runc/libcontainer/nsenter/nsexec.c

981 lines
27 KiB
C

#define _GNU_SOURCE
#include <endian.h>
#include <errno.h>
#include <fcntl.h>
#include <grp.h>
#include <sched.h>
#include <setjmp.h>
#include <signal.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/prctl.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <linux/limits.h>
#include <linux/netlink.h>
#include <linux/types.h>
/* Get all of the CLONE_NEW* flags. */
#include "namespace.h"
/* Synchronisation values. */
enum sync_t {
SYNC_USERMAP_PLS = 0x40, /* Request parent to map our users. */
SYNC_USERMAP_ACK = 0x41, /* Mapping finished by the parent. */
SYNC_RECVPID_PLS = 0x42, /* Tell parent we're sending the PID. */
SYNC_RECVPID_ACK = 0x43, /* PID was correctly received by parent. */
SYNC_GRANDCHILD = 0x44, /* The grandchild is ready to run. */
SYNC_CHILD_READY = 0x45, /* The child or grandchild is ready to return. */
/* XXX: This doesn't help with segfaults and other such issues. */
SYNC_ERR = 0xFF, /* Fatal error, no turning back. The error code follows. */
};
/* longjmp() arguments. */
#define JUMP_PARENT 0x00
#define JUMP_CHILD 0xA0
#define JUMP_INIT 0xA1
/* JSON buffer. */
#define JSON_MAX 4096
/* Assume the stack grows down, so arguments should be above it. */
struct clone_t {
/*
* Reserve some space for clone() to locate arguments
* and retcode in this place
*/
char stack[4096] __attribute__ ((aligned(16)));
char stack_ptr[0];
/* There's two children. This is used to execute the different code. */
jmp_buf *env;
int jmpval;
};
struct nlconfig_t {
char *data;
/* Process settings. */
uint32_t cloneflags;
char *oom_score_adj;
size_t oom_score_adj_len;
/* User namespace settings. */
char *uidmap;
size_t uidmap_len;
char *gidmap;
size_t gidmap_len;
char *namespaces;
size_t namespaces_len;
uint8_t is_setgroup;
/* Rootless container settings. */
uint8_t is_rootless;
char *uidmappath;
size_t uidmappath_len;
char *gidmappath;
size_t gidmappath_len;
};
/*
* List of netlink message types sent to us as part of bootstrapping the init.
* These constants are defined in libcontainer/message_linux.go.
*/
#define INIT_MSG 62000
#define CLONE_FLAGS_ATTR 27281
#define NS_PATHS_ATTR 27282
#define UIDMAP_ATTR 27283
#define GIDMAP_ATTR 27284
#define SETGROUP_ATTR 27285
#define OOM_SCORE_ADJ_ATTR 27286
#define ROOTLESS_ATTR 27287
#define UIDMAPPATH_ATTR 27288
#define GIDMAPPATH_ATTR 27289
/*
* Use the raw syscall for versions of glibc which don't include a function for
* it, namely (glibc 2.12).
*/
#if __GLIBC__ == 2 && __GLIBC_MINOR__ < 14
# define _GNU_SOURCE
# include "syscall.h"
# if !defined(SYS_setns) && defined(__NR_setns)
# define SYS_setns __NR_setns
# endif
#ifndef SYS_setns
# error "setns(2) syscall not supported by glibc version"
#endif
int setns(int fd, int nstype)
{
return syscall(SYS_setns, fd, nstype);
}
#endif
/* XXX: This is ugly. */
static int syncfd = -1;
/* TODO(cyphar): Fix this so it correctly deals with syncT. */
#define bail(fmt, ...) \
do { \
int ret = __COUNTER__ + 1; \
fprintf(stderr, "nsenter: " fmt ": %m\n", ##__VA_ARGS__); \
if (syncfd >= 0) { \
enum sync_t s = SYNC_ERR; \
if (write(syncfd, &s, sizeof(s)) != sizeof(s)) \
fprintf(stderr, "nsenter: failed: write(s)"); \
if (write(syncfd, &ret, sizeof(ret)) != sizeof(ret)) \
fprintf(stderr, "nsenter: failed: write(ret)"); \
} \
exit(ret); \
} while(0)
static int write_file(char *data, size_t data_len, char *pathfmt, ...)
{
int fd, len, ret = 0;
char path[PATH_MAX];
va_list ap;
va_start(ap, pathfmt);
len = vsnprintf(path, PATH_MAX, pathfmt, ap);
va_end(ap);
if (len < 0)
return -1;
fd = open(path, O_RDWR);
if (fd < 0) {
return -1;
}
len = write(fd, data, data_len);
if (len != data_len) {
ret = -1;
goto out;
}
out:
close(fd);
return ret;
}
enum policy_t {
SETGROUPS_DEFAULT = 0,
SETGROUPS_ALLOW,
SETGROUPS_DENY,
};
/* This *must* be called before we touch gid_map. */
static void update_setgroups(int pid, enum policy_t setgroup)
{
char *policy;
switch (setgroup) {
case SETGROUPS_ALLOW:
policy = "allow";
break;
case SETGROUPS_DENY:
policy = "deny";
break;
case SETGROUPS_DEFAULT:
default:
/* Nothing to do. */
return;
}
if (write_file(policy, strlen(policy), "/proc/%d/setgroups", pid) < 0) {
/*
* If the kernel is too old to support /proc/pid/setgroups,
* open(2) or write(2) will return ENOENT. This is fine.
*/
if (errno != ENOENT)
bail("failed to write '%s' to /proc/%d/setgroups", policy, pid);
}
}
static int try_mapping_tool(const char *app, int pid, char *map, size_t map_len)
{
int child;
/*
* If @app is NULL, execve will segfault. Just check it here and bail (if
* we're in this path, the caller is already getting desparate and there
* isn't a backup to this failing). This usually would be a configuration
* or programming issue.
*/
if (!app)
bail("mapping tool not present");
child = fork();
if (child < 0)
bail("failed to fork");
if (!child) {
#define MAX_ARGV 20
char *argv[MAX_ARGV];
char *envp[] = { NULL };
char pid_fmt[16];
int argc = 0;
char *next;
snprintf(pid_fmt, 16, "%d", pid);
argv[argc++] = (char *)app;
argv[argc++] = pid_fmt;
/*
* Convert the map string into a list of argument that
* newuidmap/newgidmap can understand.
*/
while (argc < MAX_ARGV) {
if (*map == '\0') {
argv[argc++] = NULL;
break;
}
argv[argc++] = map;
next = strpbrk(map, "\n ");
if (next == NULL)
break;
*next++ = '\0';
map = next + strspn(next, "\n ");
}
execve(app, argv, envp);
bail("failed to execv");
} else {
int status;
while (true) {
if (waitpid(child, &status, 0) < 0) {
if (errno == EINTR)
continue;
bail("failed to waitpid");
}
if (WIFEXITED(status) || WIFSIGNALED(status))
return WEXITSTATUS(status);
}
}
return -1;
}
static void update_uidmap(const char *path, int pid, char *map, size_t map_len)
{
if (map == NULL || map_len <= 0)
return;
if (write_file(map, map_len, "/proc/%d/uid_map", pid) < 0) {
if (errno != EPERM)
bail("failed to update /proc/%d/uid_map", pid);
if (try_mapping_tool(path, pid, map, map_len))
bail("failed to use newuid map on %d", pid);
}
}
static void update_gidmap(const char *path, int pid, char *map, size_t map_len)
{
if (map == NULL || map_len <= 0)
return;
if (write_file(map, map_len, "/proc/%d/gid_map", pid) < 0) {
if (errno != EPERM)
bail("failed to update /proc/%d/gid_map", pid);
if (try_mapping_tool(path, pid, map, map_len))
bail("failed to use newgid map on %d", pid);
}
}
static void update_oom_score_adj(char *data, size_t len)
{
if (data == NULL || len <= 0)
return;
if (write_file(data, len, "/proc/self/oom_score_adj") < 0)
bail("failed to update /proc/self/oom_score_adj");
}
/* A dummy function that just jumps to the given jumpval. */
static int child_func(void *arg) __attribute__ ((noinline));
static int child_func(void *arg)
{
struct clone_t *ca = (struct clone_t *)arg;
longjmp(*ca->env, ca->jmpval);
}
static int clone_parent(jmp_buf *env, int jmpval) __attribute__ ((noinline));
static int clone_parent(jmp_buf *env, int jmpval)
{
struct clone_t ca = {
.env = env,
.jmpval = jmpval,
};
return clone(child_func, ca.stack_ptr, CLONE_PARENT | SIGCHLD, &ca);
}
/*
* Gets the init pipe fd from the environment, which is used to read the
* bootstrap data and tell the parent what the new pid is after we finish
* setting up the environment.
*/
static int initpipe(void)
{
int pipenum;
char *initpipe, *endptr;
initpipe = getenv("_LIBCONTAINER_INITPIPE");
if (initpipe == NULL || *initpipe == '\0')
return -1;
pipenum = strtol(initpipe, &endptr, 10);
if (*endptr != '\0')
bail("unable to parse _LIBCONTAINER_INITPIPE");
return pipenum;
}
/* Returns the clone(2) flag for a namespace, given the name of a namespace. */
static int nsflag(char *name)
{
if (!strcmp(name, "cgroup"))
return CLONE_NEWCGROUP;
else if (!strcmp(name, "ipc"))
return CLONE_NEWIPC;
else if (!strcmp(name, "mnt"))
return CLONE_NEWNS;
else if (!strcmp(name, "net"))
return CLONE_NEWNET;
else if (!strcmp(name, "pid"))
return CLONE_NEWPID;
else if (!strcmp(name, "user"))
return CLONE_NEWUSER;
else if (!strcmp(name, "uts"))
return CLONE_NEWUTS;
/* If we don't recognise a name, fallback to 0. */
return 0;
}
static uint32_t readint32(char *buf)
{
return *(uint32_t *) buf;
}
static uint8_t readint8(char *buf)
{
return *(uint8_t *) buf;
}
static void nl_parse(int fd, struct nlconfig_t *config)
{
size_t len, size;
struct nlmsghdr hdr;
char *data, *current;
/* Retrieve the netlink header. */
len = read(fd, &hdr, NLMSG_HDRLEN);
if (len != NLMSG_HDRLEN)
bail("invalid netlink header length %zu", len);
if (hdr.nlmsg_type == NLMSG_ERROR)
bail("failed to read netlink message");
if (hdr.nlmsg_type != INIT_MSG)
bail("unexpected msg type %d", hdr.nlmsg_type);
/* Retrieve data. */
size = NLMSG_PAYLOAD(&hdr, 0);
current = data = malloc(size);
if (!data)
bail("failed to allocate %zu bytes of memory for nl_payload", size);
len = read(fd, data, size);
if (len != size)
bail("failed to read netlink payload, %zu != %zu", len, size);
/* Parse the netlink payload. */
config->data = data;
while (current < data + size) {
struct nlattr *nlattr = (struct nlattr *)current;
size_t payload_len = nlattr->nla_len - NLA_HDRLEN;
/* Advance to payload. */
current += NLA_HDRLEN;
/* Handle payload. */
switch (nlattr->nla_type) {
case CLONE_FLAGS_ATTR:
config->cloneflags = readint32(current);
break;
case ROOTLESS_ATTR:
config->is_rootless = readint8(current);
break;
case OOM_SCORE_ADJ_ATTR:
config->oom_score_adj = current;
config->oom_score_adj_len = payload_len;
break;
case NS_PATHS_ATTR:
config->namespaces = current;
config->namespaces_len = payload_len;
break;
case UIDMAP_ATTR:
config->uidmap = current;
config->uidmap_len = payload_len;
break;
case GIDMAP_ATTR:
config->gidmap = current;
config->gidmap_len = payload_len;
break;
case UIDMAPPATH_ATTR:
config->uidmappath = current;
config->uidmappath_len = payload_len;
break;
case GIDMAPPATH_ATTR:
config->gidmappath = current;
config->gidmappath_len = payload_len;
break;
case SETGROUP_ATTR:
config->is_setgroup = readint8(current);
break;
default:
bail("unknown netlink message type %d", nlattr->nla_type);
}
current += NLA_ALIGN(payload_len);
}
}
void nl_free(struct nlconfig_t *config)
{
free(config->data);
}
void join_namespaces(char *nslist)
{
int num = 0, i;
char *saveptr = NULL;
char *namespace = strtok_r(nslist, ",", &saveptr);
struct namespace_t {
int fd;
int ns;
char type[PATH_MAX];
char path[PATH_MAX];
} *namespaces = NULL;
if (!namespace || !strlen(namespace) || !strlen(nslist))
bail("ns paths are empty");
/*
* We have to open the file descriptors first, since after
* we join the mnt namespace we might no longer be able to
* access the paths.
*/
do {
int fd;
char *path;
struct namespace_t *ns;
/* Resize the namespace array. */
namespaces = realloc(namespaces, ++num * sizeof(struct namespace_t));
if (!namespaces)
bail("failed to reallocate namespace array");
ns = &namespaces[num - 1];
/* Split 'ns:path'. */
path = strstr(namespace, ":");
if (!path)
bail("failed to parse %s", namespace);
*path++ = '\0';
fd = open(path, O_RDONLY);
if (fd < 0)
bail("failed to open %s", path);
ns->fd = fd;
ns->ns = nsflag(namespace);
strncpy(ns->path, path, PATH_MAX - 1);
ns->path[PATH_MAX - 1] = '\0';
} while ((namespace = strtok_r(NULL, ",", &saveptr)) != NULL);
/*
* The ordering in which we join namespaces is important. We should
* always join the user namespace *first*. This is all guaranteed
* from the container_linux.go side of this, so we're just going to
* follow the order given to us.
*/
for (i = 0; i < num; i++) {
struct namespace_t ns = namespaces[i];
if (setns(ns.fd, ns.ns) < 0)
bail("failed to setns to %s", ns.path);
close(ns.fd);
}
free(namespaces);
}
void nsexec(void)
{
int pipenum;
jmp_buf env;
int sync_child_pipe[2], sync_grandchild_pipe[2];
struct nlconfig_t config = { 0 };
/*
* If we don't have an init pipe, just return to the go routine.
* We'll only get an init pipe for start or exec.
*/
pipenum = initpipe();
if (pipenum == -1)
return;
/* Parse all of the netlink configuration. */
nl_parse(pipenum, &config);
/* Set oom_score_adj. This has to be done before !dumpable because
* /proc/self/oom_score_adj is not writeable unless you're an privileged
* user (if !dumpable is set). All children inherit their parent's
* oom_score_adj value on fork(2) so this will always be propagated
* properly.
*/
update_oom_score_adj(config.oom_score_adj, config.oom_score_adj_len);
/*
* Make the process non-dumpable, to avoid various race conditions that
* could cause processes in namespaces we're joining to access host
* resources (or potentially execute code).
*
* However, if the number of namespaces we are joining is 0, we are not
* going to be switching to a different security context. Thus setting
* ourselves to be non-dumpable only breaks things (like rootless
* containers), which is the recommendation from the kernel folks.
*/
if (config.namespaces) {
if (prctl(PR_SET_DUMPABLE, 0, 0, 0, 0) < 0)
bail("failed to set process as non-dumpable");
}
/* Pipe so we can tell the child when we've finished setting up. */
if (socketpair(AF_LOCAL, SOCK_STREAM, 0, sync_child_pipe) < 0)
bail("failed to setup sync pipe between parent and child");
/*
* We need a new socketpair to sync with grandchild so we don't have
* race condition with child.
*/
if (socketpair(AF_LOCAL, SOCK_STREAM, 0, sync_grandchild_pipe) < 0)
bail("failed to setup sync pipe between parent and grandchild");
/* TODO: Currently we aren't dealing with child deaths properly. */
/*
* Okay, so this is quite annoying.
*
* In order for this unsharing code to be more extensible we need to split
* up unshare(CLONE_NEWUSER) and clone() in various ways. The ideal case
* would be if we did clone(CLONE_NEWUSER) and the other namespaces
* separately, but because of SELinux issues we cannot really do that. But
* we cannot just dump the namespace flags into clone(...) because several
* usecases (such as rootless containers) require more granularity around
* the namespace setup. In addition, some older kernels had issues where
* CLONE_NEWUSER wasn't handled before other namespaces (but we cannot
* handle this while also dealing with SELinux so we choose SELinux support
* over broken kernel support).
*
* However, if we unshare(2) the user namespace *before* we clone(2), then
* all hell breaks loose.
*
* The parent no longer has permissions to do many things (unshare(2) drops
* all capabilities in your old namespace), and the container cannot be set
* up to have more than one {uid,gid} mapping. This is obviously less than
* ideal. In order to fix this, we have to first clone(2) and then unshare.
*
* Unfortunately, it's not as simple as that. We have to fork to enter the
* PID namespace (the PID namespace only applies to children). Since we'll
* have to double-fork, this clone_parent() call won't be able to get the
* PID of the _actual_ init process (without doing more synchronisation than
* I can deal with at the moment). So we'll just get the parent to send it
* for us, the only job of this process is to update
* /proc/pid/{setgroups,uid_map,gid_map}.
*
* And as a result of the above, we also need to setns(2) in the first child
* because if we join a PID namespace in the topmost parent then our child
* will be in that namespace (and it will not be able to give us a PID value
* that makes sense without resorting to sending things with cmsg).
*
* This also deals with an older issue caused by dumping cloneflags into
* clone(2): On old kernels, CLONE_PARENT didn't work with CLONE_NEWPID, so
* we have to unshare(2) before clone(2) in order to do this. This was fixed
* in upstream commit 1f7f4dde5c945f41a7abc2285be43d918029ecc5, and was
* introduced by 40a0d32d1eaffe6aac7324ca92604b6b3977eb0e. As far as we're
* aware, the last mainline kernel which had this bug was Linux 3.12.
* However, we cannot comment on which kernels the broken patch was
* backported to.
*
* -- Aleksa "what has my life come to?" Sarai
*/
switch (setjmp(env)) {
/*
* Stage 0: We're in the parent. Our job is just to create a new child
* (stage 1: JUMP_CHILD) process and write its uid_map and
* gid_map. That process will go on to create a new process, then
* it will send us its PID which we will send to the bootstrap
* process.
*/
case JUMP_PARENT:{
int len;
pid_t child, first_child = -1;
char buf[JSON_MAX];
bool ready = false;
/* For debugging. */
prctl(PR_SET_NAME, (unsigned long)"runc:[0:PARENT]", 0, 0, 0);
/* Start the process of getting a container. */
child = clone_parent(&env, JUMP_CHILD);
if (child < 0)
bail("unable to fork: child_func");
/*
* State machine for synchronisation with the children.
*
* Father only return when both child and grandchild are
* ready, so we can receive all possible error codes
* generated by children.
*/
while (!ready) {
enum sync_t s;
int ret;
syncfd = sync_child_pipe[1];
close(sync_child_pipe[0]);
if (read(syncfd, &s, sizeof(s)) != sizeof(s))
bail("failed to sync with child: next state");
switch (s) {
case SYNC_ERR:
/* We have to mirror the error code of the child. */
if (read(syncfd, &ret, sizeof(ret)) != sizeof(ret))
bail("failed to sync with child: read(error code)");
exit(ret);
case SYNC_USERMAP_PLS:
/*
* Enable setgroups(2) if we've been asked to. But we also
* have to explicitly disable setgroups(2) if we're
* creating a rootless container for single-entry mapping.
* i.e. config.is_setgroup == false.
* (this is required since Linux 3.19).
*
* For rootless multi-entry mapping, config.is_setgroup shall be true and
* newuidmap/newgidmap shall be used.
*/
if (config.is_rootless && !config.is_setgroup)
update_setgroups(child, SETGROUPS_DENY);
/* Set up mappings. */
update_uidmap(config.uidmappath, child, config.uidmap, config.uidmap_len);
update_gidmap(config.gidmappath, child, config.gidmap, config.gidmap_len);
s = SYNC_USERMAP_ACK;
if (write(syncfd, &s, sizeof(s)) != sizeof(s)) {
kill(child, SIGKILL);
bail("failed to sync with child: write(SYNC_USERMAP_ACK)");
}
break;
case SYNC_RECVPID_PLS:{
first_child = child;
/* Get the init_func pid. */
if (read(syncfd, &child, sizeof(child)) != sizeof(child)) {
kill(first_child, SIGKILL);
bail("failed to sync with child: read(childpid)");
}
/* Send ACK. */
s = SYNC_RECVPID_ACK;
if (write(syncfd, &s, sizeof(s)) != sizeof(s)) {
kill(first_child, SIGKILL);
kill(child, SIGKILL);
bail("failed to sync with child: write(SYNC_RECVPID_ACK)");
}
}
break;
case SYNC_CHILD_READY:
ready = true;
break;
default:
bail("unexpected sync value: %u", s);
}
}
/* Now sync with grandchild. */
ready = false;
while (!ready) {
enum sync_t s;
int ret;
syncfd = sync_grandchild_pipe[1];
close(sync_grandchild_pipe[0]);
s = SYNC_GRANDCHILD;
if (write(syncfd, &s, sizeof(s)) != sizeof(s)) {
kill(child, SIGKILL);
bail("failed to sync with child: write(SYNC_GRANDCHILD)");
}
if (read(syncfd, &s, sizeof(s)) != sizeof(s))
bail("failed to sync with child: next state");
switch (s) {
case SYNC_ERR:
/* We have to mirror the error code of the child. */
if (read(syncfd, &ret, sizeof(ret)) != sizeof(ret))
bail("failed to sync with child: read(error code)");
exit(ret);
case SYNC_CHILD_READY:
ready = true;
break;
default:
bail("unexpected sync value: %u", s);
}
}
/*
* Send the init_func pid and the pid of the first child back to our parent.
*
* We need to send both back because we can't reap the first child we created (CLONE_PARENT).
* It becomes the responsibility of our parent to reap the first child.
*/
len = snprintf(buf, JSON_MAX, "{\"pid\": %d, \"pid_first\": %d}\n", child, first_child);
if (len < 0) {
kill(child, SIGKILL);
bail("unable to generate JSON for child pid");
}
if (write(pipenum, buf, len) != len) {
kill(child, SIGKILL);
bail("unable to send child pid to bootstrapper");
}
exit(0);
}
/*
* Stage 1: We're in the first child process. Our job is to join any
* provided namespaces in the netlink payload and unshare all
* of the requested namespaces. If we've been asked to
* CLONE_NEWUSER, we will ask our parent (stage 0) to set up
* our user mappings for us. Then, we create a new child
* (stage 2: JUMP_INIT) for PID namespace. We then send the
* child's PID to our parent (stage 0).
*/
case JUMP_CHILD:{
pid_t child;
enum sync_t s;
/* We're in a child and thus need to tell the parent if we die. */
syncfd = sync_child_pipe[0];
close(sync_child_pipe[1]);
/* For debugging. */
prctl(PR_SET_NAME, (unsigned long)"runc:[1:CHILD]", 0, 0, 0);
/*
* We need to setns first. We cannot do this earlier (in stage 0)
* because of the fact that we forked to get here (the PID of
* [stage 2: JUMP_INIT]) would be meaningless). We could send it
* using cmsg(3) but that's just annoying.
*/
if (config.namespaces)
join_namespaces(config.namespaces);
/*
* Deal with user namespaces first. They are quite special, as they
* affect our ability to unshare other namespaces and are used as
* context for privilege checks.
*
* We don't unshare all namespaces in one go. The reason for this
* is that, while the kernel documentation may claim otherwise,
* there are certain cases where unsharing all namespaces at once
* will result in namespace objects being owned incorrectly.
* Ideally we should just fix these kernel bugs, but it's better to
* be safe than sorry, and fix them separately.
*
* A specific case of this is that the SELinux label of the
* internal kern-mount that mqueue uses will be incorrect if the
* UTS namespace is cloned before the USER namespace is mapped.
* I've also heard of similar problems with the network namespace
* in some scenarios. This also mirrors how LXC deals with this
* problem.
*/
if (config.cloneflags & CLONE_NEWUSER) {
if (unshare(CLONE_NEWUSER) < 0)
bail("failed to unshare user namespace");
config.cloneflags &= ~CLONE_NEWUSER;
/*
* We don't have the privileges to do any mapping here (see the
* clone_parent rant). So signal our parent to hook us up.
*/
/* Switching is only necessary if we joined namespaces. */
if (config.namespaces) {
if (prctl(PR_SET_DUMPABLE, 1, 0, 0, 0) < 0)
bail("failed to set process as dumpable");
}
s = SYNC_USERMAP_PLS;
if (write(syncfd, &s, sizeof(s)) != sizeof(s))
bail("failed to sync with parent: write(SYNC_USERMAP_PLS)");
/* ... wait for mapping ... */
if (read(syncfd, &s, sizeof(s)) != sizeof(s))
bail("failed to sync with parent: read(SYNC_USERMAP_ACK)");
if (s != SYNC_USERMAP_ACK)
bail("failed to sync with parent: SYNC_USERMAP_ACK: got %u", s);
/* Switching is only necessary if we joined namespaces. */
if (config.namespaces) {
if (prctl(PR_SET_DUMPABLE, 0, 0, 0, 0) < 0)
bail("failed to set process as dumpable");
}
/* Become root in the namespace proper. */
if (setresuid(0, 0, 0) < 0)
bail("failed to become root in user namespace");
}
/*
* Unshare all of the namespaces. Note that we don't merge this
* with clone() because there were some old kernel versions where
* clone(CLONE_PARENT | CLONE_NEWPID) was broken, so we'll just do
* it the long way.
*/
if (unshare(config.cloneflags) < 0)
bail("failed to unshare namespaces");
/*
* TODO: What about non-namespace clone flags that we're dropping here?
*
* We fork again because of PID namespace, setns(2) or unshare(2) don't
* change the PID namespace of the calling process, because doing so
* would change the caller's idea of its own PID (as reported by getpid()),
* which would break many applications and libraries, so we must fork
* to actually enter the new PID namespace.
*/
child = clone_parent(&env, JUMP_INIT);
if (child < 0)
bail("unable to fork: init_func");
/* Send the child to our parent, which knows what it's doing. */
s = SYNC_RECVPID_PLS;
if (write(syncfd, &s, sizeof(s)) != sizeof(s)) {
kill(child, SIGKILL);
bail("failed to sync with parent: write(SYNC_RECVPID_PLS)");
}
if (write(syncfd, &child, sizeof(child)) != sizeof(child)) {
kill(child, SIGKILL);
bail("failed to sync with parent: write(childpid)");
}
/* ... wait for parent to get the pid ... */
if (read(syncfd, &s, sizeof(s)) != sizeof(s)) {
kill(child, SIGKILL);
bail("failed to sync with parent: read(SYNC_RECVPID_ACK)");
}
if (s != SYNC_RECVPID_ACK) {
kill(child, SIGKILL);
bail("failed to sync with parent: SYNC_RECVPID_ACK: got %u", s);
}
s = SYNC_CHILD_READY;
if (write(syncfd, &s, sizeof(s)) != sizeof(s)) {
kill(child, SIGKILL);
bail("failed to sync with parent: write(SYNC_CHILD_READY)");
}
/* Our work is done. [Stage 2: JUMP_INIT] is doing the rest of the work. */
exit(0);
}
/*
* Stage 2: We're the final child process, and the only process that will
* actually return to the Go runtime. Our job is to just do the
* final cleanup steps and then return to the Go runtime to allow
* init_linux.go to run.
*/
case JUMP_INIT:{
/*
* We're inside the child now, having jumped from the
* start_child() code after forking in the parent.
*/
enum sync_t s;
/* We're in a child and thus need to tell the parent if we die. */
syncfd = sync_grandchild_pipe[0];
close(sync_grandchild_pipe[1]);
close(sync_child_pipe[0]);
close(sync_child_pipe[1]);
/* For debugging. */
prctl(PR_SET_NAME, (unsigned long)"runc:[2:INIT]", 0, 0, 0);
if (read(syncfd, &s, sizeof(s)) != sizeof(s))
bail("failed to sync with parent: read(SYNC_GRANDCHILD)");
if (s != SYNC_GRANDCHILD)
bail("failed to sync with parent: SYNC_GRANDCHILD: got %u", s);
if (setsid() < 0)
bail("setsid failed");
if (setuid(0) < 0)
bail("setuid failed");
if (setgid(0) < 0)
bail("setgid failed");
if (!config.is_rootless && config.is_setgroup) {
if (setgroups(0, NULL) < 0)
bail("setgroups failed");
}
s = SYNC_CHILD_READY;
if (write(syncfd, &s, sizeof(s)) != sizeof(s))
bail("failed to sync with patent: write(SYNC_CHILD_READY)");
/* Close sync pipes. */
close(sync_grandchild_pipe[0]);
/* Free netlink data. */
nl_free(&config);
/* Finish executing, let the Go runtime take over. */
return;
}
default:
bail("unexpected jump value");
}
/* Should never be reached. */
bail("should never be reached");
}