Done analysis.
This commit is contained in:
parent
95d1dc24f6
commit
579bc0d848
|
@ -149,8 +149,8 @@ int main(int argc, char *argv[]) {
|
|||
"false_count byte_count structural_indexes_count ");
|
||||
#ifdef __linux__
|
||||
printf(
|
||||
" stage1_instruction_count stage1_cycle_count stage2_instruction_count "
|
||||
"stage2_cycle_count stage3_instruction_count stage3_cycle_count ");
|
||||
" stage1_cycle_count stage1_instruction_count stage2_cycle_count "
|
||||
" stage2_instruction_count stage3_cycle_count stage3_instruction_count ");
|
||||
#else
|
||||
printf("(you are not under linux, so perf counters are disaabled)");
|
||||
#endif
|
||||
|
|
|
@ -0,0 +1,28 @@
|
|||
loading modeltable.txt
|
||||
chosenpredictors= ['integer_count', 'float_count', 'string_count', 'backslash_count', 'nonasciibyte_count', 'object_count', 'array_count', 'null_count', 'true_count', 'false_count', 'byte_count', 'structural_indexes_count']
|
||||
|
||||
target = stage1_cycle_count
|
||||
0.98 cycles per nonasciibyte_count
|
||||
0.46 cycles per byte_count
|
||||
R2 = 0.9987789976254756
|
||||
|
||||
target = stage2_cycle_count
|
||||
2 cycles per structural_indexes_count
|
||||
0.11 cycles per byte_count
|
||||
R2 = 0.9944144115615688
|
||||
|
||||
target = stage3_cycle_count
|
||||
2.5 cycles per float_count
|
||||
2.2 cycles per string_count
|
||||
1.4 cycles per structural_indexes_count
|
||||
0.095 cycles per byte_count
|
||||
R2 = 0.9983269621964512
|
||||
|
||||
target = total_cycles
|
||||
6.6 cycles per string_count
|
||||
6 cycles per float_count
|
||||
2.6 cycles per structural_indexes_count
|
||||
0.82 cycles per nonasciibyte_count
|
||||
0.64 cycles per byte_count
|
||||
R2 = 0.9994265124423222
|
||||
|
|
@ -0,0 +1,62 @@
|
|||
import os
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from sklearn.linear_model import Ridge
|
||||
from sklearn.linear_model import Lasso
|
||||
from sklearn.preprocessing import normalize
|
||||
from sklearn import metrics
|
||||
|
||||
def displaycoefs(coef_name):
|
||||
coef_name.sort()
|
||||
coef_name.reverse()
|
||||
for c,n in coef_name:
|
||||
print("\t%0.2g cycles per %s "%(c,n))
|
||||
|
||||
datafile = "modeltable.txt" ## from ./scripts/statisticalmodel.sh
|
||||
|
||||
predictors = ["integer_count", "float_count", "string_count", "backslash_count", "nonasciibyte_count", "object_count", "array_count", "null_count", "true_count", "false_count", "byte_count", "structural_indexes_count"]
|
||||
targets = ["stage1_cycle_count", "stage1_instruction_count", "stage2_cycle_count", "stage2_instruction_count", "stage3_cycle_count", "stage3_instruction_count"]
|
||||
|
||||
print("loading", datafile)
|
||||
dataset = pd.read_csv(datafile, delim_whitespace=True, skip_blank_lines=True, comment="#", header=None, names = predictors + targets)
|
||||
|
||||
|
||||
dataset.columns = predictors + targets
|
||||
|
||||
dataset['total_cycles']=dataset['stage1_cycle_count']+dataset['stage2_cycle_count']+dataset['stage3_cycle_count']
|
||||
dataset['ratio']=dataset['total_cycles']/dataset['byte_count']
|
||||
#print(dataset[['ratio']])
|
||||
|
||||
chosenpredictors = predictors #["integer_count", "float_count", "string_count", "backslash_count", "nonasciibyte_count", "byte_count", "structural_indexes_count"]
|
||||
print("chosenpredictors=",chosenpredictors)
|
||||
print()
|
||||
chosentargets=["stage1_cycle_count", "stage2_cycle_count", "stage3_cycle_count","total_cycles"]
|
||||
for t in chosentargets:
|
||||
print("target = ", t)
|
||||
howmany = 2 # we want at most two predictors
|
||||
if(t.startswith("stage2")):
|
||||
howmany = 2 # we allow for less
|
||||
if(t.startswith("stage3")):
|
||||
howmany = 4 # we allow for more
|
||||
if(t.startswith("total")):
|
||||
howmany = 5 # we allow for more
|
||||
A=10000000.0
|
||||
while(True):
|
||||
regressor = Lasso(max_iter=100000, alpha=A, positive = True, normalize=False, fit_intercept=False) #LinearRegression(normalize=False, fit_intercept=False)
|
||||
x = dataset[chosenpredictors]
|
||||
y = dataset[[t]]
|
||||
regressor.fit(x, y)
|
||||
rest = list(filter(lambda z: z[0] != 0, zip(regressor.coef_,chosenpredictors) ))
|
||||
nonzero = len(rest)
|
||||
if(nonzero > howmany):
|
||||
A *= 1.2
|
||||
else:
|
||||
#print(rest)
|
||||
displaycoefs(rest)
|
||||
print("R2 = ", regressor.score(x,y))
|
||||
Y_pred = regressor.predict(x)
|
||||
break
|
||||
print()
|
|
@ -0,0 +1 @@
|
|||
python learn.py > analysis.txt
|
Loading…
Reference in New Issue