Return bool from compute_float_64

This commit is contained in:
John Keiser 2020-08-12 13:40:19 -07:00
parent 9475b947f5
commit eb3e640003
1 changed files with 31 additions and 39 deletions

View File

@ -24,7 +24,7 @@ namespace numberparsing {
// set to false. This should work *most of the time* (like 99% of the time).
// We assume that power is in the [FASTFLOAT_SMALLEST_POWER,
// FASTFLOAT_LARGEST_POWER] interval: the caller is responsible for this check.
simdjson_really_inline double compute_float_64(int64_t power, uint64_t i, bool negative, bool *success) {
simdjson_really_inline bool compute_float_64(int64_t power, uint64_t i, bool negative, double &d) {
// we start with a fast path
// It was described in
// Clinger WD. How to read floating point numbers accurately.
@ -40,7 +40,7 @@ simdjson_really_inline double compute_float_64(int64_t power, uint64_t i, bool n
#endif
// convert the integer into a double. This is lossless since
// 0 <= i <= 2^53 - 1.
double d = double(i);
d = double(i);
//
// The general idea is as follows.
// If 0 <= s < 2^53 and if 10^0 <= p <= 10^22 then
@ -59,8 +59,7 @@ simdjson_really_inline double compute_float_64(int64_t power, uint64_t i, bool n
if (negative) {
d = -d;
}
*success = true;
return d;
return true;
}
// When 22 < power && power < 22 + 16, we could
// hope for another, secondary fast path. It wa
@ -85,7 +84,8 @@ simdjson_really_inline double compute_float_64(int64_t power, uint64_t i, bool n
// In the slow path, we need to adjust i so that it is > 1<<63 which is always
// possible, except if i == 0, so we handle i == 0 separately.
if(i == 0) {
return 0.0;
d = 0.0;
return true;
}
// We are going to need to do some 64-bit arithmetic to get a more precise product.
@ -135,8 +135,7 @@ simdjson_really_inline double compute_float_64(int64_t power, uint64_t i, bool n
// This does happen, e.g. with 7.3177701707893310e+15.
if (((product_middle + 1 == 0) && ((product_high & 0x1FF) == 0x1FF) &&
(product_low + i < product_low))) { // let us be prudent and bail out.
*success = false;
return 0;
return false;
}
upper = product_high;
lower = product_middle;
@ -157,25 +156,24 @@ simdjson_really_inline double compute_float_64(int64_t power, uint64_t i, bool n
// floating-point values.
if (simdjson_unlikely((lower == 0) && ((upper & 0x1FF) == 0) &&
((mantissa & 3) == 1))) {
// if mantissa & 1 == 1 we might need to round up.
//
// Scenarios:
// 1. We are not in the middle. Then we should round up.
//
// 2. We are right in the middle. Whether we round up depends
// on the last significant bit: if it is "one" then we round
// up (round to even) otherwise, we do not.
//
// So if the last significant bit is 1, we can safely round up.
// Hence we only need to bail out if (mantissa & 3) == 1.
// Otherwise we may need more accuracy or analysis to determine whether
// we are exactly between two floating-point numbers.
// It can be triggered with 1e23.
// Note: because the factor_mantissa and factor_mantissa_low are
// almost always rounded down (except for small positive powers),
// almost always should round up.
*success = false;
return 0;
// if mantissa & 1 == 1 we might need to round up.
//
// Scenarios:
// 1. We are not in the middle. Then we should round up.
//
// 2. We are right in the middle. Whether we round up depends
// on the last significant bit: if it is "one" then we round
// up (round to even) otherwise, we do not.
//
// So if the last significant bit is 1, we can safely round up.
// Hence we only need to bail out if (mantissa & 3) == 1.
// Otherwise we may need more accuracy or analysis to determine whether
// we are exactly between two floating-point numbers.
// It can be triggered with 1e23.
// Note: because the factor_mantissa and factor_mantissa_low are
// almost always rounded down (except for small positive powers),
// almost always should round up.
return false;
}
mantissa += mantissa & 1;
@ -193,15 +191,12 @@ simdjson_really_inline double compute_float_64(int64_t power, uint64_t i, bool n
uint64_t real_exponent = c.exp - lz;
// we have to check that real_exponent is in range, otherwise we bail out
if (simdjson_unlikely((real_exponent < 1) || (real_exponent > 2046))) {
*success = false;
return 0;
return false;
}
mantissa |= real_exponent << 52;
mantissa |= (((uint64_t)negative) << 63);
double d;
memcpy(&d, &mantissa, sizeof(d));
*success = true;
return d;
return true;
}
static bool parse_float_strtod(const uint8_t *ptr, double *outDouble) {
@ -392,9 +387,8 @@ simdjson_really_inline error_code write_float(const uint8_t *const src, bool neg
writer.skip_double();
return error;
}
bool success = true;
double d = compute_float_64(exponent, i, negative, &success);
if (!success) {
double d;
if (!compute_float_64(exponent, i, negative, d)) {
// we are almost never going to get here.
if (!parse_float_strtod(src, &d)) { return INVALID_NUMBER(src); }
}
@ -713,12 +707,10 @@ SIMDJSON_UNUSED simdjson_really_inline simdjson_result<double> parse_double(cons
//
// Assemble (or slow-parse) the float
//
if (simdjson_likely(!overflow)) {
bool success = true;
double d = compute_float_64(exponent, i, negative, &success);
if (success) { return d; }
}
double d;
if (simdjson_likely(!overflow)) {
if (compute_float_64(exponent, i, negative, d)) { return d; }
}
if (!parse_float_strtod(src-negative, &d)) {
return NUMBER_ERROR;
}