stptr] = log(rpnstack->s[stptr]);
break;
case OP_DUP:
stackunderflow(0);
rpnstack->s[stptr + 1] = rpnstack->s[stptr];
stptr++;
break;
case OP_POP:
stackunderflow(0);
stptr--;
break;
case OP_EXC:
stackunderflow(1);
{
double dummy;
dummy = rpnstack->s[stptr];
rpnstack->s[stptr] = rpnstack->s[stptr - 1];
rpnstack->s[stptr - 1] = dummy;
}
break;
case OP_EXP:
stackunderflow(0);
rpnstack->s[stptr] = exp(rpnstack->s[stptr]);
break;
case OP_LT:
stackunderflow(1);
if (isnan(rpnstack->s[stptr - 1]));
else if (isnan(rpnstack->s[stptr]))
rpnstack->s[stptr - 1] = rpnstack->s[stptr];
else
rpnstack->s[stptr - 1] = rpnstack->s[stptr - 1] <
rpnstack->s[stptr] ? 1.0 : 0.0;
stptr--;
break;
case OP_LE:
stackunderflow(1);
if (isnan(rpnstack->s[stptr - 1]));
else if (isnan(rpnstack->s[stptr]))
rpnstack->s[stptr - 1] = rpnstack->s[stptr];
else
rpnstack->s[stptr - 1] = rpnstack->s[stptr - 1] <=
rpnstack->s[stptr] ? 1.0 : 0.0;
stptr--;
break;
case OP_GT:
stackunderflow(1);
if (isnan(rpnstack->s[stptr - 1]));
else if (isnan(rpnstack->s[stptr]))
rpnstack->s[stptr - 1] = rpnstack->s[stptr];
else
rpnstack->s[stptr - 1] = rpnstack->s[stptr - 1] >
rpnstack->s[stptr] ? 1.0 : 0.0;
stptr--;
break;
case OP_GE:
stackunderflow(1);
if (isnan(rpnstack->s[stptr - 1]));
else if (isnan(rpnstack->s[stptr]))
rpnstack->s[stptr - 1] = rpnstack->s[stptr];
else
rpnstack->s[stptr - 1] = rpnstack->s[stptr - 1] >=
rpnstack->s[stptr] ? 1.0 : 0.0;
stptr--;
break;
case OP_NE:
stackunderflow(1);
if (isnan(rpnstack->s[stptr - 1]));
else if (isnan(rpnstack->s[stptr]))
rpnstack->s[stptr - 1] = rpnstack->s[stptr];
else
rpnstack->s[stptr - 1] = rpnstack->s[stptr - 1] ==
rpnstack->s[stptr] ? 0.0 : 1.0;
stptr--;
break;
case OP_EQ:
stackunderflow(1);
if (isnan(rpnstack->s[stptr - 1]));
else if (isnan(rpnstack->s[stptr]))
rpnstack->s[stptr - 1] = rpnstack->s[stptr];
else
rpnstack->s[stptr - 1] = rpnstack->s[stptr - 1] ==
rpnstack->s[stptr] ? 1.0 : 0.0;
stptr--;
break;
case OP_IF:
stackunderflow(2);
rpnstack->s[stptr - 2] = (isnan(rpnstack->s[stptr - 2])
|| rpnstack->s[stptr - 2] ==
0.0) ? rpnstack->s[stptr] : rpnstack->
s[stptr - 1];
stptr--;
stptr--;
break;
case OP_MIN:
stackunderflow(1);
if (isnan(rpnstack->s[stptr - 1]));
else if (isnan(rpnstack->s[stptr]))
rpnstack->s[stptr - 1] = rpnstack->s[stptr];
else if (rpnstack->s[stptr - 1] > rpnstack->s[stptr])
rpnstack->s[stptr - 1] = rpnstack->s[stptr];
stptr--;
break;
case OP_MINNAN:
stackunderflow(1);
if (isnan(rpnstack->s[stptr - 1]))
rpnstack->s[stptr - 1] = rpnstack->s[stptr];
else if (isnan(rpnstack->s[stptr]));
else if (rpnstack->s[stptr - 1] > rpnstack->s[stptr])
rpnstack->s[stptr - 1] = rpnstack->s[stptr];
stptr--;
break;
case OP_MAX:
stackunderflow(1);
if (isnan(rpnstack->s[stptr - 1]));
else if (isnan(rpnstack->s[stptr]))
rpnstack->s[stptr - 1] = rpnstack->s[stptr];
else if (rpnstack->s[stptr - 1] < rpnstack->s[stptr])
rpnstack->s[stptr - 1] = rpnstack->s[stptr];
stptr--;
break;
case OP_MAXNAN:
stackunderflow(1);
if (isnan(rpnstack->s[stptr - 1]))
rpnstack->s[stptr - 1] = rpnstack->s[stptr];
else if (isnan(rpnstack->s[stptr]));
else if (rpnstack->s[stptr - 1] < rpnstack->s[stptr])
rpnstack->s[stptr - 1] = rpnstack->s[stptr];
stptr--;
break;
case OP_LIMIT:
stackunderflow(2);
if (isnan(rpnstack->s[stptr - 2]));
else if (isnan(rpnstack->s[stptr - 1]))
rpnstack->s[stptr - 2] = rpnstack->s[stptr - 1];
else if (isnan(rpnstack->s[stptr]))
rpnstack->s[stptr - 2] = rpnstack->s[stptr];
else if (rpnstack->s[stptr - 2] < rpnstack->s[stptr - 1])
rpnstack->s[stptr - 2] = DNAN;
else if (rpnstack->s[stptr - 2] > rpnstack->s[stptr])
rpnstack->s[stptr - 2] = DNAN;
stptr -= 2;
break;
case OP_UN:
stackunderflow(0);
rpnstack->s[stptr] = isnan(rpnstack->s[stptr]) ? 1.0 : 0.0;
break;
case OP_ISINF:
stackunderflow(0);
rpnstack->s[stptr] = isinf(rpnstack->s[stptr]) ? 1.0 : 0.0;
break;
case OP_SQRT:
stackunderflow(0);
rpnstack->s[stptr] = sqrt(rpnstack->s[stptr]);
break;
case OP_SORT:
stackunderflow(0);
{
int spn = (int) rpnstack->s[stptr--];
stackunderflow(spn - 1);
qsort(rpnstack->s + stptr - spn + 1, spn, sizeof(double),
rpn_compare_double);
}
break;
case OP_REV:
stackunderflow(0);
{
int spn = (int) rpnstack->s[stptr--];
double *p, *q;
stackunderflow(spn - 1);
p = rpnstack->s + stptr - spn + 1;
q = rpnstack->s + stptr;
while (p < q) {
double x = *q;
*q-- = *p;
*p++ = x;
}
}
break;
case OP_PREDICT:
case OP_PREDICTSIGMA:
stackunderflow(2);
{
/* the local averaging window (similar to trend, but better here, as we get better statistics thru numbers)*/
int locstepsize = rpnstack->s[--stptr];
/* the number of shifts and range-checking*/
int shifts = rpnstack->s[--stptr];
stackunderflow(shifts);
// handle negative shifts special
if (shifts<0) {
stptr--;
} else {
stptr-=shifts;
}
/* the real calculation */
double val=DNAN;
/* the info on the datasource */
time_t dsstep = (time_t) rpnp[rpi - 1].step;
int dscount = rpnp[rpi - 1].ds_cnt;
int locstep = (int)ceil((float)locstepsize/(float)dsstep);
/* the sums */
double sum = 0;
double sum2 = 0;
int count = 0;
/* now loop for each position */
int doshifts=shifts;
if (shifts<0) { doshifts=-shifts; }
for(int loop=0;loop<doshifts;loop++) {
/* calculate shift step */
int shiftstep=1;
if (shifts<0) {
shiftstep = loop*rpnstack->s[stptr];
} else {
shiftstep = rpnstack->s[stptr+loop];
}
if(shiftstep <0) {
return -RRD_ERR_ALLOW;
}
shiftstep=(int)ceil((float)shiftstep/(float)dsstep);
/* loop all local shifts */
for(int i=0;i<=locstep;i++) {
/* now calculate offset into data-array - relative to output_idx*/
int offset=shiftstep+i;
/* and process if we have index 0 of above */
if ((offset>=0)&&(offset<output_idx)) {
/* get the value */
val =rpnp[rpi - 1].data[-dscount * offset];
/* and handle the non NAN case only*/
if (! isnan(val)) {
sum+=val;
sum2+=val*val;
count++;
}
}
}
}
/* do the final calculations */
val=DNAN;
if (rpnp[rpi].op == OP_PREDICT) { /* the average */
if (count>0) {
val = sum/(double)count;
}
} else {
if (count>1) { /* the sigma case */
val=count*sum2-sum*sum;
if (val<0) {
val=DNAN;
} else {
val=sqrt(val/((float)count*((float)count-1.0)));
}
}
}
rpnstack->s[stptr] = val;
}
break;
case OP_TREND:
case OP_TRENDNAN:
stackunderflow(1);
if ((rpi < 2) || (rpnp[rpi - 2].op != OP_VARIABLE)) {
return -RRD_ERR_ARG12;
} else {
time_t dur = (time_t) rpnstack->s[stptr];
time_t step = (time_t) rpnp[rpi - 2].step;
if (output_idx + 1 >= (int) ceil((float) dur / (float) step)) {
int ignorenan = (rpnp[rpi].op == OP_TREND);
double accum = 0.0;
int i = -1; /* pick the current entries, not the next one
as the data pointer has already been forwarded
when the OP_VARIABLE was processed */
int count = 0;
do {
double val =
rpnp[rpi - 2].data[rpnp[rpi - 2].ds_cnt * i--];
if (ignorenan || !isnan(val)) {
accum += val;
++count;
}
dur -= step;
} while (dur > 0);
rpnstack->s[--stptr] =
(count == 0) ? DNAN : (accum / count);
} else
rpnstack->s[--stptr] = DNAN;
}
break;
case OP_AVG:
stackunderflow(0);
{
int i = (int) rpnstack->s[stptr--];
double sum = 0;
int count = 0;
stackunderflow(i - 1);
while (i > 0) {
double val = rpnstack->s[stptr--];
i--;
if (isnan(val)) {
continue;
}
count++;
sum += val;
}
/* now push the result back on stack */
if (count > 0) {
rpnstack->s[++stptr] = sum / count;
} else {
rpnstack->s[++stptr] = DNAN;
}
}
break;
case OP_ABS:
stackunderflow(0);
rpnstack->s[stptr] = fabs(rpnstack->s[stptr]);
break;
case OP_END:
break;
}
#undef stackunderflow
}
if (stptr != 0) {
return -RRD_ERR_STACK2;
}
output[output_idx] = rpnstack->s[0];
return 0;
}
/* figure out what the local timezone offset for any point in
time was. Return it in seconds */
int tzoffset(
time_t now)
{
int gm_sec, gm_min, gm_hour, gm_yday, gm_year,
l_sec, l_min, l_hour, l_yday, l_year;
struct tm t;
int off;
gmtime_r(&now, &t);
gm_sec = t.tm_sec;
gm_min = t.tm_min;
gm_hour = t.tm_hour;
gm_yday = t.tm_yday;
gm_year = t.tm_year;
localtime_r(&now, &t);
l_sec = t.tm_sec;
l_min = t.tm_min;
l_hour = t.tm_hour;
l_yday = t.tm_yday;
l_year = t.tm_year;
off =
(l_sec - gm_sec) + (l_min - gm_min) * 60 + (l_hour - gm_hour) * 3600;
if (l_yday > gm_yday || l_year > gm_year) {
off += 24 * 3600;
} else if (l_yday < gm_yday || l_year < gm_year) {
off -= 24 * 3600;
}
return off;
}