Merge pull request #913 from simdjson/jkeiser/internal-streaming

[1/4] Simplify parse_many() and fix bugs
This commit is contained in:
John Keiser 2020-06-08 15:19:27 -07:00 committed by GitHub
commit 383e8c7f68
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
22 changed files with 587 additions and 455 deletions

View File

@ -43,7 +43,7 @@ public:
really_inline bool operator!=(const iterator &other) const noexcept; really_inline bool operator!=(const iterator &other) const noexcept;
private: private:
iterator(document_stream& stream, bool finished) noexcept; really_inline iterator(document_stream &s, bool finished) noexcept;
/** The document_stream we're iterating through. */ /** The document_stream we're iterating through. */
document_stream& stream; document_stream& stream;
/** Whether we're finished or not. */ /** Whether we're finished or not. */
@ -66,7 +66,23 @@ private:
document_stream(document_stream &other) = delete; // Disallow copying document_stream(document_stream &other) = delete; // Disallow copying
really_inline document_stream(dom::parser &parser, const uint8_t *buf, size_t len, size_t batch_size, error_code error = SUCCESS) noexcept; /**
* Construct a document_stream. Does not allocate or parse anything until the iterator is
* used.
*/
really_inline document_stream(
dom::parser &parser,
const uint8_t *buf,
size_t len,
size_t batch_size,
error_code error = SUCCESS
) noexcept;
/**
* Parse the first document in the buffer. Used by begin(), to handle allocation and
* initialization.
*/
inline void start() noexcept;
/** /**
* Parse the next document found in the buffer previously given to document_stream. * Parse the next document found in the buffer previously given to document_stream.
@ -79,10 +95,7 @@ private:
* pre-allocating a capacity defined by the batch_size defined when creating the * pre-allocating a capacity defined by the batch_size defined when creating the
* document_stream object. * document_stream object.
* *
* The function returns simdjson::SUCCESS_AND_HAS_MORE (an integer = 1) in case * The function returns simdjson::EMPTY if there is no more data to be parsed.
* of success and indicates that the buffer still contains more data to be parsed,
* meaning this function can be called again to return the next JSON document
* after this one.
* *
* The function returns simdjson::SUCCESS (as integer = 0) in case of success * The function returns simdjson::SUCCESS (as integer = 0) in case of success
* and indicates that the buffer has successfully been parsed to the end. * and indicates that the buffer has successfully been parsed to the end.
@ -93,55 +106,51 @@ private:
* the simdjson::error_message function converts these error codes into a string). * the simdjson::error_message function converts these error codes into a string).
* *
* You can also check validity by calling parser.is_valid(). The same parser can * You can also check validity by calling parser.is_valid(). The same parser can
* and should be reused for the other documents in the buffer. */ * and should be reused for the other documents in the buffer.
inline error_code json_parse() noexcept; */
inline void next() noexcept;
/** /**
* Returns the location (index) of where the next document should be in the * Pass the next batch through stage 1 and return when finished.
* buffer. * When threads are enabled, this may wait for the stage 1 thread to finish.
* Can be used for debugging, it tells the user the position of the end of the
* last
* valid JSON document parsed
*/ */
inline size_t get_current_buffer_loc() const { return current_buffer_loc; } inline void load_batch() noexcept;
/** /** Get the next document index. */
* Returns the total amount of complete documents parsed by the document_stream, inline size_t next_batch_start() const noexcept;
* in the current buffer, at the given time.
*/
inline size_t get_n_parsed_docs() const { return n_parsed_docs; }
/** /** Pass the next batch through stage 1 with the given parser. */
* Returns the total amount of data (in bytes) parsed by the document_stream, inline error_code run_stage1(dom::parser &p, size_t batch_start) noexcept;
* in the current buffer, at the given time.
*/
inline size_t get_n_bytes_parsed() const { return n_bytes_parsed; }
inline const uint8_t *buf() const { return _buf + buf_start; }
inline void advance(size_t offset) { buf_start += offset; }
inline size_t remaining() const { return _len - buf_start; }
dom::parser &parser; dom::parser &parser;
const uint8_t *_buf; const uint8_t *buf;
const size_t _len; const size_t len;
size_t _batch_size; // this is actually variable! const size_t batch_size;
size_t buf_start{0}; size_t batch_start{0};
size_t next_json{0}; /** The error (or lack thereof) from the current document. */
bool load_next_batch{true}; error_code error;
size_t current_buffer_loc{0};
#ifdef SIMDJSON_THREADS_ENABLED #ifdef SIMDJSON_THREADS_ENABLED
size_t last_json_buffer_loc{0}; inline void load_from_stage1_thread() noexcept;
#endif
size_t n_parsed_docs{0}; /** Start a thread to run stage 1 on the next batch. */
size_t n_bytes_parsed{0}; inline void start_stage1_thread() noexcept;
error_code error{SUCCESS_AND_HAS_MORE};
#ifdef SIMDJSON_THREADS_ENABLED /** Wait for the stage 1 thread to finish and capture the results. */
error_code stage1_is_ok_thread{SUCCESS}; inline void finish_stage1_thread() noexcept;
std::thread stage_1_thread{};
dom::parser parser_thread{}; /** The error returned from the stage 1 thread. */
#endif error_code stage1_thread_error{UNINITIALIZED};
/** The thread used to run stage 1 against the next batch in the background. */
std::thread stage1_thread{};
/**
* The parser used to run stage 1 in the background. Will be swapped
* with the regular parser when finished.
*/
dom::parser stage1_thread_parser{};
#endif // SIMDJSON_THREADS_ENABLED
friend class dom::parser; friend class dom::parser;
}; // class document_stream }; // class document_stream

View File

@ -11,7 +11,6 @@ namespace simdjson {
*/ */
enum error_code { enum error_code {
SUCCESS = 0, ///< No error SUCCESS = 0, ///< No error
SUCCESS_AND_HAS_MORE, ///< @private No error and buffer still has more data
CAPACITY, ///< This parser can't support a document that big CAPACITY, ///< This parser can't support a document that big
MEMALLOC, ///< Error allocating memory, most likely out of memory MEMALLOC, ///< Error allocating memory, most likely out of memory
TAPE_ERROR, ///< Something went wrong while writing to the tape (stage 2), this is a generic error TAPE_ERROR, ///< Something went wrong while writing to the tape (stage 2), this is a generic error

View File

@ -6,125 +6,37 @@
#include <limits> #include <limits>
#include <stdexcept> #include <stdexcept>
namespace simdjson {
namespace internal {
/**
* This algorithm is used to quickly identify the buffer position of
* the last JSON document inside the current batch.
*
* It does its work by finding the last pair of structural characters
* that represent the end followed by the start of a document.
*
* Simply put, we iterate over the structural characters, starting from
* the end. We consider that we found the end of a JSON document when the
* first element of the pair is NOT one of these characters: '{' '[' ';' ','
* and when the second element is NOT one of these characters: '}' '}' ';' ','.
*
* This simple comparison works most of the time, but it does not cover cases
* where the batch's structural indexes contain a perfect amount of documents.
* In such a case, we do not have access to the structural index which follows
* the last document, therefore, we do not have access to the second element in
* the pair, and means that we cannot identify the last document. To fix this
* issue, we keep a count of the open and closed curly/square braces we found
* while searching for the pair. When we find a pair AND the count of open and
* closed curly/square braces is the same, we know that we just passed a
* complete
* document, therefore the last json buffer location is the end of the batch
* */
inline uint32_t find_last_json_buf_idx(const uint8_t *buf, size_t size, const dom::parser &parser) {
// this function can be generally useful
if (parser.implementation->n_structural_indexes == 0)
return 0;
auto last_i = parser.implementation->n_structural_indexes - 1;
if (parser.implementation->structural_indexes[last_i] == size) {
if (last_i == 0)
return 0;
last_i = parser.implementation->n_structural_indexes - 2;
}
auto arr_cnt = 0;
auto obj_cnt = 0;
for (auto i = last_i; i > 0; i--) {
auto idxb = parser.implementation->structural_indexes[i];
switch (buf[idxb]) {
case ':':
case ',':
continue;
case '}':
obj_cnt--;
continue;
case ']':
arr_cnt--;
continue;
case '{':
obj_cnt++;
break;
case '[':
arr_cnt++;
break;
}
auto idxa = parser.implementation->structural_indexes[i - 1];
switch (buf[idxa]) {
case '{':
case '[':
case ':':
case ',':
continue;
}
if (!arr_cnt && !obj_cnt) {
return last_i + 1;
}
return i;
}
return 0;
}
// returns true if the provided byte value is an ASCII character
static inline bool is_ascii(char c) {
return ((unsigned char)c) <= 127;
}
// if the string ends with UTF-8 values, backtrack
// up to the first ASCII character. May return 0.
static inline size_t trimmed_length_safe_utf8(const char * c, size_t len) {
while ((len > 0) and (not is_ascii(c[len - 1]))) {
len--;
}
return len;
}
} // namespace internal
} // namespace simdjson
namespace simdjson { namespace simdjson {
namespace dom { namespace dom {
really_inline document_stream::document_stream( really_inline document_stream::document_stream(
dom::parser &_parser, dom::parser &_parser,
const uint8_t *buf, const uint8_t *_buf,
size_t len, size_t _len,
size_t batch_size, size_t _batch_size,
error_code _error error_code _error
) noexcept ) noexcept
: parser{_parser}, : parser{_parser},
_buf{buf}, buf{_buf},
_len{len}, len{_len},
_batch_size(batch_size), batch_size{_batch_size},
error(_error) error{_error}
{ {
if (!error) { error = json_parse(); }
} }
inline document_stream::~document_stream() noexcept { inline document_stream::~document_stream() noexcept {
#ifdef SIMDJSON_THREADS_ENABLED #ifdef SIMDJSON_THREADS_ENABLED
if (stage_1_thread.joinable()) { // TODO kill the thread, why should people have to wait for a non-side-effecting operation to complete
stage_1_thread.join(); if (stage1_thread.joinable()) {
stage1_thread.join();
} }
#endif #endif
} }
really_inline document_stream::iterator document_stream::begin() noexcept { really_inline document_stream::iterator document_stream::begin() noexcept {
return iterator(*this, false); start();
// If there are no documents, we're finished.
return iterator(*this, error == EMPTY);
} }
really_inline document_stream::iterator document_stream::end() noexcept { really_inline document_stream::iterator document_stream::end() noexcept {
@ -136,17 +48,15 @@ really_inline document_stream::iterator::iterator(document_stream& _stream, bool
} }
really_inline simdjson_result<element> document_stream::iterator::operator*() noexcept { really_inline simdjson_result<element> document_stream::iterator::operator*() noexcept {
error_code err = stream.error == SUCCESS_AND_HAS_MORE ? SUCCESS : stream.error; // Once we have yielded any errors, we're finished.
if (err) { return err; } if (stream.error) { finished = true; return stream.error; }
return stream.parser.doc.root(); return stream.parser.doc.root();
} }
really_inline document_stream::iterator& document_stream::iterator::operator++() noexcept { really_inline document_stream::iterator& document_stream::iterator::operator++() noexcept {
if (stream.error == SUCCESS_AND_HAS_MORE) { stream.next();
stream.error = stream.json_parse(); // If that was the last document, we're finished.
} else { if (stream.error == EMPTY) { finished = true; }
finished = true;
}
return *this; return *this;
} }
@ -154,130 +64,96 @@ really_inline bool document_stream::iterator::operator!=(const document_stream::
return finished != other.finished; return finished != other.finished;
} }
inline void document_stream::start() noexcept {
if (error) { return; }
error = parser.ensure_capacity(batch_size);
if (error) { return; }
// Always run the first stage 1 parse immediately
batch_start = 0;
error = run_stage1(parser, batch_start);
if (error) { return; }
#ifdef SIMDJSON_THREADS_ENABLED
if (next_batch_start() < len) {
// Kick off the first thread if needed
error = stage1_thread_parser.ensure_capacity(batch_size);
if (error) { return; }
start_stage1_thread();
if (error) { return; }
}
#endif // SIMDJSON_THREADS_ENABLED
next();
}
inline void document_stream::next() noexcept {
if (error) { return; }
// Load the next document from the batch
error = parser.implementation->stage2_next(parser.doc);
// If that was the last document in the batch, load another batch (if available)
while (error == EMPTY) {
batch_start = next_batch_start();
if (batch_start >= len) { break; }
#ifdef SIMDJSON_THREADS_ENABLED
load_from_stage1_thread();
#else
error = run_stage1(parser, batch_start);
#endif
if (error) { continue; } // If the error was EMPTY, we may want to load another batch.
// Run stage 2 on the first document in the batch
error = parser.implementation->stage2_next(parser.doc);
}
}
inline size_t document_stream::next_batch_start() const noexcept {
return batch_start + parser.implementation->structural_indexes[parser.implementation->n_structural_indexes];
}
inline error_code document_stream::run_stage1(dom::parser &p, size_t _batch_start) noexcept {
// If this is the final batch, pass partial = false
size_t remaining = len - _batch_start;
if (remaining <= batch_size) {
return p.implementation->stage1(&buf[_batch_start], remaining, false);
} else {
return p.implementation->stage1(&buf[_batch_start], batch_size, true);
}
}
#ifdef SIMDJSON_THREADS_ENABLED #ifdef SIMDJSON_THREADS_ENABLED
// threaded version of json_parse inline void document_stream::load_from_stage1_thread() noexcept {
// todo: simplify this code further stage1_thread.join();
inline error_code document_stream::json_parse() noexcept {
error = parser.ensure_capacity(_batch_size);
if (error) { return error; }
error = parser_thread.ensure_capacity(_batch_size);
if (error) { return error; }
if (unlikely(load_next_batch)) { // Swap to the parser that was loaded up in the thread. Make sure the parser has
// First time loading // enough memory to swap to, as well.
if (!stage_1_thread.joinable()) { std::swap(parser, stage1_thread_parser);
_batch_size = (std::min)(_batch_size, remaining()); error = stage1_thread_error;
_batch_size = internal::trimmed_length_safe_utf8((const char *)buf(), _batch_size); if (error) { return; }
if (_batch_size == 0) {
return simdjson::UTF8_ERROR; // If there's anything left, start the stage 1 thread!
} if (next_batch_start() < len) {
auto stage1_is_ok = error_code(parser.implementation->stage1(buf(), _batch_size, true)); start_stage1_thread();
if (stage1_is_ok != simdjson::SUCCESS) {
return stage1_is_ok;
}
uint32_t last_index = internal::find_last_json_buf_idx(buf(), _batch_size, parser);
if (last_index == 0) {
if (parser.implementation->n_structural_indexes == 0) {
return simdjson::EMPTY;
}
} else {
parser.implementation->n_structural_indexes = last_index + 1;
}
}
// the second thread is running or done.
else {
stage_1_thread.join();
if (stage1_is_ok_thread != simdjson::SUCCESS) {
return stage1_is_ok_thread;
}
std::swap(parser.implementation->structural_indexes, parser_thread.implementation->structural_indexes);
parser.implementation->n_structural_indexes = parser_thread.implementation->n_structural_indexes;
advance(last_json_buffer_loc);
n_bytes_parsed += last_json_buffer_loc;
}
// let us decide whether we will start a new thread
if (remaining() - _batch_size > 0) {
last_json_buffer_loc =
parser.implementation->structural_indexes[internal::find_last_json_buf_idx(buf(), _batch_size, parser)];
_batch_size = (std::min)(_batch_size, remaining() - last_json_buffer_loc);
if (_batch_size > 0) {
_batch_size = internal::trimmed_length_safe_utf8(
(const char *)(buf() + last_json_buffer_loc), _batch_size);
if (_batch_size == 0) {
return simdjson::UTF8_ERROR;
}
// let us capture read-only variables
const uint8_t *const b = buf() + last_json_buffer_loc;
const size_t bs = _batch_size;
// we call the thread on a lambda that will update
// this->stage1_is_ok_thread
// there is only one thread that may write to this value
stage_1_thread = std::thread([this, b, bs] {
this->stage1_is_ok_thread = error_code(parser_thread.implementation->stage1(b, bs, true));
});
}
}
next_json = 0;
load_next_batch = false;
} // load_next_batch
error_code res = parser.implementation->stage2(buf(), remaining(), parser.doc, next_json);
if (res == simdjson::SUCCESS_AND_HAS_MORE) {
n_parsed_docs++;
current_buffer_loc = parser.implementation->structural_indexes[next_json];
load_next_batch = (current_buffer_loc == last_json_buffer_loc);
} else if (res == simdjson::SUCCESS) {
n_parsed_docs++;
if (remaining() > _batch_size) {
current_buffer_loc = parser.implementation->structural_indexes[next_json - 1];
load_next_batch = true;
res = simdjson::SUCCESS_AND_HAS_MORE;
}
} }
return res;
} }
#else // SIMDJSON_THREADS_ENABLED inline void document_stream::start_stage1_thread() noexcept {
// we call the thread on a lambda that will update
// single-threaded version of json_parse // this->stage1_thread_error
inline error_code document_stream::json_parse() noexcept { // there is only one thread that may write to this value
error = parser.ensure_capacity(_batch_size); // TODO this is NOT exception-safe.
if (error) { return error; } this->stage1_thread_error = UNINITIALIZED; // In case something goes wrong, make sure it's an error
size_t _next_batch_start = this->next_batch_start();
if (unlikely(load_next_batch)) { stage1_thread = std::thread([this, _next_batch_start] {
advance(current_buffer_loc); this->stage1_thread_error = run_stage1(this->stage1_thread_parser, _next_batch_start);
n_bytes_parsed += current_buffer_loc; });
_batch_size = (std::min)(_batch_size, remaining());
_batch_size = internal::trimmed_length_safe_utf8((const char *)buf(), _batch_size);
auto stage1_is_ok = (error_code)parser.implementation->stage1(buf(), _batch_size, true);
if (stage1_is_ok != simdjson::SUCCESS) {
return stage1_is_ok;
}
uint32_t last_index = internal::find_last_json_buf_idx(buf(), _batch_size, parser);
if (last_index == 0) {
if (parser.implementation->n_structural_indexes == 0) {
return EMPTY;
}
} else {
parser.implementation->n_structural_indexes = last_index + 1;
}
load_next_batch = false;
} // load_next_batch
error_code res = parser.implementation->stage2(buf(), remaining(), parser.doc, next_json);
if (likely(res == simdjson::SUCCESS_AND_HAS_MORE)) {
n_parsed_docs++;
current_buffer_loc = parser.implementation->structural_indexes[next_json];
} else if (res == simdjson::SUCCESS) {
n_parsed_docs++;
if (remaining() > _batch_size) {
current_buffer_loc = parser.implementation->structural_indexes[next_json - 1];
next_json = 1;
load_next_batch = true;
res = simdjson::SUCCESS_AND_HAS_MORE;
}
}
return res;
} }
#endif // SIMDJSON_THREADS_ENABLED #endif // SIMDJSON_THREADS_ENABLED
} // namespace dom } // namespace dom

View File

@ -72,16 +72,13 @@ public:
* *
* Stage 2 of the document parser for parser::parse_many. * Stage 2 of the document parser for parser::parse_many.
* *
* Guaranteed only to be called after stage1(), with buf and len being a subset of the total stage1 buf/len. * Guaranteed only to be called after stage1().
* Overridden by each implementation. * Overridden by each implementation.
* *
* @param buf The json document to parse.
* @param len The length of the json document.
* @param doc The document to output to. * @param doc The document to output to.
* @param next_json The next structural index. Start this at 0 the first time, and it will be updated to the next value to pass each time. * @return The error code, SUCCESS if there was no error, or EMPTY if all documents have been parsed.
* @return The error code, SUCCESS if there was no error, or SUCCESS_AND_HAS_MORE if there was no error and stage2 can be called again.
*/ */
WARN_UNUSED virtual error_code stage2(const uint8_t *buf, size_t len, dom::document &doc, size_t &next_json) noexcept = 0; WARN_UNUSED virtual error_code stage2_next(dom::document &doc) noexcept = 0;
/** /**
* Change the capacity of this parser. * Change the capacity of this parser.
@ -117,6 +114,8 @@ public:
uint32_t n_structural_indexes{0}; uint32_t n_structural_indexes{0};
/** Structural indices passed from stage 1 to stage 2 */ /** Structural indices passed from stage 1 to stage 2 */
std::unique_ptr<uint32_t[]> structural_indexes{}; std::unique_ptr<uint32_t[]> structural_indexes{};
/** Next structural index to parse */
uint32_t next_structural_index{0};
/** /**
* The largest document this parser can support without reallocating. * The largest document this parser can support without reallocating.

View File

@ -82,6 +82,7 @@ WARN_UNUSED error_code implementation::minify(const uint8_t *buf, size_t len, ui
return arm64::stage1::json_minifier::minify<64>(buf, len, dst, dst_len); return arm64::stage1::json_minifier::minify<64>(buf, len, dst, dst_len);
} }
#include "generic/stage1/find_next_document_index.h"
#include "generic/stage1/utf8_lookup2_algorithm.h" #include "generic/stage1/utf8_lookup2_algorithm.h"
#include "generic/stage1/json_structural_indexer.h" #include "generic/stage1/json_structural_indexer.h"
WARN_UNUSED error_code dom_parser_implementation::stage1(const uint8_t *_buf, size_t _len, bool streaming) noexcept { WARN_UNUSED error_code dom_parser_implementation::stage1(const uint8_t *_buf, size_t _len, bool streaming) noexcept {

View File

@ -5,7 +5,6 @@ namespace internal {
SIMDJSON_DLLIMPORTEXPORT const error_code_info error_codes[] { SIMDJSON_DLLIMPORTEXPORT const error_code_info error_codes[] {
{ SUCCESS, "No error" }, { SUCCESS, "No error" },
{ SUCCESS_AND_HAS_MORE, "No error and buffer still has more data" },
{ CAPACITY, "This parser can't support a document that big" }, { CAPACITY, "This parser can't support a document that big" },
{ MEMALLOC, "Error allocating memory, we're most likely out of memory" }, { MEMALLOC, "Error allocating memory, we're most likely out of memory" },
{ TAPE_ERROR, "The JSON document has an improper structure: missing or superfluous commas, braces, missing keys, etc." }, { TAPE_ERROR, "The JSON document has an improper structure: missing or superfluous commas, braces, missing keys, etc." },

View File

@ -9,15 +9,17 @@ namespace simdjson {
namespace fallback { namespace fallback {
namespace stage1 { namespace stage1 {
#include "generic/stage1/find_next_document_index.h"
class structural_scanner { class structural_scanner {
public: public:
really_inline structural_scanner(dom_parser_implementation &_parser, bool _streaming) really_inline structural_scanner(dom_parser_implementation &_parser, bool _partial)
: buf{_parser.buf}, : buf{_parser.buf},
next_structural_index{_parser.structural_indexes.get()}, next_structural_index{_parser.structural_indexes.get()},
parser{_parser}, parser{_parser},
len{static_cast<uint32_t>(_parser.len)}, len{static_cast<uint32_t>(_parser.len)},
streaming{_streaming} { partial{_partial} {
} }
really_inline void add_structural() { really_inline void add_structural() {
@ -41,7 +43,12 @@ really_inline void validate_utf8_character() {
// 2-byte // 2-byte
if ((buf[idx] & 0b00100000) == 0) { if ((buf[idx] & 0b00100000) == 0) {
// missing continuation // missing continuation
if (unlikely(idx+1 > len || !is_continuation(buf[idx+1]))) { error = UTF8_ERROR; idx++; return; } if (unlikely(idx+1 > len || !is_continuation(buf[idx+1]))) {
if (idx+1 > len && partial) { idx = len; return; }
error = UTF8_ERROR;
idx++;
return;
}
// overlong: 1100000_ 10______ // overlong: 1100000_ 10______
if (buf[idx] <= 0b11000001) { error = UTF8_ERROR; } if (buf[idx] <= 0b11000001) { error = UTF8_ERROR; }
idx += 2; idx += 2;
@ -51,7 +58,12 @@ really_inline void validate_utf8_character() {
// 3-byte // 3-byte
if ((buf[idx] & 0b00010000) == 0) { if ((buf[idx] & 0b00010000) == 0) {
// missing continuation // missing continuation
if (unlikely(idx+2 > len || !is_continuation(buf[idx+1]) || !is_continuation(buf[idx+2]))) { error = UTF8_ERROR; idx++; return; } if (unlikely(idx+2 > len || !is_continuation(buf[idx+1]) || !is_continuation(buf[idx+2]))) {
if (idx+2 > len && partial) { idx = len; return; }
error = UTF8_ERROR;
idx++;
return;
}
// overlong: 11100000 100_____ ________ // overlong: 11100000 100_____ ________
if (buf[idx] == 0b11100000 && buf[idx+1] <= 0b10011111) { error = UTF8_ERROR; } if (buf[idx] == 0b11100000 && buf[idx+1] <= 0b10011111) { error = UTF8_ERROR; }
// surrogates: U+D800-U+DFFF 11101101 101_____ // surrogates: U+D800-U+DFFF 11101101 101_____
@ -62,7 +74,12 @@ really_inline void validate_utf8_character() {
// 4-byte // 4-byte
// missing continuation // missing continuation
if (unlikely(idx+3 > len || !is_continuation(buf[idx+1]) || !is_continuation(buf[idx+2]) || !is_continuation(buf[idx+3]))) { error = UTF8_ERROR; idx++; return; } if (unlikely(idx+3 > len || !is_continuation(buf[idx+1]) || !is_continuation(buf[idx+2]) || !is_continuation(buf[idx+3]))) {
if (idx+2 > len && partial) { idx = len; return; }
error = UTF8_ERROR;
idx++;
return;
}
// overlong: 11110000 1000____ ________ ________ // overlong: 11110000 1000____ ________ ________
if (buf[idx] == 0b11110000 && buf[idx+1] <= 0b10001111) { error = UTF8_ERROR; } if (buf[idx] == 0b11110000 && buf[idx+1] <= 0b10001111) { error = UTF8_ERROR; }
// too large: > U+10FFFF: // too large: > U+10FFFF:
@ -87,7 +104,7 @@ really_inline void validate_string() {
idx++; idx++;
} }
} }
if (idx >= len && !streaming) { error = UNCLOSED_STRING; } if (idx >= len && !partial) { error = UNCLOSED_STRING; }
} }
really_inline bool is_whitespace_or_operator(uint8_t c) { really_inline bool is_whitespace_or_operator(uint8_t c) {
@ -128,16 +145,26 @@ really_inline error_code scan() {
break; break;
} }
} }
if (unlikely(next_structural_index == parser.structural_indexes.get())) {
return EMPTY;
}
*next_structural_index = len; *next_structural_index = len;
next_structural_index++;
// We pad beyond. // We pad beyond.
// https://github.com/simdjson/simdjson/issues/906 // https://github.com/simdjson/simdjson/issues/906
next_structural_index[0] = len; next_structural_index[1] = len;
next_structural_index[1] = 0; next_structural_index[2] = 0;
parser.n_structural_indexes = uint32_t(next_structural_index - parser.structural_indexes.get()); parser.n_structural_indexes = uint32_t(next_structural_index - parser.structural_indexes.get());
parser.next_structural_index = 0;
if (unlikely(parser.n_structural_indexes == 0)) {
return EMPTY;
}
if (partial) {
auto new_structural_indexes = find_next_document_index(parser);
if (new_structural_indexes == 0 && parser.n_structural_indexes > 0) {
return CAPACITY; // If the buffer is partial but the document is incomplete, it's too big to parse.
}
parser.n_structural_indexes = new_structural_indexes;
}
return error; return error;
} }
@ -148,16 +175,16 @@ private:
uint32_t len; uint32_t len;
uint32_t idx{0}; uint32_t idx{0};
error_code error{SUCCESS}; error_code error{SUCCESS};
bool streaming; bool partial;
}; // structural_scanner }; // structural_scanner
} // namespace stage1 } // namespace stage1
WARN_UNUSED error_code dom_parser_implementation::stage1(const uint8_t *_buf, size_t _len, bool streaming) noexcept { WARN_UNUSED error_code dom_parser_implementation::stage1(const uint8_t *_buf, size_t _len, bool partial) noexcept {
this->buf = _buf; this->buf = _buf;
this->len = _len; this->len = _len;
stage1::structural_scanner scanner(*this, streaming); stage1::structural_scanner scanner(*this, partial);
return scanner.scan(); return scanner.scan();
} }

View File

@ -28,11 +28,12 @@ public:
really_inline dom_parser_implementation(); really_inline dom_parser_implementation();
dom_parser_implementation(const dom_parser_implementation &) = delete; dom_parser_implementation(const dom_parser_implementation &) = delete;
dom_parser_implementation & operator=(const dom_parser_implementation &) = delete; dom_parser_implementation & operator=(const dom_parser_implementation &) = delete;
WARN_UNUSED error_code parse(const uint8_t *buf, size_t len, dom::document &doc) noexcept final; WARN_UNUSED error_code parse(const uint8_t *buf, size_t len, dom::document &doc) noexcept final;
WARN_UNUSED error_code stage1(const uint8_t *buf, size_t len, bool streaming) noexcept final; WARN_UNUSED error_code stage1(const uint8_t *buf, size_t len, bool partial) noexcept final;
WARN_UNUSED error_code check_for_unclosed_array() noexcept;
WARN_UNUSED error_code stage2(dom::document &doc) noexcept final; WARN_UNUSED error_code stage2(dom::document &doc) noexcept final;
WARN_UNUSED error_code stage2(const uint8_t *buf, size_t len, dom::document &doc, size_t &next_json) noexcept final; WARN_UNUSED error_code stage2_next(dom::document &doc) noexcept final;
WARN_UNUSED error_code set_capacity(size_t capacity) noexcept final; WARN_UNUSED error_code set_capacity(size_t capacity) noexcept final;
WARN_UNUSED error_code set_max_depth(size_t max_depth) noexcept final; WARN_UNUSED error_code set_max_depth(size_t max_depth) noexcept final;
}; };

View File

@ -8,6 +8,8 @@ really_inline error_code set_capacity(internal::dom_parser_implementation &parse
size_t max_structures = ROUNDUP_N(capacity, 64) + 2 + 7; size_t max_structures = ROUNDUP_N(capacity, 64) + 2 + 7;
parser.structural_indexes.reset( new (std::nothrow) uint32_t[max_structures] ); parser.structural_indexes.reset( new (std::nothrow) uint32_t[max_structures] );
if (!parser.structural_indexes) { return MEMALLOC; } if (!parser.structural_indexes) { return MEMALLOC; }
parser.structural_indexes[0] = 0;
parser.n_structural_indexes = 0;
return SUCCESS; return SUCCESS;
} }

View File

@ -2,24 +2,21 @@
template<size_t STEP_SIZE> template<size_t STEP_SIZE>
struct buf_block_reader { struct buf_block_reader {
public: public:
really_inline buf_block_reader(const uint8_t *_buf, size_t _len) : buf{_buf}, len{_len}, lenminusstep{len < STEP_SIZE ? 0 : len - STEP_SIZE}, idx{0} {} really_inline buf_block_reader(const uint8_t *_buf, size_t _len);
really_inline size_t block_index() { return idx; } really_inline size_t block_index();
really_inline bool has_full_block() const { really_inline bool has_full_block() const;
return idx < lenminusstep; really_inline const uint8_t *full_block() const;
} /**
really_inline const uint8_t *full_block() const { * Get the last block, padded with spaces.
return &buf[idx]; *
} * There will always be a last block, with at least 1 byte, unless len == 0 (in which case this
really_inline bool has_remainder() const { * function fills the buffer with spaces and returns 0. In particular, if len == STEP_SIZE there
return idx < len; * will be 0 full_blocks and 1 remainder block with STEP_SIZE bytes and no spaces for padding.
} *
really_inline void get_remainder(uint8_t *tmp_buf) const { * @return the number of effective characters in the last block.
memset(tmp_buf, 0x20, STEP_SIZE); */
memcpy(tmp_buf, buf + idx, len - idx); really_inline size_t get_remainder(uint8_t *dst) const;
} really_inline void advance();
really_inline void advance() {
idx += STEP_SIZE;
}
private: private:
const uint8_t *buf; const uint8_t *buf;
const size_t len; const size_t len;
@ -27,6 +24,18 @@ private:
size_t idx; size_t idx;
}; };
constexpr const int TITLE_SIZE = 12;
// Routines to print masks and text for debugging bitmask operations
UNUSED static char * format_input_text_64(const uint8_t *text) {
static char *buf = (char*)malloc(sizeof(simd8x64<uint8_t>) + 1);
for (size_t i=0; i<sizeof(simd8x64<uint8_t>); i++) {
buf[i] = int8_t(text[i]) < ' ' ? '_' : int8_t(text[i]);
}
buf[sizeof(simd8x64<uint8_t>)] = '\0';
return buf;
}
// Routines to print masks and text for debugging bitmask operations // Routines to print masks and text for debugging bitmask operations
UNUSED static char * format_input_text(const simd8x64<uint8_t> in) { UNUSED static char * format_input_text(const simd8x64<uint8_t> in) {
static char *buf = (char*)malloc(sizeof(simd8x64<uint8_t>) + 1); static char *buf = (char*)malloc(sizeof(simd8x64<uint8_t>) + 1);
@ -46,3 +55,31 @@ UNUSED static char * format_mask(uint64_t mask) {
buf[64] = '\0'; buf[64] = '\0';
return buf; return buf;
} }
template<size_t STEP_SIZE>
really_inline buf_block_reader<STEP_SIZE>::buf_block_reader(const uint8_t *_buf, size_t _len) : buf{_buf}, len{_len}, lenminusstep{len < STEP_SIZE ? 0 : len - STEP_SIZE}, idx{0} {}
template<size_t STEP_SIZE>
really_inline size_t buf_block_reader<STEP_SIZE>::block_index() { return idx; }
template<size_t STEP_SIZE>
really_inline bool buf_block_reader<STEP_SIZE>::has_full_block() const {
return idx < lenminusstep;
}
template<size_t STEP_SIZE>
really_inline const uint8_t *buf_block_reader<STEP_SIZE>::full_block() const {
return &buf[idx];
}
template<size_t STEP_SIZE>
really_inline size_t buf_block_reader<STEP_SIZE>::get_remainder(uint8_t *dst) const {
memset(dst, 0x20, STEP_SIZE); // memset STEP_SIZE because it's more efficient to write out 8 or 16 bytes at once.
memcpy(dst, buf + idx, len - idx);
return len - idx;
}
template<size_t STEP_SIZE>
really_inline void buf_block_reader<STEP_SIZE>::advance() {
idx += STEP_SIZE;
}

View File

@ -0,0 +1,86 @@
/**
* This algorithm is used to quickly identify the last structural position that
* makes up a complete document.
*
* It does this by going backwards and finding the last *document boundary* (a
* place where one value follows another without a comma between them). If the
* last document (the characters after the boundary) has an equal number of
* start and end brackets, it is considered complete.
*
* Simply put, we iterate over the structural characters, starting from
* the end. We consider that we found the end of a JSON document when the
* first element of the pair is NOT one of these characters: '{' '[' ';' ','
* and when the second element is NOT one of these characters: '}' '}' ';' ','.
*
* This simple comparison works most of the time, but it does not cover cases
* where the batch's structural indexes contain a perfect amount of documents.
* In such a case, we do not have access to the structural index which follows
* the last document, therefore, we do not have access to the second element in
* the pair, and that means we cannot identify the last document. To fix this
* issue, we keep a count of the open and closed curly/square braces we found
* while searching for the pair. When we find a pair AND the count of open and
* closed curly/square braces is the same, we know that we just passed a
* complete document, therefore the last json buffer location is the end of the
* batch.
*/
really_inline static uint32_t find_next_document_index(dom_parser_implementation &parser) {
// TODO don't count separately, just figure out depth
auto arr_cnt = 0;
auto obj_cnt = 0;
for (auto i = parser.n_structural_indexes - 1; i > 0; i--) {
auto idxb = parser.structural_indexes[i];
switch (parser.buf[idxb]) {
case ':':
case ',':
continue;
case '}':
obj_cnt--;
continue;
case ']':
arr_cnt--;
continue;
case '{':
obj_cnt++;
break;
case '[':
arr_cnt++;
break;
}
auto idxa = parser.structural_indexes[i - 1];
switch (parser.buf[idxa]) {
case '{':
case '[':
case ':':
case ',':
continue;
}
// Last document is complete, so the next document will appear after!
if (!arr_cnt && !obj_cnt) {
return parser.n_structural_indexes;
}
// Last document is incomplete; mark the document at i + 1 as the next one
return i;
}
return 0;
}
// Skip the last character if it is partial
really_inline static size_t trim_partial_utf8(const uint8_t *buf, size_t len) {
if (unlikely(len < 3)) {
switch (len) {
case 2:
if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left
if (buf[len-2] >= 0b11100000) { return len-2; } // 3- and 4-byte characters with only 2 bytes left
return len;
case 1:
if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left
return len;
case 0:
return len;
}
}
if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left
if (buf[len-2] >= 0b11100000) { return len-2; } // 3- and 4-byte characters with only 1 byte left
if (buf[len-3] >= 0b11110000) { return len-3; } // 4-byte characters with only 3 bytes left
return len;
}

View File

@ -59,13 +59,15 @@ template<size_t STEP_SIZE>
error_code json_minifier::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) noexcept { error_code json_minifier::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) noexcept {
buf_block_reader<STEP_SIZE> reader(buf, len); buf_block_reader<STEP_SIZE> reader(buf, len);
json_minifier minifier(dst); json_minifier minifier(dst);
// Index the first n-1 blocks
while (reader.has_full_block()) { while (reader.has_full_block()) {
minifier.step<STEP_SIZE>(reader.full_block(), reader); minifier.step<STEP_SIZE>(reader.full_block(), reader);
} }
if (likely(reader.has_remainder())) { // Index the last (remainder) block, padded with spaces
uint8_t block[STEP_SIZE]; uint8_t block[STEP_SIZE];
reader.get_remainder(block); if (likely(reader.get_remainder(block)) > 0) {
minifier.step<STEP_SIZE>(block, reader); minifier.step<STEP_SIZE>(block, reader);
} }

View File

@ -57,16 +57,22 @@ public:
class json_structural_indexer { class json_structural_indexer {
public: public:
/**
* Find the important bits of JSON in a 128-byte chunk, and add them to structural_indexes.
*
* @param partial Setting the partial parameter to true allows the find_structural_bits to
* tolerate unclosed strings. The caller should still ensure that the input is valid UTF-8. If
* you are processing substrings, you may want to call on a function like trimmed_length_safe_utf8.
*/
template<size_t STEP_SIZE> template<size_t STEP_SIZE>
static error_code index(const uint8_t *buf, size_t len, dom_parser_implementation &parser, bool streaming) noexcept; static error_code index(const uint8_t *buf, size_t len, dom_parser_implementation &parser, bool partial) noexcept;
private: private:
really_inline json_structural_indexer(uint32_t *structural_indexes) really_inline json_structural_indexer(uint32_t *structural_indexes);
: indexer{structural_indexes} {}
template<size_t STEP_SIZE> template<size_t STEP_SIZE>
really_inline void step(const uint8_t *block, buf_block_reader<STEP_SIZE> &reader) noexcept; really_inline void step(const uint8_t *block, buf_block_reader<STEP_SIZE> &reader) noexcept;
really_inline void next(simd::simd8x64<uint8_t> in, json_block block, size_t idx); really_inline void next(simd::simd8x64<uint8_t> in, json_block block, size_t idx);
really_inline error_code finish(dom_parser_implementation &parser, size_t idx, size_t len, bool streaming); really_inline error_code finish(dom_parser_implementation &parser, size_t idx, size_t len, bool partial);
json_scanner scanner{}; json_scanner scanner{};
utf8_checker checker{}; utf8_checker checker{};
@ -75,57 +81,44 @@ private:
uint64_t unescaped_chars_error = 0; uint64_t unescaped_chars_error = 0;
}; };
really_inline void json_structural_indexer::next(simd::simd8x64<uint8_t> in, json_block block, size_t idx) { really_inline json_structural_indexer::json_structural_indexer(uint32_t *structural_indexes) : indexer{structural_indexes} {}
uint64_t unescaped = in.lteq(0x1F);
checker.check_next_input(in);
indexer.write(uint32_t(idx-64), prev_structurals); // Output *last* iteration's structurals to the parser
prev_structurals = block.structural_start();
unescaped_chars_error |= block.non_quote_inside_string(unescaped);
}
really_inline error_code json_structural_indexer::finish(dom_parser_implementation &parser, size_t idx, size_t len, bool streaming) { //
// Write out the final iteration's structurals // PERF NOTES:
indexer.write(uint32_t(idx-64), prev_structurals); // We pipe 2 inputs through these stages:
// 1. Load JSON into registers. This takes a long time and is highly parallelizable, so we load
// 2 inputs' worth at once so that by the time step 2 is looking for them input, it's available.
// 2. Scan the JSON for critical data: strings, scalars and operators. This is the critical path.
// The output of step 1 depends entirely on this information. These functions don't quite use
// up enough CPU: the second half of the functions is highly serial, only using 1 execution core
// at a time. The second input's scans has some dependency on the first ones finishing it, but
// they can make a lot of progress before they need that information.
// 3. Step 1 doesn't use enough capacity, so we run some extra stuff while we're waiting for that
// to finish: utf-8 checks and generating the output from the last iteration.
//
// The reason we run 2 inputs at a time, is steps 2 and 3 are *still* not enough to soak up all
// available capacity with just one input. Running 2 at a time seems to give the CPU a good enough
// workout.
//
template<size_t STEP_SIZE>
error_code json_structural_indexer::index(const uint8_t *buf, size_t len, dom_parser_implementation &parser, bool partial) noexcept {
if (unlikely(len > parser.capacity())) { return CAPACITY; }
if (partial) { len = trim_partial_utf8(buf, len); }
error_code error = scanner.finish(streaming); buf_block_reader<STEP_SIZE> reader(buf, len);
if (unlikely(error != SUCCESS)) { return error; } json_structural_indexer indexer(parser.structural_indexes.get());
if (unescaped_chars_error) { // Read all but the last block
return UNESCAPED_CHARS; while (reader.has_full_block()) {
indexer.step<STEP_SIZE>(reader.full_block(), reader);
} }
parser.n_structural_indexes = uint32_t(indexer.tail - parser.structural_indexes.get()); // Take care of the last block (will always be there unless file is empty)
/* a valid JSON file cannot have zero structural indexes - we should have uint8_t block[STEP_SIZE];
* found something */ if (unlikely(reader.get_remainder(block) == 0)) { return EMPTY; }
if (unlikely(parser.n_structural_indexes == 0u)) { indexer.step<STEP_SIZE>(block, reader);
return EMPTY;
} return indexer.finish(parser, reader.block_index(), len, partial);
if (unlikely(parser.structural_indexes[parser.n_structural_indexes - 1] > len)) {
return UNEXPECTED_ERROR;
}
if (len != parser.structural_indexes[parser.n_structural_indexes - 1]) {
/* the string might not be NULL terminated, but we add a virtual NULL
* ending character. */
parser.structural_indexes[parser.n_structural_indexes++] = uint32_t(len);
}
/* make it safe to dereference one beyond this array */
parser.structural_indexes[parser.n_structural_indexes] = uint32_t(len);
parser.structural_indexes[parser.n_structural_indexes + 1] = 0;
/***
* This is related to https://github.com/simdjson/simdjson/issues/906
* Basically, we want to make sure that if the parsing continues beyond the last (valid)
* structural character, it quickly stops.
* Only three structural characters can be repeated without triggering an error in JSON: [,] and }.
* We repeat the padding character (at 'len'). We don't know what it is, but if the parsing
* continues, then it must be [,] or }.
* Suppose it is ] or }. We backtrack to the first character, what could it be that would
* not trigger an error? It could be ] or } but no, because you can't start a document that way.
* It can't be a comma, a colon or any simple value. So the only way we could continue is
* if the repeated character is [. But if so, the document must start with [. But if the document
* starts with [, it should end with ]. If we enforce that rule, then we would get
* ][[ which is invalid.
**/
return checker.errors();
} }
template<> template<>
@ -147,45 +140,59 @@ really_inline void json_structural_indexer::step<64>(const uint8_t *block, buf_b
reader.advance(); reader.advance();
} }
// really_inline void json_structural_indexer::next(simd::simd8x64<uint8_t> in, json_block block, size_t idx) {
// Find the important bits of JSON in a 128-byte chunk, and add them to structural_indexes. uint64_t unescaped = in.lteq(0x1F);
// checker.check_next_input(in);
// PERF NOTES: indexer.write(uint32_t(idx-64), prev_structurals); // Output *last* iteration's structurals to the parser
// We pipe 2 inputs through these stages: prev_structurals = block.structural_start();
// 1. Load JSON into registers. This takes a long time and is highly parallelizable, so we load unescaped_chars_error |= block.non_quote_inside_string(unescaped);
// 2 inputs' worth at once so that by the time step 2 is looking for them input, it's available. }
// 2. Scan the JSON for critical data: strings, scalars and operators. This is the critical path.
// The output of step 1 depends entirely on this information. These functions don't quite use
// up enough CPU: the second half of the functions is highly serial, only using 1 execution core
// at a time. The second input's scans has some dependency on the first ones finishing it, but
// they can make a lot of progress before they need that information.
// 3. Step 1 doesn't use enough capacity, so we run some extra stuff while we're waiting for that
// to finish: utf-8 checks and generating the output from the last iteration.
//
// The reason we run 2 inputs at a time, is steps 2 and 3 are *still* not enough to soak up all
// available capacity with just one input. Running 2 at a time seems to give the CPU a good enough
// workout.
//
// Setting the streaming parameter to true allows the find_structural_bits to tolerate unclosed strings.
// The caller should still ensure that the input is valid UTF-8. If you are processing substrings,
// you may want to call on a function like trimmed_length_safe_utf8.
template<size_t STEP_SIZE>
error_code json_structural_indexer::index(const uint8_t *buf, size_t len, dom_parser_implementation &parser, bool streaming) noexcept {
if (unlikely(len > parser.capacity())) { return CAPACITY; }
buf_block_reader<STEP_SIZE> reader(buf, len); really_inline error_code json_structural_indexer::finish(dom_parser_implementation &parser, size_t idx, size_t len, bool partial) {
json_structural_indexer indexer(parser.structural_indexes.get()); // Write out the final iteration's structurals
while (reader.has_full_block()) { indexer.write(uint32_t(idx-64), prev_structurals);
indexer.step<STEP_SIZE>(reader.full_block(), reader);
error_code error = scanner.finish(partial);
if (unlikely(error != SUCCESS)) { return error; }
if (unescaped_chars_error) {
return UNESCAPED_CHARS;
} }
if (likely(reader.has_remainder())) { parser.n_structural_indexes = uint32_t(indexer.tail - parser.structural_indexes.get());
uint8_t block[STEP_SIZE]; /***
reader.get_remainder(block); * This is related to https://github.com/simdjson/simdjson/issues/906
indexer.step<STEP_SIZE>(block, reader); * Basically, we want to make sure that if the parsing continues beyond the last (valid)
* structural character, it quickly stops.
* Only three structural characters can be repeated without triggering an error in JSON: [,] and }.
* We repeat the padding character (at 'len'). We don't know what it is, but if the parsing
* continues, then it must be [,] or }.
* Suppose it is ] or }. We backtrack to the first character, what could it be that would
* not trigger an error? It could be ] or } but no, because you can't start a document that way.
* It can't be a comma, a colon or any simple value. So the only way we could continue is
* if the repeated character is [. But if so, the document must start with [. But if the document
* starts with [, it should end with ]. If we enforce that rule, then we would get
* ][[ which is invalid.
**/
parser.structural_indexes[parser.n_structural_indexes] = uint32_t(len);
parser.structural_indexes[parser.n_structural_indexes + 1] = uint32_t(len);
parser.structural_indexes[parser.n_structural_indexes + 2] = 0;
parser.next_structural_index = 0;
// a valid JSON file cannot have zero structural indexes - we should have found something
if (unlikely(parser.n_structural_indexes == 0u)) {
return EMPTY;
} }
if (unlikely(parser.structural_indexes[parser.n_structural_indexes - 1] > len)) {
return indexer.finish(parser, reader.block_index(), len, streaming); return UNEXPECTED_ERROR;
}
if (partial) {
auto new_structural_indexes = find_next_document_index(parser);
if (new_structural_indexes == 0 && parser.n_structural_indexes > 0) {
return CAPACITY; // If the buffer is partial but the document is incomplete, it's too big to parse.
}
parser.n_structural_indexes = new_structural_indexes;
}
return checker.errors();
} }
} // namespace stage1 } // namespace stage1

View File

@ -56,7 +56,7 @@ namespace logger {
} }
printf("| %c ", printable_char(structurals.at_beginning() ? ' ' : structurals.current_char())); printf("| %c ", printable_char(structurals.at_beginning() ? ' ' : structurals.current_char()));
printf("| %c ", printable_char(structurals.peek_char())); printf("| %c ", printable_char(structurals.peek_char()));
printf("| %5zd ", structurals.next_structural); printf("| %5u ", structurals.structural_indexes[structurals.next_structural]);
printf("| %-*s ", LOG_DETAIL_LEN, detail); printf("| %-*s ", LOG_DETAIL_LEN, detail);
printf("| %*zu ", LOG_INDEX_LEN, structurals.idx); printf("| %*zu ", LOG_INDEX_LEN, structurals.idx);
printf("|\n"); printf("|\n");

View File

@ -1,12 +1,18 @@
namespace stage2 { namespace stage2 {
struct streaming_structural_parser: structural_parser { struct streaming_structural_parser: structural_parser {
really_inline streaming_structural_parser(dom_parser_implementation &_parser, uint32_t next_structural) : structural_parser(_parser, next_structural) {} really_inline streaming_structural_parser(dom_parser_implementation &_parser) : structural_parser(_parser, _parser.next_structural_index) {}
// override to add streaming // override to add streaming
WARN_UNUSED really_inline error_code start(ret_address_t finish_parser) { WARN_UNUSED really_inline error_code start(ret_address_t finish_parser) {
// If there are no structurals left, return EMPTY
if (structurals.at_end(parser.n_structural_indexes)) {
return parser.error = EMPTY;
}
log_start(); log_start();
init(); // sets is_valid to false init();
// Capacity ain't no thang for streaming, so we don't check it. // Capacity ain't no thang for streaming, so we don't check it.
// Advance to the first character as soon as possible // Advance to the first character as soon as possible
advance_char(); advance_char();
@ -24,6 +30,7 @@ struct streaming_structural_parser: structural_parser {
return parser.error = TAPE_ERROR; return parser.error = TAPE_ERROR;
} }
end_document(); end_document();
parser.next_structural_index = uint32_t(structurals.next_structural_index());
if (depth != 0) { if (depth != 0) {
log_error("Unclosed objects or arrays!"); log_error("Unclosed objects or arrays!");
return parser.error = TAPE_ERROR; return parser.error = TAPE_ERROR;
@ -32,9 +39,7 @@ struct streaming_structural_parser: structural_parser {
log_error("IMPOSSIBLE: root scope tape index did not start at 0!"); log_error("IMPOSSIBLE: root scope tape index did not start at 0!");
return parser.error = TAPE_ERROR; return parser.error = TAPE_ERROR;
} }
bool finished = structurals.at_end(parser.n_structural_indexes); return SUCCESS;
if (!finished) { log_value("(and has more)"); }
return finished ? SUCCESS : SUCCESS_AND_HAS_MORE;
} }
}; };
@ -44,12 +49,10 @@ struct streaming_structural_parser: structural_parser {
* The JSON is parsed to a tape, see the accompanying tape.md file * The JSON is parsed to a tape, see the accompanying tape.md file
* for documentation. * for documentation.
***********/ ***********/
WARN_UNUSED error_code dom_parser_implementation::stage2(const uint8_t *_buf, size_t _len, dom::document &_doc, size_t &next_json) noexcept { WARN_UNUSED error_code dom_parser_implementation::stage2_next(dom::document &_doc) noexcept {
this->buf = _buf;
this->len = _len;
this->doc = &_doc; this->doc = &_doc;
static constexpr stage2::unified_machine_addresses addresses = INIT_ADDRESSES(); static constexpr stage2::unified_machine_addresses addresses = INIT_ADDRESSES();
stage2::streaming_structural_parser parser(*this, uint32_t(next_json)); stage2::streaming_structural_parser parser(*this);
error_code result = parser.start(addresses.finish); error_code result = parser.start(addresses.finish);
if (result) { return result; } if (result) { return result; }
// //
@ -158,7 +161,6 @@ array_continue:
} }
finish: finish:
next_json = parser.structurals.next_structural_index();
return parser.finish(); return parser.finish();
error: error:

View File

@ -52,10 +52,10 @@ public:
return result; return result;
} }
really_inline bool past_end(uint32_t n_structural_indexes) { really_inline bool past_end(uint32_t n_structural_indexes) {
return next_structural+1 > n_structural_indexes; return next_structural > n_structural_indexes;
} }
really_inline bool at_end(uint32_t n_structural_indexes) { really_inline bool at_end(uint32_t n_structural_indexes) {
return next_structural+1 == n_structural_indexes; return next_structural == n_structural_indexes;
} }
really_inline bool at_beginning() { really_inline bool at_beginning() {
return next_structural == 0; return next_structural == 0;

View File

@ -75,10 +75,7 @@ struct structural_parser {
uint8_t *current_string_buf_loc{}; uint8_t *current_string_buf_loc{};
uint32_t depth; uint32_t depth;
really_inline structural_parser( really_inline structural_parser(dom_parser_implementation &_parser, uint32_t next_structural = 0) : structurals(_parser.buf, _parser.len, _parser.structural_indexes.get(), next_structural), parser{_parser}, depth{0} {}
dom_parser_implementation &_parser,
uint32_t next_structural = 0
) : structurals(_parser.buf, _parser.len, _parser.structural_indexes.get(), next_structural), parser{_parser}, depth{0} {}
WARN_UNUSED really_inline bool start_scope(ret_address_t continue_state) { WARN_UNUSED really_inline bool start_scope(ret_address_t continue_state) {
parser.containing_scope[depth].tape_index = parser.current_loc; parser.containing_scope[depth].tape_index = parser.current_loc;
@ -333,7 +330,7 @@ struct structural_parser {
WARN_UNUSED really_inline error_code start(size_t len, ret_address_t finish_state) { WARN_UNUSED really_inline error_code start(size_t len, ret_address_t finish_state) {
log_start(); log_start();
init(); // sets is_valid to false init();
if (len > parser.capacity()) { if (len > parser.capacity()) {
return parser.error = CAPACITY; return parser.error = CAPACITY;
} }
@ -401,7 +398,7 @@ WARN_UNUSED error_code dom_parser_implementation::stage2(dom::document &_doc) no
FAIL_IF( parser.start_array(addresses.finish) ); FAIL_IF( parser.start_array(addresses.finish) );
// Make sure the outer array is closed before continuing; otherwise, there are ways we could get // Make sure the outer array is closed before continuing; otherwise, there are ways we could get
// into memory corruption. See https://github.com/simdjson/simdjson/issues/906 // into memory corruption. See https://github.com/simdjson/simdjson/issues/906
if (buf[structural_indexes[n_structural_indexes - 2]] != ']') { if (buf[structural_indexes[n_structural_indexes - 1]] != ']') {
goto error; goto error;
} }
goto array_begin; goto array_begin;

View File

@ -70,6 +70,7 @@ WARN_UNUSED error_code implementation::minify(const uint8_t *buf, size_t len, ui
return haswell::stage1::json_minifier::minify<128>(buf, len, dst, dst_len); return haswell::stage1::json_minifier::minify<128>(buf, len, dst, dst_len);
} }
#include "generic/stage1/find_next_document_index.h"
#include "generic/stage1/utf8_lookup2_algorithm.h" #include "generic/stage1/utf8_lookup2_algorithm.h"
#include "generic/stage1/json_structural_indexer.h" #include "generic/stage1/json_structural_indexer.h"
WARN_UNUSED error_code dom_parser_implementation::stage1(const uint8_t *_buf, size_t _len, bool streaming) noexcept { WARN_UNUSED error_code dom_parser_implementation::stage1(const uint8_t *_buf, size_t _len, bool streaming) noexcept {

View File

@ -71,6 +71,7 @@ WARN_UNUSED error_code implementation::minify(const uint8_t *buf, size_t len, ui
return westmere::stage1::json_minifier::minify<64>(buf, len, dst, dst_len); return westmere::stage1::json_minifier::minify<64>(buf, len, dst, dst_len);
} }
#include "generic/stage1/find_next_document_index.h"
#include "generic/stage1/utf8_lookup2_algorithm.h" #include "generic/stage1/utf8_lookup2_algorithm.h"
#include "generic/stage1/json_structural_indexer.h" #include "generic/stage1/json_structural_indexer.h"
WARN_UNUSED error_code dom_parser_implementation::stage1(const uint8_t *_buf, size_t _len, bool streaming) noexcept { WARN_UNUSED error_code dom_parser_implementation::stage1(const uint8_t *_buf, size_t _len, bool streaming) noexcept {

View File

@ -515,9 +515,9 @@ namespace parse_api_tests {
using namespace simdjson; using namespace simdjson;
using namespace simdjson::dom; using namespace simdjson::dom;
const padded_string BASIC_JSON = string("[1,2,3]"); const padded_string BASIC_JSON = "[1,2,3]"_padded;
const padded_string BASIC_NDJSON = string("[1,2,3]\n[4,5,6]"); const padded_string BASIC_NDJSON = "[1,2,3]\n[4,5,6]"_padded;
// const padded_string EMPTY_NDJSON = string(""); const padded_string EMPTY_NDJSON = ""_padded;
bool parser_parse() { bool parser_parse() {
std::cout << "Running " << __func__ << std::endl; std::cout << "Running " << __func__ << std::endl;
@ -532,24 +532,45 @@ namespace parse_api_tests {
dom::parser parser; dom::parser parser;
int count = 0; int count = 0;
for (auto [doc, error] : parser.parse_many(BASIC_NDJSON)) { for (auto [doc, error] : parser.parse_many(BASIC_NDJSON)) {
if (error) { cerr << error << endl; return false; } if (error) { cerr << "Error in parse_many: " << endl; return false; }
if (!doc.is<dom::array>()) { cerr << "Document did not parse as an array" << endl; return false; } if (!doc.is<dom::array>()) { cerr << "Document did not parse as an array" << endl; return false; }
count++; count++;
} }
if (count != 2) { cerr << "parse_many returned " << count << " documents, expected 2" << endl; return false; } if (count != 2) { cerr << "parse_many returned " << count << " documents, expected 2" << endl; return false; }
return true; return true;
} }
// bool parser_parse_many_empty() { bool parser_parse_many_empty() {
// std::cout << "Running " << __func__ << std::endl; std::cout << "Running " << __func__ << std::endl;
// dom::parser parser; dom::parser parser;
// int count = 0; int count = 0;
// for (auto [doc, error] : parser.parse_many(EMPTY_NDJSON)) { for (auto doc : parser.parse_many(EMPTY_NDJSON)) {
// if (error) { cerr << error << endl; return false; } if (doc.error()) { cerr << "Error in parse_many: " << doc.error() << endl; return false; }
// count++; count++;
// } }
// if (count != 0) { cerr << "parse_many returned " << count << " documents, expected 0" << endl; return false; } if (count != 0) { cerr << "parse_many returned " << count << " documents, expected 0" << endl; return false; }
// return true; return true;
// } }
bool parser_parse_many_empty_batches() {
std::cout << "Running " << __func__ << std::endl;
dom::parser parser;
uint64_t count = 0;
constexpr const int BATCH_SIZE = 128;
uint8_t empty_batches_ndjson[BATCH_SIZE*16+SIMDJSON_PADDING];
memset(&empty_batches_ndjson[0], ' ', BATCH_SIZE*16+SIMDJSON_PADDING);
memcpy(&empty_batches_ndjson[BATCH_SIZE*3+2], "1", 1);
memcpy(&empty_batches_ndjson[BATCH_SIZE*10+4], "2", 1);
memcpy(&empty_batches_ndjson[BATCH_SIZE*11+6], "3", 1);
for (auto [doc, error] : parser.parse_many(empty_batches_ndjson, BATCH_SIZE*16)) {
if (error) { cerr << "Error in parse_many: " << error << endl; return false; }
count++;
auto [val, val_error] = doc.get<uint64_t>();
if (val_error) { cerr << "Document is not an unsigned int: " << val_error << endl; return false; }
if (val != count) { cerr << "Expected document #" << count << " to equal " << count << ", but got " << val << " instead!" << endl; return false; }
}
if (count != 3) { cerr << "parse_many returned " << count << " documents, expected 0" << endl; return false; }
return true;
}
bool parser_load() { bool parser_load() {
std::cout << "Running " << __func__ << " on " << TWITTER_JSON << std::endl; std::cout << "Running " << __func__ << " on " << TWITTER_JSON << std::endl;
@ -633,7 +654,8 @@ namespace parse_api_tests {
bool run() { bool run() {
return parser_parse() && return parser_parse() &&
parser_parse_many() && parser_parse_many() &&
// parser_parse_many_empty() && parser_parse_many_empty() &&
parser_parse_many_empty_batches() &&
parser_load() && parser_load() &&
parser_load_many() && parser_load_many() &&
#if SIMDJSON_EXCEPTIONS #if SIMDJSON_EXCEPTIONS

View File

@ -24,7 +24,7 @@ const char *TWITTER_JSON = SIMDJSON_BENCHMARK_DATA_DIR "twitter.json";
#define TEST_FAIL(MESSAGE) { cerr << "FAIL: " << (MESSAGE) << endl; return false; } #define TEST_FAIL(MESSAGE) { cerr << "FAIL: " << (MESSAGE) << endl; return false; }
#define TEST_SUCCEED() { return true; } #define TEST_SUCCEED() { return true; }
namespace parser_load { namespace parser_load {
const char * NONEXISTENT_FILE = "this_file_does_not_exit.json"; const char * NONEXISTENT_FILE = "this_file_does_not_exist.json";
bool parser_load_capacity() { bool parser_load_capacity() {
TEST_START(); TEST_START();
dom::parser parser(1); // 1 byte max capacity dom::parser parser(1); // 1 byte max capacity
@ -42,6 +42,57 @@ namespace parser_load {
TEST_FAIL("No documents returned"); TEST_FAIL("No documents returned");
} }
bool parser_parse_many_documents_error_in_the_middle() {
TEST_START();
const padded_string DOC = "1 2 [} 3"_padded;
size_t count = 0;
dom::parser parser;
for (auto doc : parser.parse_many(DOC)) {
count++;
auto [val, error] = doc.get<uint64_t>();
if (count == 3) {
ASSERT_ERROR(error, TAPE_ERROR);
} else {
if (error) { TEST_FAIL(error); }
if (val != count) { cerr << "FAIL: expected " << count << ", got " << val << endl; return false; }
}
}
if (count != 3) { cerr << "FAIL: expected 2 documents and 1 error, got " << count << " total things" << endl; return false; }
TEST_SUCCEED();
}
bool parser_parse_many_documents_partial() {
TEST_START();
const padded_string DOC = "["_padded;
size_t count = 0;
dom::parser parser;
for (auto doc : parser.parse_many(DOC)) {
count++;
ASSERT_ERROR(doc.error(), TAPE_ERROR);
}
if (count != 1) { cerr << "FAIL: expected no documents and 1 error, got " << count << " total things" << endl; return false; }
TEST_SUCCEED();
}
bool parser_parse_many_documents_partial_at_the_end() {
TEST_START();
const padded_string DOC = "1 2 ["_padded;
size_t count = 0;
dom::parser parser;
for (auto doc : parser.parse_many(DOC)) {
count++;
auto [val, error] = doc.get<uint64_t>();
if (count == 3) {
ASSERT_ERROR(error, TAPE_ERROR);
} else {
if (error) { TEST_FAIL(error); }
if (val != count) { cerr << "FAIL: expected " << count << ", got " << val << endl; return false; }
}
}
if (count != 3) { cerr << "FAIL: expected 2 documents and 1 error, got " << count << " total things" << endl; return false; }
TEST_SUCCEED();
}
bool parser_load_nonexistent() { bool parser_load_nonexistent() {
TEST_START(); TEST_START();
dom::parser parser; dom::parser parser;
@ -83,9 +134,18 @@ namespace parser_load {
TEST_FAIL("No documents returned"); TEST_FAIL("No documents returned");
} }
bool run() { bool run() {
return parser_load_capacity() && parser_load_many_capacity() return true
&& parser_load_nonexistent() && parser_load_many_nonexistent() && padded_string_load_nonexistent() && parser_load_capacity()
&& parser_load_chain() && parser_load_many_chain(); && parser_load_many_capacity()
&& parser_load_nonexistent()
&& parser_load_many_nonexistent()
&& padded_string_load_nonexistent()
&& parser_load_chain()
&& parser_load_many_chain()
&& parser_parse_many_documents_error_in_the_middle()
&& parser_parse_many_documents_partial()
&& parser_parse_many_documents_partial_at_the_end()
;
} }
} }

View File

@ -83,17 +83,21 @@ bool validate(const char *dirname) {
if (contains("EXCLUDE", name)) { if (contains("EXCLUDE", name)) {
// skipping // skipping
how_many--; how_many--;
} else if (starts_with("pass", name) and (has_extension(extension1, name) or has_extension(extension2, name)) and error) { } else if (starts_with("pass", name) or starts_with("fail10.json", name) or starts_with("fail70.json", name)) {
is_file_as_expected[i] = false; if (error) {
printf("warning: file %s should pass but it fails. Error is: %s\n", is_file_as_expected[i] = false;
name, error_message(error)); printf("warning: file %s should pass but it fails. Error is: %s\n",
printf("size of file in bytes: %zu \n", json.size()); name, error_message(error));
everything_fine = false; printf("size of file in bytes: %zu \n", json.size());
} else if ( starts_with("fail", name) and (not starts_with("fail10.json", name)) and !error) { everything_fine = false;
is_file_as_expected[i] = false; }
printf("warning: file %s should fail but it passes.\n", name); } else if ( starts_with("fail", name) ) {
printf("size of file in bytes: %zu \n", json.size()); if (!error) {
everything_fine = false; is_file_as_expected[i] = false;
printf("warning: file %s should fail but it passes.\n", name);
printf("size of file in bytes: %zu \n", json.size());
everything_fine = false;
}
} }
free(fullpath); free(fullpath);
} }