simdjson/benchmark/parse.cpp

291 lines
7.8 KiB
C++

#include "jsonparser/common_defs.h"
#include "double-conversion/double-conversion.h"
#include "linux-perf-events.h"
#include <algorithm>
#include <assert.h>
#include <chrono>
#include <cstring>
#include <dirent.h>
#include <fstream>
#include <inttypes.h>
#include <iomanip>
#include <iostream>
#include <map>
#include <set>
#include <sstream>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <string>
#include <unistd.h>
#include <vector>
#include <x86intrin.h>
//#define TEST_UNIFIED
/// Fixme: enable doube conv
// #define DOUBLECONV
#ifdef DOUBLECONV
#include "double-conversion/double-conversion.h"
#include "double-conversion/ieee.h"
using namespace double_conversion;
#endif
//#define DEBUG
#include "jsonparser/jsonioutil.h"
#include "jsonparser/simdjson_internal.h"
#include "jsonparser/stage1_find_marks.h"
#include "jsonparser/stage2_flatten.h"
#include "jsonparser/stage3_ape_machine.h"
#include "jsonparser/stage4_shovel_machine.h"
#include "jsonparser/stage34_unified.h"
using namespace std;
// https://stackoverflow.com/questions/2616906/how-do-i-output-coloured-text-to-a-linux-terminal
namespace Color {
enum Code {
FG_DEFAULT = 39,
FG_BLACK = 30,
FG_RED = 31,
FG_GREEN = 32,
FG_YELLOW = 33,
FG_BLUE = 34,
FG_MAGENTA = 35,
FG_CYAN = 36,
FG_LIGHT_GRAY = 37,
FG_DARK_GRAY = 90,
FG_LIGHT_RED = 91,
FG_LIGHT_GREEN = 92,
FG_LIGHT_YELLOW = 93,
FG_LIGHT_BLUE = 94,
FG_LIGHT_MAGENTA = 95,
FG_LIGHT_CYAN = 96,
FG_WHITE = 97,
BG_RED = 41,
BG_GREEN = 42,
BG_BLUE = 44,
BG_DEFAULT = 49
};
class Modifier {
Code code;
public:
Modifier(Code pCode) : code(pCode) {}
friend std::ostream &operator<<(std::ostream &os, const Modifier &mod) {
return os << "\033[" << mod.code << "m";
}
};
} // namespace Color
void colorfuldisplay(ParsedJson &pj, const u8 *buf) {
Color::Modifier greenfg(Color::FG_GREEN);
Color::Modifier yellowfg(Color::FG_YELLOW);
Color::Modifier deffg(Color::FG_DEFAULT);
size_t i = 0;
// skip initial fluff
while ((i + 1 < pj.n_structural_indexes) &&
(pj.structural_indexes[i] == pj.structural_indexes[i + 1])) {
i++;
}
for (; i < pj.n_structural_indexes; i++) {
u32 idx = pj.structural_indexes[i];
u8 c = buf[idx];
if (((c & 0xdf) == 0x5b)) { // meaning 7b or 5b, { or [
std::cout << greenfg << buf[idx] << deffg;
} else if (((c & 0xdf) == 0x5d)) { // meaning 7d or 5d, } or ]
std::cout << greenfg << buf[idx] << deffg;
} else {
std::cout << yellowfg << buf[idx] << deffg;
}
if (i + 1 < pj.n_structural_indexes) {
u32 nextidx = pj.structural_indexes[i + 1];
for (u32 pos = idx + 1; pos < nextidx; pos++) {
std::cout << buf[pos];
}
}
}
std::cout << std::endl;
}
int main(int argc, char *argv[]) {
if (argc != 2) {
cerr << "Usage: " << argv[0] << " <jsonfile>" << endl;
exit(1);
}
pair<u8 *, size_t> p = get_corpus(argv[1]);
ParsedJson *pj_ptr = new ParsedJson;
ParsedJson &pj(*pj_ptr);
if (posix_memalign((void **)&pj.structurals, 8,
ROUNDUP_N(p.second, 64) / 8)) {
cerr << "Could not allocate memory" << endl;
exit(1);
};
if (p.second > 0xffffff) {
cerr << "Currently only support JSON files < 16MB\n";
exit(1);
}
init_state_machine();
pj.n_structural_indexes = 0;
// we have potentially 1 structure per byte of input
// as well as a dummy structure and a root structure
// we also potentially write up to 7 iterations beyond
// in our 'cheesy flatten', so make some worst-case
// space for that too
u32 max_structures = ROUNDUP_N(p.second, 64) + 2 + 7;
pj.structural_indexes = new u32[max_structures];
#if defined(DEBUG)
const u32 iterations = 1;
#else
const u32 iterations = 1000;
#endif
vector<double> res;
res.resize(iterations);
#if !defined(__linux__)
#define SQUASH_COUNTERS
#endif
#ifndef SQUASH_COUNTERS
vector<int> evts;
evts.push_back(PERF_COUNT_HW_CPU_CYCLES);
evts.push_back(PERF_COUNT_HW_INSTRUCTIONS);
LinuxEvents<PERF_TYPE_HARDWARE> unified(evts);
vector<u64> results;
results.resize(evts.size());
unsigned long cy1 = 0, cy2 = 0, cy3 = 0, cy4 = 0;
unsigned long cl1 = 0, cl2 = 0, cl3 = 0, cl4 = 0;
#endif
bool isok = true;
for (u32 i = 0; i < iterations; i++) {
auto start = std::chrono::steady_clock::now();
#ifndef SQUASH_COUNTERS
unified.start();
#endif
isok = find_structural_bits(p.first, p.second, pj);
#ifndef SQUASH_COUNTERS
unified.end(results);
cy1 += results[0];
cl1 += results[1];
if (!isok) {
cout << "Failed out during stage 1\n";
break;
}
unified.start();
#endif
isok = flatten_indexes(p.second, pj);
#ifndef SQUASH_COUNTERS
unified.end(results);
cy2 += results[0];
cl2 += results[1];
if (!isok) {
cout << "Failed out during stage 2\n";
break;
}
unified.start();
#endif
#ifndef TEST_UNIFIED
isok = ape_machine(p.first, p.second, pj);
#ifndef SQUASH_COUNTERS
unified.end(results);
cy3 += results[0];
cl3 += results[1];
if (!isok) {
cout << "Failed out during stage 3\n";
break;
}
unified.start();
#endif
isok = shovel_machine(p.first, p.second, pj);
#ifndef SQUASH_COUNTERS
unified.end(results);
cy4 += results[0];
cl4 += results[1];
#endif
if (!isok) {
cout << "Failed out during stage 4\n";
break;
}
#else
isok = unified_machine(p.first, p.second, pj);
#ifndef SQUASH_COUNTERS
unified.end(results);
cy3 += results[0];
cl3 += results[1];
if (!isok) {
cout << "Failed out during stage 34\n";
break;
}
#endif
#endif
auto end = std::chrono::steady_clock::now();
std::chrono::duration<double> secs = end - start;
res[i] = secs.count();
}
#ifndef SQUASH_COUNTERS
printf("number of bytes %ld number of structural chars %d ratio %.3f\n",
p.second, pj.n_structural_indexes,
(double)pj.n_structural_indexes / p.second);
unsigned long total = cy1 + cy2 + cy3 + cy4;
printf(
"stage 1 instructions: %10lu cycles: %10lu (%.2f %%) ins/cycles: %.2f \n",
cl1, cy1, 100. * cy1 / total, (double)cl1 / cy1);
printf(" stage 1 runs at %.2f cycles per input byte.\n",
(double)cy1 / (iterations * p.second));
printf(
"stage 2 instructions: %10lu cycles: %10lu (%.2f %%) ins/cycles: %.2f \n",
cl2, cy2, 100. * cy2 / total, (double)cl2 / cy2);
printf(" stage 2 runs at %.2f cycles per input byte and ",
(double)cy2 / (iterations * p.second));
printf("%.2f cycles per structural character.\n",
(double)cy2 / (iterations * pj.n_structural_indexes));
printf(
"stage 3 instructions: %10lu cycles: %10lu (%.2f %%) ins/cycles: %.2f \n",
cl3, cy3, 100. * cy3 / total, (double)cl3 / cy3);
printf(" stage 3 runs at %.2f cycles per input byte and ",
(double)cy3 / (iterations * p.second));
printf("%.2f cycles per structural character.\n",
(double)cy3 / (iterations * pj.n_structural_indexes));
printf(
"stage 4 instructions: %10lu cycles: %10lu (%.2f %%) ins/cycles: %.2f \n",
cl4, cy4, 100. * cy4 / total, (double)cl4 / cy4);
printf(" stage 4 runs at %.2f cycles per input byte and ",
(double)cy4 / (iterations * p.second));
printf("%.2f cycles per structural character.\n",
(double)cy4 / (iterations * pj.n_structural_indexes));
printf(" all stages: %.2f cycles per input byte.\n",
(double)total / (iterations * p.second));
#endif
// colorfuldisplay(pj, p.first);
double min_result = *min_element(res.begin(), res.end());
cout << "Min: " << min_result << " bytes read: " << p.second
<< " Gigabytes/second: " << (p.second) / (min_result * 1000000000.0)
<< "\n";
free(pj.structurals);
free(p.first);
delete[] pj.structural_indexes;
delete pj_ptr;
if (!isok) {
printf(" Parsing failed. \n ");
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}