1735 lines
51 KiB
C
1735 lines
51 KiB
C
/*****************************************************************************
|
|
* RRDtool 1.4.9 Copyright by Tobi Oetiker, 1997-2014
|
|
* Copyright by Florian Forster, 2008
|
|
*****************************************************************************
|
|
* rrd_update.c RRD Update Function
|
|
*****************************************************************************
|
|
* $Id$
|
|
*****************************************************************************/
|
|
|
|
#include "rrd_tool.h"
|
|
|
|
#define DISABLE_USEC
|
|
|
|
#if defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__)
|
|
#include <sys/locking.h>
|
|
#include <sys/stat.h>
|
|
#include <io.h>
|
|
#endif
|
|
|
|
#include <locale.h>
|
|
|
|
#include "rrd_hw.h"
|
|
#include "rrd_rpncalc.h"
|
|
|
|
#include "rrd_is_thread_safe.h"
|
|
#include "unused.h"
|
|
|
|
#ifndef RRD_LITE
|
|
#include "rrd_client.h"
|
|
#endif
|
|
|
|
#if defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__)
|
|
/*
|
|
* WIN32 does not have gettimeofday and struct timeval. This is a quick and dirty
|
|
* replacement.
|
|
*/
|
|
#include <sys/timeb.h>
|
|
|
|
#ifndef __MINGW32__
|
|
struct timeval {
|
|
time_t tv_sec; /* seconds */
|
|
long tv_usec; /* microseconds */
|
|
};
|
|
#endif
|
|
|
|
struct __timezone {
|
|
int tz_minuteswest; /* minutes W of Greenwich */
|
|
int tz_dsttime; /* type of dst correction */
|
|
};
|
|
|
|
static int gettimeofday( struct timeval *t, struct __timezone *tz) {
|
|
|
|
struct _timeb current_time;
|
|
|
|
_ftime(¤t_time);
|
|
|
|
t->tv_sec = current_time.time;
|
|
t->tv_usec = current_time.millitm * 1000;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* FUNCTION PROTOTYPES */
|
|
|
|
int rrd_update_r( const char *filename, const char *tmplt,
|
|
int argc, const char **argv);
|
|
int _rrd_update( const char *filename, const char *tmplt,
|
|
int argc, const char **argv, rrd_info_t *);
|
|
|
|
static int allocate_data_structures( rrd_t *rrd, char ***updvals,
|
|
rrd_value_t **pdp_temp, const char *tmplt, long **tmpl_idx,
|
|
unsigned long *tmpl_cnt, unsigned long **rra_step_cnt,
|
|
unsigned long **skip_update, rrd_value_t **pdp_new);
|
|
|
|
static int parse_template( rrd_t *rrd, const char *tmplt,
|
|
unsigned long *tmpl_cnt, long *tmpl_idx);
|
|
|
|
static int process_arg( char *step_start, rrd_t *rrd, rrd_file_t *rrd_file,
|
|
unsigned long rra_begin, time_t *current_time,
|
|
unsigned long *current_time_usec, rrd_value_t *pdp_temp,
|
|
rrd_value_t *pdp_new, unsigned long *rra_step_cnt,
|
|
char **updvals, long *tmpl_idx, unsigned long tmpl_cnt,
|
|
rrd_info_t ** pcdp_summary, int version,
|
|
unsigned long *skip_update, int *schedule_smooth);
|
|
|
|
static int parse_ds( rrd_t *rrd, char **updvals, long *tmpl_idx,
|
|
char *input, unsigned long tmpl_cnt, time_t *current_time,
|
|
unsigned long *current_time_usec, int version);
|
|
|
|
static int get_time_from_reading( rrd_t *rrd, char timesyntax,
|
|
char **updvals, time_t *current_time,
|
|
unsigned long *current_time_usec, int version);
|
|
|
|
static int update_pdp_prep( rrd_t *rrd, char **updvals,
|
|
rrd_value_t *pdp_new, double interval, int *periodic);
|
|
|
|
static int calculate_elapsed_steps( rrd_t *rrd, unsigned long current_time,
|
|
unsigned long current_time_usec, double interval,
|
|
double *pre_int, double *post_int, unsigned long *proc_pdp_cnt);
|
|
|
|
static void simple_update( rrd_t *rrd, double interval, rrd_value_t *pdp_new);
|
|
|
|
static int process_all_pdp_st( rrd_t *rrd, double interval, double pre_int,
|
|
double post_int, unsigned long elapsed_pdp_st, rrd_value_t *pdp_new,
|
|
rrd_value_t *pdp_temp);
|
|
|
|
static int process_pdp_st( rrd_t *rrd, unsigned long ds_idx, double interval,
|
|
double pre_int, double post_int, long diff_pdp_st, rrd_value_t *pdp_new,
|
|
rrd_value_t *pdp_temp);
|
|
|
|
static int update_all_cdp_prep( rrd_t *rrd, unsigned long *rra_step_cnt,
|
|
unsigned long rra_begin, rrd_file_t *rrd_file,
|
|
unsigned long elapsed_pdp_st, unsigned long proc_pdp_cnt,
|
|
rrd_value_t **last_seasonal_coef, rrd_value_t **seasonal_coef,
|
|
rrd_value_t *pdp_temp, unsigned long *skip_update,
|
|
int *schedule_smooth);
|
|
|
|
static int do_schedule_smooth( rrd_t *rrd, unsigned long rra_idx,
|
|
unsigned long elapsed_pdp_st);
|
|
|
|
static int update_cdp_prep( rrd_t *rrd, unsigned long elapsed_pdp_st,
|
|
unsigned long start_pdp_offset, unsigned long *rra_step_cnt, int rra_idx,
|
|
rrd_value_t *pdp_temp, rrd_value_t *last_seasonal_coef,
|
|
rrd_value_t *seasonal_coef, int current_cf);
|
|
|
|
static void update_cdp( unival *scratch, int current_cf,
|
|
rrd_value_t pdp_temp_val, unsigned long rra_step_cnt,
|
|
unsigned long elapsed_pdp_st, unsigned long start_pdp_offset,
|
|
unsigned long pdp_cnt, rrd_value_t xff, int i, int ii);
|
|
|
|
static void initialize_cdp_val( unival *scratch, int current_cf,
|
|
rrd_value_t pdp_temp_val, unsigned long start_pdp_offset,
|
|
unsigned long pdp_cnt);
|
|
|
|
static int reset_cdp( rrd_t *rrd, unsigned long elapsed_pdp_st,
|
|
rrd_value_t *pdp_temp, rrd_value_t *last_seasonal_coef,
|
|
rrd_value_t *seasonal_coef, int rra_idx,
|
|
int ds_idx, int cdp_idx, enum cf_en current_cf);
|
|
|
|
static rrd_value_t initialize_carry_over( rrd_value_t pdp_temp_val,
|
|
int current_cf, unsigned long elapsed_pdp_st,
|
|
unsigned long start_pdp_offset, unsigned long pdp_cnt);
|
|
|
|
static rrd_value_t calculate_cdp_val( rrd_value_t cdp_val,
|
|
rrd_value_t pdp_temp_val, unsigned long elapsed_pdp_st,
|
|
int current_cf, int i, int ii);
|
|
|
|
static int update_aberrant_cdps(
|
|
rrd_t *rrd,
|
|
rrd_file_t *rrd_file,
|
|
unsigned long rra_begin,
|
|
unsigned long elapsed_pdp_st,
|
|
rrd_value_t *pdp_temp,
|
|
rrd_value_t **seasonal_coef);
|
|
|
|
static int write_to_rras(
|
|
rrd_t *rrd,
|
|
rrd_file_t *rrd_file,
|
|
unsigned long *rra_step_cnt,
|
|
unsigned long rra_begin,
|
|
time_t current_time,
|
|
unsigned long *skip_update,
|
|
rrd_info_t ** pcdp_summary,
|
|
int periodic);
|
|
|
|
static int write_RRA_row(
|
|
rrd_file_t *rrd_file,
|
|
rrd_t *rrd,
|
|
unsigned long rra_idx,
|
|
unsigned short CDP_scratch_idx,
|
|
rrd_info_t ** pcdp_summary,
|
|
time_t rra_time,
|
|
int flag);
|
|
|
|
static int smooth_all_rras(
|
|
rrd_t *rrd,
|
|
rrd_file_t *rrd_file,
|
|
unsigned long rra_begin);
|
|
|
|
#ifndef HAVE_MMAP
|
|
static int write_changes_to_disk(
|
|
rrd_t *rrd,
|
|
rrd_file_t *rrd_file,
|
|
int version);
|
|
#endif
|
|
|
|
/*
|
|
* normalize time as returned by gettimeofday. usec part must
|
|
* be always >= 0
|
|
*/
|
|
static void normalize_time( struct timeval *t) {
|
|
if (t->tv_usec < 0) {
|
|
t->tv_sec--;
|
|
t->tv_usec += 1e6L;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Sets current_time and current_time_usec based on the current time.
|
|
* current_time_usec is set to 0 if the version number is 1 or 2.
|
|
*/
|
|
static void initialize_time( time_t *current_time, unsigned long *current_time_usec,
|
|
int version) {
|
|
struct timeval tmp_time; /* used for time conversion */
|
|
|
|
gettimeofday(&tmp_time, 0);
|
|
normalize_time(&tmp_time);
|
|
*current_time = tmp_time.tv_sec;
|
|
if (version >= 3) {
|
|
*current_time_usec = tmp_time.tv_usec;
|
|
} else {
|
|
*current_time_usec = 0;
|
|
}
|
|
#ifdef DISABLE_USEC
|
|
*current_time_usec = 0;
|
|
#endif
|
|
}
|
|
|
|
#define IFDNAN(X,Y) (isnan(X) ? (Y) : (X));
|
|
|
|
int rrd_update_r( const char *filename, const char *tmplt, int argc,
|
|
const char **argv) {
|
|
return _rrd_update(filename, tmplt, argc, argv, NULL);
|
|
}
|
|
|
|
int _rrd_update( const char *filename, const char *tmplt,
|
|
int argc, const char **argv, rrd_info_t * pcdp_summary) {
|
|
|
|
int arg_i = 2;
|
|
|
|
unsigned long rra_begin; /* byte pointer to the rra
|
|
* area in the rrd file. this
|
|
* pointer never changes value */
|
|
rrd_value_t *pdp_new; /* prepare the incoming data to be added
|
|
* to the existing entry */
|
|
rrd_value_t *pdp_temp; /* prepare the pdp values to be added
|
|
* to the cdp values */
|
|
|
|
long *tmpl_idx; /* index representing the settings
|
|
* transported by the tmplt index */
|
|
unsigned long tmpl_cnt = 2; /* time and data */
|
|
rrd_t rrd;
|
|
time_t current_time = 0;
|
|
unsigned long current_time_usec = 0; /* microseconds part of current time */
|
|
char **updvals;
|
|
int schedule_smooth = 0;
|
|
|
|
/* number of elapsed PDP steps since last update */
|
|
unsigned long *rra_step_cnt = NULL;
|
|
|
|
int version; /* rrd version */
|
|
rrd_file_t *rrd_file;
|
|
char *arg_copy; /* for processing the argv */
|
|
unsigned long *skip_update; /* RRAs to advance but not write */
|
|
int ret = 0;
|
|
|
|
/* need at least 1 arguments: data. */
|
|
if (argc < 1) {
|
|
ret = -RRD_ERR_ARG10;
|
|
goto err_out;
|
|
}
|
|
|
|
rrd_init(&rrd);
|
|
if ((rrd_file = rrd_open(filename, &rrd, RRD_READWRITE, &ret)) == NULL) {
|
|
goto err_free;
|
|
}
|
|
/* We are now at the beginning of the rra's */
|
|
rra_begin = rrd_file->header_len;
|
|
|
|
version = atoi(rrd.stat_head->version);
|
|
|
|
initialize_time(¤t_time, ¤t_time_usec, version);
|
|
|
|
/* get exclusive lock to whole file.
|
|
* lock gets removed when we close the file.
|
|
*/
|
|
if (rrd_lock(rrd_file) != 0) {
|
|
ret = -RRD_ERR_LOCK;
|
|
goto err_close;
|
|
}
|
|
|
|
if ((ret = allocate_data_structures(&rrd, &updvals,
|
|
&pdp_temp, tmplt, &tmpl_idx, &tmpl_cnt,
|
|
&rra_step_cnt, &skip_update,
|
|
&pdp_new)) < 0) {
|
|
goto err_close;
|
|
}
|
|
|
|
/* loop through the arguments. */
|
|
for (arg_i = 0; arg_i < argc; arg_i++) {
|
|
if ((arg_copy = strdup(argv[arg_i])) == NULL) {
|
|
ret = -RRD_ERR_FAILED_STRDUP;
|
|
break;
|
|
}
|
|
ret = process_arg(arg_copy, &rrd, rrd_file, rra_begin,
|
|
¤t_time, ¤t_time_usec, pdp_temp, pdp_new,
|
|
rra_step_cnt, updvals, tmpl_idx, tmpl_cnt,
|
|
&pcdp_summary, version, skip_update,
|
|
&schedule_smooth);
|
|
if (ret == -RRD_ERR_TIME3) {
|
|
//nothing to do
|
|
//current_time <= last_up
|
|
ret = 0;
|
|
}else if(ret < 0){
|
|
//ret = -RRD_ERR_ARG9;
|
|
free(arg_copy);
|
|
break;
|
|
}
|
|
free(arg_copy);
|
|
}
|
|
|
|
free(rra_step_cnt);
|
|
|
|
/* if we got here and if there is an error and if the file has not been
|
|
* written to, then close things up and return. */
|
|
if (ret) {
|
|
goto err_free_structures;
|
|
}
|
|
#ifndef HAVE_MMAP
|
|
if ((ret = write_changes_to_disk(&rrd, rrd_file, version)) < -1) {
|
|
//ret = -RRD_ERR_WRITE7;
|
|
goto err_free_structures;
|
|
}
|
|
#endif
|
|
|
|
/* calling the smoothing code here guarantees at most one smoothing
|
|
* operation per rrd_update call. Unfortunately, it is possible with bulk
|
|
* updates, or a long-delayed update for smoothing to occur off-schedule.
|
|
* This really isn't critical except during the burn-in cycles. */
|
|
if (schedule_smooth) {
|
|
ret = smooth_all_rras(&rrd, rrd_file, rra_begin);
|
|
}
|
|
|
|
/* rrd_dontneed(rrd_file,&rrd); */
|
|
rrd_free(&rrd);
|
|
rrd_close(rrd_file);
|
|
|
|
free(pdp_new);
|
|
free(tmpl_idx);
|
|
free(pdp_temp);
|
|
free(skip_update);
|
|
free(updvals);
|
|
return 0;
|
|
|
|
err_free_structures:
|
|
free(pdp_new);
|
|
free(tmpl_idx);
|
|
free(pdp_temp);
|
|
free(skip_update);
|
|
free(updvals);
|
|
err_close:
|
|
rrd_close(rrd_file);
|
|
err_free:
|
|
rrd_free(&rrd);
|
|
err_out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Allocate some important arrays used, and initialize the template.
|
|
*
|
|
* When it returns, either all of the structures are allocated
|
|
* or none of them are.
|
|
*
|
|
* Returns 0 on success, < 0 on error.
|
|
*/
|
|
static int allocate_data_structures( rrd_t *rrd, char ***updvals, rrd_value_t **pdp_temp,
|
|
const char *tmplt, long **tmpl_idx, unsigned long *tmpl_cnt, unsigned long **rra_step_cnt,
|
|
unsigned long **skip_update, rrd_value_t **pdp_new) {
|
|
unsigned i, ii;
|
|
int ret = 0;
|
|
if ((*updvals = (char **) malloc(sizeof(char *)
|
|
* (rrd->stat_head->ds_cnt + 1))) == NULL) {
|
|
return -RRD_ERR_MALLOC10;
|
|
}
|
|
if ((*pdp_temp = (rrd_value_t *) malloc(sizeof(rrd_value_t)
|
|
* rrd->stat_head->ds_cnt)) ==
|
|
NULL) {
|
|
ret = -RRD_ERR_MALLOC11;
|
|
goto err_free_updvals;
|
|
}
|
|
if ((*skip_update = (unsigned long *) malloc(sizeof(unsigned long)
|
|
*
|
|
rrd->stat_head->rra_cnt)) ==
|
|
NULL) {
|
|
ret = -RRD_ERR_MALLOC12;
|
|
goto err_free_pdp_temp;
|
|
}
|
|
if ((*tmpl_idx = (long *) malloc(sizeof(unsigned long)
|
|
* (rrd->stat_head->ds_cnt + 1))) == NULL) {
|
|
ret = -RRD_ERR_MALLOC13;
|
|
goto err_free_skip_update;
|
|
}
|
|
if ((*rra_step_cnt = (unsigned long *) malloc(sizeof(unsigned long)
|
|
*
|
|
(rrd->stat_head->
|
|
rra_cnt))) == NULL) {
|
|
ret = -RRD_ERR_MALLOC14;
|
|
goto err_free_tmpl_idx;
|
|
}
|
|
|
|
/* initialize tmplt redirector */
|
|
/* default config example (assume DS 1 is a CDEF DS)
|
|
tmpl_idx[0] -> 0; (time)
|
|
tmpl_idx[1] -> 1; (DS 0)
|
|
tmpl_idx[2] -> 3; (DS 2)
|
|
tmpl_idx[3] -> 4; (DS 3) */
|
|
(*tmpl_idx)[0] = 0; /* time */
|
|
for (i = 1, ii = 1; i <= rrd->stat_head->ds_cnt; i++) {
|
|
if (dst_conv(rrd->ds_def[i - 1].dst) != DST_CDEF)
|
|
(*tmpl_idx)[ii++] = i;
|
|
}
|
|
*tmpl_cnt = ii;
|
|
|
|
if (tmplt != NULL) {
|
|
if (parse_template(rrd, tmplt, tmpl_cnt, *tmpl_idx) < 0) {
|
|
ret = -RRD_ERR_PARSE;
|
|
goto err_free_rra_step_cnt;
|
|
}
|
|
}
|
|
|
|
if ((*pdp_new = (rrd_value_t *) malloc(sizeof(rrd_value_t)
|
|
* rrd->stat_head->ds_cnt)) == NULL) {
|
|
ret = -RRD_ERR_MALLOC15;
|
|
goto err_free_rra_step_cnt;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_free_rra_step_cnt:
|
|
free(*rra_step_cnt);
|
|
err_free_tmpl_idx:
|
|
free(*tmpl_idx);
|
|
err_free_skip_update:
|
|
free(*skip_update);
|
|
err_free_pdp_temp:
|
|
free(*pdp_temp);
|
|
err_free_updvals:
|
|
free(*updvals);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Parses tmplt and puts an ordered list of DS's into tmpl_idx.
|
|
*
|
|
* Returns 0 on success.
|
|
*/
|
|
static int parse_template( rrd_t *rrd, const char *tmplt,
|
|
unsigned long *tmpl_cnt, long *tmpl_idx) {
|
|
char *dsname, *tmplt_copy;
|
|
unsigned int tmpl_len, i;
|
|
int ret = 0;
|
|
|
|
*tmpl_cnt = 1; /* the first entry is the time */
|
|
|
|
/* we should work on a writeable copy here */
|
|
if ((tmplt_copy = strdup(tmplt)) == NULL) {
|
|
ret = -RRD_ERR_FAILED_STRDUP1;
|
|
goto out;
|
|
}
|
|
|
|
dsname = tmplt_copy;
|
|
tmpl_len = strlen(tmplt_copy);
|
|
for (i = 0; i <= tmpl_len; i++) {
|
|
if (tmplt_copy[i] == ':' || tmplt_copy[i] == '\0') {
|
|
tmplt_copy[i] = '\0';
|
|
if (*tmpl_cnt > rrd->stat_head->ds_cnt) {
|
|
ret = -RRD_ERR_MORE_DS;
|
|
goto out_free_tmpl_copy;
|
|
}
|
|
if ((tmpl_idx[(*tmpl_cnt)++] = ds_match(rrd, dsname) + 1) == 0) {
|
|
ret = -RRD_ERR_UNKNOWN_DS_NAME1;
|
|
goto out_free_tmpl_copy;
|
|
}
|
|
/* go to the next entry on the tmplt_copy */
|
|
if (i < tmpl_len)
|
|
dsname = &tmplt_copy[i + 1];
|
|
}
|
|
}
|
|
out_free_tmpl_copy:
|
|
free(tmplt_copy);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Parse an update string, updates the primary data points (PDPs)
|
|
* and consolidated data points (CDPs), and writes changes to the RRAs.
|
|
*
|
|
* Returns 0 on success, < 0 on error.
|
|
*/
|
|
static int process_arg( char *step_start, rrd_t *rrd, rrd_file_t *rrd_file,
|
|
unsigned long rra_begin, time_t *current_time,
|
|
unsigned long *current_time_usec, rrd_value_t *pdp_temp,
|
|
rrd_value_t *pdp_new, unsigned long *rra_step_cnt,
|
|
char **updvals, long *tmpl_idx, unsigned long tmpl_cnt,
|
|
rrd_info_t ** pcdp_summary, int version, unsigned long *skip_update,
|
|
int *schedule_smooth) {
|
|
rrd_value_t *seasonal_coef = NULL, *last_seasonal_coef = NULL;
|
|
|
|
/* a vector of future Holt-Winters seasonal coefs */
|
|
unsigned long elapsed_pdp_st;
|
|
|
|
double interval, pre_int, post_int; /* interval between this and
|
|
* the last run */
|
|
unsigned long proc_pdp_cnt;
|
|
|
|
int periodic = 1; /* A sign, 1 for priodic, 0 for nonperiodic, initialize to periodic */
|
|
|
|
int ret = 0;
|
|
ret = parse_ds(rrd, updvals, tmpl_idx, step_start, tmpl_cnt,
|
|
current_time, current_time_usec, version);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
|
|
interval = (double) (*current_time - rrd->live_head->last_up)
|
|
+ (double) ((long) *current_time_usec -
|
|
(long) rrd->live_head->last_up_usec) / 1e6f;
|
|
|
|
/* process the data sources and update the pdp_prep
|
|
* area accordingly */
|
|
if ((ret = update_pdp_prep(rrd, updvals, pdp_new, interval, &periodic)) < 0) {
|
|
return ret;
|
|
}
|
|
|
|
elapsed_pdp_st = calculate_elapsed_steps(rrd,
|
|
*current_time,
|
|
*current_time_usec, interval,
|
|
&pre_int, &post_int,
|
|
&proc_pdp_cnt);
|
|
|
|
/* has a pdp_st moment occurred since the last run ? */
|
|
if (elapsed_pdp_st == 0) {
|
|
/* no we have not passed a pdp_st moment. therefore update is simple */
|
|
simple_update(rrd, interval, pdp_new);
|
|
} else {
|
|
/* an pdp_st has occurred. */
|
|
if ((ret = process_all_pdp_st(rrd, interval,
|
|
pre_int, post_int,
|
|
elapsed_pdp_st, pdp_new, pdp_temp)) < 0) {
|
|
return ret;
|
|
}
|
|
if ((ret = update_all_cdp_prep(rrd, rra_step_cnt,
|
|
rra_begin, rrd_file,
|
|
elapsed_pdp_st,
|
|
proc_pdp_cnt,
|
|
&last_seasonal_coef,
|
|
&seasonal_coef,
|
|
pdp_temp,
|
|
skip_update, schedule_smooth)) < 0) {
|
|
goto err_free_coefficients;
|
|
}
|
|
if ((ret = update_aberrant_cdps(rrd, rrd_file, rra_begin,
|
|
elapsed_pdp_st, pdp_temp,
|
|
&seasonal_coef)) < 0) {
|
|
goto err_free_coefficients;
|
|
}
|
|
if ((ret = write_to_rras(rrd, rrd_file, rra_step_cnt, rra_begin,
|
|
*current_time, skip_update,
|
|
pcdp_summary, periodic)) < 0) {
|
|
goto err_free_coefficients;
|
|
}
|
|
} /* endif a pdp_st has occurred */
|
|
rrd->live_head->last_up = *current_time;
|
|
rrd->live_head->last_up_usec = *current_time_usec;
|
|
|
|
if (version < 3) {
|
|
*rrd->legacy_last_up = rrd->live_head->last_up;
|
|
}
|
|
free(seasonal_coef);
|
|
free(last_seasonal_coef);
|
|
return 0;
|
|
|
|
err_free_coefficients:
|
|
free(seasonal_coef);
|
|
free(last_seasonal_coef);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Parse a DS string (time + colon-separated values), storing the
|
|
* results in current_time, current_time_usec, and updvals.
|
|
*
|
|
* Returns 0 on success, < 0 on error.
|
|
*/
|
|
static int parse_ds( rrd_t *rrd, char **updvals, long *tmpl_idx, char *input,
|
|
unsigned long tmpl_cnt, time_t *current_time,
|
|
unsigned long *current_time_usec, int version) {
|
|
char *p;
|
|
unsigned long i;
|
|
char timesyntax;
|
|
int ret = 0;
|
|
|
|
updvals[0] = input;
|
|
/* initialize all ds input to unknown except the first one
|
|
which has always got to be set */
|
|
for (i = 1; i <= rrd->stat_head->ds_cnt; i++)
|
|
updvals[i] = "U";
|
|
|
|
/* separate all ds elements; first must be examined separately
|
|
due to alternate time syntax */
|
|
if ((p = strchr(input, '@')) != NULL) {
|
|
timesyntax = '@';
|
|
} else if ((p = strchr(input, ':')) != NULL) {
|
|
timesyntax = ':';
|
|
} else {
|
|
return -RRD_ERR_STR;
|
|
}
|
|
*p = '\0';
|
|
i = 1;
|
|
updvals[tmpl_idx[i++]] = p + 1;
|
|
while (*(++p)) {
|
|
if (*p == ':') {
|
|
*p = '\0';
|
|
if (i < tmpl_cnt) {
|
|
updvals[tmpl_idx[i++]] = p + 1;
|
|
} else {
|
|
return -RRD_ERR_ARG11;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (i != tmpl_cnt) {
|
|
return -RRD_ERR_EXPECTED;
|
|
}
|
|
|
|
return get_time_from_reading(rrd, timesyntax, updvals,
|
|
current_time, current_time_usec,
|
|
version);
|
|
}
|
|
|
|
/*
|
|
* Parse the time in a DS string, store it in current_time and
|
|
* current_time_usec and verify that it's later than the last
|
|
* update for this DS.
|
|
*
|
|
* Returns 0 on success, < 0 on error.
|
|
*/
|
|
static int get_time_from_reading( rrd_t *rrd, char timesyntax,
|
|
char **updvals, time_t *current_time,
|
|
unsigned long *current_time_usec, int version) {
|
|
double tmp;
|
|
char *parsetime_error = NULL;
|
|
char *old_locale;
|
|
rrd_time_value_t ds_tv;
|
|
struct timeval tmp_time; /* used for time conversion */
|
|
|
|
/* get the time from the reading ... handle N */
|
|
if (timesyntax == '@') { /* at-style */
|
|
if ((parsetime_error = rrd_parsetime(updvals[0], &ds_tv))) {
|
|
return -RRD_ERR_TIME1;
|
|
}
|
|
if (ds_tv.type == RELATIVE_TO_END_TIME ||
|
|
ds_tv.type == RELATIVE_TO_START_TIME) {
|
|
return -RRD_ERR_TIME2;
|
|
}
|
|
*current_time = mktime(&ds_tv.tm) +ds_tv.offset;
|
|
*current_time_usec = 0; /* FIXME: how to handle usecs here ? */
|
|
} else if (strcmp(updvals[0], "N") == 0) {
|
|
gettimeofday(&tmp_time, 0);
|
|
normalize_time(&tmp_time);
|
|
*current_time = tmp_time.tv_sec;
|
|
*current_time_usec = tmp_time.tv_usec;
|
|
} else {
|
|
old_locale = setlocale(LC_NUMERIC, "C");
|
|
errno = 0;
|
|
tmp = strtod(updvals[0], 0);
|
|
if (errno > 0) {
|
|
return -RRD_ERR_STRTOD;
|
|
};
|
|
setlocale(LC_NUMERIC, old_locale);
|
|
if (tmp < 0.0){
|
|
gettimeofday(&tmp_time, 0);
|
|
tmp = (double)tmp_time.tv_sec + (double)tmp_time.tv_usec * 1e-6f + tmp;
|
|
}
|
|
|
|
*current_time = floor(tmp);
|
|
*current_time_usec = (long) ((tmp - (double) *current_time) * 1e6f);
|
|
}
|
|
/* dont do any correction for old version RRDs */
|
|
if (version < 3)
|
|
*current_time_usec = 0;
|
|
|
|
#ifdef DISABLE_USEC
|
|
*current_time_usec = 0;
|
|
#endif
|
|
|
|
|
|
if (*current_time < rrd->live_head->last_up ||
|
|
(*current_time == rrd->live_head->last_up &&
|
|
(long) *current_time_usec <= (long) rrd->live_head->last_up_usec)) {
|
|
return -RRD_ERR_TIME3;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update pdp_new by interpreting the updvals according to the DS type
|
|
* (COUNTER, GAUGE, etc.).
|
|
*
|
|
* Returns 0 on success, < 0 on error.
|
|
*/
|
|
static int update_pdp_prep( rrd_t *rrd, char **updvals, rrd_value_t *pdp_new,
|
|
double interval, int *periodic) {
|
|
unsigned long ds_idx;
|
|
int ii;
|
|
char *endptr; /* used in the conversion */
|
|
double rate;
|
|
char *old_locale;
|
|
enum dst_en dst_idx;
|
|
int ret = 0;
|
|
|
|
for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) {
|
|
dst_idx = dst_conv(rrd->ds_def[ds_idx].dst);
|
|
|
|
/* to set sign if periodic or nonperiodic */
|
|
if (rrd->ds_def[ds_idx].par[DS_mrhb_cnt].u_cnt < interval) {
|
|
*periodic = 0;
|
|
}
|
|
|
|
/* NOTE: DST_CDEF should never enter this if block, because
|
|
* updvals[ds_idx+1][0] is initialized to 'U'; unless the caller
|
|
* accidently specified a value for the DST_CDEF. To handle this case,
|
|
* an extra check is required. */
|
|
|
|
if ((updvals[ds_idx + 1][0] != 'U') &&
|
|
(dst_idx != DST_CDEF)) {
|
|
//rrd->ds_def[ds_idx].par[DS_mrhb_cnt].u_cnt >= interval) {
|
|
rate = DNAN;
|
|
|
|
/* pdp_new contains rate * time ... eg the bytes transferred during
|
|
* the interval. Doing it this way saves a lot of math operations
|
|
*/
|
|
switch (dst_idx) {
|
|
case DST_COUNTER:
|
|
case DST_DERIVE:
|
|
/* Check if this is a valid integer. `U' is already handled in
|
|
* another branch. */
|
|
for (ii = 0; updvals[ds_idx + 1][ii] != 0; ii++) {
|
|
if ((ii == 0) && (dst_idx == DST_DERIVE)
|
|
&& (updvals[ds_idx + 1][ii] == '-'))
|
|
continue;
|
|
|
|
if ((updvals[ds_idx + 1][ii] < '0')
|
|
|| (updvals[ds_idx + 1][ii] > '9')) {
|
|
return -RRD_ERR_INT;
|
|
}
|
|
} /* for (ii = 0; updvals[ds_idx + 1][ii] != 0; ii++) */
|
|
|
|
if (rrd->pdp_prep[ds_idx].last_ds[0] != 'U') {
|
|
pdp_new[ds_idx] =
|
|
rrd_diff(updvals[ds_idx + 1],
|
|
rrd->pdp_prep[ds_idx].last_ds);
|
|
if (dst_idx == DST_COUNTER) {
|
|
/* simple overflow catcher. This will fail
|
|
* terribly for non 32 or 64 bit counters
|
|
* ... are there any others in SNMP land?
|
|
*/
|
|
if (pdp_new[ds_idx] < (double) 0.0)
|
|
pdp_new[ds_idx] += (double) 4294967296.0; /* 2^32 */
|
|
if (pdp_new[ds_idx] < (double) 0.0)
|
|
pdp_new[ds_idx] += (double) 18446744069414584320.0; /* 2^64-2^32 */
|
|
}
|
|
rate = pdp_new[ds_idx] / interval;
|
|
} else {
|
|
pdp_new[ds_idx] = DNAN;
|
|
}
|
|
break;
|
|
case DST_ABSOLUTE:
|
|
old_locale = setlocale(LC_NUMERIC, "C");
|
|
errno = 0;
|
|
pdp_new[ds_idx] = strtod(updvals[ds_idx + 1], &endptr);
|
|
if (errno > 0) {
|
|
return -RRD_ERR_STRTOD;
|
|
};
|
|
setlocale(LC_NUMERIC, old_locale);
|
|
if (endptr[0] != '\0') {
|
|
return -RRD_ERR_DATA;
|
|
}
|
|
rate = pdp_new[ds_idx] / interval;
|
|
break;
|
|
case DST_GAUGE:
|
|
old_locale = setlocale(LC_NUMERIC, "C");
|
|
errno = 0;
|
|
pdp_new[ds_idx] =
|
|
strtod(updvals[ds_idx + 1], &endptr) * interval;
|
|
if (errno) {
|
|
return -RRD_ERR_STRTOD;
|
|
};
|
|
setlocale(LC_NUMERIC, old_locale);
|
|
if (endptr[0] != '\0') {
|
|
return -RRD_ERR_DATA;
|
|
}
|
|
rate = pdp_new[ds_idx] / interval;
|
|
break;
|
|
default:
|
|
return -RRD_ERR_UNKNOWN_DS_TYPE;
|
|
}
|
|
/* break out of this for loop if the error string is set */
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
/* make sure pdp_temp is neither too large or too small
|
|
* if any of these occur it becomes unknown ...
|
|
* sorry folks ... */
|
|
if (!isnan(rate) &&
|
|
((!isnan(rrd->ds_def[ds_idx].par[DS_max_val].u_val) &&
|
|
rate > rrd->ds_def[ds_idx].par[DS_max_val].u_val) ||
|
|
(!isnan(rrd->ds_def[ds_idx].par[DS_min_val].u_val) &&
|
|
rate < rrd->ds_def[ds_idx].par[DS_min_val].u_val))) {
|
|
pdp_new[ds_idx] = DNAN;
|
|
}
|
|
} else {
|
|
/* no news is news all the same */
|
|
pdp_new[ds_idx] = DNAN;
|
|
}
|
|
|
|
|
|
/* make a copy of the command line argument for the next run */
|
|
#ifdef DEBUG
|
|
fprintf(stderr, "prep ds[%lu]\t"
|
|
"last_arg '%s'\t"
|
|
"this_arg '%s'\t"
|
|
"pdp_new %10.2f\n",
|
|
ds_idx, rrd->pdp_prep[ds_idx].last_ds, updvals[ds_idx + 1],
|
|
pdp_new[ds_idx]);
|
|
#endif
|
|
strncpy(rrd->pdp_prep[ds_idx].last_ds, updvals[ds_idx + 1],
|
|
LAST_DS_LEN - 1);
|
|
rrd->pdp_prep[ds_idx].last_ds[LAST_DS_LEN - 1] = '\0';
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* How many PDP steps have elapsed since the last update? Returns the answer,
|
|
* and stores the time between the last update and the last PDP in pre_time,
|
|
* and the time between the last PDP and the current time in post_int.
|
|
*/
|
|
static int calculate_elapsed_steps( rrd_t *rrd, unsigned long current_time,
|
|
unsigned long current_time_usec, double interval,
|
|
double *pre_int, double *post_int, unsigned long *proc_pdp_cnt) {
|
|
unsigned long proc_pdp_st; /* which pdp_st was the last to be processed */
|
|
unsigned long occu_pdp_st; /* when was the pdp_st before the last update
|
|
* time */
|
|
unsigned long proc_pdp_age; /* how old was the data in the pdp prep area
|
|
* when it was last updated */
|
|
unsigned long occu_pdp_age; /* how long ago was the last pdp_step time */
|
|
|
|
/* when was the current pdp started */
|
|
proc_pdp_age = rrd->live_head->last_up % rrd->stat_head->pdp_step;
|
|
proc_pdp_st = rrd->live_head->last_up - proc_pdp_age;
|
|
|
|
/* when did the last pdp_st occur */
|
|
occu_pdp_age = current_time % rrd->stat_head->pdp_step;
|
|
occu_pdp_st = current_time - occu_pdp_age;
|
|
|
|
if (occu_pdp_st > proc_pdp_st) {
|
|
/* OK we passed the pdp_st moment */
|
|
*pre_int = (long) occu_pdp_st - rrd->live_head->last_up; /* how much of the input data
|
|
* occurred before the latest
|
|
* pdp_st moment*/
|
|
*pre_int -= ((double) rrd->live_head->last_up_usec) / 1e6f; /* adjust usecs */
|
|
*post_int = occu_pdp_age; /* how much after it */
|
|
*post_int += ((double) current_time_usec) / 1e6f; /* adjust usecs */
|
|
} else {
|
|
*pre_int = interval;
|
|
*post_int = 0;
|
|
}
|
|
|
|
*proc_pdp_cnt = proc_pdp_st / rrd->stat_head->pdp_step;
|
|
|
|
#ifdef DEBUG
|
|
printf("proc_pdp_age %lu\t"
|
|
"proc_pdp_st %lu\t"
|
|
"occu_pfp_age %lu\t"
|
|
"occu_pdp_st %lu\t"
|
|
"int %lf\t"
|
|
"pre_int %lf\t"
|
|
"post_int %lf\n", proc_pdp_age, proc_pdp_st,
|
|
occu_pdp_age, occu_pdp_st, interval, *pre_int, *post_int);
|
|
#endif
|
|
|
|
/* compute the number of elapsed pdp_st moments */
|
|
return (occu_pdp_st - proc_pdp_st) / rrd->stat_head->pdp_step;
|
|
}
|
|
|
|
/*
|
|
* Increment the PDP values by the values in pdp_new, or else initialize them.
|
|
*/
|
|
static void simple_update( rrd_t *rrd, double interval, rrd_value_t *pdp_new) {
|
|
int i;
|
|
|
|
for (i = 0; i < (signed) rrd->stat_head->ds_cnt; i++) {
|
|
if (isnan(pdp_new[i])) {
|
|
/* this is not really accurate if we use subsecond data arrival time
|
|
should have thought of it when going subsecond resolution ...
|
|
sorry next format change we will have it! */
|
|
rrd->pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt +=
|
|
floor(interval);
|
|
} else {
|
|
if (isnan(rrd->pdp_prep[i].scratch[PDP_val].u_val)) {
|
|
rrd->pdp_prep[i].scratch[PDP_val].u_val = pdp_new[i];
|
|
} else {
|
|
rrd->pdp_prep[i].scratch[PDP_val].u_val += pdp_new[i];
|
|
}
|
|
}
|
|
#ifdef DEBUG
|
|
fprintf(stderr,
|
|
"NO PDP ds[%i]\t"
|
|
"value %10.2f\t"
|
|
"unkn_sec %5lu\n",
|
|
i,
|
|
rrd->pdp_prep[i].scratch[PDP_val].u_val,
|
|
rrd->pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Call process_pdp_st for each DS.
|
|
*
|
|
* Returns 0 on success, < 0 on error.
|
|
*/
|
|
static int process_all_pdp_st( rrd_t *rrd, double interval,
|
|
double pre_int, double post_int, unsigned long elapsed_pdp_st,
|
|
rrd_value_t *pdp_new, rrd_value_t *pdp_temp) {
|
|
unsigned long ds_idx;
|
|
int ret = 0;
|
|
|
|
/* in pdp_prep[].scratch[PDP_val].u_val we have collected
|
|
rate*seconds which occurred up to the last run.
|
|
pdp_new[] contains rate*seconds from the latest run.
|
|
pdp_temp[] will contain the rate for cdp */
|
|
|
|
for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) {
|
|
if ((ret = process_pdp_st(rrd, ds_idx, interval, pre_int, post_int,
|
|
elapsed_pdp_st * rrd->stat_head->pdp_step,
|
|
pdp_new, pdp_temp)) < 0 ) {
|
|
return ret;
|
|
}
|
|
#ifdef DEBUG
|
|
fprintf(stderr, "PDP UPD ds[%lu]\t"
|
|
"elapsed_pdp_st %lu\t"
|
|
"pdp_temp %10.2f\t"
|
|
"new_prep %10.2f\t"
|
|
"new_unkn_sec %5lu\n",
|
|
ds_idx,
|
|
elapsed_pdp_st,
|
|
pdp_temp[ds_idx],
|
|
rrd->pdp_prep[ds_idx].scratch[PDP_val].u_val,
|
|
rrd->pdp_prep[ds_idx].scratch[PDP_unkn_sec_cnt].u_cnt);
|
|
#endif
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Process an update that occurs after one of the PDP moments.
|
|
* Increments the PDP value, sets NAN if time greater than the
|
|
* heartbeats have elapsed, processes CDEFs.
|
|
*
|
|
* Returns 0 on success, < 0 on error.
|
|
*/
|
|
static int process_pdp_st( rrd_t *rrd, unsigned long ds_idx,
|
|
double interval, double pre_int, double post_int,
|
|
long diff_pdp_st, /* number of seconds in full steps passed since last update */
|
|
rrd_value_t *pdp_new, rrd_value_t *pdp_temp) {
|
|
int i;
|
|
int ret = 0;
|
|
|
|
/* update pdp_prep to the current pdp_st. */
|
|
double pre_unknown = 0.0;
|
|
unival *scratch = rrd->pdp_prep[ds_idx].scratch;
|
|
unsigned long mrhb = rrd->ds_def[ds_idx].par[DS_mrhb_cnt].u_cnt;
|
|
|
|
rpnstack_t rpnstack; /* used for COMPUTE DS */
|
|
|
|
rpnstack_init(&rpnstack);
|
|
|
|
|
|
if (isnan(pdp_new[ds_idx])) {
|
|
/* a final bit of unknown to be added before calculation
|
|
we use a temporary variable for this so that we
|
|
don't have to turn integer lines before using the value */
|
|
pre_unknown = pre_int;
|
|
} else {
|
|
if (isnan(scratch[PDP_val].u_val)) {
|
|
scratch[PDP_val].u_val = 0;
|
|
}
|
|
scratch[PDP_val].u_val += pdp_new[ds_idx] / interval * pre_int;
|
|
}
|
|
|
|
/* if too much of the pdp_prep is unknown we dump it */
|
|
/* if the interval is larger thatn mrhb we get NAN */
|
|
if ((rrd->stat_head->pdp_step / 2.0 <
|
|
(signed) scratch[PDP_unkn_sec_cnt].u_cnt)) {
|
|
pdp_temp[ds_idx] = DNAN;
|
|
} else {
|
|
pdp_temp[ds_idx] = scratch[PDP_val].u_val /
|
|
((double) (diff_pdp_st - scratch[PDP_unkn_sec_cnt].u_cnt) -
|
|
pre_unknown);
|
|
}
|
|
|
|
/* process CDEF data sources; remember each CDEF DS can
|
|
* only reference other DS with a lower index number */
|
|
if (dst_conv(rrd->ds_def[ds_idx].dst) == DST_CDEF) {
|
|
rpnp_t *rpnp;
|
|
|
|
rpnp =
|
|
rpn_expand((rpn_cdefds_t *) &(rrd->ds_def[ds_idx].par[DS_cdef]));
|
|
if(rpnp == NULL) {
|
|
rpnstack_free(&rpnstack);
|
|
return -RRD_ERR_MALLOC17;
|
|
}
|
|
/* substitute data values for OP_VARIABLE nodes */
|
|
for (i = 0; rpnp[i].op != OP_END; i++) {
|
|
if (rpnp[i].op == OP_VARIABLE) {
|
|
rpnp[i].op = OP_NUMBER;
|
|
rpnp[i].val = pdp_temp[rpnp[i].ptr];
|
|
}
|
|
}
|
|
/* run the rpn calculator */
|
|
if ((ret = rpn_calc(rpnp, &rpnstack, 0, pdp_temp, ds_idx)) < 0) {
|
|
free(rpnp);
|
|
rpnstack_free(&rpnstack);
|
|
return ret;
|
|
}
|
|
free(rpnp);
|
|
}
|
|
|
|
/* make pdp_prep ready for the next run */
|
|
if (isnan(pdp_new[ds_idx])) {
|
|
/* this is not realy accurate if we use subsecond data arival time
|
|
should have thought of it when going subsecond resolution ...
|
|
sorry next format change we will have it! */
|
|
scratch[PDP_unkn_sec_cnt].u_cnt = floor(post_int);
|
|
scratch[PDP_val].u_val = DNAN;
|
|
} else {
|
|
scratch[PDP_unkn_sec_cnt].u_cnt = 0;
|
|
scratch[PDP_val].u_val = pdp_new[ds_idx] / interval * post_int;
|
|
}
|
|
rpnstack_free(&rpnstack);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Iterate over all the RRAs for a given DS and:
|
|
* 1. Decide whether to schedule a smooth later
|
|
* 2. Decide whether to skip updating SEASONAL and DEVSEASONAL
|
|
* 3. Update the CDP
|
|
*
|
|
* Returns 0 on success, < 0 on error
|
|
*/
|
|
static int update_all_cdp_prep( rrd_t *rrd, unsigned long *rra_step_cnt,
|
|
unsigned long rra_begin, rrd_file_t *rrd_file,
|
|
unsigned long elapsed_pdp_st, unsigned long proc_pdp_cnt,
|
|
rrd_value_t **last_seasonal_coef, rrd_value_t **seasonal_coef,
|
|
rrd_value_t *pdp_temp, unsigned long *skip_update,
|
|
int *schedule_smooth) {
|
|
unsigned long rra_idx;
|
|
|
|
/* index into the CDP scratch array */
|
|
enum cf_en current_cf;
|
|
unsigned long rra_start;
|
|
|
|
/* number of rows to be updated in an RRA for a data value. */
|
|
unsigned long start_pdp_offset;
|
|
int ret = 0;
|
|
|
|
rra_start = rra_begin;
|
|
for (rra_idx = 0; rra_idx < rrd->stat_head->rra_cnt; rra_idx++) {
|
|
current_cf = cf_conv(rrd->rra_def[rra_idx].cf_nam);
|
|
if (current_cf < 0){
|
|
ret = -RRD_ERR_UNREC_CONSOLIDATION_FUNC;
|
|
}
|
|
start_pdp_offset =
|
|
rrd->rra_def[rra_idx].pdp_cnt -
|
|
proc_pdp_cnt % rrd->rra_def[rra_idx].pdp_cnt;
|
|
skip_update[rra_idx] = 0;
|
|
if (start_pdp_offset <= elapsed_pdp_st) {
|
|
rra_step_cnt[rra_idx] = (elapsed_pdp_st - start_pdp_offset) /
|
|
rrd->rra_def[rra_idx].pdp_cnt + 1;
|
|
} else {
|
|
rra_step_cnt[rra_idx] = 0;
|
|
}
|
|
|
|
if (current_cf == CF_SEASONAL || current_cf == CF_DEVSEASONAL) {
|
|
/* If this is a bulk update, we need to skip ahead in the seasonal arrays
|
|
* so that they will be correct for the next observed value; note that for
|
|
* the bulk update itself, no update will occur to DEVSEASONAL or SEASONAL;
|
|
* futhermore, HWPREDICT and DEVPREDICT will be set to DNAN. */
|
|
if (rra_step_cnt[rra_idx] > 1) {
|
|
skip_update[rra_idx] = 1;
|
|
if((ret = lookup_seasonal(rrd, rra_idx, rra_start, rrd_file,
|
|
elapsed_pdp_st, last_seasonal_coef)))
|
|
return ret;
|
|
if((ret = lookup_seasonal(rrd, rra_idx, rra_start, rrd_file,
|
|
elapsed_pdp_st + 1, seasonal_coef)))
|
|
return ret;
|
|
}
|
|
/* periodically run a smoother for seasonal effects */
|
|
if (do_schedule_smooth(rrd, rra_idx, elapsed_pdp_st)) {
|
|
#ifdef DEBUG
|
|
fprintf(stderr,
|
|
"schedule_smooth: cur_row %lu, elapsed_pdp_st %lu, smooth idx %lu\n",
|
|
rrd->rra_ptr[rra_idx].cur_row, elapsed_pdp_st,
|
|
rrd->rra_def[rra_idx].par[RRA_seasonal_smooth_idx].
|
|
u_cnt);
|
|
#endif
|
|
*schedule_smooth = 1;
|
|
}
|
|
}
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (update_cdp_prep
|
|
(rrd, elapsed_pdp_st, start_pdp_offset, rra_step_cnt, rra_idx,
|
|
pdp_temp, *last_seasonal_coef, *seasonal_coef,
|
|
current_cf) < 0) {
|
|
return -RRD_ERR_UPDATE_CDP;
|
|
}
|
|
rra_start +=
|
|
rrd->rra_def[rra_idx].row_cnt * rrd->stat_head->ds_cnt *
|
|
sizeof(rrd_value_t);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Are we due for a smooth? Also increments our position in the burn-in cycle.
|
|
*/
|
|
static int do_schedule_smooth( rrd_t *rrd, unsigned long rra_idx,
|
|
unsigned long elapsed_pdp_st) {
|
|
unsigned long cdp_idx = rra_idx * (rrd->stat_head->ds_cnt);
|
|
unsigned long cur_row = rrd->rra_ptr[rra_idx].cur_row;
|
|
unsigned long row_cnt = rrd->rra_def[rra_idx].row_cnt;
|
|
unsigned long seasonal_smooth_idx =
|
|
rrd->rra_def[rra_idx].par[RRA_seasonal_smooth_idx].u_cnt;
|
|
unsigned long *init_seasonal =
|
|
&(rrd->cdp_prep[cdp_idx].scratch[CDP_init_seasonal].u_cnt);
|
|
|
|
/* Need to use first cdp parameter buffer to track burnin (burnin requires
|
|
* a specific smoothing schedule). The CDP_init_seasonal parameter is
|
|
* really an RRA level, not a data source within RRA level parameter, but
|
|
* the rra_def is read only for rrd_update (not flushed to disk). */
|
|
if (*init_seasonal > BURNIN_CYCLES) {
|
|
/* someone has no doubt invented a trick to deal with this wrap around,
|
|
* but at least this code is clear. */
|
|
if (seasonal_smooth_idx > cur_row) {
|
|
/* here elapsed_pdp_st = rra_step_cnt[rra_idx] because of 1-1 mapping
|
|
* between PDP and CDP */
|
|
return (cur_row + elapsed_pdp_st >= seasonal_smooth_idx);
|
|
}
|
|
/* can't rely on negative numbers because we are working with
|
|
* unsigned values */
|
|
return (cur_row + elapsed_pdp_st >= row_cnt
|
|
&& cur_row + elapsed_pdp_st >= row_cnt + seasonal_smooth_idx);
|
|
}
|
|
/* mark off one of the burn-in cycles */
|
|
return (cur_row + elapsed_pdp_st >= row_cnt && ++(*init_seasonal));
|
|
}
|
|
|
|
/*
|
|
* For a given RRA, iterate over the data sources and call the appropriate
|
|
* consolidation function.
|
|
*
|
|
* Returns 0 on success, < 0 on error.
|
|
*/
|
|
static int update_cdp_prep( rrd_t *rrd, unsigned long elapsed_pdp_st,
|
|
unsigned long start_pdp_offset, unsigned long *rra_step_cnt,
|
|
int rra_idx, rrd_value_t *pdp_temp, rrd_value_t *last_seasonal_coef,
|
|
rrd_value_t *seasonal_coef, int current_cf) {
|
|
unsigned long ds_idx, cdp_idx;
|
|
int ret = 0;
|
|
|
|
/* update CDP_PREP areas */
|
|
/* loop over data soures within each RRA */
|
|
for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) {
|
|
|
|
cdp_idx = rra_idx * rrd->stat_head->ds_cnt + ds_idx;
|
|
|
|
if (rrd->rra_def[rra_idx].pdp_cnt > 1) {
|
|
update_cdp(rrd->cdp_prep[cdp_idx].scratch, current_cf,
|
|
pdp_temp[ds_idx], rra_step_cnt[rra_idx],
|
|
elapsed_pdp_st, start_pdp_offset,
|
|
rrd->rra_def[rra_idx].pdp_cnt,
|
|
rrd->rra_def[rra_idx].par[RRA_cdp_xff_val].u_val,
|
|
rra_idx, ds_idx);
|
|
} else {
|
|
/* Nothing to consolidate if there's one PDP per CDP. However, if
|
|
* we've missed some PDPs, let's update null counters etc. */
|
|
if (elapsed_pdp_st > 2) {
|
|
ret = reset_cdp(rrd, elapsed_pdp_st, pdp_temp, last_seasonal_coef,
|
|
seasonal_coef, rra_idx, ds_idx, cdp_idx,
|
|
(enum cf_en)current_cf);
|
|
}
|
|
}
|
|
|
|
if (ret)
|
|
return ret;
|
|
} /* endif data sources loop */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Given the new reading (pdp_temp_val), update or initialize the CDP value,
|
|
* primary value, secondary value, and # of unknowns.
|
|
*/
|
|
static void update_cdp( unival *scratch, int current_cf,
|
|
rrd_value_t pdp_temp_val, unsigned long rra_step_cnt,
|
|
unsigned long elapsed_pdp_st, unsigned long start_pdp_offset,
|
|
unsigned long pdp_cnt, rrd_value_t xff, int i, int ii) {
|
|
/* shorthand variables */
|
|
rrd_value_t *cdp_val = &scratch[CDP_val].u_val;
|
|
rrd_value_t *cdp_primary_val = &scratch[CDP_primary_val].u_val;
|
|
rrd_value_t *cdp_secondary_val = &scratch[CDP_secondary_val].u_val;
|
|
unsigned long *cdp_unkn_pdp_cnt = &scratch[CDP_unkn_pdp_cnt].u_cnt;
|
|
|
|
if (rra_step_cnt) {
|
|
/* If we are in this block, as least 1 CDP value will be written to
|
|
* disk, this is the CDP_primary_val entry. If more than 1 value needs
|
|
* to be written, then the "fill in" value is the CDP_secondary_val
|
|
* entry. */
|
|
if (isnan(pdp_temp_val)) {
|
|
*cdp_unkn_pdp_cnt += start_pdp_offset;
|
|
*cdp_secondary_val = DNAN;
|
|
} else {
|
|
/* CDP_secondary value is the RRA "fill in" value for intermediary
|
|
* CDP data entries. No matter the CF, the value is the same because
|
|
* the average, max, min, and last of a list of identical values is
|
|
* the same, namely, the value itself. */
|
|
*cdp_secondary_val = pdp_temp_val;
|
|
}
|
|
|
|
if (*cdp_unkn_pdp_cnt > pdp_cnt * xff) {
|
|
*cdp_primary_val = DNAN;
|
|
} else {
|
|
initialize_cdp_val(scratch, current_cf, pdp_temp_val,
|
|
start_pdp_offset, pdp_cnt);
|
|
}
|
|
*cdp_val =
|
|
initialize_carry_over(pdp_temp_val,current_cf,
|
|
elapsed_pdp_st,
|
|
start_pdp_offset, pdp_cnt);
|
|
/* endif meets xff value requirement for a valid value */
|
|
/* initialize carry over CDP_unkn_pdp_cnt, this must after CDP_primary_val
|
|
* is set because CDP_unkn_pdp_cnt is required to compute that value. */
|
|
if (isnan(pdp_temp_val))
|
|
*cdp_unkn_pdp_cnt = (elapsed_pdp_st - start_pdp_offset) % pdp_cnt;
|
|
else
|
|
*cdp_unkn_pdp_cnt = 0;
|
|
} else { /* rra_step_cnt[i] == 0 */
|
|
|
|
#ifdef DEBUG
|
|
if (isnan(*cdp_val)) {
|
|
fprintf(stderr, "schedule CDP_val update, RRA %d DS %d, DNAN\n",
|
|
i, ii);
|
|
} else {
|
|
fprintf(stderr, "schedule CDP_val update, RRA %d DS %d, %10.2f\n",
|
|
i, ii, *cdp_val);
|
|
}
|
|
#endif
|
|
if (isnan(pdp_temp_val)) {
|
|
*cdp_unkn_pdp_cnt += elapsed_pdp_st;
|
|
} else {
|
|
*cdp_val =
|
|
calculate_cdp_val(*cdp_val, pdp_temp_val, elapsed_pdp_st,
|
|
current_cf, i, ii);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the CDP_primary_val and CDP_val to the appropriate initial value based
|
|
* on the type of consolidation function.
|
|
*/
|
|
static void initialize_cdp_val( unival *scratch, int current_cf,
|
|
rrd_value_t pdp_temp_val, unsigned long start_pdp_offset,
|
|
unsigned long pdp_cnt) {
|
|
rrd_value_t cum_val, cur_val;
|
|
|
|
switch (current_cf) {
|
|
case CF_AVERAGE:
|
|
if(isnan(scratch[CDP_val].u_val) && isnan(pdp_temp_val)){
|
|
scratch[CDP_primary_val].u_val = DINF;
|
|
}else{
|
|
cum_val = IFDNAN(scratch[CDP_val].u_val, 0.0);
|
|
cur_val = IFDNAN(pdp_temp_val, 0.0);
|
|
scratch[CDP_primary_val].u_val =
|
|
(cum_val + cur_val * start_pdp_offset) /
|
|
(pdp_cnt - scratch[CDP_unkn_pdp_cnt].u_cnt);
|
|
}
|
|
break;
|
|
case CF_MAXIMUM:
|
|
cum_val = IFDNAN(scratch[CDP_val].u_val, -DINF);
|
|
cur_val = IFDNAN(pdp_temp_val, -DINF);
|
|
|
|
#if 0
|
|
#ifdef DEBUG
|
|
if (isnan(scratch[CDP_val].u_val) && isnan(pdp_temp)) {
|
|
fprintf(stderr,
|
|
"RRA %lu, DS %lu, both CDP_val and pdp_temp are DNAN!",
|
|
i, ii);
|
|
exit(-1);
|
|
}
|
|
#endif
|
|
#endif
|
|
if (cur_val > cum_val)
|
|
scratch[CDP_primary_val].u_val = cur_val;
|
|
else
|
|
scratch[CDP_primary_val].u_val = cum_val;
|
|
break;
|
|
case CF_MINIMUM:
|
|
cum_val = IFDNAN(scratch[CDP_val].u_val, DINF);
|
|
cur_val = IFDNAN(pdp_temp_val, DINF);
|
|
#if 0
|
|
#ifdef DEBUG
|
|
if (isnan(scratch[CDP_val].u_val) && isnan(pdp_temp)) {
|
|
fprintf(stderr,
|
|
"RRA %lu, DS %lu, both CDP_val and pdp_temp are DNAN!", i,
|
|
ii);
|
|
exit(-1);
|
|
}
|
|
#endif
|
|
#endif
|
|
if (cur_val < cum_val)
|
|
scratch[CDP_primary_val].u_val = cur_val;
|
|
else
|
|
scratch[CDP_primary_val].u_val = cum_val;
|
|
break;
|
|
case CF_LAST:
|
|
default:
|
|
scratch[CDP_primary_val].u_val = pdp_temp_val;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update the consolidation function for Holt-Winters functions as
|
|
* well as other functions that don't actually consolidate multiple
|
|
* PDPs.
|
|
*/
|
|
static int reset_cdp( rrd_t *rrd, unsigned long elapsed_pdp_st,
|
|
rrd_value_t *pdp_temp, rrd_value_t *last_seasonal_coef,
|
|
rrd_value_t *seasonal_coef, int rra_idx, int ds_idx,
|
|
int cdp_idx, enum cf_en current_cf) {
|
|
unival *scratch = rrd->cdp_prep[cdp_idx].scratch;
|
|
int ret = 0;
|
|
|
|
switch (current_cf) {
|
|
case CF_AVERAGE:
|
|
default:
|
|
scratch[CDP_primary_val].u_val = pdp_temp[ds_idx];
|
|
scratch[CDP_secondary_val].u_val = pdp_temp[ds_idx];
|
|
break;
|
|
case CF_SEASONAL:
|
|
case CF_DEVSEASONAL:
|
|
/* need to update cached seasonal values, so they are consistent
|
|
* with the bulk update */
|
|
/* WARNING: code relies on the fact that CDP_hw_last_seasonal and
|
|
* CDP_last_deviation are the same. */
|
|
scratch[CDP_hw_last_seasonal].u_val = last_seasonal_coef[ds_idx];
|
|
scratch[CDP_hw_seasonal].u_val = seasonal_coef[ds_idx];
|
|
break;
|
|
case CF_HWPREDICT:
|
|
case CF_MHWPREDICT:
|
|
/* need to update the null_count and last_null_count.
|
|
* even do this for non-DNAN pdp_temp because the
|
|
* algorithm is not learning from batch updates. */
|
|
scratch[CDP_null_count].u_cnt += elapsed_pdp_st;
|
|
scratch[CDP_last_null_count].u_cnt += elapsed_pdp_st - 1;
|
|
/* fall through */
|
|
case CF_DEVPREDICT:
|
|
scratch[CDP_primary_val].u_val = DNAN;
|
|
scratch[CDP_secondary_val].u_val = DNAN;
|
|
break;
|
|
case CF_FAILURES:
|
|
/* do not count missed bulk values as failures */
|
|
scratch[CDP_primary_val].u_val = 0;
|
|
scratch[CDP_secondary_val].u_val = 0;
|
|
/* need to reset violations buffer.
|
|
* could do this more carefully, but for now, just
|
|
* assume a bulk update wipes away all violations. */
|
|
ret = erase_violations(rrd, cdp_idx, rra_idx);
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static rrd_value_t initialize_carry_over( rrd_value_t pdp_temp_val,
|
|
int current_cf, unsigned long elapsed_pdp_st,
|
|
unsigned long start_pdp_offset, unsigned long pdp_cnt) {
|
|
unsigned long pdp_into_cdp_cnt = ((elapsed_pdp_st - start_pdp_offset) % pdp_cnt);
|
|
if ( pdp_into_cdp_cnt == 0 || isnan(pdp_temp_val)){
|
|
switch (current_cf) {
|
|
case CF_MAXIMUM:
|
|
return -DINF;
|
|
case CF_MINIMUM:
|
|
return DINF;
|
|
case CF_AVERAGE:
|
|
return 0;
|
|
default:
|
|
return DNAN;
|
|
}
|
|
}
|
|
else {
|
|
switch (current_cf) {
|
|
case CF_AVERAGE:
|
|
return pdp_temp_val * pdp_into_cdp_cnt ;
|
|
default:
|
|
return pdp_temp_val;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update or initialize a CDP value based on the consolidation
|
|
* function.
|
|
*
|
|
* Returns the new value.
|
|
*/
|
|
static rrd_value_t calculate_cdp_val( rrd_value_t cdp_val,
|
|
rrd_value_t pdp_temp_val, unsigned long elapsed_pdp_st, int current_cf,
|
|
#ifdef DEBUG
|
|
int i, int ii
|
|
#else
|
|
int UNUSED(i), int UNUSED(ii)
|
|
#endif
|
|
)
|
|
{
|
|
if (isnan(cdp_val)) {
|
|
if (current_cf == CF_AVERAGE) {
|
|
pdp_temp_val *= elapsed_pdp_st;
|
|
}
|
|
#ifdef DEBUG
|
|
fprintf(stderr, "Initialize CDP_val for RRA %d DS %d: %10.2f\n",
|
|
i, ii, pdp_temp_val);
|
|
#endif
|
|
return pdp_temp_val;
|
|
}
|
|
if (current_cf == CF_AVERAGE)
|
|
return cdp_val + pdp_temp_val * elapsed_pdp_st;
|
|
if (current_cf == CF_MINIMUM)
|
|
return (pdp_temp_val < cdp_val) ? pdp_temp_val : cdp_val;
|
|
if (current_cf == CF_MAXIMUM)
|
|
return (pdp_temp_val > cdp_val) ? pdp_temp_val : cdp_val;
|
|
|
|
return pdp_temp_val;
|
|
}
|
|
|
|
/*
|
|
* For each RRA, update the seasonal values and then call update_aberrant_CF
|
|
* for each data source.
|
|
*
|
|
* Return 0 on success, < 0 on error.
|
|
*/
|
|
static int update_aberrant_cdps( rrd_t *rrd, rrd_file_t *rrd_file,
|
|
unsigned long rra_begin, unsigned long elapsed_pdp_st,
|
|
rrd_value_t *pdp_temp, rrd_value_t **seasonal_coef) {
|
|
unsigned long rra_idx, ds_idx, j;
|
|
|
|
/* number of PDP steps since the last update that
|
|
* are assigned to the first CDP to be generated
|
|
* since the last update. */
|
|
unsigned short scratch_idx;
|
|
unsigned long rra_start;
|
|
enum cf_en current_cf;
|
|
int r, ret = 0;
|
|
|
|
/* this loop is only entered if elapsed_pdp_st < 3 */
|
|
for (j = elapsed_pdp_st, scratch_idx = CDP_primary_val;
|
|
j > 0 && j < 3; j--, scratch_idx = CDP_secondary_val) {
|
|
rra_start = rra_begin;
|
|
for (rra_idx = 0; rra_idx < rrd->stat_head->rra_cnt; rra_idx++) {
|
|
if (rrd->rra_def[rra_idx].pdp_cnt == 1) {
|
|
current_cf = cf_conv(rrd->rra_def[rra_idx].cf_nam);
|
|
if (current_cf == CF_SEASONAL || current_cf == CF_DEVSEASONAL) {
|
|
if (scratch_idx == CDP_primary_val) {
|
|
r = lookup_seasonal(rrd, rra_idx, rra_start, rrd_file,
|
|
elapsed_pdp_st + 1, seasonal_coef);
|
|
} else {
|
|
r = lookup_seasonal(rrd, rra_idx, rra_start, rrd_file,
|
|
elapsed_pdp_st + 2, seasonal_coef);
|
|
}
|
|
}else if(current_cf < 0){
|
|
return -RRD_ERR_UNREC_CONSOLIDATION_FUNC;
|
|
}
|
|
/* loop over data soures within each RRA */
|
|
for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) {
|
|
r = update_aberrant_CF(rrd, pdp_temp[ds_idx], current_cf,
|
|
rra_idx * (rrd->stat_head->ds_cnt) +
|
|
ds_idx, rra_idx, ds_idx, scratch_idx,
|
|
*seasonal_coef);
|
|
}
|
|
}
|
|
rra_start += rrd->rra_def[rra_idx].row_cnt
|
|
* rrd->stat_head->ds_cnt * sizeof(rrd_value_t);
|
|
if (r)
|
|
ret = r;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Move sequentially through the file, writing one RRA at a time. Note this
|
|
* architecture divorces the computation of CDP with flushing updated RRA
|
|
* entries to disk.
|
|
*
|
|
* Return 0 on success, < 0 on error.
|
|
*/
|
|
static int write_to_rras( rrd_t *rrd, rrd_file_t *rrd_file,
|
|
unsigned long *rra_step_cnt, unsigned long rra_begin,
|
|
time_t current_time, unsigned long *skip_update,
|
|
rrd_info_t ** pcdp_summary, int periodic) {
|
|
unsigned long rra_idx;
|
|
unsigned long rra_start;
|
|
time_t rra_time = 0; /* time of update for a RRA */
|
|
|
|
unsigned long ds_cnt = rrd->stat_head->ds_cnt;
|
|
int ret = 0;
|
|
|
|
/* Ready to write to disk */
|
|
rra_start = rra_begin;
|
|
|
|
for (rra_idx = 0; rra_idx < rrd->stat_head->rra_cnt; rra_idx++) {
|
|
rra_def_t *rra_def = &rrd->rra_def[rra_idx];
|
|
rra_ptr_t *rra_ptr = &rrd->rra_ptr[rra_idx];
|
|
|
|
/* for cdp_prep */
|
|
unsigned short scratch_idx;
|
|
unsigned long step_subtract;
|
|
|
|
for (scratch_idx = CDP_primary_val,
|
|
step_subtract = 1;
|
|
rra_step_cnt[rra_idx] > 0;
|
|
rra_step_cnt[rra_idx]--,
|
|
scratch_idx = CDP_secondary_val,
|
|
step_subtract = 2) {
|
|
|
|
size_t rra_pos_new;
|
|
#ifdef DEBUG
|
|
fprintf(stderr, " -- RRA Preseek %ld\n", rrd_file->pos);
|
|
#endif
|
|
/* increment, with wrap-around */
|
|
if (++rra_ptr->cur_row >= rra_def->row_cnt)
|
|
rra_ptr->cur_row = 0;
|
|
|
|
/* we know what our position should be */
|
|
rra_pos_new = rra_start
|
|
+ ds_cnt * rra_ptr->cur_row * sizeof(rrd_value_t);
|
|
|
|
/* re-seek if the position is wrong or we wrapped around */
|
|
if ((size_t)rra_pos_new != rrd_file->pos) {
|
|
if (rrd_seek(rrd_file, rra_pos_new, SEEK_SET) != 0) {
|
|
return -RRD_ERR_SEEK5;
|
|
}
|
|
}
|
|
#ifdef DEBUG
|
|
fprintf(stderr, " -- RRA Postseek %ld\n", rrd_file->pos);
|
|
#endif
|
|
|
|
if (skip_update[rra_idx])
|
|
continue;
|
|
|
|
if (*pcdp_summary != NULL) {
|
|
unsigned long step_time = rra_def->pdp_cnt * rrd->stat_head->pdp_step;
|
|
|
|
rra_time = (current_time - current_time % step_time)
|
|
- ((rra_step_cnt[rra_idx] - step_subtract) * step_time);
|
|
}
|
|
|
|
if (periodic == 1) {
|
|
if ((ret = write_RRA_row(rrd_file, rrd, rra_idx, scratch_idx,
|
|
pcdp_summary, rra_time, 1)) < 0)
|
|
return ret;
|
|
} else {
|
|
if (rra_step_cnt[rra_idx] == 1) {
|
|
if ((ret = write_RRA_row(rrd_file, rrd, rra_idx, scratch_idx,
|
|
pcdp_summary, rra_time, 1)) < 0)
|
|
return ret;
|
|
} else {
|
|
if ((ret = write_RRA_row(rrd_file, rrd, rra_idx, scratch_idx,
|
|
pcdp_summary, rra_time, 0)) < 0)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
|
|
rrd_notify_row(rrd_file, rra_idx, rra_pos_new, rra_time);
|
|
}
|
|
|
|
rra_start += rra_def->row_cnt * ds_cnt * sizeof(rrd_value_t);
|
|
} /* RRA LOOP */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write out one row of values (one value per DS) to the archive.
|
|
*
|
|
* Returns 0 on success, < 0 on error.
|
|
*/
|
|
static int write_RRA_row( rrd_file_t *rrd_file, rrd_t *rrd,
|
|
unsigned long rra_idx, unsigned short CDP_scratch_idx,
|
|
rrd_info_t ** pcdp_summary, time_t rra_time, int flag) {
|
|
unsigned long ds_idx, cdp_idx;
|
|
rrd_infoval_t iv;
|
|
|
|
for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) {
|
|
/* compute the cdp index */
|
|
cdp_idx = rra_idx * (rrd->stat_head->ds_cnt) + ds_idx;
|
|
#ifdef DEBUG
|
|
fprintf(stderr, " -- RRA WRITE VALUE %e, at %ld CF:%s\n",
|
|
rrd->cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val,
|
|
rrd_file->pos, rrd->rra_def[rra_idx].cf_nam);
|
|
#endif
|
|
if (*pcdp_summary != NULL) {
|
|
iv.u_val = rrd->cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val;
|
|
/* append info to the return hash */
|
|
*pcdp_summary = rrd_info_push(*pcdp_summary,
|
|
sprintf_alloc
|
|
("[%lli]RRA[%s][%lu]DS[%s]",
|
|
(long long)rra_time,
|
|
rrd->rra_def[rra_idx].cf_nam,
|
|
rrd->rra_def[rra_idx].pdp_cnt,
|
|
rrd->ds_def[ds_idx].ds_nam),
|
|
RD_I_VAL, iv);
|
|
}
|
|
errno = 0;
|
|
|
|
//if flag == 0 , write nan
|
|
//if flag == 1 , write normally
|
|
// rrd_set_to_DNAN
|
|
if (flag == 0) {
|
|
rrd_value_t tmp;
|
|
tmp = rrd_set_to_DNAN();
|
|
if (rrd_write(rrd_file, &tmp, sizeof(rrd_value_t)) != sizeof(rrd_value_t)) {
|
|
return -RRD_ERR_WRITE8;
|
|
}
|
|
} else {
|
|
if (rrd_write(rrd_file,
|
|
&(rrd->cdp_prep[cdp_idx].scratch[CDP_scratch_idx].
|
|
u_val), sizeof(rrd_value_t)) != sizeof(rrd_value_t)) {
|
|
return -RRD_ERR_WRITE8;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Call apply_smoother for all DEVSEASONAL and SEASONAL RRAs.
|
|
*
|
|
* Returns 0 on success, < 0 otherwise
|
|
*/
|
|
static int smooth_all_rras( rrd_t *rrd, rrd_file_t *rrd_file,
|
|
unsigned long rra_begin) {
|
|
unsigned long rra_start = rra_begin;
|
|
unsigned long rra_idx;
|
|
int ret;
|
|
|
|
for (rra_idx = 0; rra_idx < rrd->stat_head->rra_cnt; ++rra_idx) {
|
|
if (cf_conv(rrd->rra_def[rra_idx].cf_nam) == CF_DEVSEASONAL ||
|
|
cf_conv(rrd->rra_def[rra_idx].cf_nam) == CF_SEASONAL) {
|
|
#ifdef DEBUG
|
|
fprintf(stderr, "Running smoother for rra %lu\n", rra_idx);
|
|
#endif
|
|
ret = apply_smoother(rrd, rra_idx, rra_start, rrd_file);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
rra_start += rrd->rra_def[rra_idx].row_cnt
|
|
* rrd->stat_head->ds_cnt * sizeof(rrd_value_t);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifndef HAVE_MMAP
|
|
/*
|
|
* Flush changes to disk (unless we're using mmap)
|
|
*
|
|
* Returns 0 on success, < 0 otherwise
|
|
*/
|
|
static int write_changes_to_disk( rrd_t *rrd, rrd_file_t *rrd_file,
|
|
int version) {
|
|
/* we just need to write back the live header portion now */
|
|
if (rrd_seek(rrd_file, (sizeof(stat_head_t)
|
|
+ sizeof(ds_def_t) * rrd->stat_head->ds_cnt
|
|
+ sizeof(rra_def_t) * rrd->stat_head->rra_cnt),
|
|
SEEK_SET) != 0) {
|
|
return -RRD_ERR_SEEK6;
|
|
}
|
|
if (version >= 3) {
|
|
if (rrd_write(rrd_file, rrd->live_head,
|
|
sizeof(live_head_t) * 1) != sizeof(live_head_t) * 1) {
|
|
return -RRD_ERR_WRITE9;
|
|
}
|
|
} else {
|
|
if (rrd_write(rrd_file, rrd->legacy_last_up,
|
|
sizeof(time_t) * 1) != sizeof(time_t) * 1) {
|
|
return -RRD_ERR_WRITE9;
|
|
}
|
|
}
|
|
|
|
|
|
if (rrd_write(rrd_file, rrd->pdp_prep,
|
|
sizeof(pdp_prep_t) * rrd->stat_head->ds_cnt)
|
|
!= (ssize_t) (sizeof(pdp_prep_t) * rrd->stat_head->ds_cnt)) {
|
|
return -RRD_ERR_WRITE10;
|
|
}
|
|
|
|
if (rrd_write(rrd_file, rrd->cdp_prep,
|
|
sizeof(cdp_prep_t) * rrd->stat_head->rra_cnt *
|
|
rrd->stat_head->ds_cnt)
|
|
!= (ssize_t) (sizeof(cdp_prep_t) * rrd->stat_head->rra_cnt *
|
|
rrd->stat_head->ds_cnt)) {
|
|
|
|
return -RRD_ERR_WRITE11;
|
|
}
|
|
|
|
if (rrd_write(rrd_file, rrd->rra_ptr,
|
|
sizeof(rra_ptr_t) * rrd->stat_head->rra_cnt)
|
|
!= (ssize_t) (sizeof(rra_ptr_t) * rrd->stat_head->rra_cnt)) {
|
|
return -RRD_ERR_WRITE12;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|