Updating.
This commit is contained in:
parent
2e9a92588b
commit
58f7b55a09
Binary file not shown.
Binary file not shown.
|
@ -1,24 +1,31 @@
|
|||
loading modeltable.txt
|
||||
integer_count float_count ... total_cycles ratio
|
||||
count 14.000000 14.000000 ... 1.400000e+01 14.000000
|
||||
mean 17156.642857 21488.071429 ... 2.910166e+06 2.517336
|
||||
std 35520.191644 40466.023650 ... 3.465531e+06 1.043643
|
||||
min 0.000000 0.000000 ... 9.816417e+04 1.209798
|
||||
25% 13.000000 0.000000 ... 6.484984e+05 1.643587
|
||||
50% 2108.000000 0.500000 ... 1.607978e+06 2.305758
|
||||
75% 12044.500000 26800.250000 ... 3.766565e+06 3.436660
|
||||
max 130225.000000 114950.000000 ... 1.227446e+07 4.129712
|
||||
|
||||
[8 rows x 18 columns]
|
||||
chosenpredictors= ['integer_count', 'float_count', 'string_count', 'backslash_count', 'nonasciibyte_count', 'object_count', 'array_count', 'null_count', 'true_count', 'false_count', 'byte_count', 'structural_indexes_count']
|
||||
|
||||
target = stage1_cycle_count
|
||||
0.55 cycles per byte_count
|
||||
R2 = 0.9952005292028262
|
||||
1.8 cycles per structural_indexes_count
|
||||
0.62 cycles per byte_count
|
||||
R2 = 0.9966890133532899
|
||||
|
||||
target = stage2_cycle_count
|
||||
2 cycles per structural_indexes_count
|
||||
0.11 cycles per byte_count
|
||||
R2 = 0.9941606366930587
|
||||
|
||||
target = stage3_cycle_count
|
||||
14 cycles per float_count
|
||||
11 cycles per structural_indexes_count
|
||||
0.31 cycles per byte_count
|
||||
R2 = 0.9824350906350493
|
||||
19 cycles per float_count
|
||||
9.5 cycles per structural_indexes_count
|
||||
0.33 cycles per byte_count
|
||||
R2 = 0.9868882924152415
|
||||
|
||||
target = total_cycles
|
||||
17 cycles per float_count
|
||||
13 cycles per structural_indexes_count
|
||||
0.96 cycles per byte_count
|
||||
R2 = 0.991605569037089
|
||||
19 cycles per float_count
|
||||
11 cycles per structural_indexes_count
|
||||
0.95 cycles per byte_count
|
||||
R2 = 0.9923672903089373
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import os
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
#import matplotlib.pyplot as plt
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from sklearn.linear_model import Ridge
|
||||
|
@ -18,28 +18,30 @@ def displaycoefs(coef_name):
|
|||
datafile = "modeltable.txt" ## from ./scripts/statisticalmodel.sh
|
||||
|
||||
predictors = ["integer_count", "float_count", "string_count", "backslash_count", "nonasciibyte_count", "object_count", "array_count", "null_count", "true_count", "false_count", "byte_count", "structural_indexes_count"]
|
||||
targets = ["stage1_cycle_count", "stage1_instruction_count", "stage2_cycle_count", "stage2_instruction_count", "stage3_cycle_count", "stage3_instruction_count"]
|
||||
targets = ["stage1_cycle_count", "stage1_instruction_count", "stage2_cycle_count", "stage2_instruction_count"]
|
||||
|
||||
print("loading", datafile)
|
||||
dataset = pd.read_csv(datafile, delim_whitespace=True, skip_blank_lines=True, comment="#", header=None, names = predictors + targets)
|
||||
|
||||
|
||||
|
||||
dataset.columns = predictors + targets
|
||||
|
||||
dataset['total_cycles']=dataset['stage1_cycle_count']+dataset['stage2_cycle_count']+dataset['stage3_cycle_count']
|
||||
dataset['total_cycles']=dataset['stage1_cycle_count']+dataset['stage2_cycle_count']
|
||||
dataset['ratio']=dataset['total_cycles']/dataset['byte_count']
|
||||
#print(dataset[['ratio']])
|
||||
print(dataset.describe())
|
||||
|
||||
chosenpredictors = predictors #["integer_count", "float_count", "string_count", "backslash_count", "nonasciibyte_count", "byte_count", "structural_indexes_count"]
|
||||
chosenpredictors = predictors
|
||||
print("chosenpredictors=",chosenpredictors)
|
||||
print()
|
||||
chosentargets=["stage1_cycle_count", "stage2_cycle_count", "stage3_cycle_count","total_cycles"]
|
||||
chosentargets=["stage1_cycle_count", "stage2_cycle_count","total_cycles"]
|
||||
for t in chosentargets:
|
||||
print("target = ", t)
|
||||
howmany = 1 # we want at most one predictors
|
||||
if(t.startswith("stage2")):
|
||||
if(t.startswith("stage1")):
|
||||
howmany = 2 # we allow for less
|
||||
if(t.startswith("stage3")):
|
||||
if(t.startswith("stage2")):
|
||||
howmany = 3 # we allow for more
|
||||
if(t.startswith("total")):
|
||||
howmany = 3 # we allow for more
|
||||
|
|
|
@ -0,0 +1,31 @@
|
|||
loading modeltable.txt
|
||||
integer_count float_count ... total_cycles ratio
|
||||
count 14.000000 14.000000 ... 1.400000e+01 14.000000
|
||||
mean 17156.642857 21488.071429 ... 2.898374e+06 2.523610
|
||||
std 35520.191644 40466.023650 ... 3.408262e+06 1.021949
|
||||
min 0.000000 0.000000 ... 9.934419e+04 1.225950
|
||||
25% 13.000000 0.000000 ... 6.545444e+05 1.650991
|
||||
50% 2108.000000 0.500000 ... 1.611746e+06 2.369115
|
||||
75% 12044.500000 26800.250000 ... 3.803468e+06 3.441740
|
||||
max 130225.000000 114950.000000 ... 1.205456e+07 4.110868
|
||||
|
||||
[8 rows x 18 columns]
|
||||
chosenpredictors= ['integer_count', 'float_count', 'string_count', 'backslash_count', 'nonasciibyte_count', 'object_count', 'array_count', 'null_count', 'true_count', 'false_count', 'byte_count', 'structural_indexes_count']
|
||||
|
||||
target = stage1_cycle_count
|
||||
1.9 cycles per structural_indexes_count
|
||||
0.63 cycles per byte_count
|
||||
R2 = 0.9965695015271681
|
||||
|
||||
target = stage2_cycle_count
|
||||
19 cycles per float_count
|
||||
9 cycles per structural_indexes_count
|
||||
0.36 cycles per byte_count
|
||||
R2 = 0.9858116267470738
|
||||
|
||||
target = total_cycles
|
||||
19 cycles per float_count
|
||||
11 cycles per structural_indexes_count
|
||||
0.98 cycles per byte_count
|
||||
R2 = 0.9919590553913162
|
||||
|
|
@ -1,7 +1,7 @@
|
|||
import os
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
#import matplotlib.pyplot as plt
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from sklearn.linear_model import Ridge
|
||||
|
@ -18,28 +18,30 @@ def displaycoefs(coef_name):
|
|||
datafile = "modeltable.txt" ## from ./scripts/statisticalmodel.sh
|
||||
|
||||
predictors = ["integer_count", "float_count", "string_count", "backslash_count", "nonasciibyte_count", "object_count", "array_count", "null_count", "true_count", "false_count", "byte_count", "structural_indexes_count"]
|
||||
targets = ["stage1_cycle_count", "stage1_instruction_count", "stage2_cycle_count", "stage2_instruction_count", "stage3_cycle_count", "stage3_instruction_count"]
|
||||
targets = ["stage1_cycle_count", "stage1_instruction_count", "stage2_cycle_count", "stage2_instruction_count"]
|
||||
|
||||
print("loading", datafile)
|
||||
dataset = pd.read_csv(datafile, delim_whitespace=True, skip_blank_lines=True, comment="#", header=None, names = predictors + targets)
|
||||
|
||||
|
||||
|
||||
dataset.columns = predictors + targets
|
||||
|
||||
dataset['total_cycles']=dataset['stage1_cycle_count']+dataset['stage2_cycle_count']+dataset['stage3_cycle_count']
|
||||
dataset['total_cycles']=dataset['stage1_cycle_count']+dataset['stage2_cycle_count']
|
||||
dataset['ratio']=dataset['total_cycles']/dataset['byte_count']
|
||||
#print(dataset[['ratio']])
|
||||
print(dataset.describe())
|
||||
|
||||
chosenpredictors = predictors #["integer_count", "float_count", "string_count", "backslash_count", "nonasciibyte_count", "byte_count", "structural_indexes_count"]
|
||||
chosenpredictors = predictors
|
||||
print("chosenpredictors=",chosenpredictors)
|
||||
print()
|
||||
chosentargets=["stage1_cycle_count", "stage2_cycle_count", "stage3_cycle_count","total_cycles"]
|
||||
chosentargets=["stage1_cycle_count", "stage2_cycle_count","total_cycles"]
|
||||
for t in chosentargets:
|
||||
print("target = ", t)
|
||||
howmany = 1 # we want at most one predictors
|
||||
if(t.startswith("stage2")):
|
||||
if(t.startswith("stage1")):
|
||||
howmany = 2 # we allow for less
|
||||
if(t.startswith("stage3")):
|
||||
if(t.startswith("stage2")):
|
||||
howmany = 3 # we allow for more
|
||||
if(t.startswith("total")):
|
||||
howmany = 3 # we allow for more
|
||||
|
|
Loading…
Reference in New Issue