nightingale1/vendor/github.com/open-falcon/rrdlite/rrd_update.c

1735 lines
51 KiB
C

/*****************************************************************************
* RRDtool 1.4.9 Copyright by Tobi Oetiker, 1997-2014
* Copyright by Florian Forster, 2008
*****************************************************************************
* rrd_update.c RRD Update Function
*****************************************************************************
* $Id$
*****************************************************************************/
#include "rrd_tool.h"
#define DISABLE_USEC
#if defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__)
#include <sys/locking.h>
#include <sys/stat.h>
#include <io.h>
#endif
#include <locale.h>
#include "rrd_hw.h"
#include "rrd_rpncalc.h"
#include "rrd_is_thread_safe.h"
#include "unused.h"
#ifndef RRD_LITE
#include "rrd_client.h"
#endif
#if defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__)
/*
* WIN32 does not have gettimeofday and struct timeval. This is a quick and dirty
* replacement.
*/
#include <sys/timeb.h>
#ifndef __MINGW32__
struct timeval {
time_t tv_sec; /* seconds */
long tv_usec; /* microseconds */
};
#endif
struct __timezone {
int tz_minuteswest; /* minutes W of Greenwich */
int tz_dsttime; /* type of dst correction */
};
static int gettimeofday( struct timeval *t, struct __timezone *tz) {
struct _timeb current_time;
_ftime(&current_time);
t->tv_sec = current_time.time;
t->tv_usec = current_time.millitm * 1000;
return 0;
}
#endif
/* FUNCTION PROTOTYPES */
int rrd_update_r( const char *filename, const char *tmplt,
int argc, const char **argv);
int _rrd_update( const char *filename, const char *tmplt,
int argc, const char **argv, rrd_info_t *);
static int allocate_data_structures( rrd_t *rrd, char ***updvals,
rrd_value_t **pdp_temp, const char *tmplt, long **tmpl_idx,
unsigned long *tmpl_cnt, unsigned long **rra_step_cnt,
unsigned long **skip_update, rrd_value_t **pdp_new);
static int parse_template( rrd_t *rrd, const char *tmplt,
unsigned long *tmpl_cnt, long *tmpl_idx);
static int process_arg( char *step_start, rrd_t *rrd, rrd_file_t *rrd_file,
unsigned long rra_begin, time_t *current_time,
unsigned long *current_time_usec, rrd_value_t *pdp_temp,
rrd_value_t *pdp_new, unsigned long *rra_step_cnt,
char **updvals, long *tmpl_idx, unsigned long tmpl_cnt,
rrd_info_t ** pcdp_summary, int version,
unsigned long *skip_update, int *schedule_smooth);
static int parse_ds( rrd_t *rrd, char **updvals, long *tmpl_idx,
char *input, unsigned long tmpl_cnt, time_t *current_time,
unsigned long *current_time_usec, int version);
static int get_time_from_reading( rrd_t *rrd, char timesyntax,
char **updvals, time_t *current_time,
unsigned long *current_time_usec, int version);
static int update_pdp_prep( rrd_t *rrd, char **updvals,
rrd_value_t *pdp_new, double interval, int *periodic);
static int calculate_elapsed_steps( rrd_t *rrd, unsigned long current_time,
unsigned long current_time_usec, double interval,
double *pre_int, double *post_int, unsigned long *proc_pdp_cnt);
static void simple_update( rrd_t *rrd, double interval, rrd_value_t *pdp_new);
static int process_all_pdp_st( rrd_t *rrd, double interval, double pre_int,
double post_int, unsigned long elapsed_pdp_st, rrd_value_t *pdp_new,
rrd_value_t *pdp_temp);
static int process_pdp_st( rrd_t *rrd, unsigned long ds_idx, double interval,
double pre_int, double post_int, long diff_pdp_st, rrd_value_t *pdp_new,
rrd_value_t *pdp_temp);
static int update_all_cdp_prep( rrd_t *rrd, unsigned long *rra_step_cnt,
unsigned long rra_begin, rrd_file_t *rrd_file,
unsigned long elapsed_pdp_st, unsigned long proc_pdp_cnt,
rrd_value_t **last_seasonal_coef, rrd_value_t **seasonal_coef,
rrd_value_t *pdp_temp, unsigned long *skip_update,
int *schedule_smooth);
static int do_schedule_smooth( rrd_t *rrd, unsigned long rra_idx,
unsigned long elapsed_pdp_st);
static int update_cdp_prep( rrd_t *rrd, unsigned long elapsed_pdp_st,
unsigned long start_pdp_offset, unsigned long *rra_step_cnt, int rra_idx,
rrd_value_t *pdp_temp, rrd_value_t *last_seasonal_coef,
rrd_value_t *seasonal_coef, int current_cf);
static void update_cdp( unival *scratch, int current_cf,
rrd_value_t pdp_temp_val, unsigned long rra_step_cnt,
unsigned long elapsed_pdp_st, unsigned long start_pdp_offset,
unsigned long pdp_cnt, rrd_value_t xff, int i, int ii);
static void initialize_cdp_val( unival *scratch, int current_cf,
rrd_value_t pdp_temp_val, unsigned long start_pdp_offset,
unsigned long pdp_cnt);
static int reset_cdp( rrd_t *rrd, unsigned long elapsed_pdp_st,
rrd_value_t *pdp_temp, rrd_value_t *last_seasonal_coef,
rrd_value_t *seasonal_coef, int rra_idx,
int ds_idx, int cdp_idx, enum cf_en current_cf);
static rrd_value_t initialize_carry_over( rrd_value_t pdp_temp_val,
int current_cf, unsigned long elapsed_pdp_st,
unsigned long start_pdp_offset, unsigned long pdp_cnt);
static rrd_value_t calculate_cdp_val( rrd_value_t cdp_val,
rrd_value_t pdp_temp_val, unsigned long elapsed_pdp_st,
int current_cf, int i, int ii);
static int update_aberrant_cdps(
rrd_t *rrd,
rrd_file_t *rrd_file,
unsigned long rra_begin,
unsigned long elapsed_pdp_st,
rrd_value_t *pdp_temp,
rrd_value_t **seasonal_coef);
static int write_to_rras(
rrd_t *rrd,
rrd_file_t *rrd_file,
unsigned long *rra_step_cnt,
unsigned long rra_begin,
time_t current_time,
unsigned long *skip_update,
rrd_info_t ** pcdp_summary,
int periodic);
static int write_RRA_row(
rrd_file_t *rrd_file,
rrd_t *rrd,
unsigned long rra_idx,
unsigned short CDP_scratch_idx,
rrd_info_t ** pcdp_summary,
time_t rra_time,
int flag);
static int smooth_all_rras(
rrd_t *rrd,
rrd_file_t *rrd_file,
unsigned long rra_begin);
#ifndef HAVE_MMAP
static int write_changes_to_disk(
rrd_t *rrd,
rrd_file_t *rrd_file,
int version);
#endif
/*
* normalize time as returned by gettimeofday. usec part must
* be always >= 0
*/
static void normalize_time( struct timeval *t) {
if (t->tv_usec < 0) {
t->tv_sec--;
t->tv_usec += 1e6L;
}
}
/*
* Sets current_time and current_time_usec based on the current time.
* current_time_usec is set to 0 if the version number is 1 or 2.
*/
static void initialize_time( time_t *current_time, unsigned long *current_time_usec,
int version) {
struct timeval tmp_time; /* used for time conversion */
gettimeofday(&tmp_time, 0);
normalize_time(&tmp_time);
*current_time = tmp_time.tv_sec;
if (version >= 3) {
*current_time_usec = tmp_time.tv_usec;
} else {
*current_time_usec = 0;
}
#ifdef DISABLE_USEC
*current_time_usec = 0;
#endif
}
#define IFDNAN(X,Y) (isnan(X) ? (Y) : (X));
int rrd_update_r( const char *filename, const char *tmplt, int argc,
const char **argv) {
return _rrd_update(filename, tmplt, argc, argv, NULL);
}
int _rrd_update( const char *filename, const char *tmplt,
int argc, const char **argv, rrd_info_t * pcdp_summary) {
int arg_i = 2;
unsigned long rra_begin; /* byte pointer to the rra
* area in the rrd file. this
* pointer never changes value */
rrd_value_t *pdp_new; /* prepare the incoming data to be added
* to the existing entry */
rrd_value_t *pdp_temp; /* prepare the pdp values to be added
* to the cdp values */
long *tmpl_idx; /* index representing the settings
* transported by the tmplt index */
unsigned long tmpl_cnt = 2; /* time and data */
rrd_t rrd;
time_t current_time = 0;
unsigned long current_time_usec = 0; /* microseconds part of current time */
char **updvals;
int schedule_smooth = 0;
/* number of elapsed PDP steps since last update */
unsigned long *rra_step_cnt = NULL;
int version; /* rrd version */
rrd_file_t *rrd_file;
char *arg_copy; /* for processing the argv */
unsigned long *skip_update; /* RRAs to advance but not write */
int ret = 0;
/* need at least 1 arguments: data. */
if (argc < 1) {
ret = -RRD_ERR_ARG10;
goto err_out;
}
rrd_init(&rrd);
if ((rrd_file = rrd_open(filename, &rrd, RRD_READWRITE, &ret)) == NULL) {
goto err_free;
}
/* We are now at the beginning of the rra's */
rra_begin = rrd_file->header_len;
version = atoi(rrd.stat_head->version);
initialize_time(&current_time, &current_time_usec, version);
/* get exclusive lock to whole file.
* lock gets removed when we close the file.
*/
if (rrd_lock(rrd_file) != 0) {
ret = -RRD_ERR_LOCK;
goto err_close;
}
if ((ret = allocate_data_structures(&rrd, &updvals,
&pdp_temp, tmplt, &tmpl_idx, &tmpl_cnt,
&rra_step_cnt, &skip_update,
&pdp_new)) < 0) {
goto err_close;
}
/* loop through the arguments. */
for (arg_i = 0; arg_i < argc; arg_i++) {
if ((arg_copy = strdup(argv[arg_i])) == NULL) {
ret = -RRD_ERR_FAILED_STRDUP;
break;
}
ret = process_arg(arg_copy, &rrd, rrd_file, rra_begin,
&current_time, &current_time_usec, pdp_temp, pdp_new,
rra_step_cnt, updvals, tmpl_idx, tmpl_cnt,
&pcdp_summary, version, skip_update,
&schedule_smooth);
if (ret == -RRD_ERR_TIME3) {
//nothing to do
//current_time <= last_up
ret = 0;
}else if(ret < 0){
//ret = -RRD_ERR_ARG9;
free(arg_copy);
break;
}
free(arg_copy);
}
free(rra_step_cnt);
/* if we got here and if there is an error and if the file has not been
* written to, then close things up and return. */
if (ret) {
goto err_free_structures;
}
#ifndef HAVE_MMAP
if ((ret = write_changes_to_disk(&rrd, rrd_file, version)) < -1) {
//ret = -RRD_ERR_WRITE7;
goto err_free_structures;
}
#endif
/* calling the smoothing code here guarantees at most one smoothing
* operation per rrd_update call. Unfortunately, it is possible with bulk
* updates, or a long-delayed update for smoothing to occur off-schedule.
* This really isn't critical except during the burn-in cycles. */
if (schedule_smooth) {
ret = smooth_all_rras(&rrd, rrd_file, rra_begin);
}
/* rrd_dontneed(rrd_file,&rrd); */
rrd_free(&rrd);
rrd_close(rrd_file);
free(pdp_new);
free(tmpl_idx);
free(pdp_temp);
free(skip_update);
free(updvals);
return 0;
err_free_structures:
free(pdp_new);
free(tmpl_idx);
free(pdp_temp);
free(skip_update);
free(updvals);
err_close:
rrd_close(rrd_file);
err_free:
rrd_free(&rrd);
err_out:
return ret;
}
/*
* Allocate some important arrays used, and initialize the template.
*
* When it returns, either all of the structures are allocated
* or none of them are.
*
* Returns 0 on success, < 0 on error.
*/
static int allocate_data_structures( rrd_t *rrd, char ***updvals, rrd_value_t **pdp_temp,
const char *tmplt, long **tmpl_idx, unsigned long *tmpl_cnt, unsigned long **rra_step_cnt,
unsigned long **skip_update, rrd_value_t **pdp_new) {
unsigned i, ii;
int ret = 0;
if ((*updvals = (char **) malloc(sizeof(char *)
* (rrd->stat_head->ds_cnt + 1))) == NULL) {
return -RRD_ERR_MALLOC10;
}
if ((*pdp_temp = (rrd_value_t *) malloc(sizeof(rrd_value_t)
* rrd->stat_head->ds_cnt)) ==
NULL) {
ret = -RRD_ERR_MALLOC11;
goto err_free_updvals;
}
if ((*skip_update = (unsigned long *) malloc(sizeof(unsigned long)
*
rrd->stat_head->rra_cnt)) ==
NULL) {
ret = -RRD_ERR_MALLOC12;
goto err_free_pdp_temp;
}
if ((*tmpl_idx = (long *) malloc(sizeof(unsigned long)
* (rrd->stat_head->ds_cnt + 1))) == NULL) {
ret = -RRD_ERR_MALLOC13;
goto err_free_skip_update;
}
if ((*rra_step_cnt = (unsigned long *) malloc(sizeof(unsigned long)
*
(rrd->stat_head->
rra_cnt))) == NULL) {
ret = -RRD_ERR_MALLOC14;
goto err_free_tmpl_idx;
}
/* initialize tmplt redirector */
/* default config example (assume DS 1 is a CDEF DS)
tmpl_idx[0] -> 0; (time)
tmpl_idx[1] -> 1; (DS 0)
tmpl_idx[2] -> 3; (DS 2)
tmpl_idx[3] -> 4; (DS 3) */
(*tmpl_idx)[0] = 0; /* time */
for (i = 1, ii = 1; i <= rrd->stat_head->ds_cnt; i++) {
if (dst_conv(rrd->ds_def[i - 1].dst) != DST_CDEF)
(*tmpl_idx)[ii++] = i;
}
*tmpl_cnt = ii;
if (tmplt != NULL) {
if (parse_template(rrd, tmplt, tmpl_cnt, *tmpl_idx) < 0) {
ret = -RRD_ERR_PARSE;
goto err_free_rra_step_cnt;
}
}
if ((*pdp_new = (rrd_value_t *) malloc(sizeof(rrd_value_t)
* rrd->stat_head->ds_cnt)) == NULL) {
ret = -RRD_ERR_MALLOC15;
goto err_free_rra_step_cnt;
}
return 0;
err_free_rra_step_cnt:
free(*rra_step_cnt);
err_free_tmpl_idx:
free(*tmpl_idx);
err_free_skip_update:
free(*skip_update);
err_free_pdp_temp:
free(*pdp_temp);
err_free_updvals:
free(*updvals);
return ret;
}
/*
* Parses tmplt and puts an ordered list of DS's into tmpl_idx.
*
* Returns 0 on success.
*/
static int parse_template( rrd_t *rrd, const char *tmplt,
unsigned long *tmpl_cnt, long *tmpl_idx) {
char *dsname, *tmplt_copy;
unsigned int tmpl_len, i;
int ret = 0;
*tmpl_cnt = 1; /* the first entry is the time */
/* we should work on a writeable copy here */
if ((tmplt_copy = strdup(tmplt)) == NULL) {
ret = -RRD_ERR_FAILED_STRDUP1;
goto out;
}
dsname = tmplt_copy;
tmpl_len = strlen(tmplt_copy);
for (i = 0; i <= tmpl_len; i++) {
if (tmplt_copy[i] == ':' || tmplt_copy[i] == '\0') {
tmplt_copy[i] = '\0';
if (*tmpl_cnt > rrd->stat_head->ds_cnt) {
ret = -RRD_ERR_MORE_DS;
goto out_free_tmpl_copy;
}
if ((tmpl_idx[(*tmpl_cnt)++] = ds_match(rrd, dsname) + 1) == 0) {
ret = -RRD_ERR_UNKNOWN_DS_NAME1;
goto out_free_tmpl_copy;
}
/* go to the next entry on the tmplt_copy */
if (i < tmpl_len)
dsname = &tmplt_copy[i + 1];
}
}
out_free_tmpl_copy:
free(tmplt_copy);
out:
return ret;
}
/*
* Parse an update string, updates the primary data points (PDPs)
* and consolidated data points (CDPs), and writes changes to the RRAs.
*
* Returns 0 on success, < 0 on error.
*/
static int process_arg( char *step_start, rrd_t *rrd, rrd_file_t *rrd_file,
unsigned long rra_begin, time_t *current_time,
unsigned long *current_time_usec, rrd_value_t *pdp_temp,
rrd_value_t *pdp_new, unsigned long *rra_step_cnt,
char **updvals, long *tmpl_idx, unsigned long tmpl_cnt,
rrd_info_t ** pcdp_summary, int version, unsigned long *skip_update,
int *schedule_smooth) {
rrd_value_t *seasonal_coef = NULL, *last_seasonal_coef = NULL;
/* a vector of future Holt-Winters seasonal coefs */
unsigned long elapsed_pdp_st;
double interval, pre_int, post_int; /* interval between this and
* the last run */
unsigned long proc_pdp_cnt;
int periodic = 1; /* A sign, 1 for priodic, 0 for nonperiodic, initialize to periodic */
int ret = 0;
ret = parse_ds(rrd, updvals, tmpl_idx, step_start, tmpl_cnt,
current_time, current_time_usec, version);
if (ret) {
return ret;
}
interval = (double) (*current_time - rrd->live_head->last_up)
+ (double) ((long) *current_time_usec -
(long) rrd->live_head->last_up_usec) / 1e6f;
/* process the data sources and update the pdp_prep
* area accordingly */
if ((ret = update_pdp_prep(rrd, updvals, pdp_new, interval, &periodic)) < 0) {
return ret;
}
elapsed_pdp_st = calculate_elapsed_steps(rrd,
*current_time,
*current_time_usec, interval,
&pre_int, &post_int,
&proc_pdp_cnt);
/* has a pdp_st moment occurred since the last run ? */
if (elapsed_pdp_st == 0) {
/* no we have not passed a pdp_st moment. therefore update is simple */
simple_update(rrd, interval, pdp_new);
} else {
/* an pdp_st has occurred. */
if ((ret = process_all_pdp_st(rrd, interval,
pre_int, post_int,
elapsed_pdp_st, pdp_new, pdp_temp)) < 0) {
return ret;
}
if ((ret = update_all_cdp_prep(rrd, rra_step_cnt,
rra_begin, rrd_file,
elapsed_pdp_st,
proc_pdp_cnt,
&last_seasonal_coef,
&seasonal_coef,
pdp_temp,
skip_update, schedule_smooth)) < 0) {
goto err_free_coefficients;
}
if ((ret = update_aberrant_cdps(rrd, rrd_file, rra_begin,
elapsed_pdp_st, pdp_temp,
&seasonal_coef)) < 0) {
goto err_free_coefficients;
}
if ((ret = write_to_rras(rrd, rrd_file, rra_step_cnt, rra_begin,
*current_time, skip_update,
pcdp_summary, periodic)) < 0) {
goto err_free_coefficients;
}
} /* endif a pdp_st has occurred */
rrd->live_head->last_up = *current_time;
rrd->live_head->last_up_usec = *current_time_usec;
if (version < 3) {
*rrd->legacy_last_up = rrd->live_head->last_up;
}
free(seasonal_coef);
free(last_seasonal_coef);
return 0;
err_free_coefficients:
free(seasonal_coef);
free(last_seasonal_coef);
return ret;
}
/*
* Parse a DS string (time + colon-separated values), storing the
* results in current_time, current_time_usec, and updvals.
*
* Returns 0 on success, < 0 on error.
*/
static int parse_ds( rrd_t *rrd, char **updvals, long *tmpl_idx, char *input,
unsigned long tmpl_cnt, time_t *current_time,
unsigned long *current_time_usec, int version) {
char *p;
unsigned long i;
char timesyntax;
int ret = 0;
updvals[0] = input;
/* initialize all ds input to unknown except the first one
which has always got to be set */
for (i = 1; i <= rrd->stat_head->ds_cnt; i++)
updvals[i] = "U";
/* separate all ds elements; first must be examined separately
due to alternate time syntax */
if ((p = strchr(input, '@')) != NULL) {
timesyntax = '@';
} else if ((p = strchr(input, ':')) != NULL) {
timesyntax = ':';
} else {
return -RRD_ERR_STR;
}
*p = '\0';
i = 1;
updvals[tmpl_idx[i++]] = p + 1;
while (*(++p)) {
if (*p == ':') {
*p = '\0';
if (i < tmpl_cnt) {
updvals[tmpl_idx[i++]] = p + 1;
} else {
return -RRD_ERR_ARG11;
}
}
}
if (i != tmpl_cnt) {
return -RRD_ERR_EXPECTED;
}
return get_time_from_reading(rrd, timesyntax, updvals,
current_time, current_time_usec,
version);
}
/*
* Parse the time in a DS string, store it in current_time and
* current_time_usec and verify that it's later than the last
* update for this DS.
*
* Returns 0 on success, < 0 on error.
*/
static int get_time_from_reading( rrd_t *rrd, char timesyntax,
char **updvals, time_t *current_time,
unsigned long *current_time_usec, int version) {
double tmp;
char *parsetime_error = NULL;
char *old_locale;
rrd_time_value_t ds_tv;
struct timeval tmp_time; /* used for time conversion */
/* get the time from the reading ... handle N */
if (timesyntax == '@') { /* at-style */
if ((parsetime_error = rrd_parsetime(updvals[0], &ds_tv))) {
return -RRD_ERR_TIME1;
}
if (ds_tv.type == RELATIVE_TO_END_TIME ||
ds_tv.type == RELATIVE_TO_START_TIME) {
return -RRD_ERR_TIME2;
}
*current_time = mktime(&ds_tv.tm) +ds_tv.offset;
*current_time_usec = 0; /* FIXME: how to handle usecs here ? */
} else if (strcmp(updvals[0], "N") == 0) {
gettimeofday(&tmp_time, 0);
normalize_time(&tmp_time);
*current_time = tmp_time.tv_sec;
*current_time_usec = tmp_time.tv_usec;
} else {
old_locale = setlocale(LC_NUMERIC, "C");
errno = 0;
tmp = strtod(updvals[0], 0);
if (errno > 0) {
return -RRD_ERR_STRTOD;
};
setlocale(LC_NUMERIC, old_locale);
if (tmp < 0.0){
gettimeofday(&tmp_time, 0);
tmp = (double)tmp_time.tv_sec + (double)tmp_time.tv_usec * 1e-6f + tmp;
}
*current_time = floor(tmp);
*current_time_usec = (long) ((tmp - (double) *current_time) * 1e6f);
}
/* dont do any correction for old version RRDs */
if (version < 3)
*current_time_usec = 0;
#ifdef DISABLE_USEC
*current_time_usec = 0;
#endif
if (*current_time < rrd->live_head->last_up ||
(*current_time == rrd->live_head->last_up &&
(long) *current_time_usec <= (long) rrd->live_head->last_up_usec)) {
return -RRD_ERR_TIME3;
}
return 0;
}
/*
* Update pdp_new by interpreting the updvals according to the DS type
* (COUNTER, GAUGE, etc.).
*
* Returns 0 on success, < 0 on error.
*/
static int update_pdp_prep( rrd_t *rrd, char **updvals, rrd_value_t *pdp_new,
double interval, int *periodic) {
unsigned long ds_idx;
int ii;
char *endptr; /* used in the conversion */
double rate;
char *old_locale;
enum dst_en dst_idx;
int ret = 0;
for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) {
dst_idx = dst_conv(rrd->ds_def[ds_idx].dst);
/* to set sign if periodic or nonperiodic */
if (rrd->ds_def[ds_idx].par[DS_mrhb_cnt].u_cnt < interval) {
*periodic = 0;
}
/* NOTE: DST_CDEF should never enter this if block, because
* updvals[ds_idx+1][0] is initialized to 'U'; unless the caller
* accidently specified a value for the DST_CDEF. To handle this case,
* an extra check is required. */
if ((updvals[ds_idx + 1][0] != 'U') &&
(dst_idx != DST_CDEF)) {
//rrd->ds_def[ds_idx].par[DS_mrhb_cnt].u_cnt >= interval) {
rate = DNAN;
/* pdp_new contains rate * time ... eg the bytes transferred during
* the interval. Doing it this way saves a lot of math operations
*/
switch (dst_idx) {
case DST_COUNTER:
case DST_DERIVE:
/* Check if this is a valid integer. `U' is already handled in
* another branch. */
for (ii = 0; updvals[ds_idx + 1][ii] != 0; ii++) {
if ((ii == 0) && (dst_idx == DST_DERIVE)
&& (updvals[ds_idx + 1][ii] == '-'))
continue;
if ((updvals[ds_idx + 1][ii] < '0')
|| (updvals[ds_idx + 1][ii] > '9')) {
return -RRD_ERR_INT;
}
} /* for (ii = 0; updvals[ds_idx + 1][ii] != 0; ii++) */
if (rrd->pdp_prep[ds_idx].last_ds[0] != 'U') {
pdp_new[ds_idx] =
rrd_diff(updvals[ds_idx + 1],
rrd->pdp_prep[ds_idx].last_ds);
if (dst_idx == DST_COUNTER) {
/* simple overflow catcher. This will fail
* terribly for non 32 or 64 bit counters
* ... are there any others in SNMP land?
*/
if (pdp_new[ds_idx] < (double) 0.0)
pdp_new[ds_idx] += (double) 4294967296.0; /* 2^32 */
if (pdp_new[ds_idx] < (double) 0.0)
pdp_new[ds_idx] += (double) 18446744069414584320.0; /* 2^64-2^32 */
}
rate = pdp_new[ds_idx] / interval;
} else {
pdp_new[ds_idx] = DNAN;
}
break;
case DST_ABSOLUTE:
old_locale = setlocale(LC_NUMERIC, "C");
errno = 0;
pdp_new[ds_idx] = strtod(updvals[ds_idx + 1], &endptr);
if (errno > 0) {
return -RRD_ERR_STRTOD;
};
setlocale(LC_NUMERIC, old_locale);
if (endptr[0] != '\0') {
return -RRD_ERR_DATA;
}
rate = pdp_new[ds_idx] / interval;
break;
case DST_GAUGE:
old_locale = setlocale(LC_NUMERIC, "C");
errno = 0;
pdp_new[ds_idx] =
strtod(updvals[ds_idx + 1], &endptr) * interval;
if (errno) {
return -RRD_ERR_STRTOD;
};
setlocale(LC_NUMERIC, old_locale);
if (endptr[0] != '\0') {
return -RRD_ERR_DATA;
}
rate = pdp_new[ds_idx] / interval;
break;
default:
return -RRD_ERR_UNKNOWN_DS_TYPE;
}
/* break out of this for loop if the error string is set */
if (ret) {
return ret;
}
/* make sure pdp_temp is neither too large or too small
* if any of these occur it becomes unknown ...
* sorry folks ... */
if (!isnan(rate) &&
((!isnan(rrd->ds_def[ds_idx].par[DS_max_val].u_val) &&
rate > rrd->ds_def[ds_idx].par[DS_max_val].u_val) ||
(!isnan(rrd->ds_def[ds_idx].par[DS_min_val].u_val) &&
rate < rrd->ds_def[ds_idx].par[DS_min_val].u_val))) {
pdp_new[ds_idx] = DNAN;
}
} else {
/* no news is news all the same */
pdp_new[ds_idx] = DNAN;
}
/* make a copy of the command line argument for the next run */
#ifdef DEBUG
fprintf(stderr, "prep ds[%lu]\t"
"last_arg '%s'\t"
"this_arg '%s'\t"
"pdp_new %10.2f\n",
ds_idx, rrd->pdp_prep[ds_idx].last_ds, updvals[ds_idx + 1],
pdp_new[ds_idx]);
#endif
strncpy(rrd->pdp_prep[ds_idx].last_ds, updvals[ds_idx + 1],
LAST_DS_LEN - 1);
rrd->pdp_prep[ds_idx].last_ds[LAST_DS_LEN - 1] = '\0';
}
return 0;
}
/*
* How many PDP steps have elapsed since the last update? Returns the answer,
* and stores the time between the last update and the last PDP in pre_time,
* and the time between the last PDP and the current time in post_int.
*/
static int calculate_elapsed_steps( rrd_t *rrd, unsigned long current_time,
unsigned long current_time_usec, double interval,
double *pre_int, double *post_int, unsigned long *proc_pdp_cnt) {
unsigned long proc_pdp_st; /* which pdp_st was the last to be processed */
unsigned long occu_pdp_st; /* when was the pdp_st before the last update
* time */
unsigned long proc_pdp_age; /* how old was the data in the pdp prep area
* when it was last updated */
unsigned long occu_pdp_age; /* how long ago was the last pdp_step time */
/* when was the current pdp started */
proc_pdp_age = rrd->live_head->last_up % rrd->stat_head->pdp_step;
proc_pdp_st = rrd->live_head->last_up - proc_pdp_age;
/* when did the last pdp_st occur */
occu_pdp_age = current_time % rrd->stat_head->pdp_step;
occu_pdp_st = current_time - occu_pdp_age;
if (occu_pdp_st > proc_pdp_st) {
/* OK we passed the pdp_st moment */
*pre_int = (long) occu_pdp_st - rrd->live_head->last_up; /* how much of the input data
* occurred before the latest
* pdp_st moment*/
*pre_int -= ((double) rrd->live_head->last_up_usec) / 1e6f; /* adjust usecs */
*post_int = occu_pdp_age; /* how much after it */
*post_int += ((double) current_time_usec) / 1e6f; /* adjust usecs */
} else {
*pre_int = interval;
*post_int = 0;
}
*proc_pdp_cnt = proc_pdp_st / rrd->stat_head->pdp_step;
#ifdef DEBUG
printf("proc_pdp_age %lu\t"
"proc_pdp_st %lu\t"
"occu_pfp_age %lu\t"
"occu_pdp_st %lu\t"
"int %lf\t"
"pre_int %lf\t"
"post_int %lf\n", proc_pdp_age, proc_pdp_st,
occu_pdp_age, occu_pdp_st, interval, *pre_int, *post_int);
#endif
/* compute the number of elapsed pdp_st moments */
return (occu_pdp_st - proc_pdp_st) / rrd->stat_head->pdp_step;
}
/*
* Increment the PDP values by the values in pdp_new, or else initialize them.
*/
static void simple_update( rrd_t *rrd, double interval, rrd_value_t *pdp_new) {
int i;
for (i = 0; i < (signed) rrd->stat_head->ds_cnt; i++) {
if (isnan(pdp_new[i])) {
/* this is not really accurate if we use subsecond data arrival time
should have thought of it when going subsecond resolution ...
sorry next format change we will have it! */
rrd->pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt +=
floor(interval);
} else {
if (isnan(rrd->pdp_prep[i].scratch[PDP_val].u_val)) {
rrd->pdp_prep[i].scratch[PDP_val].u_val = pdp_new[i];
} else {
rrd->pdp_prep[i].scratch[PDP_val].u_val += pdp_new[i];
}
}
#ifdef DEBUG
fprintf(stderr,
"NO PDP ds[%i]\t"
"value %10.2f\t"
"unkn_sec %5lu\n",
i,
rrd->pdp_prep[i].scratch[PDP_val].u_val,
rrd->pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt);
#endif
}
}
/*
* Call process_pdp_st for each DS.
*
* Returns 0 on success, < 0 on error.
*/
static int process_all_pdp_st( rrd_t *rrd, double interval,
double pre_int, double post_int, unsigned long elapsed_pdp_st,
rrd_value_t *pdp_new, rrd_value_t *pdp_temp) {
unsigned long ds_idx;
int ret = 0;
/* in pdp_prep[].scratch[PDP_val].u_val we have collected
rate*seconds which occurred up to the last run.
pdp_new[] contains rate*seconds from the latest run.
pdp_temp[] will contain the rate for cdp */
for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) {
if ((ret = process_pdp_st(rrd, ds_idx, interval, pre_int, post_int,
elapsed_pdp_st * rrd->stat_head->pdp_step,
pdp_new, pdp_temp)) < 0 ) {
return ret;
}
#ifdef DEBUG
fprintf(stderr, "PDP UPD ds[%lu]\t"
"elapsed_pdp_st %lu\t"
"pdp_temp %10.2f\t"
"new_prep %10.2f\t"
"new_unkn_sec %5lu\n",
ds_idx,
elapsed_pdp_st,
pdp_temp[ds_idx],
rrd->pdp_prep[ds_idx].scratch[PDP_val].u_val,
rrd->pdp_prep[ds_idx].scratch[PDP_unkn_sec_cnt].u_cnt);
#endif
}
return 0;
}
/*
* Process an update that occurs after one of the PDP moments.
* Increments the PDP value, sets NAN if time greater than the
* heartbeats have elapsed, processes CDEFs.
*
* Returns 0 on success, < 0 on error.
*/
static int process_pdp_st( rrd_t *rrd, unsigned long ds_idx,
double interval, double pre_int, double post_int,
long diff_pdp_st, /* number of seconds in full steps passed since last update */
rrd_value_t *pdp_new, rrd_value_t *pdp_temp) {
int i;
int ret = 0;
/* update pdp_prep to the current pdp_st. */
double pre_unknown = 0.0;
unival *scratch = rrd->pdp_prep[ds_idx].scratch;
unsigned long mrhb = rrd->ds_def[ds_idx].par[DS_mrhb_cnt].u_cnt;
rpnstack_t rpnstack; /* used for COMPUTE DS */
rpnstack_init(&rpnstack);
if (isnan(pdp_new[ds_idx])) {
/* a final bit of unknown to be added before calculation
we use a temporary variable for this so that we
don't have to turn integer lines before using the value */
pre_unknown = pre_int;
} else {
if (isnan(scratch[PDP_val].u_val)) {
scratch[PDP_val].u_val = 0;
}
scratch[PDP_val].u_val += pdp_new[ds_idx] / interval * pre_int;
}
/* if too much of the pdp_prep is unknown we dump it */
/* if the interval is larger thatn mrhb we get NAN */
if ((rrd->stat_head->pdp_step / 2.0 <
(signed) scratch[PDP_unkn_sec_cnt].u_cnt)) {
pdp_temp[ds_idx] = DNAN;
} else {
pdp_temp[ds_idx] = scratch[PDP_val].u_val /
((double) (diff_pdp_st - scratch[PDP_unkn_sec_cnt].u_cnt) -
pre_unknown);
}
/* process CDEF data sources; remember each CDEF DS can
* only reference other DS with a lower index number */
if (dst_conv(rrd->ds_def[ds_idx].dst) == DST_CDEF) {
rpnp_t *rpnp;
rpnp =
rpn_expand((rpn_cdefds_t *) &(rrd->ds_def[ds_idx].par[DS_cdef]));
if(rpnp == NULL) {
rpnstack_free(&rpnstack);
return -RRD_ERR_MALLOC17;
}
/* substitute data values for OP_VARIABLE nodes */
for (i = 0; rpnp[i].op != OP_END; i++) {
if (rpnp[i].op == OP_VARIABLE) {
rpnp[i].op = OP_NUMBER;
rpnp[i].val = pdp_temp[rpnp[i].ptr];
}
}
/* run the rpn calculator */
if ((ret = rpn_calc(rpnp, &rpnstack, 0, pdp_temp, ds_idx)) < 0) {
free(rpnp);
rpnstack_free(&rpnstack);
return ret;
}
free(rpnp);
}
/* make pdp_prep ready for the next run */
if (isnan(pdp_new[ds_idx])) {
/* this is not realy accurate if we use subsecond data arival time
should have thought of it when going subsecond resolution ...
sorry next format change we will have it! */
scratch[PDP_unkn_sec_cnt].u_cnt = floor(post_int);
scratch[PDP_val].u_val = DNAN;
} else {
scratch[PDP_unkn_sec_cnt].u_cnt = 0;
scratch[PDP_val].u_val = pdp_new[ds_idx] / interval * post_int;
}
rpnstack_free(&rpnstack);
return ret;
}
/*
* Iterate over all the RRAs for a given DS and:
* 1. Decide whether to schedule a smooth later
* 2. Decide whether to skip updating SEASONAL and DEVSEASONAL
* 3. Update the CDP
*
* Returns 0 on success, < 0 on error
*/
static int update_all_cdp_prep( rrd_t *rrd, unsigned long *rra_step_cnt,
unsigned long rra_begin, rrd_file_t *rrd_file,
unsigned long elapsed_pdp_st, unsigned long proc_pdp_cnt,
rrd_value_t **last_seasonal_coef, rrd_value_t **seasonal_coef,
rrd_value_t *pdp_temp, unsigned long *skip_update,
int *schedule_smooth) {
unsigned long rra_idx;
/* index into the CDP scratch array */
enum cf_en current_cf;
unsigned long rra_start;
/* number of rows to be updated in an RRA for a data value. */
unsigned long start_pdp_offset;
int ret = 0;
rra_start = rra_begin;
for (rra_idx = 0; rra_idx < rrd->stat_head->rra_cnt; rra_idx++) {
current_cf = cf_conv(rrd->rra_def[rra_idx].cf_nam);
if (current_cf < 0){
ret = -RRD_ERR_UNREC_CONSOLIDATION_FUNC;
}
start_pdp_offset =
rrd->rra_def[rra_idx].pdp_cnt -
proc_pdp_cnt % rrd->rra_def[rra_idx].pdp_cnt;
skip_update[rra_idx] = 0;
if (start_pdp_offset <= elapsed_pdp_st) {
rra_step_cnt[rra_idx] = (elapsed_pdp_st - start_pdp_offset) /
rrd->rra_def[rra_idx].pdp_cnt + 1;
} else {
rra_step_cnt[rra_idx] = 0;
}
if (current_cf == CF_SEASONAL || current_cf == CF_DEVSEASONAL) {
/* If this is a bulk update, we need to skip ahead in the seasonal arrays
* so that they will be correct for the next observed value; note that for
* the bulk update itself, no update will occur to DEVSEASONAL or SEASONAL;
* futhermore, HWPREDICT and DEVPREDICT will be set to DNAN. */
if (rra_step_cnt[rra_idx] > 1) {
skip_update[rra_idx] = 1;
if((ret = lookup_seasonal(rrd, rra_idx, rra_start, rrd_file,
elapsed_pdp_st, last_seasonal_coef)))
return ret;
if((ret = lookup_seasonal(rrd, rra_idx, rra_start, rrd_file,
elapsed_pdp_st + 1, seasonal_coef)))
return ret;
}
/* periodically run a smoother for seasonal effects */
if (do_schedule_smooth(rrd, rra_idx, elapsed_pdp_st)) {
#ifdef DEBUG
fprintf(stderr,
"schedule_smooth: cur_row %lu, elapsed_pdp_st %lu, smooth idx %lu\n",
rrd->rra_ptr[rra_idx].cur_row, elapsed_pdp_st,
rrd->rra_def[rra_idx].par[RRA_seasonal_smooth_idx].
u_cnt);
#endif
*schedule_smooth = 1;
}
}
if (ret)
return ret;
if (update_cdp_prep
(rrd, elapsed_pdp_st, start_pdp_offset, rra_step_cnt, rra_idx,
pdp_temp, *last_seasonal_coef, *seasonal_coef,
current_cf) < 0) {
return -RRD_ERR_UPDATE_CDP;
}
rra_start +=
rrd->rra_def[rra_idx].row_cnt * rrd->stat_head->ds_cnt *
sizeof(rrd_value_t);
}
return 0;
}
/*
* Are we due for a smooth? Also increments our position in the burn-in cycle.
*/
static int do_schedule_smooth( rrd_t *rrd, unsigned long rra_idx,
unsigned long elapsed_pdp_st) {
unsigned long cdp_idx = rra_idx * (rrd->stat_head->ds_cnt);
unsigned long cur_row = rrd->rra_ptr[rra_idx].cur_row;
unsigned long row_cnt = rrd->rra_def[rra_idx].row_cnt;
unsigned long seasonal_smooth_idx =
rrd->rra_def[rra_idx].par[RRA_seasonal_smooth_idx].u_cnt;
unsigned long *init_seasonal =
&(rrd->cdp_prep[cdp_idx].scratch[CDP_init_seasonal].u_cnt);
/* Need to use first cdp parameter buffer to track burnin (burnin requires
* a specific smoothing schedule). The CDP_init_seasonal parameter is
* really an RRA level, not a data source within RRA level parameter, but
* the rra_def is read only for rrd_update (not flushed to disk). */
if (*init_seasonal > BURNIN_CYCLES) {
/* someone has no doubt invented a trick to deal with this wrap around,
* but at least this code is clear. */
if (seasonal_smooth_idx > cur_row) {
/* here elapsed_pdp_st = rra_step_cnt[rra_idx] because of 1-1 mapping
* between PDP and CDP */
return (cur_row + elapsed_pdp_st >= seasonal_smooth_idx);
}
/* can't rely on negative numbers because we are working with
* unsigned values */
return (cur_row + elapsed_pdp_st >= row_cnt
&& cur_row + elapsed_pdp_st >= row_cnt + seasonal_smooth_idx);
}
/* mark off one of the burn-in cycles */
return (cur_row + elapsed_pdp_st >= row_cnt && ++(*init_seasonal));
}
/*
* For a given RRA, iterate over the data sources and call the appropriate
* consolidation function.
*
* Returns 0 on success, < 0 on error.
*/
static int update_cdp_prep( rrd_t *rrd, unsigned long elapsed_pdp_st,
unsigned long start_pdp_offset, unsigned long *rra_step_cnt,
int rra_idx, rrd_value_t *pdp_temp, rrd_value_t *last_seasonal_coef,
rrd_value_t *seasonal_coef, int current_cf) {
unsigned long ds_idx, cdp_idx;
int ret = 0;
/* update CDP_PREP areas */
/* loop over data soures within each RRA */
for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) {
cdp_idx = rra_idx * rrd->stat_head->ds_cnt + ds_idx;
if (rrd->rra_def[rra_idx].pdp_cnt > 1) {
update_cdp(rrd->cdp_prep[cdp_idx].scratch, current_cf,
pdp_temp[ds_idx], rra_step_cnt[rra_idx],
elapsed_pdp_st, start_pdp_offset,
rrd->rra_def[rra_idx].pdp_cnt,
rrd->rra_def[rra_idx].par[RRA_cdp_xff_val].u_val,
rra_idx, ds_idx);
} else {
/* Nothing to consolidate if there's one PDP per CDP. However, if
* we've missed some PDPs, let's update null counters etc. */
if (elapsed_pdp_st > 2) {
ret = reset_cdp(rrd, elapsed_pdp_st, pdp_temp, last_seasonal_coef,
seasonal_coef, rra_idx, ds_idx, cdp_idx,
(enum cf_en)current_cf);
}
}
if (ret)
return ret;
} /* endif data sources loop */
return 0;
}
/*
* Given the new reading (pdp_temp_val), update or initialize the CDP value,
* primary value, secondary value, and # of unknowns.
*/
static void update_cdp( unival *scratch, int current_cf,
rrd_value_t pdp_temp_val, unsigned long rra_step_cnt,
unsigned long elapsed_pdp_st, unsigned long start_pdp_offset,
unsigned long pdp_cnt, rrd_value_t xff, int i, int ii) {
/* shorthand variables */
rrd_value_t *cdp_val = &scratch[CDP_val].u_val;
rrd_value_t *cdp_primary_val = &scratch[CDP_primary_val].u_val;
rrd_value_t *cdp_secondary_val = &scratch[CDP_secondary_val].u_val;
unsigned long *cdp_unkn_pdp_cnt = &scratch[CDP_unkn_pdp_cnt].u_cnt;
if (rra_step_cnt) {
/* If we are in this block, as least 1 CDP value will be written to
* disk, this is the CDP_primary_val entry. If more than 1 value needs
* to be written, then the "fill in" value is the CDP_secondary_val
* entry. */
if (isnan(pdp_temp_val)) {
*cdp_unkn_pdp_cnt += start_pdp_offset;
*cdp_secondary_val = DNAN;
} else {
/* CDP_secondary value is the RRA "fill in" value for intermediary
* CDP data entries. No matter the CF, the value is the same because
* the average, max, min, and last of a list of identical values is
* the same, namely, the value itself. */
*cdp_secondary_val = pdp_temp_val;
}
if (*cdp_unkn_pdp_cnt > pdp_cnt * xff) {
*cdp_primary_val = DNAN;
} else {
initialize_cdp_val(scratch, current_cf, pdp_temp_val,
start_pdp_offset, pdp_cnt);
}
*cdp_val =
initialize_carry_over(pdp_temp_val,current_cf,
elapsed_pdp_st,
start_pdp_offset, pdp_cnt);
/* endif meets xff value requirement for a valid value */
/* initialize carry over CDP_unkn_pdp_cnt, this must after CDP_primary_val
* is set because CDP_unkn_pdp_cnt is required to compute that value. */
if (isnan(pdp_temp_val))
*cdp_unkn_pdp_cnt = (elapsed_pdp_st - start_pdp_offset) % pdp_cnt;
else
*cdp_unkn_pdp_cnt = 0;
} else { /* rra_step_cnt[i] == 0 */
#ifdef DEBUG
if (isnan(*cdp_val)) {
fprintf(stderr, "schedule CDP_val update, RRA %d DS %d, DNAN\n",
i, ii);
} else {
fprintf(stderr, "schedule CDP_val update, RRA %d DS %d, %10.2f\n",
i, ii, *cdp_val);
}
#endif
if (isnan(pdp_temp_val)) {
*cdp_unkn_pdp_cnt += elapsed_pdp_st;
} else {
*cdp_val =
calculate_cdp_val(*cdp_val, pdp_temp_val, elapsed_pdp_st,
current_cf, i, ii);
}
}
}
/*
* Set the CDP_primary_val and CDP_val to the appropriate initial value based
* on the type of consolidation function.
*/
static void initialize_cdp_val( unival *scratch, int current_cf,
rrd_value_t pdp_temp_val, unsigned long start_pdp_offset,
unsigned long pdp_cnt) {
rrd_value_t cum_val, cur_val;
switch (current_cf) {
case CF_AVERAGE:
if(isnan(scratch[CDP_val].u_val) && isnan(pdp_temp_val)){
scratch[CDP_primary_val].u_val = DINF;
}else{
cum_val = IFDNAN(scratch[CDP_val].u_val, 0.0);
cur_val = IFDNAN(pdp_temp_val, 0.0);
scratch[CDP_primary_val].u_val =
(cum_val + cur_val * start_pdp_offset) /
(pdp_cnt - scratch[CDP_unkn_pdp_cnt].u_cnt);
}
break;
case CF_MAXIMUM:
cum_val = IFDNAN(scratch[CDP_val].u_val, -DINF);
cur_val = IFDNAN(pdp_temp_val, -DINF);
#if 0
#ifdef DEBUG
if (isnan(scratch[CDP_val].u_val) && isnan(pdp_temp)) {
fprintf(stderr,
"RRA %lu, DS %lu, both CDP_val and pdp_temp are DNAN!",
i, ii);
exit(-1);
}
#endif
#endif
if (cur_val > cum_val)
scratch[CDP_primary_val].u_val = cur_val;
else
scratch[CDP_primary_val].u_val = cum_val;
break;
case CF_MINIMUM:
cum_val = IFDNAN(scratch[CDP_val].u_val, DINF);
cur_val = IFDNAN(pdp_temp_val, DINF);
#if 0
#ifdef DEBUG
if (isnan(scratch[CDP_val].u_val) && isnan(pdp_temp)) {
fprintf(stderr,
"RRA %lu, DS %lu, both CDP_val and pdp_temp are DNAN!", i,
ii);
exit(-1);
}
#endif
#endif
if (cur_val < cum_val)
scratch[CDP_primary_val].u_val = cur_val;
else
scratch[CDP_primary_val].u_val = cum_val;
break;
case CF_LAST:
default:
scratch[CDP_primary_val].u_val = pdp_temp_val;
break;
}
}
/*
* Update the consolidation function for Holt-Winters functions as
* well as other functions that don't actually consolidate multiple
* PDPs.
*/
static int reset_cdp( rrd_t *rrd, unsigned long elapsed_pdp_st,
rrd_value_t *pdp_temp, rrd_value_t *last_seasonal_coef,
rrd_value_t *seasonal_coef, int rra_idx, int ds_idx,
int cdp_idx, enum cf_en current_cf) {
unival *scratch = rrd->cdp_prep[cdp_idx].scratch;
int ret = 0;
switch (current_cf) {
case CF_AVERAGE:
default:
scratch[CDP_primary_val].u_val = pdp_temp[ds_idx];
scratch[CDP_secondary_val].u_val = pdp_temp[ds_idx];
break;
case CF_SEASONAL:
case CF_DEVSEASONAL:
/* need to update cached seasonal values, so they are consistent
* with the bulk update */
/* WARNING: code relies on the fact that CDP_hw_last_seasonal and
* CDP_last_deviation are the same. */
scratch[CDP_hw_last_seasonal].u_val = last_seasonal_coef[ds_idx];
scratch[CDP_hw_seasonal].u_val = seasonal_coef[ds_idx];
break;
case CF_HWPREDICT:
case CF_MHWPREDICT:
/* need to update the null_count and last_null_count.
* even do this for non-DNAN pdp_temp because the
* algorithm is not learning from batch updates. */
scratch[CDP_null_count].u_cnt += elapsed_pdp_st;
scratch[CDP_last_null_count].u_cnt += elapsed_pdp_st - 1;
/* fall through */
case CF_DEVPREDICT:
scratch[CDP_primary_val].u_val = DNAN;
scratch[CDP_secondary_val].u_val = DNAN;
break;
case CF_FAILURES:
/* do not count missed bulk values as failures */
scratch[CDP_primary_val].u_val = 0;
scratch[CDP_secondary_val].u_val = 0;
/* need to reset violations buffer.
* could do this more carefully, but for now, just
* assume a bulk update wipes away all violations. */
ret = erase_violations(rrd, cdp_idx, rra_idx);
break;
}
return ret;
}
static rrd_value_t initialize_carry_over( rrd_value_t pdp_temp_val,
int current_cf, unsigned long elapsed_pdp_st,
unsigned long start_pdp_offset, unsigned long pdp_cnt) {
unsigned long pdp_into_cdp_cnt = ((elapsed_pdp_st - start_pdp_offset) % pdp_cnt);
if ( pdp_into_cdp_cnt == 0 || isnan(pdp_temp_val)){
switch (current_cf) {
case CF_MAXIMUM:
return -DINF;
case CF_MINIMUM:
return DINF;
case CF_AVERAGE:
return 0;
default:
return DNAN;
}
}
else {
switch (current_cf) {
case CF_AVERAGE:
return pdp_temp_val * pdp_into_cdp_cnt ;
default:
return pdp_temp_val;
}
}
}
/*
* Update or initialize a CDP value based on the consolidation
* function.
*
* Returns the new value.
*/
static rrd_value_t calculate_cdp_val( rrd_value_t cdp_val,
rrd_value_t pdp_temp_val, unsigned long elapsed_pdp_st, int current_cf,
#ifdef DEBUG
int i, int ii
#else
int UNUSED(i), int UNUSED(ii)
#endif
)
{
if (isnan(cdp_val)) {
if (current_cf == CF_AVERAGE) {
pdp_temp_val *= elapsed_pdp_st;
}
#ifdef DEBUG
fprintf(stderr, "Initialize CDP_val for RRA %d DS %d: %10.2f\n",
i, ii, pdp_temp_val);
#endif
return pdp_temp_val;
}
if (current_cf == CF_AVERAGE)
return cdp_val + pdp_temp_val * elapsed_pdp_st;
if (current_cf == CF_MINIMUM)
return (pdp_temp_val < cdp_val) ? pdp_temp_val : cdp_val;
if (current_cf == CF_MAXIMUM)
return (pdp_temp_val > cdp_val) ? pdp_temp_val : cdp_val;
return pdp_temp_val;
}
/*
* For each RRA, update the seasonal values and then call update_aberrant_CF
* for each data source.
*
* Return 0 on success, < 0 on error.
*/
static int update_aberrant_cdps( rrd_t *rrd, rrd_file_t *rrd_file,
unsigned long rra_begin, unsigned long elapsed_pdp_st,
rrd_value_t *pdp_temp, rrd_value_t **seasonal_coef) {
unsigned long rra_idx, ds_idx, j;
/* number of PDP steps since the last update that
* are assigned to the first CDP to be generated
* since the last update. */
unsigned short scratch_idx;
unsigned long rra_start;
enum cf_en current_cf;
int r, ret = 0;
/* this loop is only entered if elapsed_pdp_st < 3 */
for (j = elapsed_pdp_st, scratch_idx = CDP_primary_val;
j > 0 && j < 3; j--, scratch_idx = CDP_secondary_val) {
rra_start = rra_begin;
for (rra_idx = 0; rra_idx < rrd->stat_head->rra_cnt; rra_idx++) {
if (rrd->rra_def[rra_idx].pdp_cnt == 1) {
current_cf = cf_conv(rrd->rra_def[rra_idx].cf_nam);
if (current_cf == CF_SEASONAL || current_cf == CF_DEVSEASONAL) {
if (scratch_idx == CDP_primary_val) {
r = lookup_seasonal(rrd, rra_idx, rra_start, rrd_file,
elapsed_pdp_st + 1, seasonal_coef);
} else {
r = lookup_seasonal(rrd, rra_idx, rra_start, rrd_file,
elapsed_pdp_st + 2, seasonal_coef);
}
}else if(current_cf < 0){
return -RRD_ERR_UNREC_CONSOLIDATION_FUNC;
}
/* loop over data soures within each RRA */
for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) {
r = update_aberrant_CF(rrd, pdp_temp[ds_idx], current_cf,
rra_idx * (rrd->stat_head->ds_cnt) +
ds_idx, rra_idx, ds_idx, scratch_idx,
*seasonal_coef);
}
}
rra_start += rrd->rra_def[rra_idx].row_cnt
* rrd->stat_head->ds_cnt * sizeof(rrd_value_t);
if (r)
ret = r;
}
}
return ret;
}
/*
* Move sequentially through the file, writing one RRA at a time. Note this
* architecture divorces the computation of CDP with flushing updated RRA
* entries to disk.
*
* Return 0 on success, < 0 on error.
*/
static int write_to_rras( rrd_t *rrd, rrd_file_t *rrd_file,
unsigned long *rra_step_cnt, unsigned long rra_begin,
time_t current_time, unsigned long *skip_update,
rrd_info_t ** pcdp_summary, int periodic) {
unsigned long rra_idx;
unsigned long rra_start;
time_t rra_time = 0; /* time of update for a RRA */
unsigned long ds_cnt = rrd->stat_head->ds_cnt;
int ret = 0;
/* Ready to write to disk */
rra_start = rra_begin;
for (rra_idx = 0; rra_idx < rrd->stat_head->rra_cnt; rra_idx++) {
rra_def_t *rra_def = &rrd->rra_def[rra_idx];
rra_ptr_t *rra_ptr = &rrd->rra_ptr[rra_idx];
/* for cdp_prep */
unsigned short scratch_idx;
unsigned long step_subtract;
for (scratch_idx = CDP_primary_val,
step_subtract = 1;
rra_step_cnt[rra_idx] > 0;
rra_step_cnt[rra_idx]--,
scratch_idx = CDP_secondary_val,
step_subtract = 2) {
size_t rra_pos_new;
#ifdef DEBUG
fprintf(stderr, " -- RRA Preseek %ld\n", rrd_file->pos);
#endif
/* increment, with wrap-around */
if (++rra_ptr->cur_row >= rra_def->row_cnt)
rra_ptr->cur_row = 0;
/* we know what our position should be */
rra_pos_new = rra_start
+ ds_cnt * rra_ptr->cur_row * sizeof(rrd_value_t);
/* re-seek if the position is wrong or we wrapped around */
if ((size_t)rra_pos_new != rrd_file->pos) {
if (rrd_seek(rrd_file, rra_pos_new, SEEK_SET) != 0) {
return -RRD_ERR_SEEK5;
}
}
#ifdef DEBUG
fprintf(stderr, " -- RRA Postseek %ld\n", rrd_file->pos);
#endif
if (skip_update[rra_idx])
continue;
if (*pcdp_summary != NULL) {
unsigned long step_time = rra_def->pdp_cnt * rrd->stat_head->pdp_step;
rra_time = (current_time - current_time % step_time)
- ((rra_step_cnt[rra_idx] - step_subtract) * step_time);
}
if (periodic == 1) {
if ((ret = write_RRA_row(rrd_file, rrd, rra_idx, scratch_idx,
pcdp_summary, rra_time, 1)) < 0)
return ret;
} else {
if (rra_step_cnt[rra_idx] == 1) {
if ((ret = write_RRA_row(rrd_file, rrd, rra_idx, scratch_idx,
pcdp_summary, rra_time, 1)) < 0)
return ret;
} else {
if ((ret = write_RRA_row(rrd_file, rrd, rra_idx, scratch_idx,
pcdp_summary, rra_time, 0)) < 0)
return ret;
}
}
rrd_notify_row(rrd_file, rra_idx, rra_pos_new, rra_time);
}
rra_start += rra_def->row_cnt * ds_cnt * sizeof(rrd_value_t);
} /* RRA LOOP */
return 0;
}
/*
* Write out one row of values (one value per DS) to the archive.
*
* Returns 0 on success, < 0 on error.
*/
static int write_RRA_row( rrd_file_t *rrd_file, rrd_t *rrd,
unsigned long rra_idx, unsigned short CDP_scratch_idx,
rrd_info_t ** pcdp_summary, time_t rra_time, int flag) {
unsigned long ds_idx, cdp_idx;
rrd_infoval_t iv;
for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) {
/* compute the cdp index */
cdp_idx = rra_idx * (rrd->stat_head->ds_cnt) + ds_idx;
#ifdef DEBUG
fprintf(stderr, " -- RRA WRITE VALUE %e, at %ld CF:%s\n",
rrd->cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val,
rrd_file->pos, rrd->rra_def[rra_idx].cf_nam);
#endif
if (*pcdp_summary != NULL) {
iv.u_val = rrd->cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val;
/* append info to the return hash */
*pcdp_summary = rrd_info_push(*pcdp_summary,
sprintf_alloc
("[%lli]RRA[%s][%lu]DS[%s]",
(long long)rra_time,
rrd->rra_def[rra_idx].cf_nam,
rrd->rra_def[rra_idx].pdp_cnt,
rrd->ds_def[ds_idx].ds_nam),
RD_I_VAL, iv);
}
errno = 0;
//if flag == 0 , write nan
//if flag == 1 , write normally
// rrd_set_to_DNAN
if (flag == 0) {
rrd_value_t tmp;
tmp = rrd_set_to_DNAN();
if (rrd_write(rrd_file, &tmp, sizeof(rrd_value_t)) != sizeof(rrd_value_t)) {
return -RRD_ERR_WRITE8;
}
} else {
if (rrd_write(rrd_file,
&(rrd->cdp_prep[cdp_idx].scratch[CDP_scratch_idx].
u_val), sizeof(rrd_value_t)) != sizeof(rrd_value_t)) {
return -RRD_ERR_WRITE8;
}
}
}
return 0;
}
/*
* Call apply_smoother for all DEVSEASONAL and SEASONAL RRAs.
*
* Returns 0 on success, < 0 otherwise
*/
static int smooth_all_rras( rrd_t *rrd, rrd_file_t *rrd_file,
unsigned long rra_begin) {
unsigned long rra_start = rra_begin;
unsigned long rra_idx;
int ret;
for (rra_idx = 0; rra_idx < rrd->stat_head->rra_cnt; ++rra_idx) {
if (cf_conv(rrd->rra_def[rra_idx].cf_nam) == CF_DEVSEASONAL ||
cf_conv(rrd->rra_def[rra_idx].cf_nam) == CF_SEASONAL) {
#ifdef DEBUG
fprintf(stderr, "Running smoother for rra %lu\n", rra_idx);
#endif
ret = apply_smoother(rrd, rra_idx, rra_start, rrd_file);
if (ret)
return ret;
}
rra_start += rrd->rra_def[rra_idx].row_cnt
* rrd->stat_head->ds_cnt * sizeof(rrd_value_t);
}
return 0;
}
#ifndef HAVE_MMAP
/*
* Flush changes to disk (unless we're using mmap)
*
* Returns 0 on success, < 0 otherwise
*/
static int write_changes_to_disk( rrd_t *rrd, rrd_file_t *rrd_file,
int version) {
/* we just need to write back the live header portion now */
if (rrd_seek(rrd_file, (sizeof(stat_head_t)
+ sizeof(ds_def_t) * rrd->stat_head->ds_cnt
+ sizeof(rra_def_t) * rrd->stat_head->rra_cnt),
SEEK_SET) != 0) {
return -RRD_ERR_SEEK6;
}
if (version >= 3) {
if (rrd_write(rrd_file, rrd->live_head,
sizeof(live_head_t) * 1) != sizeof(live_head_t) * 1) {
return -RRD_ERR_WRITE9;
}
} else {
if (rrd_write(rrd_file, rrd->legacy_last_up,
sizeof(time_t) * 1) != sizeof(time_t) * 1) {
return -RRD_ERR_WRITE9;
}
}
if (rrd_write(rrd_file, rrd->pdp_prep,
sizeof(pdp_prep_t) * rrd->stat_head->ds_cnt)
!= (ssize_t) (sizeof(pdp_prep_t) * rrd->stat_head->ds_cnt)) {
return -RRD_ERR_WRITE10;
}
if (rrd_write(rrd_file, rrd->cdp_prep,
sizeof(cdp_prep_t) * rrd->stat_head->rra_cnt *
rrd->stat_head->ds_cnt)
!= (ssize_t) (sizeof(cdp_prep_t) * rrd->stat_head->rra_cnt *
rrd->stat_head->ds_cnt)) {
return -RRD_ERR_WRITE11;
}
if (rrd_write(rrd_file, rrd->rra_ptr,
sizeof(rra_ptr_t) * rrd->stat_head->rra_cnt)
!= (ssize_t) (sizeof(rra_ptr_t) * rrd->stat_head->rra_cnt)) {
return -RRD_ERR_WRITE12;
}
return 0;
}
#endif