14 KiB
The Basics
An overview of what you need to know to use simdjson, with examples.
- Including simdjson
- The Basics: Loading and Parsing JSON Documents
- Using the Parsed JSON
- JSON Pointer
- Error Handling
- Tree Walking and JSON Element Types
- Newline-Delimited JSON (ndjson) and JSON lines
- Thread Safety
Including simdjson
To include simdjson, copy simdjson.h and simdjson.cpp into your project. Then include it in your project with:
#include "simdjson.h"
using namespace simdjson; // optional
You can compile with:
c++ myproject.cpp simdjson.cpp
The Basics: Loading and Parsing JSON Documents
The simdjson library offers a simple DOM tree API, which you can access by creating a
dom::parser
and calling the load()
method:
dom::parser parser;
dom::element doc = parser.load(filename); // load and parse a file
Or by creating a padded string (for efficiency reasons, simdjson requires a string with
SIMDJSON_PADDING bytes at the end) and calling parse()
:
dom::parser parser;
dom::element doc = parser.parse("[1,2,3]"_padded); // parse a string
Note: The parsed document resulting from the parser.load
and parser.parse
calls depends on the parser
instance. Thus the parser
instance must remain in scope. Furthermore, you must have at most one parsed document in play per parser
instance. Calling parse
or load
a second time invalidates the previous parsed document. If you need access simultaneously to several parsed documents, you need to have several parser
instances.
Using the Parsed JSON
Once you have an element, you can navigate it with idiomatic C++ iterators, operators and casts.
- Extracting Values: You can cast a JSON element to a native type:
double(element)
ordouble x = json_element
. This works for double, uint64_t, int64_t, bool, dom::object and dom::array. An exception is thrown if the cast is not possible. You can also use is<typename>() to test if it is a given type, or use thetype()
method: e.g.,element.type() == dom::element_type::DOUBLE
. Instead of casting, you can use get<typename>() to get the value: casts and get<typename>() can be used interchangeably. You can use a variant usage of get<typename>() with error codes to avoid exceptions: e.g.,simdjson::error_code error; double value; // variable where we store the value to be parsed simdjson::padded_string numberstring = "1.2"_padded; // our JSON input ("1.2") simdjson::dom::parser parser; parser.parse(numberstring).get<double>().tie(value,error); if (error) { std::cerr << error << std::endl; return EXIT_FAILURE; } std::cout << "I parsed " << value << " from " << numberstring.data() << std::endl;
- Field Access: To get the value of the "foo" field in an object, use
object["foo"]
. - Array Iteration: To iterate through an array, use
for (auto value : array) { ... }
. If you know the type of the value, you can cast it right there, too!for (double value : array) { ... }
- Object Iteration: You can iterate through an object's fields, too:
for (auto [key, value] : object)
- Array Index: To get at an array value by index, use the at() method:
array.at(0)
gets the first element.Note that array[0] does not compile, because implementing [] gives the impression indexing is a O(1) operation, which it is not presently in simdjson.
- Checking an Element Type: You can check an element's type with
element.type()
. It returns anelement_type
. - Array and Object size Given an array or an object, you can get its size (number of elements or keys)
with the
size()
method.
Here are some examples of all of the above:
auto cars_json = R"( [
{ "make": "Toyota", "model": "Camry", "year": 2018, "tire_pressure": [ 40.1, 39.9, 37.7, 40.4 ] },
{ "make": "Kia", "model": "Soul", "year": 2012, "tire_pressure": [ 30.1, 31.0, 28.6, 28.7 ] },
{ "make": "Toyota", "model": "Tercel", "year": 1999, "tire_pressure": [ 29.8, 30.0, 30.2, 30.5 ] }
] )"_padded;
dom::parser parser;
// Iterating through an array of objects
for (dom::object car : parser.parse(cars_json)) {
// Accessing a field by name
cout << "Make/Model: " << car["make"] << "/" << car["model"] << endl;
// Casting a JSON element to an integer
uint64_t year = car["year"];
cout << "- This car is " << 2020 - year << "years old." << endl;
// Iterating through an array of floats
double total_tire_pressure = 0;
for (double tire_pressure : car["tire_pressure"]) {
total_tire_pressure += tire_pressure;
}
cout << "- Average tire pressure: " << (total_tire_pressure / 4) << endl;
// Writing out all the information about the car
for (auto field : car) {
cout << "- " << field.key << ": " << field.value << endl;
}
}
C++17 Support
While the simdjson library can be used in any project using C++ 11 and above, it has special support for C++ 17. The APIs for field iteration and error handling in particular are designed to work nicely with C++17's destructuring syntax. For example:
dom::parser parser;
padded_string json = R"( { "foo": 1, "bar": 2 } )"_padded;
auto [object, error] = parser.parse(json).get<dom::object>();
if (error) { cerr << error << endl; return; }
for (auto [key, value] : object) {
cout << key << " = " << value << endl;
}
For comparison, here is the C++ 11 version of the same code:
// C++ 11 version for comparison
dom::parser parser;
padded_string json = R"( { "foo": 1, "bar": 2 } )"_padded;
dom::object object;
simdjson::error_code error;
parser.parse(json).get<dom::object>().tie(object, error);
for (dom::key_value_pair field : object) {
cout << field.key << " = " << field.value << endl;
}
JSON Pointer
The simdjson library also supports JSON pointer through the at() method, letting you reach further down into the document in a single call:
auto cars_json = R"( [
{ "make": "Toyota", "model": "Camry", "year": 2018, "tire_pressure": [ 40.1, 39.9, 37.7, 40.4 ] },
{ "make": "Kia", "model": "Soul", "year": 2012, "tire_pressure": [ 30.1, 31.0, 28.6, 28.7 ] },
{ "make": "Toyota", "model": "Tercel", "year": 1999, "tire_pressure": [ 29.8, 30.0, 30.2, 30.5 ] }
] )"_padded;
dom::parser parser;
dom::element cars = parser.parse(cars_json);
cout << cars.at("0/tire_pressure/1") << endl; // Prints 39.9
Error Handling
All simdjson APIs that can fail return simdjson_result<T>
, which is a <value, error_code>
pair. The error codes and values can be accessed directly, reading the error like so:
auto [doc, error] = parser.parse(json); // doc is a dom::element
if (error) { cerr << error << endl; exit(1); }
// Use document here now that we've checked for the error
When you use the code this way, it is your responsibility to check for error before using the result: if there is an error, the result value will not be valid and using it will caused undefined behavior.
Note: because of the way
auto [x, y]
works in C++, you have to define new variables each time you use it. If your project treats aliased, this means you can't use the same names inauto [x, error]
without triggering warnings or error (and particularly can't use the word "error" every time). To circumvent this, you can use this instead:dom::element doc; simdjson::error_code error; parser.parse(json).tie(doc, error); // <-- Assigns to doc and error just like "auto [doc, error]"
We can write a "quick start" example where we attempt to parse a file and access some data, without triggering exceptions:
#include "simdjson.h"
int main(void) {
simdjson::dom::parser parser;
simdjson::dom::element tweets;
simdjson::error_code error;
parser.load("twitter.json").tie(tweets,error);
if (error) { std::cerr << error << std::endl; return EXIT_FAILURE; }
simdjson::dom::element res;
tweets["search_metadata"]["count"].tie(res,error);
if(error) {
std::cerr << "could not access keys" << std::endl;
return EXIT_FAILURE;
}
std::cout << res << " results." << std::endl;
}
Error Handling Example
This is how the example in "Using the Parsed JSON" could be written using only error code checking:
auto cars_json = R"( [
{ "make": "Toyota", "model": "Camry", "year": 2018, "tire_pressure": [ 40.1, 39.9, 37.7, 40.4 ] },
{ "make": "Kia", "model": "Soul", "year": 2012, "tire_pressure": [ 30.1, 31.0, 28.6, 28.7 ] },
{ "make": "Toyota", "model": "Tercel", "year": 1999, "tire_pressure": [ 29.8, 30.0, 30.2, 30.5 ] }
] )"_padded;
dom::parser parser;
dom::array cars;
simdjson::error_code error;
parser.parse(cars_json).get<dom::array>().tie(cars, error);
if (error) { cerr << error << endl; exit(1); }
// Iterating through an array of objects
for (dom::element car_element : cars) {
dom::object car;
car_element.get<dom::object>().tie(car, error);
if (error) { cerr << error << endl; exit(1); }
// Accessing a field by name
dom::element make, model;
car["make"].tie(make, error);
if (error) { cerr << error << endl; exit(1); }
car["model"].tie(model, error);
if (error) { cerr << error << endl; exit(1); }
cout << "Make/Model: " << make << "/" << model << endl;
// Casting a JSON element to an integer
uint64_t year;
car["year"].get<uint64_t>().tie(year, error);
if (error) { cerr << error << endl; exit(1); }
cout << "- This car is " << 2020 - year << "years old." << endl;
// Iterating through an array of floats
double total_tire_pressure = 0;
dom::array tire_pressure_array;
car["tire_pressure"].get<dom::array>().tie(tire_pressure_array, error);
if (error) { cerr << error << endl; exit(1); }
for (dom::element tire_pressure_element : tire_pressure_array) {
double tire_pressure;
tire_pressure_element.get<double>().tie(tire_pressure, error);
if (error) { cerr << error << endl; exit(1); }
total_tire_pressure += tire_pressure;
}
cout << "- Average tire pressure: " << (total_tire_pressure / 4) << endl;
// Writing out all the information about the car
for (auto field : car) {
cout << "- " << field.key << ": " << field.value << endl;
}
Exceptions
Users more comfortable with an exception flow may choose to directly cast the simdjson_result<T>
to the desired type:
dom::element doc = parser.parse(json); // Throws an exception if there was an error!
When used this way, a simdjson_error
exception will be thrown if an error occurs, preventing the
program from continuing if there was an error.
Tree Walking and JSON Element Types
Sometimes you don't necessarily have a document with a known type, and are trying to generically inspect or walk over JSON elements. To do that, you can use iterators and the type() method. For example, here's a quick and dirty recursive function that verbosely prints the JSON document as JSON (* ignoring nuances like trailing commas and escaping strings, for brevity's sake):
void print_json(dom::element element) {
switch (element.type()) {
case dom::element_type::ARRAY:
cout << "[";
for (dom::element child : dom::array(element)) {
print_json(child);
cout << ",";
}
cout << "]";
break;
case dom::element_type::OBJECT:
cout << "{";
for (dom::key_value_pair field : dom::object(element)) {
cout << "\"" << field.key << "\": ";
print_json(field.value);
}
cout << "}";
break;
case dom::element_type::INT64:
cout << int64_t(element) << endl;
break;
case dom::element_type::UINT64:
cout << uint64_t(element) << endl;
break;
case dom::element_type::DOUBLE:
cout << double(element) << endl;
break;
case dom::element_type::STRING:
cout << std::string_view(element) << endl;
break;
case dom::element_type::BOOL:
cout << bool(element) << endl;
break;
case dom::element_type::NULL_VALUE:
cout << "null" << endl;
break;
}
}
void basics_treewalk_1() {
dom::parser parser;
print_json(parser.load("twitter.json"));
}
Newline-Delimited JSON (ndjson) and JSON lines
The simdjson library also support multithreaded JSON streaming through a large file containing many smaller JSON documents in either ndjson or JSON lines format. If your JSON documents all contain arrays or objects, we even support direct file concatenation without whitespace. The concatenated file has no size restrictions (including larger than 4GB), though each individual document must be less than 4GB.
Here is a simple example, given "x.json" with this content:
{ "foo": 1 }
{ "foo": 2 }
{ "foo": 3 }
dom::parser parser;
for (dom::element doc : parser.load_many(filename)) {
cout << doc["foo"] << endl;
}
// Prints 1 2 3
In-memory ndjson strings can be parsed as well, with parser.parse_many(string)
.
See parse_many.md for detailed information and design.
Thread Safety
We built simdjson with thread safety in mind.
The simdjson library is single-threaded except for parse_many
which may use secondary threads under its control when the library is compiled with thread support.
We recommend using one dom::parser
object per thread in which case the library is thread-safe.
It is unsafe to reuse a dom::parser
object between different threads.
The parsed results (dom::document
, dom::element
, array
, object
) depend on the dom::parser
, etc. therefore it is also potentially unsafe to use the result of the parsing between different threads.
The CPU detection, which runs the first time parsing is attempted and switches to the fastest parser for your CPU, is transparent and thread-safe.