runc/vendor/github.com/cilium/ebpf/prog.go

565 lines
14 KiB
Go

package ebpf
import (
"bytes"
"fmt"
"math"
"strings"
"time"
"unsafe"
"github.com/cilium/ebpf/asm"
"github.com/cilium/ebpf/internal"
"github.com/cilium/ebpf/internal/btf"
"github.com/cilium/ebpf/internal/unix"
"golang.org/x/xerrors"
)
// ErrNotSupported is returned whenever the kernel doesn't support a feature.
var ErrNotSupported = internal.ErrNotSupported
// ProgramID represents the unique ID of an eBPF program
type ProgramID uint32
const (
// Number of bytes to pad the output buffer for BPF_PROG_TEST_RUN.
// This is currently the maximum of spare space allocated for SKB
// and XDP programs, and equal to XDP_PACKET_HEADROOM + NET_IP_ALIGN.
outputPad = 256 + 2
)
// DefaultVerifierLogSize is the default number of bytes allocated for the
// verifier log.
const DefaultVerifierLogSize = 64 * 1024
// ProgramOptions control loading a program into the kernel.
type ProgramOptions struct {
// Controls the detail emitted by the kernel verifier. Set to non-zero
// to enable logging.
LogLevel uint32
// Controls the output buffer size for the verifier. Defaults to
// DefaultVerifierLogSize.
LogSize int
}
// ProgramSpec defines a Program
type ProgramSpec struct {
// Name is passed to the kernel as a debug aid. Must only contain
// alpha numeric and '_' characters.
Name string
Type ProgramType
AttachType AttachType
Instructions asm.Instructions
License string
KernelVersion uint32
// The BTF associated with this program. Changing Instructions
// will most likely invalidate the contained data, and may
// result in errors when attempting to load it into the kernel.
BTF *btf.Program
}
// Copy returns a copy of the spec.
func (ps *ProgramSpec) Copy() *ProgramSpec {
if ps == nil {
return nil
}
cpy := *ps
cpy.Instructions = make(asm.Instructions, len(ps.Instructions))
copy(cpy.Instructions, ps.Instructions)
return &cpy
}
// Program represents BPF program loaded into the kernel.
//
// It is not safe to close a Program which is used by other goroutines.
type Program struct {
// Contains the output of the kernel verifier if enabled,
// otherwise it is empty.
VerifierLog string
fd *internal.FD
name string
abi ProgramABI
}
// NewProgram creates a new Program.
//
// Loading a program for the first time will perform
// feature detection by loading small, temporary programs.
func NewProgram(spec *ProgramSpec) (*Program, error) {
return NewProgramWithOptions(spec, ProgramOptions{})
}
// NewProgramWithOptions creates a new Program.
//
// Loading a program for the first time will perform
// feature detection by loading small, temporary programs.
func NewProgramWithOptions(spec *ProgramSpec, opts ProgramOptions) (*Program, error) {
if spec.BTF == nil {
return newProgramWithBTF(spec, nil, opts)
}
handle, err := btf.NewHandle(btf.ProgramSpec(spec.BTF))
if err != nil && !xerrors.Is(err, btf.ErrNotSupported) {
return nil, xerrors.Errorf("can't load BTF: %w", err)
}
return newProgramWithBTF(spec, handle, opts)
}
func newProgramWithBTF(spec *ProgramSpec, btf *btf.Handle, opts ProgramOptions) (*Program, error) {
attr, err := convertProgramSpec(spec, btf)
if err != nil {
return nil, err
}
logSize := DefaultVerifierLogSize
if opts.LogSize > 0 {
logSize = opts.LogSize
}
var logBuf []byte
if opts.LogLevel > 0 {
logBuf = make([]byte, logSize)
attr.logLevel = opts.LogLevel
attr.logSize = uint32(len(logBuf))
attr.logBuf = internal.NewSlicePointer(logBuf)
}
fd, err := bpfProgLoad(attr)
if err == nil {
prog := newProgram(fd, spec.Name, &ProgramABI{spec.Type})
prog.VerifierLog = internal.CString(logBuf)
return prog, nil
}
logErr := err
if opts.LogLevel == 0 {
// Re-run with the verifier enabled to get better error messages.
logBuf = make([]byte, logSize)
attr.logLevel = 1
attr.logSize = uint32(len(logBuf))
attr.logBuf = internal.NewSlicePointer(logBuf)
_, logErr = bpfProgLoad(attr)
}
err = internal.ErrorWithLog(err, logBuf, logErr)
return nil, xerrors.Errorf("can't load program: %w", err)
}
// NewProgramFromFD creates a program from a raw fd.
//
// You should not use fd after calling this function.
//
// Requires at least Linux 4.11.
func NewProgramFromFD(fd int) (*Program, error) {
if fd < 0 {
return nil, xerrors.New("invalid fd")
}
bpfFd := internal.NewFD(uint32(fd))
name, abi, err := newProgramABIFromFd(bpfFd)
if err != nil {
bpfFd.Forget()
return nil, err
}
return newProgram(bpfFd, name, abi), nil
}
func newProgram(fd *internal.FD, name string, abi *ProgramABI) *Program {
return &Program{
name: name,
fd: fd,
abi: *abi,
}
}
func convertProgramSpec(spec *ProgramSpec, handle *btf.Handle) (*bpfProgLoadAttr, error) {
if len(spec.Instructions) == 0 {
return nil, xerrors.New("Instructions cannot be empty")
}
if len(spec.License) == 0 {
return nil, xerrors.New("License cannot be empty")
}
buf := bytes.NewBuffer(make([]byte, 0, len(spec.Instructions)*asm.InstructionSize))
err := spec.Instructions.Marshal(buf, internal.NativeEndian)
if err != nil {
return nil, err
}
bytecode := buf.Bytes()
insCount := uint32(len(bytecode) / asm.InstructionSize)
attr := &bpfProgLoadAttr{
progType: spec.Type,
expectedAttachType: spec.AttachType,
insCount: insCount,
instructions: internal.NewSlicePointer(bytecode),
license: internal.NewStringPointer(spec.License),
kernelVersion: spec.KernelVersion,
}
if haveObjName() == nil {
attr.progName = newBPFObjName(spec.Name)
}
if handle != nil && spec.BTF != nil {
attr.progBTFFd = uint32(handle.FD())
recSize, bytes, err := btf.ProgramLineInfos(spec.BTF)
if err != nil {
return nil, xerrors.Errorf("can't get BTF line infos: %w", err)
}
attr.lineInfoRecSize = recSize
attr.lineInfoCnt = uint32(uint64(len(bytes)) / uint64(recSize))
attr.lineInfo = internal.NewSlicePointer(bytes)
recSize, bytes, err = btf.ProgramFuncInfos(spec.BTF)
if err != nil {
return nil, xerrors.Errorf("can't get BTF function infos: %w", err)
}
attr.funcInfoRecSize = recSize
attr.funcInfoCnt = uint32(uint64(len(bytes)) / uint64(recSize))
attr.funcInfo = internal.NewSlicePointer(bytes)
}
return attr, nil
}
func (p *Program) String() string {
if p.name != "" {
return fmt.Sprintf("%s(%s)#%v", p.abi.Type, p.name, p.fd)
}
return fmt.Sprintf("%s#%v", p.abi.Type, p.fd)
}
// ABI gets the ABI of the Program
func (p *Program) ABI() ProgramABI {
return p.abi
}
// FD gets the file descriptor of the Program.
//
// It is invalid to call this function after Close has been called.
func (p *Program) FD() int {
fd, err := p.fd.Value()
if err != nil {
// Best effort: -1 is the number most likely to be an
// invalid file descriptor.
return -1
}
return int(fd)
}
// Clone creates a duplicate of the Program.
//
// Closing the duplicate does not affect the original, and vice versa.
//
// Cloning a nil Program returns nil.
func (p *Program) Clone() (*Program, error) {
if p == nil {
return nil, nil
}
dup, err := p.fd.Dup()
if err != nil {
return nil, xerrors.Errorf("can't clone program: %w", err)
}
return newProgram(dup, p.name, &p.abi), nil
}
// Pin persists the Program past the lifetime of the process that created it
//
// This requires bpffs to be mounted above fileName. See http://cilium.readthedocs.io/en/doc-1.0/kubernetes/install/#mounting-the-bpf-fs-optional
func (p *Program) Pin(fileName string) error {
if err := bpfPinObject(fileName, p.fd); err != nil {
return xerrors.Errorf("can't pin program: %w", err)
}
return nil
}
// Close unloads the program from the kernel.
func (p *Program) Close() error {
if p == nil {
return nil
}
return p.fd.Close()
}
// Test runs the Program in the kernel with the given input and returns the
// value returned by the eBPF program. outLen may be zero.
//
// Note: the kernel expects at least 14 bytes input for an ethernet header for
// XDP and SKB programs.
//
// This function requires at least Linux 4.12.
func (p *Program) Test(in []byte) (uint32, []byte, error) {
ret, out, _, err := p.testRun(in, 1, nil)
if err != nil {
return ret, nil, xerrors.Errorf("can't test program: %w", err)
}
return ret, out, nil
}
// Benchmark runs the Program with the given input for a number of times
// and returns the time taken per iteration.
//
// Returns the result of the last execution of the program and the time per
// run or an error. reset is called whenever the benchmark syscall is
// interrupted, and should be set to testing.B.ResetTimer or similar.
//
// Note: profiling a call to this function will skew it's results, see
// https://github.com/cilium/ebpf/issues/24
//
// This function requires at least Linux 4.12.
func (p *Program) Benchmark(in []byte, repeat int, reset func()) (uint32, time.Duration, error) {
ret, _, total, err := p.testRun(in, repeat, reset)
if err != nil {
return ret, total, xerrors.Errorf("can't benchmark program: %w", err)
}
return ret, total, nil
}
var haveProgTestRun = internal.FeatureTest("BPF_PROG_TEST_RUN", "4.12", func() bool {
prog, err := NewProgram(&ProgramSpec{
Type: SocketFilter,
Instructions: asm.Instructions{
asm.LoadImm(asm.R0, 0, asm.DWord),
asm.Return(),
},
License: "MIT",
})
if err != nil {
// This may be because we lack sufficient permissions, etc.
return false
}
defer prog.Close()
fd, err := prog.fd.Value()
if err != nil {
return false
}
// Programs require at least 14 bytes input
in := make([]byte, 14)
attr := bpfProgTestRunAttr{
fd: fd,
dataSizeIn: uint32(len(in)),
dataIn: internal.NewSlicePointer(in),
}
_, err = internal.BPF(_ProgTestRun, unsafe.Pointer(&attr), unsafe.Sizeof(attr))
// Check for EINVAL specifically, rather than err != nil since we
// otherwise misdetect due to insufficient permissions.
return !xerrors.Is(err, unix.EINVAL)
})
func (p *Program) testRun(in []byte, repeat int, reset func()) (uint32, []byte, time.Duration, error) {
if uint(repeat) > math.MaxUint32 {
return 0, nil, 0, fmt.Errorf("repeat is too high")
}
if len(in) == 0 {
return 0, nil, 0, fmt.Errorf("missing input")
}
if uint(len(in)) > math.MaxUint32 {
return 0, nil, 0, fmt.Errorf("input is too long")
}
if err := haveProgTestRun(); err != nil {
return 0, nil, 0, err
}
// Older kernels ignore the dataSizeOut argument when copying to user space.
// Combined with things like bpf_xdp_adjust_head() we don't really know what the final
// size will be. Hence we allocate an output buffer which we hope will always be large
// enough, and panic if the kernel wrote past the end of the allocation.
// See https://patchwork.ozlabs.org/cover/1006822/
out := make([]byte, len(in)+outputPad)
fd, err := p.fd.Value()
if err != nil {
return 0, nil, 0, err
}
attr := bpfProgTestRunAttr{
fd: fd,
dataSizeIn: uint32(len(in)),
dataSizeOut: uint32(len(out)),
dataIn: internal.NewSlicePointer(in),
dataOut: internal.NewSlicePointer(out),
repeat: uint32(repeat),
}
for {
_, err = internal.BPF(_ProgTestRun, unsafe.Pointer(&attr), unsafe.Sizeof(attr))
if err == nil {
break
}
if xerrors.Is(err, unix.EINTR) {
if reset != nil {
reset()
}
continue
}
return 0, nil, 0, xerrors.Errorf("can't run test: %w", err)
}
if int(attr.dataSizeOut) > cap(out) {
// Houston, we have a problem. The program created more data than we allocated,
// and the kernel wrote past the end of our buffer.
panic("kernel wrote past end of output buffer")
}
out = out[:int(attr.dataSizeOut)]
total := time.Duration(attr.duration) * time.Nanosecond
return attr.retval, out, total, nil
}
func unmarshalProgram(buf []byte) (*Program, error) {
if len(buf) != 4 {
return nil, xerrors.New("program id requires 4 byte value")
}
// Looking up an entry in a nested map or prog array returns an id,
// not an fd.
id := internal.NativeEndian.Uint32(buf)
return NewProgramFromID(ProgramID(id))
}
// MarshalBinary implements BinaryMarshaler.
func (p *Program) MarshalBinary() ([]byte, error) {
value, err := p.fd.Value()
if err != nil {
return nil, err
}
buf := make([]byte, 4)
internal.NativeEndian.PutUint32(buf, value)
return buf, nil
}
// Attach a Program to a container object fd
func (p *Program) Attach(fd int, typ AttachType, flags AttachFlags) error {
if fd < 0 {
return xerrors.New("invalid fd")
}
pfd, err := p.fd.Value()
if err != nil {
return err
}
attr := bpfProgAlterAttr{
targetFd: uint32(fd),
attachBpfFd: pfd,
attachType: uint32(typ),
attachFlags: uint32(flags),
}
return bpfProgAlter(_ProgAttach, &attr)
}
// Detach a Program from a container object fd
func (p *Program) Detach(fd int, typ AttachType, flags AttachFlags) error {
if fd < 0 {
return xerrors.New("invalid fd")
}
pfd, err := p.fd.Value()
if err != nil {
return err
}
attr := bpfProgAlterAttr{
targetFd: uint32(fd),
attachBpfFd: pfd,
attachType: uint32(typ),
attachFlags: uint32(flags),
}
return bpfProgAlter(_ProgDetach, &attr)
}
// LoadPinnedProgram loads a Program from a BPF file.
//
// Requires at least Linux 4.11.
func LoadPinnedProgram(fileName string) (*Program, error) {
fd, err := bpfGetObject(fileName)
if err != nil {
return nil, err
}
name, abi, err := newProgramABIFromFd(fd)
if err != nil {
_ = fd.Close()
return nil, xerrors.Errorf("can't get ABI for %s: %w", fileName, err)
}
return newProgram(fd, name, abi), nil
}
// SanitizeName replaces all invalid characters in name.
//
// Use this to automatically generate valid names for maps and
// programs at run time.
//
// Passing a negative value for replacement will delete characters
// instead of replacing them.
func SanitizeName(name string, replacement rune) string {
return strings.Map(func(char rune) rune {
if invalidBPFObjNameChar(char) {
return replacement
}
return char
}, name)
}
// ProgramGetNextID returns the ID of the next eBPF program.
//
// Returns ErrNotExist, if there is no next eBPF program.
func ProgramGetNextID(startID ProgramID) (ProgramID, error) {
id, err := objGetNextID(_ProgGetNextID, uint32(startID))
return ProgramID(id), err
}
// NewProgramFromID returns the program for a given id.
//
// Returns ErrNotExist, if there is no eBPF program with the given id.
func NewProgramFromID(id ProgramID) (*Program, error) {
fd, err := bpfObjGetFDByID(_ProgGetFDByID, uint32(id))
if err != nil {
return nil, err
}
name, abi, err := newProgramABIFromFd(fd)
if err != nil {
_ = fd.Close()
return nil, err
}
return newProgram(fd, name, abi), nil
}
// ID returns the systemwide unique ID of the program.
func (p *Program) ID() (ProgramID, error) {
info, err := bpfGetProgInfoByFD(p.fd)
if err != nil {
return ProgramID(0), err
}
return ProgramID(info.id), nil
}