simdjson/tests/unicode_tests.cpp

246 lines
8.6 KiB
C++
Raw Normal View History

2020-06-23 04:12:37 +08:00
#include "simdjson.h"
#include <cstddef>
#include <cstdint>
#include <random>
class RandomUTF8 final {
public:
RandomUTF8(std::random_device &rd, int prob_1byte, int prob_2bytes,
int prob_3bytes, int prob_4bytes);
std::vector<uint8_t> generate(size_t output_bytes);
std::vector<uint8_t> generate(size_t output_bytes, long seed);
private:
uint32_t generate();
std::mt19937 gen;
std::discrete_distribution<> bytes_count;
std::uniform_int_distribution<uint8_t> val_7bit{0x00, 0x7f}; // 0b0xxxxxxx
std::uniform_int_distribution<uint8_t> val_6bit{0x00, 0x3f}; // 0b10xxxxxx
std::uniform_int_distribution<uint8_t> val_5bit{0x00, 0x1f}; // 0b110xxxxx
std::uniform_int_distribution<uint8_t> val_4bit{0x00, 0x0f}; // 0b1110xxxx
std::uniform_int_distribution<uint8_t> val_3bit{0x00, 0x07}; // 0b11110xxx
};
RandomUTF8::RandomUTF8(std::random_device &rd, int prob_1byte, int prob_2bytes,
int prob_3bytes, int prob_4bytes)
: gen(rd()), bytes_count({double(prob_1byte), double(prob_2bytes),
double(prob_3bytes), double(prob_4bytes)}) {}
std::vector<uint8_t> RandomUTF8::generate(size_t output_bytes) {
std::vector<uint8_t> result;
result.reserve(output_bytes);
uint8_t candidate, head;
while (result.size() < output_bytes) {
switch (bytes_count(gen)) {
case 0: // 1 byte
candidate = val_7bit(gen);
while (candidate == 0) { // though strictly speaking, a stream of nulls is
// UTF8, it tends to break some code
candidate = val_7bit(gen);
}
result.push_back(candidate);
break;
case 1: // 2 bytes
candidate = 0xc0 | val_5bit(gen);
while (candidate < 0xC2) {
candidate = 0xc0 | val_5bit(gen);
}
result.push_back(candidate);
result.push_back(0x80 | val_6bit(gen));
break;
case 2: // 3 bytes
head = 0xe0 | val_4bit(gen);
result.push_back(head);
candidate = 0x80 | val_6bit(gen);
if (head == 0xE0) {
while (candidate < 0xA0) {
candidate = 0x80 | val_6bit(gen);
}
} else if (head == 0xED) {
while (candidate > 0x9F) {
candidate = 0x80 | val_6bit(gen);
}
}
result.push_back(candidate);
result.push_back(0x80 | val_6bit(gen));
break;
case 3: // 4 bytes
head = 0xf0 | val_3bit(gen);
while (head > 0xF4) {
head = 0xf0 | val_3bit(gen);
}
result.push_back(head);
candidate = 0x80 | val_6bit(gen);
if (head == 0xF0) {
while (candidate < 0x90) {
candidate = 0x80 | val_6bit(gen);
}
} else if (head == 0xF4) {
while (candidate > 0x8F) {
candidate = 0x80 | val_6bit(gen);
}
}
result.push_back(candidate);
result.push_back(0x80 | val_6bit(gen));
result.push_back(0x80 | val_6bit(gen));
break;
}
}
result.push_back(0); // EOS for scalar code
return result;
}
std::vector<uint8_t> RandomUTF8::generate(size_t output_bytes, long seed) {
gen.seed(uint32_t(seed));
return generate(output_bytes);
}
2020-06-23 04:50:57 +08:00
// credit: based on code from Google Fuchsia (Apache Licensed)
2020-06-23 04:12:37 +08:00
WARN_UNUSED bool basic_validate_utf8(const char *buf, size_t len) noexcept {
const uint8_t *data = (const uint8_t *)buf;
uint64_t pos = 0;
uint64_t next_pos = 0;
uint32_t code_point = 0;
while (pos < len) {
unsigned char byte = data[pos];
if (byte < 0b10000000) {
pos++;
continue;
} else if ((byte & 0b11100000) == 0b11000000) {
next_pos = pos + 2;
2020-06-23 04:50:57 +08:00
if (next_pos > len) { return false; }
2020-06-23 04:12:37 +08:00
if ((data[pos + 1] & 0b11000000) != 0b10000000) {
return false;
}
// range check
code_point = (byte & 0b00011111) << 6 | (data[pos + 1] & 0b00111111);
2020-06-23 04:50:57 +08:00
if (code_point < 0x80 || 0x7ff < code_point) { return false; }
2020-06-23 04:12:37 +08:00
} else if ((byte & 0b11110000) == 0b11100000) {
next_pos = pos + 3;
2020-06-23 04:50:57 +08:00
if (next_pos > len) { return false; }
if ((data[pos + 1] & 0b11000000) != 0b10000000) { return false; }
if ((data[pos + 2] & 0b11000000) != 0b10000000) { return false; }
2020-06-23 04:12:37 +08:00
// range check
code_point = (byte & 0b00001111) << 12 |
(data[pos + 1] & 0b00111111) << 6 |
(data[pos + 2] & 0b00111111);
if (code_point < 0x800 || 0xffff < code_point ||
(0xd7ff < code_point && code_point < 0xe000)) {
return false;
}
} else if ((byte & 0b11111000) == 0b11110000) { // 0b11110000
next_pos = pos + 4;
2020-06-23 04:50:57 +08:00
if (next_pos > len) { return false; }
if ((data[pos + 1] & 0b11000000) != 0b10000000) { return false; }
if ((data[pos + 2] & 0b11000000) != 0b10000000) { return false; }
if ((data[pos + 3] & 0b11000000) != 0b10000000) { return false; }
2020-06-23 04:12:37 +08:00
// range check
code_point =
(byte & 0b00000111) << 18 | (data[pos + 1] & 0b00111111) << 12 |
(data[pos + 2] & 0b00111111) << 6 | (data[pos + 3] & 0b00111111);
if (code_point < 0xffff || 0x10ffff < code_point) {
return false;
}
} else {
// we may have a continuation
return false;
}
pos = next_pos;
}
return true;
}
void brute_force_tests() {
printf("running brute-force UTF-8 tests... ");
fflush(NULL);
std::random_device rd{};
RandomUTF8 gen_1_2_3_4(rd, 1, 1, 1, 1);
size_t total = 1000;
for (size_t i = 0; i < total; i++) {
auto UTF8 = gen_1_2_3_4.generate(rand() % 256);
if (!simdjson::validate_utf8((const char *)UTF8.data(), UTF8.size())) {
std::cerr << "bug" << std::endl;
abort();
}
for (size_t flip = 0; flip < 1000; ++flip) {
// we are going to hack the string as long as it is UTF-8
2020-06-23 04:45:32 +08:00
UTF8[rand() % UTF8.size()] ^= uint8_t(1 << (rand() % 8)); // we flip exactly one bit
2020-06-23 04:12:37 +08:00
bool is_ok =
simdjson::validate_utf8((const char *)UTF8.data(), UTF8.size());
bool is_ok_basic =
basic_validate_utf8((const char *)UTF8.data(), UTF8.size());
if (is_ok != is_ok_basic) {
std::cerr << "bug" << std::endl;
abort();
}
}
}
printf("tests ok.\n");
}
void test() {
printf("running hard-coded UTF-8 tests... ");
fflush(NULL);
// additional tests are from autobahn websocket testsuite
// https://github.com/crossbario/autobahn-testsuite/tree/master/autobahntestsuite/autobahntestsuite/case
const char *goodsequences[] = {"a",
"\xc3\xb1",
"\xe2\x82\xa1",
"\xf0\x90\x8c\xbc",
"\xc2\x80", // 6.7.2
"\xf0\x90\x80\x80", // 6.7.4
"\xee\x80\x80", // 6.11.2
"\xef\xbb\xbf"};
const char *badsequences[] = {
"\xc3\x28", // 0
"\xa0\xa1", // 1
"\xe2\x28\xa1", // 2
"\xe2\x82\x28", // 3
"\xf0\x28\x8c\xbc", // 4
"\xf0\x90\x28\xbc", // 5
"\xf0\x28\x8c\x28", // 6
"\xc0\x9f", // 7
"\xf5\xff\xff\xff", // 8
"\xed\xa0\x81", // 9
"\xf8\x90\x80\x80\x80", // 10
"123456789012345\xed", // 11
"123456789012345\xf1", // 12
"123456789012345\xc2", // 13
"\xC2\x7F", // 14
"\xce", // 6.6.1
"\xce\xba\xe1", // 6.6.3
"\xce\xba\xe1\xbd", // 6.6.4
"\xce\xba\xe1\xbd\xb9\xcf", // 6.6.6
"\xce\xba\xe1\xbd\xb9\xcf\x83\xce", // 6.6.8
"\xce\xba\xe1\xbd\xb9\xcf\x83\xce\xbc\xce", // 6.6.10
"\xdf", // 6.14.6
"\xef\xbf", // 6.14.7
"\x80",
"\x91\x85\x95\x9e",
"\x6c\x02\x8e\x18"};
for (size_t i = 0; i < 8; i++) {
2020-06-23 04:12:37 +08:00
size_t len = strlen(goodsequences[i]);
if (!simdjson::validate_utf8(goodsequences[i], len)) {
printf("bug goodsequences[%zu]\n", i);
abort();
}
}
for (size_t i = 0; i < 26; i++) {
size_t len = strlen(badsequences[i]);
if (simdjson::validate_utf8(badsequences[i], len)) {
printf("bug lookup2 badsequences[%zu]\n", i);
abort();
}
}
printf("tests ok.\n");
}
int main() {
brute_force_tests();
test();
return EXIT_SUCCESS;
}