98c2593cdc
Docker-DCO-1.1-Signed-off-by: Vishnu Kannan <vishnuk@google.com> (github: vishh) |
||
---|---|---|
apparmor | ||
cgroups | ||
console | ||
devices | ||
label | ||
mount | ||
namespaces | ||
netlink | ||
network | ||
nsinit | ||
sample_configs | ||
security | ||
selinux | ||
utils | ||
.travis.yml | ||
CONTRIBUTORS_GUIDE.md | ||
LICENSE | ||
MAINTAINERS | ||
MAINTAINERS_GUIDE.md | ||
NOTICE | ||
PRINCIPLES.md | ||
README.md | ||
ROADMAP.md | ||
api.go | ||
container.go | ||
container_test.go | ||
state.go | ||
types.go |
README.md
libcontainer - reference implementation for containers
Note on API changes:
Please bear with us while we work on making the libcontainer API stable and something that we can support long term. We are currently discussing the API with the community, therefore, if you currently depend on libcontainer please pin your dependency at a specific tag or commit id. Please join the discussion and help shape the API.
Background
libcontainer specifies configuration options for what a container is. It provides a native Go implementation for using Linux namespaces with no external dependencies. libcontainer provides many convenience functions for working with namespaces, networking, and management.
Container
A container is a self contained directory that is able to run one or more processes without
affecting the host system. The directory is usually a full system tree. Inside the directory
a container.json
file is placed with the runtime configuration for how the processes
should be contained and run. Environment, networking, and different capabilities for the
process are specified in this file. The configuration is used for each process executed inside the container.
See the sample_configs
folder for examples of what the container configuration should look like.
Using this configuration and the current directory holding the rootfs for a process, one can use libcontainer to exec the container. During the life of the container, a state.json
file
is written to the current directory with the pid and start time of the container's PID1. A client can use this pid to wait, kill, or perform other operation with the container. If a user tries to run a new process inside an existing container with a live namespace, the namespace will be joined by the new process.
You may also specify an alternate root place where the container.json
file is read and where the state.json
file will be saved.
nsinit
nsinit
is a cli application used as the reference implementation of libcontainer. It is able to
spawn or join new containers giving the current directory. To use nsinit
cd into a Linux
rootfs and copy a container.json
file into the directory with your specified configuration.
To execute /bin/bash
in the current directory as a container just run:
nsinit exec /bin/bash
If you wish to spawn another process inside the container while your current bash session is running just run the exact same command again to get another bash shell or change the command. If the original process dies, PID 1, all other processes spawned inside the container will also be killed and the namespace will be removed.
Future
See the roadmap.
Copyright and license
Code and documentation copyright 2014 Docker, inc. Code released under the Apache 2.0 license. Docs released under Creative commons.
Hacking on libcontainer
First of all, please familiarise yourself with the libcontainer Principles.
If you're a contributor or aspiring contributor, you should read the Contributors' Guide.
If you're a maintainer or aspiring maintainer, you should read the Maintainers' Guide and "How can I become a maintainer?" in the Contributors' Guide.