simdjson/benchmark/parse.cpp

427 lines
13 KiB
C++

#include <cassert>
#include <cctype>
#ifndef _MSC_VER
#include <dirent.h>
#include <unistd.h>
#endif
#include <cinttypes>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <chrono>
#include <cstring>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <vector>
#include "linux-perf-events.h"
#ifdef __linux__
#include <libgen.h>
#endif
//#define DEBUG
#include "simdjson/common_defs.h"
#include "simdjson/isadetection.h"
#include "simdjson/jsonioutil.h"
#include "simdjson/jsonparser.h"
#include "simdjson/parsedjson.h"
#include "simdjson/stage1_find_marks.h"
#include "simdjson/stage2_build_tape.h"
namespace simdjson {
Architecture _find_best_supported_implementation() {
constexpr uint32_t haswell_flags =
instruction_set::AVX2 | instruction_set::PCLMULQDQ |
instruction_set::BMI1 | instruction_set::BMI2;
constexpr uint32_t westmere_flags =
instruction_set::SSE42 | instruction_set::PCLMULQDQ;
uint32_t supports = detect_supported_architectures();
// Order from best to worst (within architecture)
if ((haswell_flags & supports) == haswell_flags) {
return Architecture::HASWELL;
}
if ((westmere_flags & supports) == westmere_flags) {
return Architecture::WESTMERE;
}
if (instruction_set::NEON)
return Architecture::ARM64;
return Architecture::NONE;
}
using unified_functype = int(const uint8_t *buf, size_t len, ParsedJson &pj);
using stage1_functype = int(const uint8_t *buf, size_t len, ParsedJson &pj);
extern unified_functype *unified_ptr;
extern stage1_functype *stage1_ptr;
int unified_machine_dispatch(const uint8_t *buf, size_t len, ParsedJson &pj) {
Architecture best_implementation = _find_best_supported_implementation();
// Selecting the best implementation
switch (best_implementation) {
#ifdef IS_X86_64
case Architecture::HASWELL:
unified_ptr = &unified_machine<Architecture::HASWELL>;
break;
case Architecture::WESTMERE:
unified_ptr = &unified_machine<Architecture::WESTMERE>;
break;
#endif
#ifdef IS_ARM64
case Architecture::ARM64:
unified_ptr = &unified_machine<Architecture::ARM64>;
break;
#endif
default:
std::cerr << "The processor is not supported by simdjson." << std::endl;
return simdjson::UNEXPECTED_ERROR;
}
return unified_ptr(buf, len, pj);
}
// Responsible to select the best json_parse implementation
int find_structural_bits_dispatch(const uint8_t *buf, size_t len,
ParsedJson &pj) {
Architecture best_implementation = _find_best_supported_implementation();
// Selecting the best implementation
switch (best_implementation) {
#ifdef IS_X86_64
case Architecture::HASWELL:
stage1_ptr = &find_structural_bits<Architecture::HASWELL>;
break;
case Architecture::WESTMERE:
stage1_ptr = &find_structural_bits<Architecture::WESTMERE>;
break;
#endif
#ifdef IS_ARM64
case Architecture::ARM64:
stage1_ptr = &find_structural_bits<Architecture::ARM64>;
break;
#endif
default:
std::cerr << "The processor is not supported by simdjson." << std::endl;
return simdjson::UNEXPECTED_ERROR;
}
return stage1_ptr(buf, len, pj);
}
stage1_functype *stage1_ptr = &find_structural_bits_dispatch;
unified_functype *unified_ptr = &unified_machine_dispatch;
} // namespace simdjson
int main(int argc, char *argv[]) {
bool verbose = false;
bool dump = false;
bool json_output = false;
bool force_one_iteration = false;
bool just_data = false;
int32_t iterations = -1;
int32_t warmup_iterations = -1;
#ifndef _MSC_VER
int c;
while ((c = getopt(argc, argv, "1vdtn:w:")) != -1) {
switch (c) {
case 'n':
iterations = atoi(optarg);
break;
case 'w':
warmup_iterations = atoi(optarg);
break;
case 't':
just_data = true;
break;
case 'v':
verbose = true;
break;
case 'd':
dump = true;
break;
case 'j':
json_output = true;
break;
case '1':
force_one_iteration = true;
break;
default:
abort();
}
}
#else
int optind = 1;
#endif
if (optind >= argc) {
std::cerr << "Usage: " << argv[0] << " <jsonfile>" << std::endl;
exit(1);
}
const char *filename = argv[optind];
if (optind + 1 < argc) {
std::cerr << "warning: ignoring everything after " << argv[optind + 1]
<< std::endl;
}
if (verbose) {
std::cout << "[verbose] loading " << filename << std::endl;
}
simdjson::padded_string p;
try {
simdjson::get_corpus(filename).swap(p);
} catch (const std::exception &) { // caught by reference to base
std::cout << "Could not load the file " << filename << std::endl;
return EXIT_FAILURE;
}
if (verbose) {
std::cout << "[verbose] loaded " << filename << " (" << p.size()
<< " bytes)" << std::endl;
}
if (iterations == -1) {
#if defined(DEBUG)
iterations = 1;
#else
iterations = force_one_iteration ? 1 : (p.size() < 1 * 1000 * 1000 ? 1000 : 10);
#endif
}
if (warmup_iterations == -1) {
#if defined(DEBUG)
warmup_iterations = 0;
#else
warmup_iterations = (p.size() < 1 * 1000 * 1000) ? 10 : 1;
#endif
}
std::vector<double> res;
res.resize(iterations);
if (!just_data)
printf("number of iterations %u \n", iterations);
#if !defined(__linux__)
#define SQUASH_COUNTERS
if (just_data) {
printf("just_data (-t) flag only works under linux.\n");
}
#endif
{ // practice run
simdjson::ParsedJson pj;
bool allocok = pj.allocate_capacity(p.size());
if (allocok) {
simdjson::stage1_ptr((const uint8_t *)p.data(), p.size(), pj);
simdjson::unified_ptr((const uint8_t *)p.data(), p.size(), pj);
}
}
#ifndef SQUASH_COUNTERS
std::vector<int> evts;
evts.push_back(PERF_COUNT_HW_CPU_CYCLES);
evts.push_back(PERF_COUNT_HW_INSTRUCTIONS);
evts.push_back(PERF_COUNT_HW_BRANCH_MISSES);
evts.push_back(PERF_COUNT_HW_CACHE_REFERENCES);
evts.push_back(PERF_COUNT_HW_CACHE_MISSES);
LinuxEvents<PERF_TYPE_HARDWARE> unified(evts);
std::vector<unsigned long long> results;
results.resize(evts.size());
unsigned long cy0 = 0, cy1 = 0, cy2 = 0;
unsigned long cl0 = 0, cl1 = 0, cl2 = 0;
unsigned long mis0 = 0, mis1 = 0, mis2 = 0;
unsigned long cref0 = 0, cref1 = 0, cref2 = 0;
unsigned long cmis0 = 0, cmis1 = 0, cmis2 = 0;
#endif
// Do warmup iterations
bool isok = true;
for (int32_t i = 0; i < warmup_iterations; i++) {
if (verbose) {
std::cout << "[verbose] warmup iteration # " << i << std::endl;
}
simdjson::ParsedJson pj;
bool allocok = pj.allocate_capacity(p.size());
if (!allocok) {
std::cerr << "failed to allocate memory" << std::endl;
return EXIT_FAILURE;
}
isok = (simdjson::stage1_ptr((const uint8_t *)p.data(), p.size(), pj) ==
simdjson::SUCCESS);
isok = isok &&
(simdjson::SUCCESS ==
simdjson::unified_ptr((const uint8_t *)p.data(), p.size(), pj));
if (!isok) {
std::cerr << pj.get_error_message() << std::endl;
std::cerr << "Could not parse. " << std::endl;
return EXIT_FAILURE;
}
}
#ifndef SQUASH_COUNTERS
for (int32_t i = 0; i < iterations; i++) {
if (verbose) {
std::cout << "[verbose] iteration # " << i << std::endl;
}
unified.start();
simdjson::ParsedJson pj;
bool allocok = pj.allocate_capacity(p.size());
if (!allocok) {
std::cerr << "failed to allocate memory" << std::endl;
return EXIT_FAILURE;
}
unified.end(results);
cy0 += results[0];
cl0 += results[1];
mis0 += results[2];
cref0 += results[3];
cmis0 += results[4];
if (verbose) {
std::cout << "[verbose] allocated memory for parsed JSON " << std::endl;
}
unified.start();
isok = (simdjson::stage1_ptr((const uint8_t *)p.data(), p.size(), pj) ==
simdjson::SUCCESS);
unified.end(results);
cy1 += results[0];
cl1 += results[1];
mis1 += results[2];
cref1 += results[3];
cmis1 += results[4];
if (!isok) {
std::cout << "Failed during stage 1" << std::endl;
break;
}
unified.start();
isok = isok &&
(simdjson::SUCCESS ==
simdjson::unified_ptr((const uint8_t *)p.data(), p.size(), pj));
unified.end(results);
cy2 += results[0];
cl2 += results[1];
mis2 += results[2];
cref2 += results[3];
cmis2 += results[4];
if (!isok) {
std::cout << "Failed during stage 2" << std::endl;
break;
}
}
#endif
// we do it again, this time just measuring the elapsed time
for (int32_t i = 0; i < iterations; i++) {
if (verbose) {
std::cout << "[verbose] iteration # " << i << std::endl;
}
simdjson::ParsedJson pj;
bool allocok = pj.allocate_capacity(p.size());
if (!allocok) {
std::cerr << "failed to allocate memory" << std::endl;
return EXIT_FAILURE;
}
if (verbose) {
std::cout << "[verbose] allocated memory for parsed JSON " << std::endl;
}
auto start = std::chrono::steady_clock::now();
isok = (simdjson::stage1_ptr((const uint8_t *)p.data(), p.size(), pj) ==
simdjson::SUCCESS);
isok = isok &&
(simdjson::SUCCESS ==
simdjson::unified_ptr((const uint8_t *)p.data(), p.size(), pj));
auto end = std::chrono::steady_clock::now();
std::chrono::duration<double> secs = end - start;
res[i] = secs.count();
if (!isok) {
std::cerr << pj.get_error_message() << std::endl;
std::cerr << "Could not parse. " << std::endl;
return EXIT_FAILURE;
}
}
simdjson::ParsedJson pj =
build_parsed_json(p); // do the parsing again to get the stats
if (!pj.is_valid()) {
std::cerr << pj.get_error_message() << std::endl;
std::cerr << "Could not parse. " << std::endl;
return EXIT_FAILURE;
}
double min_result = *min_element(res.begin(), res.end());
double speedinGBs = (p.size()) / (min_result * 1000000000.0);
#ifndef SQUASH_COUNTERS
unsigned long total = cy0 + cy1 + cy2;
if (just_data) {
float cpb0 = (double)cy0 / (iterations * p.size());
float cpb1 = (double)cy1 / (iterations * p.size());
float cpb2 = (double)cy2 / (iterations * p.size());
float cpbtotal = (double)total / (iterations * p.size());
char *newfile = (char *)malloc(strlen(filename) + 1);
if (newfile == NULL) {
return EXIT_FAILURE;
}
::strcpy(newfile, filename);
char *snewfile = ::basename(newfile);
size_t nl = strlen(snewfile);
for (size_t j = nl - 1; j > 0; j--) {
if (snewfile[j] == '.') {
snewfile[j] = '\0';
break;
}
}
printf("\"%s\"\t%f\t%f\t%f\t%f\t%f\n", snewfile, cpb0, cpb1, cpb2, cpbtotal,
speedinGBs);
free(newfile);
} else {
printf("number of bytes %ld number of structural chars %u ratio %.3f\n",
p.size(), pj.n_structural_indexes,
(double)pj.n_structural_indexes / p.size());
printf("mem alloc instructions: %10lu cycles: %10lu (%.2f %%) ins/cycles: "
"%.2f mis. branches: %10lu (cycles/mis.branch %.2f) cache accesses: "
"%10lu (failure %10lu)\n",
cl0 / iterations, cy0 / iterations, 100. * cy0 / total,
(double)cl0 / cy0, mis0 / iterations, (double)cy0 / mis0,
cref1 / iterations, cmis0 / iterations);
printf(" mem alloc runs at %.2f cycles per input byte.\n",
(double)cy0 / (iterations * p.size()));
printf("stage 1 instructions: %10lu cycles: %10lu (%.2f %%) ins/cycles: "
"%.2f mis. branches: %10lu (cycles/mis.branch %.2f) cache accesses: "
"%10lu (failure %10lu)\n",
cl1 / iterations, cy1 / iterations, 100. * cy1 / total,
(double)cl1 / cy1, mis1 / iterations, (double)cy1 / mis1,
cref1 / iterations, cmis1 / iterations);
printf(" stage 1 runs at %.2f cycles per input byte.\n",
(double)cy1 / (iterations * p.size()));
printf("stage 2 instructions: %10lu cycles: %10lu (%.2f %%) ins/cycles: "
"%.2f mis. branches: %10lu (cycles/mis.branch %.2f) cache "
"accesses: %10lu (failure %10lu)\n",
cl2 / iterations, cy2 / iterations, 100. * cy2 / total,
(double)cl2 / cy2, mis2 / iterations, (double)cy2 / mis2,
cref2 / iterations, cmis2 / iterations);
printf(" stage 2 runs at %.2f cycles per input byte and ",
(double)cy2 / (iterations * p.size()));
printf("%.2f cycles per structural character.\n",
(double)cy2 / (iterations * pj.n_structural_indexes));
printf(" all stages: %.2f cycles per input byte.\n",
(double)total / (iterations * p.size()));
printf("Estimated average frequency: %.3f GHz.\n",
(double)total / (iterations * min_result * 1000000000.0));
}
#endif
if (!just_data) {
std::cout << "Min: " << min_result << " bytes read: " << p.size()
<< " Gigabytes/second: " << speedinGBs << std::endl;
}
if (json_output) {
isok = isok && pj.print_json(std::cout);
}
if (dump) {
isok = isok && pj.dump_raw_tape(std::cout);
}
if (!isok) {
fprintf(stderr, " Parsing failed. \n ");
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}