runc/namespaces/exec.go

203 lines
5.7 KiB
Go

// +build linux
package namespaces
import (
"io"
"os"
"os/exec"
"syscall"
"github.com/docker/libcontainer"
"github.com/docker/libcontainer/cgroups"
"github.com/docker/libcontainer/cgroups/fs"
"github.com/docker/libcontainer/cgroups/systemd"
"github.com/docker/libcontainer/network"
"github.com/docker/libcontainer/syncpipe"
"github.com/docker/libcontainer/system"
)
// TODO(vishh): This is part of the libcontainer API and it does much more than just namespaces related work.
// Move this to libcontainer package.
// Exec performs setup outside of a namespace so that a container can be
// executed. Exec is a high level function for working with container namespaces.
func Exec(container *libcontainer.Config, stdin io.Reader, stdout, stderr io.Writer, console string, rootfs, dataPath string, args []string, createCommand CreateCommand, startCallback func()) (int, error) {
var (
err error
)
// create a pipe so that we can syncronize with the namespaced process and
// pass the veth name to the child
syncPipe, err := syncpipe.NewSyncPipe()
if err != nil {
return -1, err
}
defer syncPipe.Close()
command := createCommand(container, console, rootfs, dataPath, os.Args[0], syncPipe.Child(), args)
// Note: these are only used in non-tty mode
// if there is a tty for the container it will be opened within the namespace and the
// fds will be duped to stdin, stdiout, and stderr
command.Stdin = stdin
command.Stdout = stdout
command.Stderr = stderr
if err := command.Start(); err != nil {
return -1, err
}
// Now we passed the pipe to the child, close our side
syncPipe.CloseChild()
started, err := system.GetProcessStartTime(command.Process.Pid)
if err != nil {
return -1, err
}
// Do this before syncing with child so that no children
// can escape the cgroup
cgroupRef, err := SetupCgroups(container, command.Process.Pid)
if err != nil {
command.Process.Kill()
command.Wait()
return -1, err
}
if cgroupRef != nil {
defer cgroupRef.Cleanup()
}
cgroupPaths, err := cgroupRef.Paths()
if err != nil {
command.Process.Kill()
command.Wait()
return -1, err
}
var networkState network.NetworkState
if err := InitializeNetworking(container, command.Process.Pid, syncPipe, &networkState); err != nil {
command.Process.Kill()
command.Wait()
return -1, err
}
state := &libcontainer.State{
InitPid: command.Process.Pid,
InitStartTime: started,
NetworkState: networkState,
CgroupPaths: cgroupPaths,
}
if err := libcontainer.SaveState(dataPath, state); err != nil {
command.Process.Kill()
command.Wait()
return -1, err
}
defer libcontainer.DeleteState(dataPath)
// Sync with child
if err := syncPipe.ReadFromChild(); err != nil {
command.Process.Kill()
command.Wait()
return -1, err
}
if startCallback != nil {
startCallback()
}
if err := command.Wait(); err != nil {
if _, ok := err.(*exec.ExitError); !ok {
return -1, err
}
}
return command.ProcessState.Sys().(syscall.WaitStatus).ExitStatus(), nil
}
// DefaultCreateCommand will return an exec.Cmd with the Cloneflags set to the proper namespaces
// defined on the container's configuration and use the current binary as the init with the
// args provided
//
// console: the /dev/console to setup inside the container
// init: the program executed inside the namespaces
// root: the path to the container json file and information
// pipe: sync pipe to synchronize the parent and child processes
// args: the arguments to pass to the container to run as the user's program
func DefaultCreateCommand(container *libcontainer.Config, console, rootfs, dataPath, init string, pipe *os.File, args []string) *exec.Cmd {
// get our binary name from arg0 so we can always reexec ourself
env := []string{
"console=" + console,
"pipe=3",
"data_path=" + dataPath,
}
/*
TODO: move user and wd into env
if user != "" {
env = append(env, "user="+user)
}
if workingDir != "" {
env = append(env, "wd="+workingDir)
}
*/
command := exec.Command(init, append([]string{"init", "--"}, args...)...)
// make sure the process is executed inside the context of the rootfs
command.Dir = rootfs
command.Env = append(os.Environ(), env...)
if command.SysProcAttr == nil {
command.SysProcAttr = &syscall.SysProcAttr{}
}
command.SysProcAttr.Cloneflags = uintptr(GetNamespaceFlags(container.Namespaces))
command.SysProcAttr.Pdeathsig = syscall.SIGKILL
command.ExtraFiles = []*os.File{pipe}
return command
}
// SetupCgroups applies the cgroup restrictions to the process running in the container based
// on the container's configuration
func SetupCgroups(container *libcontainer.Config, nspid int) (cgroups.ActiveCgroup, error) {
if container.Cgroups != nil {
c := container.Cgroups
if systemd.UseSystemd() {
return systemd.Apply(c, nspid)
}
return fs.Apply(c, nspid)
}
return nil, nil
}
// InitializeNetworking creates the container's network stack outside of the namespace and moves
// interfaces into the container's net namespaces if necessary
func InitializeNetworking(container *libcontainer.Config, nspid int, pipe *syncpipe.SyncPipe, networkState *network.NetworkState) error {
for _, config := range container.Networks {
strategy, err := network.GetStrategy(config.Type)
if err != nil {
return err
}
if err := strategy.Create((*network.Network)(config), nspid, networkState); err != nil {
return err
}
}
return pipe.SendToChild(networkState)
}
// GetNamespaceFlags parses the container's Namespaces options to set the correct
// flags on clone, unshare, and setns
func GetNamespaceFlags(namespaces map[string]bool) (flag int) {
for key, enabled := range namespaces {
if enabled {
if ns := GetNamespace(key); ns != nil {
flag |= ns.Value
}
}
}
return flag
}