14127 lines
540 KiB
C++
14127 lines
540 KiB
C++
/* auto-generated on Tue Jun 23 09:15:19 PDT 2020. Do not edit! */
|
|
/* begin file src/simdjson.cpp */
|
|
#include "simdjson.h"
|
|
|
|
SIMDJSON_PUSH_DISABLE_WARNINGS
|
|
SIMDJSON_DISABLE_UNDESIRED_WARNINGS
|
|
|
|
/* begin file src/error.cpp */
|
|
|
|
namespace simdjson {
|
|
namespace internal {
|
|
|
|
SIMDJSON_DLLIMPORTEXPORT const error_code_info error_codes[] {
|
|
{ SUCCESS, "No error" },
|
|
{ CAPACITY, "This parser can't support a document that big" },
|
|
{ MEMALLOC, "Error allocating memory, we're most likely out of memory" },
|
|
{ TAPE_ERROR, "The JSON document has an improper structure: missing or superfluous commas, braces, missing keys, etc." },
|
|
{ DEPTH_ERROR, "The JSON document was too deep (too many nested objects and arrays)" },
|
|
{ STRING_ERROR, "Problem while parsing a string" },
|
|
{ T_ATOM_ERROR, "Problem while parsing an atom starting with the letter 't'" },
|
|
{ F_ATOM_ERROR, "Problem while parsing an atom starting with the letter 'f'" },
|
|
{ N_ATOM_ERROR, "Problem while parsing an atom starting with the letter 'n'" },
|
|
{ NUMBER_ERROR, "Problem while parsing a number" },
|
|
{ UTF8_ERROR, "The input is not valid UTF-8" },
|
|
{ UNINITIALIZED, "Uninitialized" },
|
|
{ EMPTY, "Empty: no JSON found" },
|
|
{ UNESCAPED_CHARS, "Within strings, some characters must be escaped, we found unescaped characters" },
|
|
{ UNCLOSED_STRING, "A string is opened, but never closed." },
|
|
{ UNSUPPORTED_ARCHITECTURE, "simdjson does not have an implementation supported by this CPU architecture (perhaps it's a non-SIMD CPU?)." },
|
|
{ INCORRECT_TYPE, "The JSON element does not have the requested type." },
|
|
{ NUMBER_OUT_OF_RANGE, "The JSON number is too large or too small to fit within the requested type." },
|
|
{ INDEX_OUT_OF_BOUNDS, "Attempted to access an element of a JSON array that is beyond its length." },
|
|
{ NO_SUCH_FIELD, "The JSON field referenced does not exist in this object." },
|
|
{ IO_ERROR, "Error reading the file." },
|
|
{ INVALID_JSON_POINTER, "Invalid JSON pointer syntax." },
|
|
{ INVALID_URI_FRAGMENT, "Invalid URI fragment syntax." },
|
|
{ UNEXPECTED_ERROR, "Unexpected error, consider reporting this problem as you may have found a bug in simdjson" }
|
|
}; // error_messages[]
|
|
|
|
} // namespace internal
|
|
} // namespace simdjson
|
|
/* end file src/error.cpp */
|
|
/* begin file src/implementation.cpp */
|
|
/* begin file src/isadetection.h */
|
|
/* From
|
|
https://github.com/endorno/pytorch/blob/master/torch/lib/TH/generic/simd/simd.h
|
|
Highly modified.
|
|
|
|
Copyright (c) 2016- Facebook, Inc (Adam Paszke)
|
|
Copyright (c) 2014- Facebook, Inc (Soumith Chintala)
|
|
Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
|
|
Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
|
|
Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
|
|
Copyright (c) 2011-2013 NYU (Clement Farabet)
|
|
Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou,
|
|
Iain Melvin, Jason Weston) Copyright (c) 2006 Idiap Research Institute
|
|
(Samy Bengio) Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert,
|
|
Samy Bengio, Johnny Mariethoz)
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories
|
|
America and IDIAP Research Institute nor the names of its contributors may be
|
|
used to endorse or promote products derived from this software without
|
|
specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef SIMDJSON_ISADETECTION_H
|
|
#define SIMDJSON_ISADETECTION_H
|
|
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#if defined(_MSC_VER)
|
|
#include <intrin.h>
|
|
#elif defined(HAVE_GCC_GET_CPUID) && defined(USE_GCC_GET_CPUID)
|
|
#include <cpuid.h>
|
|
#endif
|
|
|
|
namespace simdjson {
|
|
|
|
|
|
enum instruction_set {
|
|
DEFAULT = 0x0,
|
|
NEON = 0x1,
|
|
AVX2 = 0x4,
|
|
SSE42 = 0x8,
|
|
PCLMULQDQ = 0x10,
|
|
BMI1 = 0x20,
|
|
BMI2 = 0x40
|
|
};
|
|
|
|
#if defined(__arm__) || defined(__aarch64__) // incl. armel, armhf, arm64
|
|
|
|
#if defined(__ARM_NEON)
|
|
|
|
static inline uint32_t detect_supported_architectures() {
|
|
return instruction_set::NEON;
|
|
}
|
|
|
|
#else // ARM without NEON
|
|
|
|
static inline uint32_t detect_supported_architectures() {
|
|
return instruction_set::DEFAULT;
|
|
}
|
|
|
|
#endif
|
|
|
|
#elif defined(__x86_64__) || defined(_M_AMD64) // x64
|
|
|
|
|
|
namespace {
|
|
// Can be found on Intel ISA Reference for CPUID
|
|
constexpr uint32_t cpuid_avx2_bit = 1 << 5; ///< @private Bit 5 of EBX for EAX=0x7
|
|
constexpr uint32_t cpuid_bmi1_bit = 1 << 3; ///< @private bit 3 of EBX for EAX=0x7
|
|
constexpr uint32_t cpuid_bmi2_bit = 1 << 8; ///< @private bit 8 of EBX for EAX=0x7
|
|
constexpr uint32_t cpuid_sse42_bit = 1 << 20; ///< @private bit 20 of ECX for EAX=0x1
|
|
constexpr uint32_t cpuid_pclmulqdq_bit = 1 << 1; ///< @private bit 1 of ECX for EAX=0x1
|
|
}
|
|
|
|
|
|
|
|
static inline void cpuid(uint32_t *eax, uint32_t *ebx, uint32_t *ecx,
|
|
uint32_t *edx) {
|
|
#if defined(_MSC_VER)
|
|
int cpu_info[4];
|
|
__cpuid(cpu_info, *eax);
|
|
*eax = cpu_info[0];
|
|
*ebx = cpu_info[1];
|
|
*ecx = cpu_info[2];
|
|
*edx = cpu_info[3];
|
|
#elif defined(HAVE_GCC_GET_CPUID) && defined(USE_GCC_GET_CPUID)
|
|
uint32_t level = *eax;
|
|
__get_cpuid(level, eax, ebx, ecx, edx);
|
|
#else
|
|
uint32_t a = *eax, b, c = *ecx, d;
|
|
asm volatile("cpuid\n\t" : "+a"(a), "=b"(b), "+c"(c), "=d"(d));
|
|
*eax = a;
|
|
*ebx = b;
|
|
*ecx = c;
|
|
*edx = d;
|
|
#endif
|
|
}
|
|
|
|
static inline uint32_t detect_supported_architectures() {
|
|
uint32_t eax, ebx, ecx, edx;
|
|
uint32_t host_isa = 0x0;
|
|
|
|
// ECX for EAX=0x7
|
|
eax = 0x7;
|
|
ecx = 0x0;
|
|
cpuid(&eax, &ebx, &ecx, &edx);
|
|
if (ebx & cpuid_avx2_bit) {
|
|
host_isa |= instruction_set::AVX2;
|
|
}
|
|
if (ebx & cpuid_bmi1_bit) {
|
|
host_isa |= instruction_set::BMI1;
|
|
}
|
|
|
|
if (ebx & cpuid_bmi2_bit) {
|
|
host_isa |= instruction_set::BMI2;
|
|
}
|
|
|
|
// EBX for EAX=0x1
|
|
eax = 0x1;
|
|
cpuid(&eax, &ebx, &ecx, &edx);
|
|
|
|
if (ecx & cpuid_sse42_bit) {
|
|
host_isa |= instruction_set::SSE42;
|
|
}
|
|
|
|
if (ecx & cpuid_pclmulqdq_bit) {
|
|
host_isa |= instruction_set::PCLMULQDQ;
|
|
}
|
|
|
|
return host_isa;
|
|
}
|
|
#else // fallback
|
|
|
|
|
|
static inline uint32_t detect_supported_architectures() {
|
|
return instruction_set::DEFAULT;
|
|
}
|
|
|
|
|
|
#endif // end SIMD extension detection code
|
|
|
|
} // namespace simdjson
|
|
|
|
#endif // SIMDJSON_ISADETECTION_H
|
|
/* end file src/isadetection.h */
|
|
/* begin file src/simdprune_tables.h */
|
|
#ifndef SIMDJSON_SIMDPRUNE_TABLES_H
|
|
#define SIMDJSON_SIMDPRUNE_TABLES_H
|
|
#include <cstdint>
|
|
|
|
namespace simdjson { // table modified and copied from
|
|
// http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetTable
|
|
static const unsigned char BitsSetTable256mul2[256] = {
|
|
0, 2, 2, 4, 2, 4, 4, 6, 2, 4, 4, 6, 4, 6, 6, 8, 2, 4, 4,
|
|
6, 4, 6, 6, 8, 4, 6, 6, 8, 6, 8, 8, 10, 2, 4, 4, 6, 4, 6,
|
|
6, 8, 4, 6, 6, 8, 6, 8, 8, 10, 4, 6, 6, 8, 6, 8, 8, 10, 6,
|
|
8, 8, 10, 8, 10, 10, 12, 2, 4, 4, 6, 4, 6, 6, 8, 4, 6, 6, 8,
|
|
6, 8, 8, 10, 4, 6, 6, 8, 6, 8, 8, 10, 6, 8, 8, 10, 8, 10, 10,
|
|
12, 4, 6, 6, 8, 6, 8, 8, 10, 6, 8, 8, 10, 8, 10, 10, 12, 6, 8,
|
|
8, 10, 8, 10, 10, 12, 8, 10, 10, 12, 10, 12, 12, 14, 2, 4, 4, 6, 4,
|
|
6, 6, 8, 4, 6, 6, 8, 6, 8, 8, 10, 4, 6, 6, 8, 6, 8, 8, 10,
|
|
6, 8, 8, 10, 8, 10, 10, 12, 4, 6, 6, 8, 6, 8, 8, 10, 6, 8, 8,
|
|
10, 8, 10, 10, 12, 6, 8, 8, 10, 8, 10, 10, 12, 8, 10, 10, 12, 10, 12,
|
|
12, 14, 4, 6, 6, 8, 6, 8, 8, 10, 6, 8, 8, 10, 8, 10, 10, 12, 6,
|
|
8, 8, 10, 8, 10, 10, 12, 8, 10, 10, 12, 10, 12, 12, 14, 6, 8, 8, 10,
|
|
8, 10, 10, 12, 8, 10, 10, 12, 10, 12, 12, 14, 8, 10, 10, 12, 10, 12, 12,
|
|
14, 10, 12, 12, 14, 12, 14, 14, 16};
|
|
|
|
static const uint8_t pshufb_combine_table[272] = {
|
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
|
|
0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x08,
|
|
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x80, 0x00, 0x01, 0x02, 0x03,
|
|
0x04, 0x05, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x80, 0x80,
|
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,
|
|
0x0f, 0x80, 0x80, 0x80, 0x00, 0x01, 0x02, 0x03, 0x08, 0x09, 0x0a, 0x0b,
|
|
0x0c, 0x0d, 0x0e, 0x0f, 0x80, 0x80, 0x80, 0x80, 0x00, 0x01, 0x02, 0x08,
|
|
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x80, 0x80, 0x80, 0x80, 0x80,
|
|
0x00, 0x01, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x80, 0x80,
|
|
0x80, 0x80, 0x80, 0x80, 0x00, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,
|
|
0x0f, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x08, 0x09, 0x0a, 0x0b,
|
|
0x0c, 0x0d, 0x0e, 0x0f, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
|
};
|
|
|
|
// 256 * 8 bytes = 2kB, easily fits in cache.
|
|
static const uint64_t thintable_epi8[256] = {
|
|
0x0706050403020100, 0x0007060504030201, 0x0007060504030200,
|
|
0x0000070605040302, 0x0007060504030100, 0x0000070605040301,
|
|
0x0000070605040300, 0x0000000706050403, 0x0007060504020100,
|
|
0x0000070605040201, 0x0000070605040200, 0x0000000706050402,
|
|
0x0000070605040100, 0x0000000706050401, 0x0000000706050400,
|
|
0x0000000007060504, 0x0007060503020100, 0x0000070605030201,
|
|
0x0000070605030200, 0x0000000706050302, 0x0000070605030100,
|
|
0x0000000706050301, 0x0000000706050300, 0x0000000007060503,
|
|
0x0000070605020100, 0x0000000706050201, 0x0000000706050200,
|
|
0x0000000007060502, 0x0000000706050100, 0x0000000007060501,
|
|
0x0000000007060500, 0x0000000000070605, 0x0007060403020100,
|
|
0x0000070604030201, 0x0000070604030200, 0x0000000706040302,
|
|
0x0000070604030100, 0x0000000706040301, 0x0000000706040300,
|
|
0x0000000007060403, 0x0000070604020100, 0x0000000706040201,
|
|
0x0000000706040200, 0x0000000007060402, 0x0000000706040100,
|
|
0x0000000007060401, 0x0000000007060400, 0x0000000000070604,
|
|
0x0000070603020100, 0x0000000706030201, 0x0000000706030200,
|
|
0x0000000007060302, 0x0000000706030100, 0x0000000007060301,
|
|
0x0000000007060300, 0x0000000000070603, 0x0000000706020100,
|
|
0x0000000007060201, 0x0000000007060200, 0x0000000000070602,
|
|
0x0000000007060100, 0x0000000000070601, 0x0000000000070600,
|
|
0x0000000000000706, 0x0007050403020100, 0x0000070504030201,
|
|
0x0000070504030200, 0x0000000705040302, 0x0000070504030100,
|
|
0x0000000705040301, 0x0000000705040300, 0x0000000007050403,
|
|
0x0000070504020100, 0x0000000705040201, 0x0000000705040200,
|
|
0x0000000007050402, 0x0000000705040100, 0x0000000007050401,
|
|
0x0000000007050400, 0x0000000000070504, 0x0000070503020100,
|
|
0x0000000705030201, 0x0000000705030200, 0x0000000007050302,
|
|
0x0000000705030100, 0x0000000007050301, 0x0000000007050300,
|
|
0x0000000000070503, 0x0000000705020100, 0x0000000007050201,
|
|
0x0000000007050200, 0x0000000000070502, 0x0000000007050100,
|
|
0x0000000000070501, 0x0000000000070500, 0x0000000000000705,
|
|
0x0000070403020100, 0x0000000704030201, 0x0000000704030200,
|
|
0x0000000007040302, 0x0000000704030100, 0x0000000007040301,
|
|
0x0000000007040300, 0x0000000000070403, 0x0000000704020100,
|
|
0x0000000007040201, 0x0000000007040200, 0x0000000000070402,
|
|
0x0000000007040100, 0x0000000000070401, 0x0000000000070400,
|
|
0x0000000000000704, 0x0000000703020100, 0x0000000007030201,
|
|
0x0000000007030200, 0x0000000000070302, 0x0000000007030100,
|
|
0x0000000000070301, 0x0000000000070300, 0x0000000000000703,
|
|
0x0000000007020100, 0x0000000000070201, 0x0000000000070200,
|
|
0x0000000000000702, 0x0000000000070100, 0x0000000000000701,
|
|
0x0000000000000700, 0x0000000000000007, 0x0006050403020100,
|
|
0x0000060504030201, 0x0000060504030200, 0x0000000605040302,
|
|
0x0000060504030100, 0x0000000605040301, 0x0000000605040300,
|
|
0x0000000006050403, 0x0000060504020100, 0x0000000605040201,
|
|
0x0000000605040200, 0x0000000006050402, 0x0000000605040100,
|
|
0x0000000006050401, 0x0000000006050400, 0x0000000000060504,
|
|
0x0000060503020100, 0x0000000605030201, 0x0000000605030200,
|
|
0x0000000006050302, 0x0000000605030100, 0x0000000006050301,
|
|
0x0000000006050300, 0x0000000000060503, 0x0000000605020100,
|
|
0x0000000006050201, 0x0000000006050200, 0x0000000000060502,
|
|
0x0000000006050100, 0x0000000000060501, 0x0000000000060500,
|
|
0x0000000000000605, 0x0000060403020100, 0x0000000604030201,
|
|
0x0000000604030200, 0x0000000006040302, 0x0000000604030100,
|
|
0x0000000006040301, 0x0000000006040300, 0x0000000000060403,
|
|
0x0000000604020100, 0x0000000006040201, 0x0000000006040200,
|
|
0x0000000000060402, 0x0000000006040100, 0x0000000000060401,
|
|
0x0000000000060400, 0x0000000000000604, 0x0000000603020100,
|
|
0x0000000006030201, 0x0000000006030200, 0x0000000000060302,
|
|
0x0000000006030100, 0x0000000000060301, 0x0000000000060300,
|
|
0x0000000000000603, 0x0000000006020100, 0x0000000000060201,
|
|
0x0000000000060200, 0x0000000000000602, 0x0000000000060100,
|
|
0x0000000000000601, 0x0000000000000600, 0x0000000000000006,
|
|
0x0000050403020100, 0x0000000504030201, 0x0000000504030200,
|
|
0x0000000005040302, 0x0000000504030100, 0x0000000005040301,
|
|
0x0000000005040300, 0x0000000000050403, 0x0000000504020100,
|
|
0x0000000005040201, 0x0000000005040200, 0x0000000000050402,
|
|
0x0000000005040100, 0x0000000000050401, 0x0000000000050400,
|
|
0x0000000000000504, 0x0000000503020100, 0x0000000005030201,
|
|
0x0000000005030200, 0x0000000000050302, 0x0000000005030100,
|
|
0x0000000000050301, 0x0000000000050300, 0x0000000000000503,
|
|
0x0000000005020100, 0x0000000000050201, 0x0000000000050200,
|
|
0x0000000000000502, 0x0000000000050100, 0x0000000000000501,
|
|
0x0000000000000500, 0x0000000000000005, 0x0000000403020100,
|
|
0x0000000004030201, 0x0000000004030200, 0x0000000000040302,
|
|
0x0000000004030100, 0x0000000000040301, 0x0000000000040300,
|
|
0x0000000000000403, 0x0000000004020100, 0x0000000000040201,
|
|
0x0000000000040200, 0x0000000000000402, 0x0000000000040100,
|
|
0x0000000000000401, 0x0000000000000400, 0x0000000000000004,
|
|
0x0000000003020100, 0x0000000000030201, 0x0000000000030200,
|
|
0x0000000000000302, 0x0000000000030100, 0x0000000000000301,
|
|
0x0000000000000300, 0x0000000000000003, 0x0000000000020100,
|
|
0x0000000000000201, 0x0000000000000200, 0x0000000000000002,
|
|
0x0000000000000100, 0x0000000000000001, 0x0000000000000000,
|
|
0x0000000000000000,
|
|
}; //static uint64_t thintable_epi8[256]
|
|
|
|
} // namespace simdjson
|
|
|
|
#endif // SIMDJSON_SIMDPRUNE_TABLES_H
|
|
/* end file src/simdprune_tables.h */
|
|
|
|
#include <initializer_list>
|
|
|
|
// Static array of known implementations. We're hoping these get baked into the executable
|
|
// without requiring a static initializer.
|
|
|
|
#if SIMDJSON_IMPLEMENTATION_HASWELL
|
|
/* begin file src/haswell/implementation.h */
|
|
#ifndef SIMDJSON_HASWELL_IMPLEMENTATION_H
|
|
#define SIMDJSON_HASWELL_IMPLEMENTATION_H
|
|
|
|
/* isadetection.h already included: #include "isadetection.h" */
|
|
|
|
namespace simdjson {
|
|
namespace haswell {
|
|
|
|
class implementation final : public simdjson::implementation {
|
|
public:
|
|
really_inline implementation() : simdjson::implementation(
|
|
"haswell",
|
|
"Intel/AMD AVX2",
|
|
instruction_set::AVX2 | instruction_set::PCLMULQDQ | instruction_set::BMI1 | instruction_set::BMI2
|
|
) {}
|
|
WARN_UNUSED error_code create_dom_parser_implementation(
|
|
size_t capacity,
|
|
size_t max_length,
|
|
std::unique_ptr<internal::dom_parser_implementation>& dst
|
|
) const noexcept final;
|
|
WARN_UNUSED error_code minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept final;
|
|
WARN_UNUSED bool validate_utf8(const char *buf, size_t len) const noexcept final;
|
|
};
|
|
|
|
} // namespace haswell
|
|
} // namespace simdjson
|
|
|
|
#endif // SIMDJSON_HASWELL_IMPLEMENTATION_H
|
|
/* end file src/haswell/implementation.h */
|
|
namespace simdjson { namespace internal { const haswell::implementation haswell_singleton{}; } }
|
|
#endif // SIMDJSON_IMPLEMENTATION_HASWELL
|
|
|
|
#if SIMDJSON_IMPLEMENTATION_WESTMERE
|
|
/* begin file src/westmere/implementation.h */
|
|
#ifndef SIMDJSON_WESTMERE_IMPLEMENTATION_H
|
|
#define SIMDJSON_WESTMERE_IMPLEMENTATION_H
|
|
|
|
/* isadetection.h already included: #include "isadetection.h" */
|
|
|
|
namespace simdjson {
|
|
namespace westmere {
|
|
|
|
using namespace simdjson::dom;
|
|
|
|
class implementation final : public simdjson::implementation {
|
|
public:
|
|
really_inline implementation() : simdjson::implementation("westmere", "Intel/AMD SSE4.2", instruction_set::SSE42 | instruction_set::PCLMULQDQ) {}
|
|
WARN_UNUSED error_code create_dom_parser_implementation(
|
|
size_t capacity,
|
|
size_t max_length,
|
|
std::unique_ptr<internal::dom_parser_implementation>& dst
|
|
) const noexcept final;
|
|
WARN_UNUSED error_code minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept final;
|
|
WARN_UNUSED bool validate_utf8(const char *buf, size_t len) const noexcept final;
|
|
};
|
|
|
|
} // namespace westmere
|
|
} // namespace simdjson
|
|
|
|
#endif // SIMDJSON_WESTMERE_IMPLEMENTATION_H
|
|
/* end file src/westmere/implementation.h */
|
|
namespace simdjson { namespace internal { const westmere::implementation westmere_singleton{}; } }
|
|
#endif // SIMDJSON_IMPLEMENTATION_WESTMERE
|
|
|
|
#if SIMDJSON_IMPLEMENTATION_ARM64
|
|
/* begin file src/arm64/implementation.h */
|
|
#ifndef SIMDJSON_ARM64_IMPLEMENTATION_H
|
|
#define SIMDJSON_ARM64_IMPLEMENTATION_H
|
|
|
|
/* isadetection.h already included: #include "isadetection.h" */
|
|
|
|
namespace simdjson {
|
|
namespace arm64 {
|
|
|
|
using namespace simdjson::dom;
|
|
|
|
class implementation final : public simdjson::implementation {
|
|
public:
|
|
really_inline implementation() : simdjson::implementation("arm64", "ARM NEON", instruction_set::NEON) {}
|
|
WARN_UNUSED error_code create_dom_parser_implementation(
|
|
size_t capacity,
|
|
size_t max_length,
|
|
std::unique_ptr<internal::dom_parser_implementation>& dst
|
|
) const noexcept final;
|
|
WARN_UNUSED error_code minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept final;
|
|
WARN_UNUSED bool validate_utf8(const char *buf, size_t len) const noexcept final;
|
|
};
|
|
|
|
} // namespace arm64
|
|
} // namespace simdjson
|
|
|
|
#endif // SIMDJSON_ARM64_IMPLEMENTATION_H
|
|
/* end file src/arm64/implementation.h */
|
|
namespace simdjson { namespace internal { const arm64::implementation arm64_singleton{}; } }
|
|
#endif // SIMDJSON_IMPLEMENTATION_ARM64
|
|
|
|
#if SIMDJSON_IMPLEMENTATION_FALLBACK
|
|
/* begin file src/fallback/implementation.h */
|
|
#ifndef SIMDJSON_FALLBACK_IMPLEMENTATION_H
|
|
#define SIMDJSON_FALLBACK_IMPLEMENTATION_H
|
|
|
|
/* isadetection.h already included: #include "isadetection.h" */
|
|
|
|
namespace simdjson {
|
|
namespace fallback {
|
|
|
|
using namespace simdjson::dom;
|
|
|
|
class implementation final : public simdjson::implementation {
|
|
public:
|
|
really_inline implementation() : simdjson::implementation(
|
|
"fallback",
|
|
"Generic fallback implementation",
|
|
0
|
|
) {}
|
|
WARN_UNUSED error_code create_dom_parser_implementation(
|
|
size_t capacity,
|
|
size_t max_length,
|
|
std::unique_ptr<internal::dom_parser_implementation>& dst
|
|
) const noexcept final;
|
|
WARN_UNUSED error_code minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept final;
|
|
WARN_UNUSED bool validate_utf8(const char *buf, size_t len) const noexcept final;
|
|
};
|
|
|
|
} // namespace fallback
|
|
|
|
} // namespace simdjson
|
|
|
|
#endif // SIMDJSON_FALLBACK_IMPLEMENTATION_H
|
|
/* end file src/fallback/implementation.h */
|
|
namespace simdjson { namespace internal { const fallback::implementation fallback_singleton{}; } }
|
|
#endif // SIMDJSON_IMPLEMENTATION_FALLBACK
|
|
|
|
namespace simdjson {
|
|
namespace internal {
|
|
|
|
/**
|
|
* @private Detects best supported implementation on first use, and sets it
|
|
*/
|
|
class detect_best_supported_implementation_on_first_use final : public implementation {
|
|
public:
|
|
const std::string &name() const noexcept final { return set_best()->name(); }
|
|
const std::string &description() const noexcept final { return set_best()->description(); }
|
|
uint32_t required_instruction_sets() const noexcept final { return set_best()->required_instruction_sets(); }
|
|
WARN_UNUSED error_code create_dom_parser_implementation(
|
|
size_t capacity,
|
|
size_t max_length,
|
|
std::unique_ptr<internal::dom_parser_implementation>& dst
|
|
) const noexcept final {
|
|
return set_best()->create_dom_parser_implementation(capacity, max_length, dst);
|
|
}
|
|
WARN_UNUSED error_code minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept final {
|
|
return set_best()->minify(buf, len, dst, dst_len);
|
|
}
|
|
WARN_UNUSED bool validate_utf8(const char * buf, size_t len) const noexcept final override {
|
|
return set_best()->validate_utf8(buf, len);
|
|
}
|
|
really_inline detect_best_supported_implementation_on_first_use() noexcept : implementation("best_supported_detector", "Detects the best supported implementation and sets it", 0) {}
|
|
private:
|
|
const implementation *set_best() const noexcept;
|
|
};
|
|
|
|
const detect_best_supported_implementation_on_first_use detect_best_supported_implementation_on_first_use_singleton;
|
|
|
|
internal::atomic_ptr<const implementation> active_implementation{&internal::detect_best_supported_implementation_on_first_use_singleton};
|
|
|
|
const std::initializer_list<const implementation *> available_implementation_pointers {
|
|
#if SIMDJSON_IMPLEMENTATION_HASWELL
|
|
&haswell_singleton,
|
|
#endif
|
|
#if SIMDJSON_IMPLEMENTATION_WESTMERE
|
|
&westmere_singleton,
|
|
#endif
|
|
#if SIMDJSON_IMPLEMENTATION_ARM64
|
|
&arm64_singleton,
|
|
#endif
|
|
#if SIMDJSON_IMPLEMENTATION_FALLBACK
|
|
&fallback_singleton,
|
|
#endif
|
|
}; // available_implementation_pointers
|
|
|
|
// So we can return UNSUPPORTED_ARCHITECTURE from the parser when there is no support
|
|
class unsupported_implementation final : public implementation {
|
|
public:
|
|
WARN_UNUSED error_code create_dom_parser_implementation(
|
|
size_t,
|
|
size_t,
|
|
std::unique_ptr<internal::dom_parser_implementation>&
|
|
) const noexcept final {
|
|
return UNSUPPORTED_ARCHITECTURE;
|
|
}
|
|
WARN_UNUSED error_code minify(const uint8_t *, size_t, uint8_t *, size_t &) const noexcept final override {
|
|
return UNSUPPORTED_ARCHITECTURE;
|
|
}
|
|
WARN_UNUSED bool validate_utf8(const char *, size_t) const noexcept final override {
|
|
return false; // Just refuse to validate. Given that we have a fallback implementation
|
|
// it seems unlikely that unsupported_implementation will ever be used. If it is used,
|
|
// then it will flag all strings as invalid. The alternative is to return an error_code
|
|
// from which the user has to figure out whether the string is valid UTF-8... which seems
|
|
// like a lot of work just to handle the very unlikely case that we have an unsupported
|
|
// implementation. And, when it does happen (that we have an unsupported implementation),
|
|
// what are the chances that the programmer has a fallback? Given that *we* provide the
|
|
// fallback, it implies that the programmer would need a fallback for our fallback.
|
|
}
|
|
unsupported_implementation() : implementation("unsupported", "Unsupported CPU (no detected SIMD instructions)", 0) {}
|
|
};
|
|
|
|
const unsupported_implementation unsupported_singleton{};
|
|
|
|
size_t available_implementation_list::size() const noexcept {
|
|
return internal::available_implementation_pointers.size();
|
|
}
|
|
const implementation * const *available_implementation_list::begin() const noexcept {
|
|
return internal::available_implementation_pointers.begin();
|
|
}
|
|
const implementation * const *available_implementation_list::end() const noexcept {
|
|
return internal::available_implementation_pointers.end();
|
|
}
|
|
const implementation *available_implementation_list::detect_best_supported() const noexcept {
|
|
// They are prelisted in priority order, so we just go down the list
|
|
uint32_t supported_instruction_sets = detect_supported_architectures();
|
|
for (const implementation *impl : internal::available_implementation_pointers) {
|
|
uint32_t required_instruction_sets = impl->required_instruction_sets();
|
|
if ((supported_instruction_sets & required_instruction_sets) == required_instruction_sets) { return impl; }
|
|
}
|
|
return &unsupported_singleton; // this should never happen?
|
|
}
|
|
|
|
const implementation *detect_best_supported_implementation_on_first_use::set_best() const noexcept {
|
|
SIMDJSON_PUSH_DISABLE_WARNINGS
|
|
SIMDJSON_DISABLE_DEPRECATED_WARNING // Disable CRT_SECURE warning on MSVC: manually verified this is safe
|
|
char *force_implementation_name = getenv("SIMDJSON_FORCE_IMPLEMENTATION");
|
|
SIMDJSON_POP_DISABLE_WARNINGS
|
|
|
|
if (force_implementation_name) {
|
|
auto force_implementation = available_implementations[force_implementation_name];
|
|
if (force_implementation) {
|
|
return active_implementation = force_implementation;
|
|
} else {
|
|
// Note: abort() and stderr usage within the library is forbidden.
|
|
return active_implementation = &unsupported_singleton;
|
|
}
|
|
}
|
|
return active_implementation = available_implementations.detect_best_supported();
|
|
}
|
|
|
|
} // namespace internal
|
|
|
|
SIMDJSON_DLLIMPORTEXPORT const internal::available_implementation_list available_implementations{};
|
|
SIMDJSON_DLLIMPORTEXPORT internal::atomic_ptr<const implementation> active_implementation{&internal::detect_best_supported_implementation_on_first_use_singleton};
|
|
|
|
WARN_UNUSED error_code minify(const char *buf, size_t len, char *dst, size_t &dst_len) noexcept {
|
|
return active_implementation->minify((const uint8_t *)buf, len, (uint8_t *)dst, dst_len);
|
|
}
|
|
WARN_UNUSED bool validate_utf8(const char *buf, size_t len) noexcept {
|
|
return active_implementation->validate_utf8(buf, len);
|
|
}
|
|
|
|
|
|
} // namespace simdjson
|
|
/* end file src/fallback/implementation.h */
|
|
|
|
// Anything in the top level directory MUST be included outside of the #if statements
|
|
// below, or amalgamation will screw them up!
|
|
/* isadetection.h already included: #include "isadetection.h" */
|
|
/* begin file src/jsoncharutils.h */
|
|
#ifndef SIMDJSON_JSONCHARUTILS_H
|
|
#define SIMDJSON_JSONCHARUTILS_H
|
|
|
|
|
|
#ifdef JSON_TEST_STRINGS
|
|
void found_string(const uint8_t *buf, const uint8_t *parsed_begin,
|
|
const uint8_t *parsed_end);
|
|
void found_bad_string(const uint8_t *buf);
|
|
#endif
|
|
|
|
namespace simdjson {
|
|
// structural chars here are
|
|
// they are { 0x7b } 0x7d : 0x3a [ 0x5b ] 0x5d , 0x2c (and NULL)
|
|
// we are also interested in the four whitespace characters
|
|
// space 0x20, linefeed 0x0a, horizontal tab 0x09 and carriage return 0x0d
|
|
|
|
// these are the chars that can follow a true/false/null or number atom
|
|
// and nothing else
|
|
const uint32_t structural_or_whitespace_or_null_negated[256] = {
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
|
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1,
|
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
|
|
|
|
// return non-zero if not a structural or whitespace char
|
|
// zero otherwise
|
|
really_inline uint32_t is_not_structural_or_whitespace_or_null(uint8_t c) {
|
|
return structural_or_whitespace_or_null_negated[c];
|
|
}
|
|
|
|
const uint32_t structural_or_whitespace_negated[256] = {
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
|
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1,
|
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
|
|
|
|
// return non-zero if not a structural or whitespace char
|
|
// zero otherwise
|
|
really_inline uint32_t is_not_structural_or_whitespace(uint8_t c) {
|
|
return structural_or_whitespace_negated[c];
|
|
}
|
|
|
|
const uint32_t structural_or_whitespace_or_null[256] = {
|
|
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
|
|
really_inline uint32_t is_structural_or_whitespace_or_null(uint8_t c) {
|
|
return structural_or_whitespace_or_null[c];
|
|
}
|
|
|
|
const uint32_t structural_or_whitespace[256] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
|
|
really_inline uint32_t is_structural_or_whitespace(uint8_t c) {
|
|
return structural_or_whitespace[c];
|
|
}
|
|
|
|
const uint32_t digit_to_val32[886] = {
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0x0, 0x1, 0x2, 0x3, 0x4, 0x5,
|
|
0x6, 0x7, 0x8, 0x9, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xa,
|
|
0xb, 0xc, 0xd, 0xe, 0xf, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xa, 0xb, 0xc, 0xd, 0xe,
|
|
0xf, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0x0, 0x10, 0x20, 0x30, 0x40, 0x50,
|
|
0x60, 0x70, 0x80, 0x90, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xa0,
|
|
0xb0, 0xc0, 0xd0, 0xe0, 0xf0, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0,
|
|
0xf0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0x0, 0x100, 0x200, 0x300, 0x400, 0x500,
|
|
0x600, 0x700, 0x800, 0x900, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xa00,
|
|
0xb00, 0xc00, 0xd00, 0xe00, 0xf00, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xa00, 0xb00, 0xc00, 0xd00, 0xe00,
|
|
0xf00, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0x0, 0x1000, 0x2000, 0x3000, 0x4000, 0x5000,
|
|
0x6000, 0x7000, 0x8000, 0x9000, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xa000,
|
|
0xb000, 0xc000, 0xd000, 0xe000, 0xf000, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xa000, 0xb000, 0xc000, 0xd000, 0xe000,
|
|
0xf000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF};
|
|
// returns a value with the high 16 bits set if not valid
|
|
// otherwise returns the conversion of the 4 hex digits at src into the bottom
|
|
// 16 bits of the 32-bit return register
|
|
//
|
|
// see
|
|
// https://lemire.me/blog/2019/04/17/parsing-short-hexadecimal-strings-efficiently/
|
|
static inline uint32_t hex_to_u32_nocheck(
|
|
const uint8_t *src) { // strictly speaking, static inline is a C-ism
|
|
uint32_t v1 = digit_to_val32[630 + src[0]];
|
|
uint32_t v2 = digit_to_val32[420 + src[1]];
|
|
uint32_t v3 = digit_to_val32[210 + src[2]];
|
|
uint32_t v4 = digit_to_val32[0 + src[3]];
|
|
return v1 | v2 | v3 | v4;
|
|
}
|
|
|
|
// given a code point cp, writes to c
|
|
// the utf-8 code, outputting the length in
|
|
// bytes, if the length is zero, the code point
|
|
// is invalid
|
|
//
|
|
// This can possibly be made faster using pdep
|
|
// and clz and table lookups, but JSON documents
|
|
// have few escaped code points, and the following
|
|
// function looks cheap.
|
|
//
|
|
// Note: we assume that surrogates are treated separately
|
|
//
|
|
inline size_t codepoint_to_utf8(uint32_t cp, uint8_t *c) {
|
|
if (cp <= 0x7F) {
|
|
c[0] = uint8_t(cp);
|
|
return 1; // ascii
|
|
}
|
|
if (cp <= 0x7FF) {
|
|
c[0] = uint8_t((cp >> 6) + 192);
|
|
c[1] = uint8_t((cp & 63) + 128);
|
|
return 2; // universal plane
|
|
// Surrogates are treated elsewhere...
|
|
//} //else if (0xd800 <= cp && cp <= 0xdfff) {
|
|
// return 0; // surrogates // could put assert here
|
|
} else if (cp <= 0xFFFF) {
|
|
c[0] = uint8_t((cp >> 12) + 224);
|
|
c[1] = uint8_t(((cp >> 6) & 63) + 128);
|
|
c[2] = uint8_t((cp & 63) + 128);
|
|
return 3;
|
|
} else if (cp <= 0x10FFFF) { // if you know you have a valid code point, this
|
|
// is not needed
|
|
c[0] = uint8_t((cp >> 18) + 240);
|
|
c[1] = uint8_t(((cp >> 12) & 63) + 128);
|
|
c[2] = uint8_t(((cp >> 6) & 63) + 128);
|
|
c[3] = uint8_t((cp & 63) + 128);
|
|
return 4;
|
|
}
|
|
// will return 0 when the code point was too large.
|
|
return 0; // bad r
|
|
}
|
|
|
|
////
|
|
// The following code is used in number parsing. It is not
|
|
// properly "char utils" stuff, but we move it here so that
|
|
// it does not get copied multiple times in the binaries (once
|
|
// per instruction set).
|
|
///
|
|
|
|
constexpr int FASTFLOAT_SMALLEST_POWER = -325;
|
|
constexpr int FASTFLOAT_LARGEST_POWER = 308;
|
|
|
|
struct value128 {
|
|
uint64_t low;
|
|
uint64_t high;
|
|
};
|
|
|
|
#if defined(SIMDJSON_REGULAR_VISUAL_STUDIO) && \
|
|
!defined(_M_X64) && !defined(_M_ARM64)// _umul128 for x86, arm
|
|
// this is a slow emulation routine for 32-bit Windows
|
|
//
|
|
static inline uint64_t __emulu(uint32_t x, uint32_t y) {
|
|
return x * (uint64_t)y;
|
|
}
|
|
static inline uint64_t _umul128(uint64_t ab, uint64_t cd, uint64_t *hi) {
|
|
uint64_t ad = __emulu((uint32_t)(ab >> 32), (uint32_t)cd);
|
|
uint64_t bd = __emulu((uint32_t)ab, (uint32_t)cd);
|
|
uint64_t adbc = ad + __emulu((uint32_t)ab, (uint32_t)(cd >> 32));
|
|
uint64_t adbc_carry = !!(adbc < ad);
|
|
uint64_t lo = bd + (adbc << 32);
|
|
*hi = __emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) +
|
|
(adbc_carry << 32) + !!(lo < bd);
|
|
return lo;
|
|
}
|
|
#endif
|
|
|
|
really_inline value128 full_multiplication(uint64_t value1, uint64_t value2) {
|
|
value128 answer;
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
#ifdef _M_ARM64
|
|
// ARM64 has native support for 64-bit multiplications, no need to emultate
|
|
answer.high = __umulh(value1, value2);
|
|
answer.low = value1 * value2;
|
|
#else
|
|
answer.low = _umul128(value1, value2, &answer.high); // _umul128 not available on ARM64
|
|
#endif // _M_ARM64
|
|
#else // SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
__uint128_t r = ((__uint128_t)value1) * value2;
|
|
answer.low = uint64_t(r);
|
|
answer.high = uint64_t(r >> 64);
|
|
#endif
|
|
return answer;
|
|
}
|
|
|
|
// Precomputed powers of ten from 10^0 to 10^22. These
|
|
// can be represented exactly using the double type.
|
|
static const double power_of_ten[] = {
|
|
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11,
|
|
1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22};
|
|
|
|
// the mantissas of powers of ten from -308 to 308, extended out to sixty four
|
|
// bits
|
|
// This struct will likely get padded to 16 bytes.
|
|
typedef struct {
|
|
uint64_t mantissa;
|
|
int32_t exp;
|
|
} components;
|
|
|
|
// The array power_of_ten_components contain the powers of ten approximated
|
|
// as a 64-bit mantissa, with an exponent part. It goes from 10^
|
|
// FASTFLOAT_SMALLEST_POWER to
|
|
// 10^FASTFLOAT_LARGEST_POWER (inclusively). The mantissa is truncated, and
|
|
// never rounded up.
|
|
// Uses about 10KB.
|
|
static const components power_of_ten_components[] = {
|
|
{0xa5ced43b7e3e9188L, 7}, {0xcf42894a5dce35eaL, 10},
|
|
{0x818995ce7aa0e1b2L, 14}, {0xa1ebfb4219491a1fL, 17},
|
|
{0xca66fa129f9b60a6L, 20}, {0xfd00b897478238d0L, 23},
|
|
{0x9e20735e8cb16382L, 27}, {0xc5a890362fddbc62L, 30},
|
|
{0xf712b443bbd52b7bL, 33}, {0x9a6bb0aa55653b2dL, 37},
|
|
{0xc1069cd4eabe89f8L, 40}, {0xf148440a256e2c76L, 43},
|
|
{0x96cd2a865764dbcaL, 47}, {0xbc807527ed3e12bcL, 50},
|
|
{0xeba09271e88d976bL, 53}, {0x93445b8731587ea3L, 57},
|
|
{0xb8157268fdae9e4cL, 60}, {0xe61acf033d1a45dfL, 63},
|
|
{0x8fd0c16206306babL, 67}, {0xb3c4f1ba87bc8696L, 70},
|
|
{0xe0b62e2929aba83cL, 73}, {0x8c71dcd9ba0b4925L, 77},
|
|
{0xaf8e5410288e1b6fL, 80}, {0xdb71e91432b1a24aL, 83},
|
|
{0x892731ac9faf056eL, 87}, {0xab70fe17c79ac6caL, 90},
|
|
{0xd64d3d9db981787dL, 93}, {0x85f0468293f0eb4eL, 97},
|
|
{0xa76c582338ed2621L, 100}, {0xd1476e2c07286faaL, 103},
|
|
{0x82cca4db847945caL, 107}, {0xa37fce126597973cL, 110},
|
|
{0xcc5fc196fefd7d0cL, 113}, {0xff77b1fcbebcdc4fL, 116},
|
|
{0x9faacf3df73609b1L, 120}, {0xc795830d75038c1dL, 123},
|
|
{0xf97ae3d0d2446f25L, 126}, {0x9becce62836ac577L, 130},
|
|
{0xc2e801fb244576d5L, 133}, {0xf3a20279ed56d48aL, 136},
|
|
{0x9845418c345644d6L, 140}, {0xbe5691ef416bd60cL, 143},
|
|
{0xedec366b11c6cb8fL, 146}, {0x94b3a202eb1c3f39L, 150},
|
|
{0xb9e08a83a5e34f07L, 153}, {0xe858ad248f5c22c9L, 156},
|
|
{0x91376c36d99995beL, 160}, {0xb58547448ffffb2dL, 163},
|
|
{0xe2e69915b3fff9f9L, 166}, {0x8dd01fad907ffc3bL, 170},
|
|
{0xb1442798f49ffb4aL, 173}, {0xdd95317f31c7fa1dL, 176},
|
|
{0x8a7d3eef7f1cfc52L, 180}, {0xad1c8eab5ee43b66L, 183},
|
|
{0xd863b256369d4a40L, 186}, {0x873e4f75e2224e68L, 190},
|
|
{0xa90de3535aaae202L, 193}, {0xd3515c2831559a83L, 196},
|
|
{0x8412d9991ed58091L, 200}, {0xa5178fff668ae0b6L, 203},
|
|
{0xce5d73ff402d98e3L, 206}, {0x80fa687f881c7f8eL, 210},
|
|
{0xa139029f6a239f72L, 213}, {0xc987434744ac874eL, 216},
|
|
{0xfbe9141915d7a922L, 219}, {0x9d71ac8fada6c9b5L, 223},
|
|
{0xc4ce17b399107c22L, 226}, {0xf6019da07f549b2bL, 229},
|
|
{0x99c102844f94e0fbL, 233}, {0xc0314325637a1939L, 236},
|
|
{0xf03d93eebc589f88L, 239}, {0x96267c7535b763b5L, 243},
|
|
{0xbbb01b9283253ca2L, 246}, {0xea9c227723ee8bcbL, 249},
|
|
{0x92a1958a7675175fL, 253}, {0xb749faed14125d36L, 256},
|
|
{0xe51c79a85916f484L, 259}, {0x8f31cc0937ae58d2L, 263},
|
|
{0xb2fe3f0b8599ef07L, 266}, {0xdfbdcece67006ac9L, 269},
|
|
{0x8bd6a141006042bdL, 273}, {0xaecc49914078536dL, 276},
|
|
{0xda7f5bf590966848L, 279}, {0x888f99797a5e012dL, 283},
|
|
{0xaab37fd7d8f58178L, 286}, {0xd5605fcdcf32e1d6L, 289},
|
|
{0x855c3be0a17fcd26L, 293}, {0xa6b34ad8c9dfc06fL, 296},
|
|
{0xd0601d8efc57b08bL, 299}, {0x823c12795db6ce57L, 303},
|
|
{0xa2cb1717b52481edL, 306}, {0xcb7ddcdda26da268L, 309},
|
|
{0xfe5d54150b090b02L, 312}, {0x9efa548d26e5a6e1L, 316},
|
|
{0xc6b8e9b0709f109aL, 319}, {0xf867241c8cc6d4c0L, 322},
|
|
{0x9b407691d7fc44f8L, 326}, {0xc21094364dfb5636L, 329},
|
|
{0xf294b943e17a2bc4L, 332}, {0x979cf3ca6cec5b5aL, 336},
|
|
{0xbd8430bd08277231L, 339}, {0xece53cec4a314ebdL, 342},
|
|
{0x940f4613ae5ed136L, 346}, {0xb913179899f68584L, 349},
|
|
{0xe757dd7ec07426e5L, 352}, {0x9096ea6f3848984fL, 356},
|
|
{0xb4bca50b065abe63L, 359}, {0xe1ebce4dc7f16dfbL, 362},
|
|
{0x8d3360f09cf6e4bdL, 366}, {0xb080392cc4349decL, 369},
|
|
{0xdca04777f541c567L, 372}, {0x89e42caaf9491b60L, 376},
|
|
{0xac5d37d5b79b6239L, 379}, {0xd77485cb25823ac7L, 382},
|
|
{0x86a8d39ef77164bcL, 386}, {0xa8530886b54dbdebL, 389},
|
|
{0xd267caa862a12d66L, 392}, {0x8380dea93da4bc60L, 396},
|
|
{0xa46116538d0deb78L, 399}, {0xcd795be870516656L, 402},
|
|
{0x806bd9714632dff6L, 406}, {0xa086cfcd97bf97f3L, 409},
|
|
{0xc8a883c0fdaf7df0L, 412}, {0xfad2a4b13d1b5d6cL, 415},
|
|
{0x9cc3a6eec6311a63L, 419}, {0xc3f490aa77bd60fcL, 422},
|
|
{0xf4f1b4d515acb93bL, 425}, {0x991711052d8bf3c5L, 429},
|
|
{0xbf5cd54678eef0b6L, 432}, {0xef340a98172aace4L, 435},
|
|
{0x9580869f0e7aac0eL, 439}, {0xbae0a846d2195712L, 442},
|
|
{0xe998d258869facd7L, 445}, {0x91ff83775423cc06L, 449},
|
|
{0xb67f6455292cbf08L, 452}, {0xe41f3d6a7377eecaL, 455},
|
|
{0x8e938662882af53eL, 459}, {0xb23867fb2a35b28dL, 462},
|
|
{0xdec681f9f4c31f31L, 465}, {0x8b3c113c38f9f37eL, 469},
|
|
{0xae0b158b4738705eL, 472}, {0xd98ddaee19068c76L, 475},
|
|
{0x87f8a8d4cfa417c9L, 479}, {0xa9f6d30a038d1dbcL, 482},
|
|
{0xd47487cc8470652bL, 485}, {0x84c8d4dfd2c63f3bL, 489},
|
|
{0xa5fb0a17c777cf09L, 492}, {0xcf79cc9db955c2ccL, 495},
|
|
{0x81ac1fe293d599bfL, 499}, {0xa21727db38cb002fL, 502},
|
|
{0xca9cf1d206fdc03bL, 505}, {0xfd442e4688bd304aL, 508},
|
|
{0x9e4a9cec15763e2eL, 512}, {0xc5dd44271ad3cdbaL, 515},
|
|
{0xf7549530e188c128L, 518}, {0x9a94dd3e8cf578b9L, 522},
|
|
{0xc13a148e3032d6e7L, 525}, {0xf18899b1bc3f8ca1L, 528},
|
|
{0x96f5600f15a7b7e5L, 532}, {0xbcb2b812db11a5deL, 535},
|
|
{0xebdf661791d60f56L, 538}, {0x936b9fcebb25c995L, 542},
|
|
{0xb84687c269ef3bfbL, 545}, {0xe65829b3046b0afaL, 548},
|
|
{0x8ff71a0fe2c2e6dcL, 552}, {0xb3f4e093db73a093L, 555},
|
|
{0xe0f218b8d25088b8L, 558}, {0x8c974f7383725573L, 562},
|
|
{0xafbd2350644eeacfL, 565}, {0xdbac6c247d62a583L, 568},
|
|
{0x894bc396ce5da772L, 572}, {0xab9eb47c81f5114fL, 575},
|
|
{0xd686619ba27255a2L, 578}, {0x8613fd0145877585L, 582},
|
|
{0xa798fc4196e952e7L, 585}, {0xd17f3b51fca3a7a0L, 588},
|
|
{0x82ef85133de648c4L, 592}, {0xa3ab66580d5fdaf5L, 595},
|
|
{0xcc963fee10b7d1b3L, 598}, {0xffbbcfe994e5c61fL, 601},
|
|
{0x9fd561f1fd0f9bd3L, 605}, {0xc7caba6e7c5382c8L, 608},
|
|
{0xf9bd690a1b68637bL, 611}, {0x9c1661a651213e2dL, 615},
|
|
{0xc31bfa0fe5698db8L, 618}, {0xf3e2f893dec3f126L, 621},
|
|
{0x986ddb5c6b3a76b7L, 625}, {0xbe89523386091465L, 628},
|
|
{0xee2ba6c0678b597fL, 631}, {0x94db483840b717efL, 635},
|
|
{0xba121a4650e4ddebL, 638}, {0xe896a0d7e51e1566L, 641},
|
|
{0x915e2486ef32cd60L, 645}, {0xb5b5ada8aaff80b8L, 648},
|
|
{0xe3231912d5bf60e6L, 651}, {0x8df5efabc5979c8fL, 655},
|
|
{0xb1736b96b6fd83b3L, 658}, {0xddd0467c64bce4a0L, 661},
|
|
{0x8aa22c0dbef60ee4L, 665}, {0xad4ab7112eb3929dL, 668},
|
|
{0xd89d64d57a607744L, 671}, {0x87625f056c7c4a8bL, 675},
|
|
{0xa93af6c6c79b5d2dL, 678}, {0xd389b47879823479L, 681},
|
|
{0x843610cb4bf160cbL, 685}, {0xa54394fe1eedb8feL, 688},
|
|
{0xce947a3da6a9273eL, 691}, {0x811ccc668829b887L, 695},
|
|
{0xa163ff802a3426a8L, 698}, {0xc9bcff6034c13052L, 701},
|
|
{0xfc2c3f3841f17c67L, 704}, {0x9d9ba7832936edc0L, 708},
|
|
{0xc5029163f384a931L, 711}, {0xf64335bcf065d37dL, 714},
|
|
{0x99ea0196163fa42eL, 718}, {0xc06481fb9bcf8d39L, 721},
|
|
{0xf07da27a82c37088L, 724}, {0x964e858c91ba2655L, 728},
|
|
{0xbbe226efb628afeaL, 731}, {0xeadab0aba3b2dbe5L, 734},
|
|
{0x92c8ae6b464fc96fL, 738}, {0xb77ada0617e3bbcbL, 741},
|
|
{0xe55990879ddcaabdL, 744}, {0x8f57fa54c2a9eab6L, 748},
|
|
{0xb32df8e9f3546564L, 751}, {0xdff9772470297ebdL, 754},
|
|
{0x8bfbea76c619ef36L, 758}, {0xaefae51477a06b03L, 761},
|
|
{0xdab99e59958885c4L, 764}, {0x88b402f7fd75539bL, 768},
|
|
{0xaae103b5fcd2a881L, 771}, {0xd59944a37c0752a2L, 774},
|
|
{0x857fcae62d8493a5L, 778}, {0xa6dfbd9fb8e5b88eL, 781},
|
|
{0xd097ad07a71f26b2L, 784}, {0x825ecc24c873782fL, 788},
|
|
{0xa2f67f2dfa90563bL, 791}, {0xcbb41ef979346bcaL, 794},
|
|
{0xfea126b7d78186bcL, 797}, {0x9f24b832e6b0f436L, 801},
|
|
{0xc6ede63fa05d3143L, 804}, {0xf8a95fcf88747d94L, 807},
|
|
{0x9b69dbe1b548ce7cL, 811}, {0xc24452da229b021bL, 814},
|
|
{0xf2d56790ab41c2a2L, 817}, {0x97c560ba6b0919a5L, 821},
|
|
{0xbdb6b8e905cb600fL, 824}, {0xed246723473e3813L, 827},
|
|
{0x9436c0760c86e30bL, 831}, {0xb94470938fa89bceL, 834},
|
|
{0xe7958cb87392c2c2L, 837}, {0x90bd77f3483bb9b9L, 841},
|
|
{0xb4ecd5f01a4aa828L, 844}, {0xe2280b6c20dd5232L, 847},
|
|
{0x8d590723948a535fL, 851}, {0xb0af48ec79ace837L, 854},
|
|
{0xdcdb1b2798182244L, 857}, {0x8a08f0f8bf0f156bL, 861},
|
|
{0xac8b2d36eed2dac5L, 864}, {0xd7adf884aa879177L, 867},
|
|
{0x86ccbb52ea94baeaL, 871}, {0xa87fea27a539e9a5L, 874},
|
|
{0xd29fe4b18e88640eL, 877}, {0x83a3eeeef9153e89L, 881},
|
|
{0xa48ceaaab75a8e2bL, 884}, {0xcdb02555653131b6L, 887},
|
|
{0x808e17555f3ebf11L, 891}, {0xa0b19d2ab70e6ed6L, 894},
|
|
{0xc8de047564d20a8bL, 897}, {0xfb158592be068d2eL, 900},
|
|
{0x9ced737bb6c4183dL, 904}, {0xc428d05aa4751e4cL, 907},
|
|
{0xf53304714d9265dfL, 910}, {0x993fe2c6d07b7fabL, 914},
|
|
{0xbf8fdb78849a5f96L, 917}, {0xef73d256a5c0f77cL, 920},
|
|
{0x95a8637627989aadL, 924}, {0xbb127c53b17ec159L, 927},
|
|
{0xe9d71b689dde71afL, 930}, {0x9226712162ab070dL, 934},
|
|
{0xb6b00d69bb55c8d1L, 937}, {0xe45c10c42a2b3b05L, 940},
|
|
{0x8eb98a7a9a5b04e3L, 944}, {0xb267ed1940f1c61cL, 947},
|
|
{0xdf01e85f912e37a3L, 950}, {0x8b61313bbabce2c6L, 954},
|
|
{0xae397d8aa96c1b77L, 957}, {0xd9c7dced53c72255L, 960},
|
|
{0x881cea14545c7575L, 964}, {0xaa242499697392d2L, 967},
|
|
{0xd4ad2dbfc3d07787L, 970}, {0x84ec3c97da624ab4L, 974},
|
|
{0xa6274bbdd0fadd61L, 977}, {0xcfb11ead453994baL, 980},
|
|
{0x81ceb32c4b43fcf4L, 984}, {0xa2425ff75e14fc31L, 987},
|
|
{0xcad2f7f5359a3b3eL, 990}, {0xfd87b5f28300ca0dL, 993},
|
|
{0x9e74d1b791e07e48L, 997}, {0xc612062576589ddaL, 1000},
|
|
{0xf79687aed3eec551L, 1003}, {0x9abe14cd44753b52L, 1007},
|
|
{0xc16d9a0095928a27L, 1010}, {0xf1c90080baf72cb1L, 1013},
|
|
{0x971da05074da7beeL, 1017}, {0xbce5086492111aeaL, 1020},
|
|
{0xec1e4a7db69561a5L, 1023}, {0x9392ee8e921d5d07L, 1027},
|
|
{0xb877aa3236a4b449L, 1030}, {0xe69594bec44de15bL, 1033},
|
|
{0x901d7cf73ab0acd9L, 1037}, {0xb424dc35095cd80fL, 1040},
|
|
{0xe12e13424bb40e13L, 1043}, {0x8cbccc096f5088cbL, 1047},
|
|
{0xafebff0bcb24aafeL, 1050}, {0xdbe6fecebdedd5beL, 1053},
|
|
{0x89705f4136b4a597L, 1057}, {0xabcc77118461cefcL, 1060},
|
|
{0xd6bf94d5e57a42bcL, 1063}, {0x8637bd05af6c69b5L, 1067},
|
|
{0xa7c5ac471b478423L, 1070}, {0xd1b71758e219652bL, 1073},
|
|
{0x83126e978d4fdf3bL, 1077}, {0xa3d70a3d70a3d70aL, 1080},
|
|
{0xccccccccccccccccL, 1083}, {0x8000000000000000L, 1087},
|
|
{0xa000000000000000L, 1090}, {0xc800000000000000L, 1093},
|
|
{0xfa00000000000000L, 1096}, {0x9c40000000000000L, 1100},
|
|
{0xc350000000000000L, 1103}, {0xf424000000000000L, 1106},
|
|
{0x9896800000000000L, 1110}, {0xbebc200000000000L, 1113},
|
|
{0xee6b280000000000L, 1116}, {0x9502f90000000000L, 1120},
|
|
{0xba43b74000000000L, 1123}, {0xe8d4a51000000000L, 1126},
|
|
{0x9184e72a00000000L, 1130}, {0xb5e620f480000000L, 1133},
|
|
{0xe35fa931a0000000L, 1136}, {0x8e1bc9bf04000000L, 1140},
|
|
{0xb1a2bc2ec5000000L, 1143}, {0xde0b6b3a76400000L, 1146},
|
|
{0x8ac7230489e80000L, 1150}, {0xad78ebc5ac620000L, 1153},
|
|
{0xd8d726b7177a8000L, 1156}, {0x878678326eac9000L, 1160},
|
|
{0xa968163f0a57b400L, 1163}, {0xd3c21bcecceda100L, 1166},
|
|
{0x84595161401484a0L, 1170}, {0xa56fa5b99019a5c8L, 1173},
|
|
{0xcecb8f27f4200f3aL, 1176}, {0x813f3978f8940984L, 1180},
|
|
{0xa18f07d736b90be5L, 1183}, {0xc9f2c9cd04674edeL, 1186},
|
|
{0xfc6f7c4045812296L, 1189}, {0x9dc5ada82b70b59dL, 1193},
|
|
{0xc5371912364ce305L, 1196}, {0xf684df56c3e01bc6L, 1199},
|
|
{0x9a130b963a6c115cL, 1203}, {0xc097ce7bc90715b3L, 1206},
|
|
{0xf0bdc21abb48db20L, 1209}, {0x96769950b50d88f4L, 1213},
|
|
{0xbc143fa4e250eb31L, 1216}, {0xeb194f8e1ae525fdL, 1219},
|
|
{0x92efd1b8d0cf37beL, 1223}, {0xb7abc627050305adL, 1226},
|
|
{0xe596b7b0c643c719L, 1229}, {0x8f7e32ce7bea5c6fL, 1233},
|
|
{0xb35dbf821ae4f38bL, 1236}, {0xe0352f62a19e306eL, 1239},
|
|
{0x8c213d9da502de45L, 1243}, {0xaf298d050e4395d6L, 1246},
|
|
{0xdaf3f04651d47b4cL, 1249}, {0x88d8762bf324cd0fL, 1253},
|
|
{0xab0e93b6efee0053L, 1256}, {0xd5d238a4abe98068L, 1259},
|
|
{0x85a36366eb71f041L, 1263}, {0xa70c3c40a64e6c51L, 1266},
|
|
{0xd0cf4b50cfe20765L, 1269}, {0x82818f1281ed449fL, 1273},
|
|
{0xa321f2d7226895c7L, 1276}, {0xcbea6f8ceb02bb39L, 1279},
|
|
{0xfee50b7025c36a08L, 1282}, {0x9f4f2726179a2245L, 1286},
|
|
{0xc722f0ef9d80aad6L, 1289}, {0xf8ebad2b84e0d58bL, 1292},
|
|
{0x9b934c3b330c8577L, 1296}, {0xc2781f49ffcfa6d5L, 1299},
|
|
{0xf316271c7fc3908aL, 1302}, {0x97edd871cfda3a56L, 1306},
|
|
{0xbde94e8e43d0c8ecL, 1309}, {0xed63a231d4c4fb27L, 1312},
|
|
{0x945e455f24fb1cf8L, 1316}, {0xb975d6b6ee39e436L, 1319},
|
|
{0xe7d34c64a9c85d44L, 1322}, {0x90e40fbeea1d3a4aL, 1326},
|
|
{0xb51d13aea4a488ddL, 1329}, {0xe264589a4dcdab14L, 1332},
|
|
{0x8d7eb76070a08aecL, 1336}, {0xb0de65388cc8ada8L, 1339},
|
|
{0xdd15fe86affad912L, 1342}, {0x8a2dbf142dfcc7abL, 1346},
|
|
{0xacb92ed9397bf996L, 1349}, {0xd7e77a8f87daf7fbL, 1352},
|
|
{0x86f0ac99b4e8dafdL, 1356}, {0xa8acd7c0222311bcL, 1359},
|
|
{0xd2d80db02aabd62bL, 1362}, {0x83c7088e1aab65dbL, 1366},
|
|
{0xa4b8cab1a1563f52L, 1369}, {0xcde6fd5e09abcf26L, 1372},
|
|
{0x80b05e5ac60b6178L, 1376}, {0xa0dc75f1778e39d6L, 1379},
|
|
{0xc913936dd571c84cL, 1382}, {0xfb5878494ace3a5fL, 1385},
|
|
{0x9d174b2dcec0e47bL, 1389}, {0xc45d1df942711d9aL, 1392},
|
|
{0xf5746577930d6500L, 1395}, {0x9968bf6abbe85f20L, 1399},
|
|
{0xbfc2ef456ae276e8L, 1402}, {0xefb3ab16c59b14a2L, 1405},
|
|
{0x95d04aee3b80ece5L, 1409}, {0xbb445da9ca61281fL, 1412},
|
|
{0xea1575143cf97226L, 1415}, {0x924d692ca61be758L, 1419},
|
|
{0xb6e0c377cfa2e12eL, 1422}, {0xe498f455c38b997aL, 1425},
|
|
{0x8edf98b59a373fecL, 1429}, {0xb2977ee300c50fe7L, 1432},
|
|
{0xdf3d5e9bc0f653e1L, 1435}, {0x8b865b215899f46cL, 1439},
|
|
{0xae67f1e9aec07187L, 1442}, {0xda01ee641a708de9L, 1445},
|
|
{0x884134fe908658b2L, 1449}, {0xaa51823e34a7eedeL, 1452},
|
|
{0xd4e5e2cdc1d1ea96L, 1455}, {0x850fadc09923329eL, 1459},
|
|
{0xa6539930bf6bff45L, 1462}, {0xcfe87f7cef46ff16L, 1465},
|
|
{0x81f14fae158c5f6eL, 1469}, {0xa26da3999aef7749L, 1472},
|
|
{0xcb090c8001ab551cL, 1475}, {0xfdcb4fa002162a63L, 1478},
|
|
{0x9e9f11c4014dda7eL, 1482}, {0xc646d63501a1511dL, 1485},
|
|
{0xf7d88bc24209a565L, 1488}, {0x9ae757596946075fL, 1492},
|
|
{0xc1a12d2fc3978937L, 1495}, {0xf209787bb47d6b84L, 1498},
|
|
{0x9745eb4d50ce6332L, 1502}, {0xbd176620a501fbffL, 1505},
|
|
{0xec5d3fa8ce427affL, 1508}, {0x93ba47c980e98cdfL, 1512},
|
|
{0xb8a8d9bbe123f017L, 1515}, {0xe6d3102ad96cec1dL, 1518},
|
|
{0x9043ea1ac7e41392L, 1522}, {0xb454e4a179dd1877L, 1525},
|
|
{0xe16a1dc9d8545e94L, 1528}, {0x8ce2529e2734bb1dL, 1532},
|
|
{0xb01ae745b101e9e4L, 1535}, {0xdc21a1171d42645dL, 1538},
|
|
{0x899504ae72497ebaL, 1542}, {0xabfa45da0edbde69L, 1545},
|
|
{0xd6f8d7509292d603L, 1548}, {0x865b86925b9bc5c2L, 1552},
|
|
{0xa7f26836f282b732L, 1555}, {0xd1ef0244af2364ffL, 1558},
|
|
{0x8335616aed761f1fL, 1562}, {0xa402b9c5a8d3a6e7L, 1565},
|
|
{0xcd036837130890a1L, 1568}, {0x802221226be55a64L, 1572},
|
|
{0xa02aa96b06deb0fdL, 1575}, {0xc83553c5c8965d3dL, 1578},
|
|
{0xfa42a8b73abbf48cL, 1581}, {0x9c69a97284b578d7L, 1585},
|
|
{0xc38413cf25e2d70dL, 1588}, {0xf46518c2ef5b8cd1L, 1591},
|
|
{0x98bf2f79d5993802L, 1595}, {0xbeeefb584aff8603L, 1598},
|
|
{0xeeaaba2e5dbf6784L, 1601}, {0x952ab45cfa97a0b2L, 1605},
|
|
{0xba756174393d88dfL, 1608}, {0xe912b9d1478ceb17L, 1611},
|
|
{0x91abb422ccb812eeL, 1615}, {0xb616a12b7fe617aaL, 1618},
|
|
{0xe39c49765fdf9d94L, 1621}, {0x8e41ade9fbebc27dL, 1625},
|
|
{0xb1d219647ae6b31cL, 1628}, {0xde469fbd99a05fe3L, 1631},
|
|
{0x8aec23d680043beeL, 1635}, {0xada72ccc20054ae9L, 1638},
|
|
{0xd910f7ff28069da4L, 1641}, {0x87aa9aff79042286L, 1645},
|
|
{0xa99541bf57452b28L, 1648}, {0xd3fa922f2d1675f2L, 1651},
|
|
{0x847c9b5d7c2e09b7L, 1655}, {0xa59bc234db398c25L, 1658},
|
|
{0xcf02b2c21207ef2eL, 1661}, {0x8161afb94b44f57dL, 1665},
|
|
{0xa1ba1ba79e1632dcL, 1668}, {0xca28a291859bbf93L, 1671},
|
|
{0xfcb2cb35e702af78L, 1674}, {0x9defbf01b061adabL, 1678},
|
|
{0xc56baec21c7a1916L, 1681}, {0xf6c69a72a3989f5bL, 1684},
|
|
{0x9a3c2087a63f6399L, 1688}, {0xc0cb28a98fcf3c7fL, 1691},
|
|
{0xf0fdf2d3f3c30b9fL, 1694}, {0x969eb7c47859e743L, 1698},
|
|
{0xbc4665b596706114L, 1701}, {0xeb57ff22fc0c7959L, 1704},
|
|
{0x9316ff75dd87cbd8L, 1708}, {0xb7dcbf5354e9beceL, 1711},
|
|
{0xe5d3ef282a242e81L, 1714}, {0x8fa475791a569d10L, 1718},
|
|
{0xb38d92d760ec4455L, 1721}, {0xe070f78d3927556aL, 1724},
|
|
{0x8c469ab843b89562L, 1728}, {0xaf58416654a6babbL, 1731},
|
|
{0xdb2e51bfe9d0696aL, 1734}, {0x88fcf317f22241e2L, 1738},
|
|
{0xab3c2fddeeaad25aL, 1741}, {0xd60b3bd56a5586f1L, 1744},
|
|
{0x85c7056562757456L, 1748}, {0xa738c6bebb12d16cL, 1751},
|
|
{0xd106f86e69d785c7L, 1754}, {0x82a45b450226b39cL, 1758},
|
|
{0xa34d721642b06084L, 1761}, {0xcc20ce9bd35c78a5L, 1764},
|
|
{0xff290242c83396ceL, 1767}, {0x9f79a169bd203e41L, 1771},
|
|
{0xc75809c42c684dd1L, 1774}, {0xf92e0c3537826145L, 1777},
|
|
{0x9bbcc7a142b17ccbL, 1781}, {0xc2abf989935ddbfeL, 1784},
|
|
{0xf356f7ebf83552feL, 1787}, {0x98165af37b2153deL, 1791},
|
|
{0xbe1bf1b059e9a8d6L, 1794}, {0xeda2ee1c7064130cL, 1797},
|
|
{0x9485d4d1c63e8be7L, 1801}, {0xb9a74a0637ce2ee1L, 1804},
|
|
{0xe8111c87c5c1ba99L, 1807}, {0x910ab1d4db9914a0L, 1811},
|
|
{0xb54d5e4a127f59c8L, 1814}, {0xe2a0b5dc971f303aL, 1817},
|
|
{0x8da471a9de737e24L, 1821}, {0xb10d8e1456105dadL, 1824},
|
|
{0xdd50f1996b947518L, 1827}, {0x8a5296ffe33cc92fL, 1831},
|
|
{0xace73cbfdc0bfb7bL, 1834}, {0xd8210befd30efa5aL, 1837},
|
|
{0x8714a775e3e95c78L, 1841}, {0xa8d9d1535ce3b396L, 1844},
|
|
{0xd31045a8341ca07cL, 1847}, {0x83ea2b892091e44dL, 1851},
|
|
{0xa4e4b66b68b65d60L, 1854}, {0xce1de40642e3f4b9L, 1857},
|
|
{0x80d2ae83e9ce78f3L, 1861}, {0xa1075a24e4421730L, 1864},
|
|
{0xc94930ae1d529cfcL, 1867}, {0xfb9b7cd9a4a7443cL, 1870},
|
|
{0x9d412e0806e88aa5L, 1874}, {0xc491798a08a2ad4eL, 1877},
|
|
{0xf5b5d7ec8acb58a2L, 1880}, {0x9991a6f3d6bf1765L, 1884},
|
|
{0xbff610b0cc6edd3fL, 1887}, {0xeff394dcff8a948eL, 1890},
|
|
{0x95f83d0a1fb69cd9L, 1894}, {0xbb764c4ca7a4440fL, 1897},
|
|
{0xea53df5fd18d5513L, 1900}, {0x92746b9be2f8552cL, 1904},
|
|
{0xb7118682dbb66a77L, 1907}, {0xe4d5e82392a40515L, 1910},
|
|
{0x8f05b1163ba6832dL, 1914}, {0xb2c71d5bca9023f8L, 1917},
|
|
{0xdf78e4b2bd342cf6L, 1920}, {0x8bab8eefb6409c1aL, 1924},
|
|
{0xae9672aba3d0c320L, 1927}, {0xda3c0f568cc4f3e8L, 1930},
|
|
{0x8865899617fb1871L, 1934}, {0xaa7eebfb9df9de8dL, 1937},
|
|
{0xd51ea6fa85785631L, 1940}, {0x8533285c936b35deL, 1944},
|
|
{0xa67ff273b8460356L, 1947}, {0xd01fef10a657842cL, 1950},
|
|
{0x8213f56a67f6b29bL, 1954}, {0xa298f2c501f45f42L, 1957},
|
|
{0xcb3f2f7642717713L, 1960}, {0xfe0efb53d30dd4d7L, 1963},
|
|
{0x9ec95d1463e8a506L, 1967}, {0xc67bb4597ce2ce48L, 1970},
|
|
{0xf81aa16fdc1b81daL, 1973}, {0x9b10a4e5e9913128L, 1977},
|
|
{0xc1d4ce1f63f57d72L, 1980}, {0xf24a01a73cf2dccfL, 1983},
|
|
{0x976e41088617ca01L, 1987}, {0xbd49d14aa79dbc82L, 1990},
|
|
{0xec9c459d51852ba2L, 1993}, {0x93e1ab8252f33b45L, 1997},
|
|
{0xb8da1662e7b00a17L, 2000}, {0xe7109bfba19c0c9dL, 2003},
|
|
{0x906a617d450187e2L, 2007}, {0xb484f9dc9641e9daL, 2010},
|
|
{0xe1a63853bbd26451L, 2013}, {0x8d07e33455637eb2L, 2017},
|
|
{0xb049dc016abc5e5fL, 2020}, {0xdc5c5301c56b75f7L, 2023},
|
|
{0x89b9b3e11b6329baL, 2027}, {0xac2820d9623bf429L, 2030},
|
|
{0xd732290fbacaf133L, 2033}, {0x867f59a9d4bed6c0L, 2037},
|
|
{0xa81f301449ee8c70L, 2040}, {0xd226fc195c6a2f8cL, 2043},
|
|
{0x83585d8fd9c25db7L, 2047}, {0xa42e74f3d032f525L, 2050},
|
|
{0xcd3a1230c43fb26fL, 2053}, {0x80444b5e7aa7cf85L, 2057},
|
|
{0xa0555e361951c366L, 2060}, {0xc86ab5c39fa63440L, 2063},
|
|
{0xfa856334878fc150L, 2066}, {0x9c935e00d4b9d8d2L, 2070},
|
|
{0xc3b8358109e84f07L, 2073}, {0xf4a642e14c6262c8L, 2076},
|
|
{0x98e7e9cccfbd7dbdL, 2080}, {0xbf21e44003acdd2cL, 2083},
|
|
{0xeeea5d5004981478L, 2086}, {0x95527a5202df0ccbL, 2090},
|
|
{0xbaa718e68396cffdL, 2093}, {0xe950df20247c83fdL, 2096},
|
|
{0x91d28b7416cdd27eL, 2100}, {0xb6472e511c81471dL, 2103},
|
|
{0xe3d8f9e563a198e5L, 2106}, {0x8e679c2f5e44ff8fL, 2110}};
|
|
|
|
// A complement from power_of_ten_components
|
|
// complete to a 128-bit mantissa.
|
|
const uint64_t mantissa_128[] = {
|
|
0x419ea3bd35385e2d,
|
|
0x52064cac828675b9,
|
|
0x7343efebd1940993,
|
|
0x1014ebe6c5f90bf8,
|
|
0xd41a26e077774ef6,
|
|
0x8920b098955522b4,
|
|
0x55b46e5f5d5535b0,
|
|
0xeb2189f734aa831d,
|
|
0xa5e9ec7501d523e4,
|
|
0x47b233c92125366e,
|
|
0x999ec0bb696e840a,
|
|
0xc00670ea43ca250d,
|
|
0x380406926a5e5728,
|
|
0xc605083704f5ecf2,
|
|
0xf7864a44c633682e,
|
|
0x7ab3ee6afbe0211d,
|
|
0x5960ea05bad82964,
|
|
0x6fb92487298e33bd,
|
|
0xa5d3b6d479f8e056,
|
|
0x8f48a4899877186c,
|
|
0x331acdabfe94de87,
|
|
0x9ff0c08b7f1d0b14,
|
|
0x7ecf0ae5ee44dd9,
|
|
0xc9e82cd9f69d6150,
|
|
0xbe311c083a225cd2,
|
|
0x6dbd630a48aaf406,
|
|
0x92cbbccdad5b108,
|
|
0x25bbf56008c58ea5,
|
|
0xaf2af2b80af6f24e,
|
|
0x1af5af660db4aee1,
|
|
0x50d98d9fc890ed4d,
|
|
0xe50ff107bab528a0,
|
|
0x1e53ed49a96272c8,
|
|
0x25e8e89c13bb0f7a,
|
|
0x77b191618c54e9ac,
|
|
0xd59df5b9ef6a2417,
|
|
0x4b0573286b44ad1d,
|
|
0x4ee367f9430aec32,
|
|
0x229c41f793cda73f,
|
|
0x6b43527578c1110f,
|
|
0x830a13896b78aaa9,
|
|
0x23cc986bc656d553,
|
|
0x2cbfbe86b7ec8aa8,
|
|
0x7bf7d71432f3d6a9,
|
|
0xdaf5ccd93fb0cc53,
|
|
0xd1b3400f8f9cff68,
|
|
0x23100809b9c21fa1,
|
|
0xabd40a0c2832a78a,
|
|
0x16c90c8f323f516c,
|
|
0xae3da7d97f6792e3,
|
|
0x99cd11cfdf41779c,
|
|
0x40405643d711d583,
|
|
0x482835ea666b2572,
|
|
0xda3243650005eecf,
|
|
0x90bed43e40076a82,
|
|
0x5a7744a6e804a291,
|
|
0x711515d0a205cb36,
|
|
0xd5a5b44ca873e03,
|
|
0xe858790afe9486c2,
|
|
0x626e974dbe39a872,
|
|
0xfb0a3d212dc8128f,
|
|
0x7ce66634bc9d0b99,
|
|
0x1c1fffc1ebc44e80,
|
|
0xa327ffb266b56220,
|
|
0x4bf1ff9f0062baa8,
|
|
0x6f773fc3603db4a9,
|
|
0xcb550fb4384d21d3,
|
|
0x7e2a53a146606a48,
|
|
0x2eda7444cbfc426d,
|
|
0xfa911155fefb5308,
|
|
0x793555ab7eba27ca,
|
|
0x4bc1558b2f3458de,
|
|
0x9eb1aaedfb016f16,
|
|
0x465e15a979c1cadc,
|
|
0xbfacd89ec191ec9,
|
|
0xcef980ec671f667b,
|
|
0x82b7e12780e7401a,
|
|
0xd1b2ecb8b0908810,
|
|
0x861fa7e6dcb4aa15,
|
|
0x67a791e093e1d49a,
|
|
0xe0c8bb2c5c6d24e0,
|
|
0x58fae9f773886e18,
|
|
0xaf39a475506a899e,
|
|
0x6d8406c952429603,
|
|
0xc8e5087ba6d33b83,
|
|
0xfb1e4a9a90880a64,
|
|
0x5cf2eea09a55067f,
|
|
0xf42faa48c0ea481e,
|
|
0xf13b94daf124da26,
|
|
0x76c53d08d6b70858,
|
|
0x54768c4b0c64ca6e,
|
|
0xa9942f5dcf7dfd09,
|
|
0xd3f93b35435d7c4c,
|
|
0xc47bc5014a1a6daf,
|
|
0x359ab6419ca1091b,
|
|
0xc30163d203c94b62,
|
|
0x79e0de63425dcf1d,
|
|
0x985915fc12f542e4,
|
|
0x3e6f5b7b17b2939d,
|
|
0xa705992ceecf9c42,
|
|
0x50c6ff782a838353,
|
|
0xa4f8bf5635246428,
|
|
0x871b7795e136be99,
|
|
0x28e2557b59846e3f,
|
|
0x331aeada2fe589cf,
|
|
0x3ff0d2c85def7621,
|
|
0xfed077a756b53a9,
|
|
0xd3e8495912c62894,
|
|
0x64712dd7abbbd95c,
|
|
0xbd8d794d96aacfb3,
|
|
0xecf0d7a0fc5583a0,
|
|
0xf41686c49db57244,
|
|
0x311c2875c522ced5,
|
|
0x7d633293366b828b,
|
|
0xae5dff9c02033197,
|
|
0xd9f57f830283fdfc,
|
|
0xd072df63c324fd7b,
|
|
0x4247cb9e59f71e6d,
|
|
0x52d9be85f074e608,
|
|
0x67902e276c921f8b,
|
|
0xba1cd8a3db53b6,
|
|
0x80e8a40eccd228a4,
|
|
0x6122cd128006b2cd,
|
|
0x796b805720085f81,
|
|
0xcbe3303674053bb0,
|
|
0xbedbfc4411068a9c,
|
|
0xee92fb5515482d44,
|
|
0x751bdd152d4d1c4a,
|
|
0xd262d45a78a0635d,
|
|
0x86fb897116c87c34,
|
|
0xd45d35e6ae3d4da0,
|
|
0x8974836059cca109,
|
|
0x2bd1a438703fc94b,
|
|
0x7b6306a34627ddcf,
|
|
0x1a3bc84c17b1d542,
|
|
0x20caba5f1d9e4a93,
|
|
0x547eb47b7282ee9c,
|
|
0xe99e619a4f23aa43,
|
|
0x6405fa00e2ec94d4,
|
|
0xde83bc408dd3dd04,
|
|
0x9624ab50b148d445,
|
|
0x3badd624dd9b0957,
|
|
0xe54ca5d70a80e5d6,
|
|
0x5e9fcf4ccd211f4c,
|
|
0x7647c3200069671f,
|
|
0x29ecd9f40041e073,
|
|
0xf468107100525890,
|
|
0x7182148d4066eeb4,
|
|
0xc6f14cd848405530,
|
|
0xb8ada00e5a506a7c,
|
|
0xa6d90811f0e4851c,
|
|
0x908f4a166d1da663,
|
|
0x9a598e4e043287fe,
|
|
0x40eff1e1853f29fd,
|
|
0xd12bee59e68ef47c,
|
|
0x82bb74f8301958ce,
|
|
0xe36a52363c1faf01,
|
|
0xdc44e6c3cb279ac1,
|
|
0x29ab103a5ef8c0b9,
|
|
0x7415d448f6b6f0e7,
|
|
0x111b495b3464ad21,
|
|
0xcab10dd900beec34,
|
|
0x3d5d514f40eea742,
|
|
0xcb4a5a3112a5112,
|
|
0x47f0e785eaba72ab,
|
|
0x59ed216765690f56,
|
|
0x306869c13ec3532c,
|
|
0x1e414218c73a13fb,
|
|
0xe5d1929ef90898fa,
|
|
0xdf45f746b74abf39,
|
|
0x6b8bba8c328eb783,
|
|
0x66ea92f3f326564,
|
|
0xc80a537b0efefebd,
|
|
0xbd06742ce95f5f36,
|
|
0x2c48113823b73704,
|
|
0xf75a15862ca504c5,
|
|
0x9a984d73dbe722fb,
|
|
0xc13e60d0d2e0ebba,
|
|
0x318df905079926a8,
|
|
0xfdf17746497f7052,
|
|
0xfeb6ea8bedefa633,
|
|
0xfe64a52ee96b8fc0,
|
|
0x3dfdce7aa3c673b0,
|
|
0x6bea10ca65c084e,
|
|
0x486e494fcff30a62,
|
|
0x5a89dba3c3efccfa,
|
|
0xf89629465a75e01c,
|
|
0xf6bbb397f1135823,
|
|
0x746aa07ded582e2c,
|
|
0xa8c2a44eb4571cdc,
|
|
0x92f34d62616ce413,
|
|
0x77b020baf9c81d17,
|
|
0xace1474dc1d122e,
|
|
0xd819992132456ba,
|
|
0x10e1fff697ed6c69,
|
|
0xca8d3ffa1ef463c1,
|
|
0xbd308ff8a6b17cb2,
|
|
0xac7cb3f6d05ddbde,
|
|
0x6bcdf07a423aa96b,
|
|
0x86c16c98d2c953c6,
|
|
0xe871c7bf077ba8b7,
|
|
0x11471cd764ad4972,
|
|
0xd598e40d3dd89bcf,
|
|
0x4aff1d108d4ec2c3,
|
|
0xcedf722a585139ba,
|
|
0xc2974eb4ee658828,
|
|
0x733d226229feea32,
|
|
0x806357d5a3f525f,
|
|
0xca07c2dcb0cf26f7,
|
|
0xfc89b393dd02f0b5,
|
|
0xbbac2078d443ace2,
|
|
0xd54b944b84aa4c0d,
|
|
0xa9e795e65d4df11,
|
|
0x4d4617b5ff4a16d5,
|
|
0x504bced1bf8e4e45,
|
|
0xe45ec2862f71e1d6,
|
|
0x5d767327bb4e5a4c,
|
|
0x3a6a07f8d510f86f,
|
|
0x890489f70a55368b,
|
|
0x2b45ac74ccea842e,
|
|
0x3b0b8bc90012929d,
|
|
0x9ce6ebb40173744,
|
|
0xcc420a6a101d0515,
|
|
0x9fa946824a12232d,
|
|
0x47939822dc96abf9,
|
|
0x59787e2b93bc56f7,
|
|
0x57eb4edb3c55b65a,
|
|
0xede622920b6b23f1,
|
|
0xe95fab368e45eced,
|
|
0x11dbcb0218ebb414,
|
|
0xd652bdc29f26a119,
|
|
0x4be76d3346f0495f,
|
|
0x6f70a4400c562ddb,
|
|
0xcb4ccd500f6bb952,
|
|
0x7e2000a41346a7a7,
|
|
0x8ed400668c0c28c8,
|
|
0x728900802f0f32fa,
|
|
0x4f2b40a03ad2ffb9,
|
|
0xe2f610c84987bfa8,
|
|
0xdd9ca7d2df4d7c9,
|
|
0x91503d1c79720dbb,
|
|
0x75a44c6397ce912a,
|
|
0xc986afbe3ee11aba,
|
|
0xfbe85badce996168,
|
|
0xfae27299423fb9c3,
|
|
0xdccd879fc967d41a,
|
|
0x5400e987bbc1c920,
|
|
0x290123e9aab23b68,
|
|
0xf9a0b6720aaf6521,
|
|
0xf808e40e8d5b3e69,
|
|
0xb60b1d1230b20e04,
|
|
0xb1c6f22b5e6f48c2,
|
|
0x1e38aeb6360b1af3,
|
|
0x25c6da63c38de1b0,
|
|
0x579c487e5a38ad0e,
|
|
0x2d835a9df0c6d851,
|
|
0xf8e431456cf88e65,
|
|
0x1b8e9ecb641b58ff,
|
|
0xe272467e3d222f3f,
|
|
0x5b0ed81dcc6abb0f,
|
|
0x98e947129fc2b4e9,
|
|
0x3f2398d747b36224,
|
|
0x8eec7f0d19a03aad,
|
|
0x1953cf68300424ac,
|
|
0x5fa8c3423c052dd7,
|
|
0x3792f412cb06794d,
|
|
0xe2bbd88bbee40bd0,
|
|
0x5b6aceaeae9d0ec4,
|
|
0xf245825a5a445275,
|
|
0xeed6e2f0f0d56712,
|
|
0x55464dd69685606b,
|
|
0xaa97e14c3c26b886,
|
|
0xd53dd99f4b3066a8,
|
|
0xe546a8038efe4029,
|
|
0xde98520472bdd033,
|
|
0x963e66858f6d4440,
|
|
0xdde7001379a44aa8,
|
|
0x5560c018580d5d52,
|
|
0xaab8f01e6e10b4a6,
|
|
0xcab3961304ca70e8,
|
|
0x3d607b97c5fd0d22,
|
|
0x8cb89a7db77c506a,
|
|
0x77f3608e92adb242,
|
|
0x55f038b237591ed3,
|
|
0x6b6c46dec52f6688,
|
|
0x2323ac4b3b3da015,
|
|
0xabec975e0a0d081a,
|
|
0x96e7bd358c904a21,
|
|
0x7e50d64177da2e54,
|
|
0xdde50bd1d5d0b9e9,
|
|
0x955e4ec64b44e864,
|
|
0xbd5af13bef0b113e,
|
|
0xecb1ad8aeacdd58e,
|
|
0x67de18eda5814af2,
|
|
0x80eacf948770ced7,
|
|
0xa1258379a94d028d,
|
|
0x96ee45813a04330,
|
|
0x8bca9d6e188853fc,
|
|
0x775ea264cf55347d,
|
|
0x95364afe032a819d,
|
|
0x3a83ddbd83f52204,
|
|
0xc4926a9672793542,
|
|
0x75b7053c0f178293,
|
|
0x5324c68b12dd6338,
|
|
0xd3f6fc16ebca5e03,
|
|
0x88f4bb1ca6bcf584,
|
|
0x2b31e9e3d06c32e5,
|
|
0x3aff322e62439fcf,
|
|
0x9befeb9fad487c2,
|
|
0x4c2ebe687989a9b3,
|
|
0xf9d37014bf60a10,
|
|
0x538484c19ef38c94,
|
|
0x2865a5f206b06fb9,
|
|
0xf93f87b7442e45d3,
|
|
0xf78f69a51539d748,
|
|
0xb573440e5a884d1b,
|
|
0x31680a88f8953030,
|
|
0xfdc20d2b36ba7c3d,
|
|
0x3d32907604691b4c,
|
|
0xa63f9a49c2c1b10f,
|
|
0xfcf80dc33721d53,
|
|
0xd3c36113404ea4a8,
|
|
0x645a1cac083126e9,
|
|
0x3d70a3d70a3d70a3,
|
|
0xcccccccccccccccc,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x0,
|
|
0x4000000000000000,
|
|
0x5000000000000000,
|
|
0xa400000000000000,
|
|
0x4d00000000000000,
|
|
0xf020000000000000,
|
|
0x6c28000000000000,
|
|
0xc732000000000000,
|
|
0x3c7f400000000000,
|
|
0x4b9f100000000000,
|
|
0x1e86d40000000000,
|
|
0x1314448000000000,
|
|
0x17d955a000000000,
|
|
0x5dcfab0800000000,
|
|
0x5aa1cae500000000,
|
|
0xf14a3d9e40000000,
|
|
0x6d9ccd05d0000000,
|
|
0xe4820023a2000000,
|
|
0xdda2802c8a800000,
|
|
0xd50b2037ad200000,
|
|
0x4526f422cc340000,
|
|
0x9670b12b7f410000,
|
|
0x3c0cdd765f114000,
|
|
0xa5880a69fb6ac800,
|
|
0x8eea0d047a457a00,
|
|
0x72a4904598d6d880,
|
|
0x47a6da2b7f864750,
|
|
0x999090b65f67d924,
|
|
0xfff4b4e3f741cf6d,
|
|
0xbff8f10e7a8921a4,
|
|
0xaff72d52192b6a0d,
|
|
0x9bf4f8a69f764490,
|
|
0x2f236d04753d5b4,
|
|
0x1d762422c946590,
|
|
0x424d3ad2b7b97ef5,
|
|
0xd2e0898765a7deb2,
|
|
0x63cc55f49f88eb2f,
|
|
0x3cbf6b71c76b25fb,
|
|
0x8bef464e3945ef7a,
|
|
0x97758bf0e3cbb5ac,
|
|
0x3d52eeed1cbea317,
|
|
0x4ca7aaa863ee4bdd,
|
|
0x8fe8caa93e74ef6a,
|
|
0xb3e2fd538e122b44,
|
|
0x60dbbca87196b616,
|
|
0xbc8955e946fe31cd,
|
|
0x6babab6398bdbe41,
|
|
0xc696963c7eed2dd1,
|
|
0xfc1e1de5cf543ca2,
|
|
0x3b25a55f43294bcb,
|
|
0x49ef0eb713f39ebe,
|
|
0x6e3569326c784337,
|
|
0x49c2c37f07965404,
|
|
0xdc33745ec97be906,
|
|
0x69a028bb3ded71a3,
|
|
0xc40832ea0d68ce0c,
|
|
0xf50a3fa490c30190,
|
|
0x792667c6da79e0fa,
|
|
0x577001b891185938,
|
|
0xed4c0226b55e6f86,
|
|
0x544f8158315b05b4,
|
|
0x696361ae3db1c721,
|
|
0x3bc3a19cd1e38e9,
|
|
0x4ab48a04065c723,
|
|
0x62eb0d64283f9c76,
|
|
0x3ba5d0bd324f8394,
|
|
0xca8f44ec7ee36479,
|
|
0x7e998b13cf4e1ecb,
|
|
0x9e3fedd8c321a67e,
|
|
0xc5cfe94ef3ea101e,
|
|
0xbba1f1d158724a12,
|
|
0x2a8a6e45ae8edc97,
|
|
0xf52d09d71a3293bd,
|
|
0x593c2626705f9c56,
|
|
0x6f8b2fb00c77836c,
|
|
0xb6dfb9c0f956447,
|
|
0x4724bd4189bd5eac,
|
|
0x58edec91ec2cb657,
|
|
0x2f2967b66737e3ed,
|
|
0xbd79e0d20082ee74,
|
|
0xecd8590680a3aa11,
|
|
0xe80e6f4820cc9495,
|
|
0x3109058d147fdcdd,
|
|
0xbd4b46f0599fd415,
|
|
0x6c9e18ac7007c91a,
|
|
0x3e2cf6bc604ddb0,
|
|
0x84db8346b786151c,
|
|
0xe612641865679a63,
|
|
0x4fcb7e8f3f60c07e,
|
|
0xe3be5e330f38f09d,
|
|
0x5cadf5bfd3072cc5,
|
|
0x73d9732fc7c8f7f6,
|
|
0x2867e7fddcdd9afa,
|
|
0xb281e1fd541501b8,
|
|
0x1f225a7ca91a4226,
|
|
0x3375788de9b06958,
|
|
0x52d6b1641c83ae,
|
|
0xc0678c5dbd23a49a,
|
|
0xf840b7ba963646e0,
|
|
0xb650e5a93bc3d898,
|
|
0xa3e51f138ab4cebe,
|
|
0xc66f336c36b10137,
|
|
0xb80b0047445d4184,
|
|
0xa60dc059157491e5,
|
|
0x87c89837ad68db2f,
|
|
0x29babe4598c311fb,
|
|
0xf4296dd6fef3d67a,
|
|
0x1899e4a65f58660c,
|
|
0x5ec05dcff72e7f8f,
|
|
0x76707543f4fa1f73,
|
|
0x6a06494a791c53a8,
|
|
0x487db9d17636892,
|
|
0x45a9d2845d3c42b6,
|
|
0xb8a2392ba45a9b2,
|
|
0x8e6cac7768d7141e,
|
|
0x3207d795430cd926,
|
|
0x7f44e6bd49e807b8,
|
|
0x5f16206c9c6209a6,
|
|
0x36dba887c37a8c0f,
|
|
0xc2494954da2c9789,
|
|
0xf2db9baa10b7bd6c,
|
|
0x6f92829494e5acc7,
|
|
0xcb772339ba1f17f9,
|
|
0xff2a760414536efb,
|
|
0xfef5138519684aba,
|
|
0x7eb258665fc25d69,
|
|
0xef2f773ffbd97a61,
|
|
0xaafb550ffacfd8fa,
|
|
0x95ba2a53f983cf38,
|
|
0xdd945a747bf26183,
|
|
0x94f971119aeef9e4,
|
|
0x7a37cd5601aab85d,
|
|
0xac62e055c10ab33a,
|
|
0x577b986b314d6009,
|
|
0xed5a7e85fda0b80b,
|
|
0x14588f13be847307,
|
|
0x596eb2d8ae258fc8,
|
|
0x6fca5f8ed9aef3bb,
|
|
0x25de7bb9480d5854,
|
|
0xaf561aa79a10ae6a,
|
|
0x1b2ba1518094da04,
|
|
0x90fb44d2f05d0842,
|
|
0x353a1607ac744a53,
|
|
0x42889b8997915ce8,
|
|
0x69956135febada11,
|
|
0x43fab9837e699095,
|
|
0x94f967e45e03f4bb,
|
|
0x1d1be0eebac278f5,
|
|
0x6462d92a69731732,
|
|
0x7d7b8f7503cfdcfe,
|
|
0x5cda735244c3d43e,
|
|
0x3a0888136afa64a7,
|
|
0x88aaa1845b8fdd0,
|
|
0x8aad549e57273d45,
|
|
0x36ac54e2f678864b,
|
|
0x84576a1bb416a7dd,
|
|
0x656d44a2a11c51d5,
|
|
0x9f644ae5a4b1b325,
|
|
0x873d5d9f0dde1fee,
|
|
0xa90cb506d155a7ea,
|
|
0x9a7f12442d588f2,
|
|
0xc11ed6d538aeb2f,
|
|
0x8f1668c8a86da5fa,
|
|
0xf96e017d694487bc,
|
|
0x37c981dcc395a9ac,
|
|
0x85bbe253f47b1417,
|
|
0x93956d7478ccec8e,
|
|
0x387ac8d1970027b2,
|
|
0x6997b05fcc0319e,
|
|
0x441fece3bdf81f03,
|
|
0xd527e81cad7626c3,
|
|
0x8a71e223d8d3b074,
|
|
0xf6872d5667844e49,
|
|
0xb428f8ac016561db,
|
|
0xe13336d701beba52,
|
|
0xecc0024661173473,
|
|
0x27f002d7f95d0190,
|
|
0x31ec038df7b441f4,
|
|
0x7e67047175a15271,
|
|
0xf0062c6e984d386,
|
|
0x52c07b78a3e60868,
|
|
0xa7709a56ccdf8a82,
|
|
0x88a66076400bb691,
|
|
0x6acff893d00ea435,
|
|
0x583f6b8c4124d43,
|
|
0xc3727a337a8b704a,
|
|
0x744f18c0592e4c5c,
|
|
0x1162def06f79df73,
|
|
0x8addcb5645ac2ba8,
|
|
0x6d953e2bd7173692,
|
|
0xc8fa8db6ccdd0437,
|
|
0x1d9c9892400a22a2,
|
|
0x2503beb6d00cab4b,
|
|
0x2e44ae64840fd61d,
|
|
0x5ceaecfed289e5d2,
|
|
0x7425a83e872c5f47,
|
|
0xd12f124e28f77719,
|
|
0x82bd6b70d99aaa6f,
|
|
0x636cc64d1001550b,
|
|
0x3c47f7e05401aa4e,
|
|
0x65acfaec34810a71,
|
|
0x7f1839a741a14d0d,
|
|
0x1ede48111209a050,
|
|
0x934aed0aab460432,
|
|
0xf81da84d5617853f,
|
|
0x36251260ab9d668e,
|
|
0xc1d72b7c6b426019,
|
|
0xb24cf65b8612f81f,
|
|
0xdee033f26797b627,
|
|
0x169840ef017da3b1,
|
|
0x8e1f289560ee864e,
|
|
0xf1a6f2bab92a27e2,
|
|
0xae10af696774b1db,
|
|
0xacca6da1e0a8ef29,
|
|
0x17fd090a58d32af3,
|
|
0xddfc4b4cef07f5b0,
|
|
0x4abdaf101564f98e,
|
|
0x9d6d1ad41abe37f1,
|
|
0x84c86189216dc5ed,
|
|
0x32fd3cf5b4e49bb4,
|
|
0x3fbc8c33221dc2a1,
|
|
0xfabaf3feaa5334a,
|
|
0x29cb4d87f2a7400e,
|
|
0x743e20e9ef511012,
|
|
0x914da9246b255416,
|
|
0x1ad089b6c2f7548e,
|
|
0xa184ac2473b529b1,
|
|
0xc9e5d72d90a2741e,
|
|
0x7e2fa67c7a658892,
|
|
0xddbb901b98feeab7,
|
|
0x552a74227f3ea565,
|
|
0xd53a88958f87275f,
|
|
0x8a892abaf368f137,
|
|
0x2d2b7569b0432d85,
|
|
0x9c3b29620e29fc73,
|
|
0x8349f3ba91b47b8f,
|
|
0x241c70a936219a73,
|
|
0xed238cd383aa0110,
|
|
0xf4363804324a40aa,
|
|
0xb143c6053edcd0d5,
|
|
0xdd94b7868e94050a,
|
|
0xca7cf2b4191c8326,
|
|
0xfd1c2f611f63a3f0,
|
|
0xbc633b39673c8cec,
|
|
0xd5be0503e085d813,
|
|
0x4b2d8644d8a74e18,
|
|
0xddf8e7d60ed1219e,
|
|
0xcabb90e5c942b503,
|
|
0x3d6a751f3b936243,
|
|
0xcc512670a783ad4,
|
|
0x27fb2b80668b24c5,
|
|
0xb1f9f660802dedf6,
|
|
0x5e7873f8a0396973,
|
|
0xdb0b487b6423e1e8,
|
|
0x91ce1a9a3d2cda62,
|
|
0x7641a140cc7810fb,
|
|
0xa9e904c87fcb0a9d,
|
|
0x546345fa9fbdcd44,
|
|
0xa97c177947ad4095,
|
|
0x49ed8eabcccc485d,
|
|
0x5c68f256bfff5a74,
|
|
0x73832eec6fff3111,
|
|
0xc831fd53c5ff7eab,
|
|
0xba3e7ca8b77f5e55,
|
|
0x28ce1bd2e55f35eb,
|
|
0x7980d163cf5b81b3,
|
|
0xd7e105bcc332621f,
|
|
0x8dd9472bf3fefaa7,
|
|
0xb14f98f6f0feb951,
|
|
0x6ed1bf9a569f33d3,
|
|
0xa862f80ec4700c8,
|
|
0xcd27bb612758c0fa,
|
|
0x8038d51cb897789c,
|
|
0xe0470a63e6bd56c3,
|
|
0x1858ccfce06cac74,
|
|
0xf37801e0c43ebc8,
|
|
0xd30560258f54e6ba,
|
|
0x47c6b82ef32a2069,
|
|
0x4cdc331d57fa5441,
|
|
0xe0133fe4adf8e952,
|
|
0x58180fddd97723a6,
|
|
0x570f09eaa7ea7648,
|
|
};
|
|
|
|
} // namespace simdjson
|
|
|
|
#endif // SIMDJSON_JSONCHARUTILS_H
|
|
/* end file src/jsoncharutils.h */
|
|
/* simdprune_tables.h already included: #include "simdprune_tables.h" */
|
|
|
|
#if SIMDJSON_IMPLEMENTATION_ARM64
|
|
/* begin file src/arm64/implementation.cpp */
|
|
/* arm64/implementation.h already included: #include "arm64/implementation.h" */
|
|
/* begin file src/arm64/dom_parser_implementation.h */
|
|
#ifndef SIMDJSON_ARM64_DOM_PARSER_IMPLEMENTATION_H
|
|
#define SIMDJSON_ARM64_DOM_PARSER_IMPLEMENTATION_H
|
|
|
|
/* isadetection.h already included: #include "isadetection.h" */
|
|
|
|
namespace simdjson {
|
|
namespace arm64 {
|
|
|
|
/* begin file src/generic/dom_parser_implementation.h */
|
|
// expectation: sizeof(scope_descriptor) = 64/8.
|
|
struct scope_descriptor {
|
|
uint32_t tape_index; // where, on the tape, does the scope ([,{) begins
|
|
uint32_t count; // how many elements in the scope
|
|
}; // struct scope_descriptor
|
|
|
|
#ifdef SIMDJSON_USE_COMPUTED_GOTO
|
|
typedef void* ret_address_t;
|
|
#else
|
|
typedef char ret_address_t;
|
|
#endif
|
|
|
|
class dom_parser_implementation final : public internal::dom_parser_implementation {
|
|
public:
|
|
/** Tape location of each open { or [ */
|
|
std::unique_ptr<scope_descriptor[]> containing_scope{};
|
|
/** Return address of each open { or [ */
|
|
std::unique_ptr<ret_address_t[]> ret_address{};
|
|
/** Buffer passed to stage 1 */
|
|
const uint8_t *buf{};
|
|
/** Length passed to stage 1 */
|
|
size_t len{0};
|
|
/** Document passed to stage 2 */
|
|
dom::document *doc{};
|
|
/** Error code (TODO remove, this is not even used, we just set it so the g++ optimizer doesn't get confused) */
|
|
error_code error{UNINITIALIZED};
|
|
|
|
really_inline dom_parser_implementation();
|
|
dom_parser_implementation(const dom_parser_implementation &) = delete;
|
|
dom_parser_implementation & operator=(const dom_parser_implementation &) = delete;
|
|
|
|
WARN_UNUSED error_code parse(const uint8_t *buf, size_t len, dom::document &doc) noexcept final;
|
|
WARN_UNUSED error_code stage1(const uint8_t *buf, size_t len, bool partial) noexcept final;
|
|
WARN_UNUSED error_code check_for_unclosed_array() noexcept;
|
|
WARN_UNUSED error_code stage2(dom::document &doc) noexcept final;
|
|
WARN_UNUSED error_code stage2_next(dom::document &doc) noexcept final;
|
|
WARN_UNUSED error_code set_capacity(size_t capacity) noexcept final;
|
|
WARN_UNUSED error_code set_max_depth(size_t max_depth) noexcept final;
|
|
};
|
|
|
|
/* begin file src/generic/stage1/allocate.h */
|
|
namespace stage1 {
|
|
namespace allocate {
|
|
|
|
//
|
|
// Allocates stage 1 internal state and outputs in the parser
|
|
//
|
|
really_inline error_code set_capacity(internal::dom_parser_implementation &parser, size_t capacity) {
|
|
size_t max_structures = ROUNDUP_N(capacity, 64) + 2 + 7;
|
|
parser.structural_indexes.reset( new (std::nothrow) uint32_t[max_structures] );
|
|
if (!parser.structural_indexes) { return MEMALLOC; }
|
|
parser.structural_indexes[0] = 0;
|
|
parser.n_structural_indexes = 0;
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace allocate
|
|
} // namespace stage1
|
|
/* end file src/generic/stage1/allocate.h */
|
|
/* begin file src/generic/stage2/allocate.h */
|
|
namespace stage2 {
|
|
namespace allocate {
|
|
|
|
//
|
|
// Allocates stage 2 internal state and outputs in the parser
|
|
//
|
|
really_inline error_code set_max_depth(dom_parser_implementation &parser, size_t max_depth) {
|
|
parser.containing_scope.reset(new (std::nothrow) scope_descriptor[max_depth]);
|
|
parser.ret_address.reset(new (std::nothrow) ret_address_t[max_depth]);
|
|
|
|
if (!parser.ret_address || !parser.containing_scope) {
|
|
return MEMALLOC;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace allocate
|
|
} // namespace stage2
|
|
/* end file src/generic/stage2/allocate.h */
|
|
|
|
really_inline dom_parser_implementation::dom_parser_implementation() {}
|
|
|
|
// Leaving these here so they can be inlined if so desired
|
|
WARN_UNUSED error_code dom_parser_implementation::set_capacity(size_t capacity) noexcept {
|
|
error_code err = stage1::allocate::set_capacity(*this, capacity);
|
|
if (err) { _capacity = 0; return err; }
|
|
_capacity = capacity;
|
|
return SUCCESS;
|
|
}
|
|
|
|
WARN_UNUSED error_code dom_parser_implementation::set_max_depth(size_t max_depth) noexcept {
|
|
error_code err = stage2::allocate::set_max_depth(*this, max_depth);
|
|
if (err) { _max_depth = 0; return err; }
|
|
_max_depth = max_depth;
|
|
return SUCCESS;
|
|
}
|
|
/* end file src/generic/stage2/allocate.h */
|
|
|
|
} // namespace arm64
|
|
} // namespace simdjson
|
|
|
|
#endif // SIMDJSON_ARM64_DOM_PARSER_IMPLEMENTATION_H
|
|
/* end file src/generic/stage2/allocate.h */
|
|
|
|
TARGET_HASWELL
|
|
|
|
namespace simdjson {
|
|
namespace arm64 {
|
|
|
|
WARN_UNUSED error_code implementation::create_dom_parser_implementation(
|
|
size_t capacity,
|
|
size_t max_depth,
|
|
std::unique_ptr<internal::dom_parser_implementation>& dst
|
|
) const noexcept {
|
|
dst.reset( new (std::nothrow) dom_parser_implementation() );
|
|
if (!dst) { return MEMALLOC; }
|
|
dst->set_capacity(capacity);
|
|
dst->set_max_depth(max_depth);
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace arm64
|
|
} // namespace simdjson
|
|
|
|
UNTARGET_REGION
|
|
/* end file src/generic/stage2/allocate.h */
|
|
/* begin file src/arm64/dom_parser_implementation.cpp */
|
|
/* arm64/implementation.h already included: #include "arm64/implementation.h" */
|
|
/* arm64/dom_parser_implementation.h already included: #include "arm64/dom_parser_implementation.h" */
|
|
|
|
//
|
|
// Stage 1
|
|
//
|
|
/* begin file src/arm64/bitmask.h */
|
|
#ifndef SIMDJSON_ARM64_BITMASK_H
|
|
#define SIMDJSON_ARM64_BITMASK_H
|
|
|
|
|
|
/* begin file src/arm64/intrinsics.h */
|
|
#ifndef SIMDJSON_ARM64_INTRINSICS_H
|
|
#define SIMDJSON_ARM64_INTRINSICS_H
|
|
|
|
|
|
// This should be the correct header whether
|
|
// you use visual studio or other compilers.
|
|
#include <arm_neon.h>
|
|
|
|
#endif // SIMDJSON_ARM64_INTRINSICS_H
|
|
/* end file src/arm64/intrinsics.h */
|
|
|
|
namespace simdjson {
|
|
namespace arm64 {
|
|
|
|
//
|
|
// Perform a "cumulative bitwise xor," flipping bits each time a 1 is encountered.
|
|
//
|
|
// For example, prefix_xor(00100100) == 00011100
|
|
//
|
|
really_inline uint64_t prefix_xor(uint64_t bitmask) {
|
|
/////////////
|
|
// We could do this with PMULL, but it is apparently slow.
|
|
//
|
|
//#ifdef __ARM_FEATURE_CRYPTO // some ARM processors lack this extension
|
|
//return vmull_p64(-1ULL, bitmask);
|
|
//#else
|
|
// Analysis by @sebpop:
|
|
// When diffing the assembly for src/stage1_find_marks.cpp I see that the eors are all spread out
|
|
// in between other vector code, so effectively the extra cycles of the sequence do not matter
|
|
// because the GPR units are idle otherwise and the critical path is on the FP side.
|
|
// Also the PMULL requires two extra fmovs: GPR->FP (3 cycles in N1, 5 cycles in A72 )
|
|
// and FP->GPR (2 cycles on N1 and 5 cycles on A72.)
|
|
///////////
|
|
bitmask ^= bitmask << 1;
|
|
bitmask ^= bitmask << 2;
|
|
bitmask ^= bitmask << 4;
|
|
bitmask ^= bitmask << 8;
|
|
bitmask ^= bitmask << 16;
|
|
bitmask ^= bitmask << 32;
|
|
return bitmask;
|
|
}
|
|
|
|
} // namespace arm64
|
|
} // namespace simdjson
|
|
UNTARGET_REGION
|
|
|
|
#endif
|
|
/* end file src/arm64/intrinsics.h */
|
|
/* begin file src/arm64/simd.h */
|
|
#ifndef SIMDJSON_ARM64_SIMD_H
|
|
#define SIMDJSON_ARM64_SIMD_H
|
|
|
|
/* simdprune_tables.h already included: #include "simdprune_tables.h" */
|
|
/* begin file src/arm64/bitmanipulation.h */
|
|
#ifndef SIMDJSON_ARM64_BITMANIPULATION_H
|
|
#define SIMDJSON_ARM64_BITMANIPULATION_H
|
|
|
|
/* arm64/intrinsics.h already included: #include "arm64/intrinsics.h" */
|
|
|
|
namespace simdjson {
|
|
namespace arm64 {
|
|
|
|
// We sometimes call trailing_zero on inputs that are zero,
|
|
// but the algorithms do not end up using the returned value.
|
|
// Sadly, sanitizers are not smart enough to figure it out.
|
|
NO_SANITIZE_UNDEFINED
|
|
really_inline int trailing_zeroes(uint64_t input_num) {
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
unsigned long ret;
|
|
// Search the mask data from least significant bit (LSB)
|
|
// to the most significant bit (MSB) for a set bit (1).
|
|
_BitScanForward64(&ret, input_num);
|
|
return (int)ret;
|
|
#else // SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
return __builtin_ctzll(input_num);
|
|
#endif // SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
}
|
|
|
|
/* result might be undefined when input_num is zero */
|
|
really_inline uint64_t clear_lowest_bit(uint64_t input_num) {
|
|
return input_num & (input_num-1);
|
|
}
|
|
|
|
/* result might be undefined when input_num is zero */
|
|
really_inline int leading_zeroes(uint64_t input_num) {
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
unsigned long leading_zero = 0;
|
|
// Search the mask data from most significant bit (MSB)
|
|
// to least significant bit (LSB) for a set bit (1).
|
|
if (_BitScanReverse64(&leading_zero, input_num))
|
|
return (int)(63 - leading_zero);
|
|
else
|
|
return 64;
|
|
#else
|
|
return __builtin_clzll(input_num);
|
|
#endif// SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
}
|
|
|
|
/* result might be undefined when input_num is zero */
|
|
really_inline int count_ones(uint64_t input_num) {
|
|
return vaddv_u8(vcnt_u8(vcreate_u8(input_num)));
|
|
}
|
|
|
|
really_inline bool add_overflow(uint64_t value1, uint64_t value2, uint64_t *result) {
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
*result = value1 + value2;
|
|
return *result < value1;
|
|
#else
|
|
return __builtin_uaddll_overflow(value1, value2,
|
|
(unsigned long long *)result);
|
|
#endif
|
|
}
|
|
|
|
really_inline bool mul_overflow(uint64_t value1, uint64_t value2, uint64_t *result) {
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
*result = value1 * value2;
|
|
return !!__umulh(value1, value2);
|
|
#else
|
|
return __builtin_umulll_overflow(value1, value2, (unsigned long long *)result);
|
|
#endif
|
|
}
|
|
|
|
} // namespace arm64
|
|
} // namespace simdjson
|
|
|
|
#endif // SIMDJSON_ARM64_BITMANIPULATION_H
|
|
/* end file src/arm64/bitmanipulation.h */
|
|
/* arm64/intrinsics.h already included: #include "arm64/intrinsics.h" */
|
|
#include <type_traits>
|
|
|
|
|
|
namespace simdjson {
|
|
namespace arm64 {
|
|
namespace simd {
|
|
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
namespace {
|
|
// Start of private section with Visual Studio workaround
|
|
|
|
|
|
/**
|
|
* make_uint8x16_t initializes a SIMD register (uint8x16_t).
|
|
* This is needed because, incredibly, the syntax uint8x16_t x = {1,2,3...}
|
|
* is not recognized under Visual Studio! This is a workaround.
|
|
* Using a std::initializer_list<uint8_t> as a parameter resulted in
|
|
* inefficient code. With the current approach, if the parameters are
|
|
* compile-time constants,
|
|
* GNU GCC compiles it to ldr, the same as uint8x16_t x = {1,2,3...}.
|
|
* You should not use this function except for compile-time constants:
|
|
* it is not efficient.
|
|
*/
|
|
really_inline uint8x16_t make_uint8x16_t(uint8_t x1, uint8_t x2, uint8_t x3, uint8_t x4,
|
|
uint8_t x5, uint8_t x6, uint8_t x7, uint8_t x8,
|
|
uint8_t x9, uint8_t x10, uint8_t x11, uint8_t x12,
|
|
uint8_t x13, uint8_t x14, uint8_t x15, uint8_t x16) {
|
|
// Doing a load like so end ups generating worse code.
|
|
// uint8_t array[16] = {x1, x2, x3, x4, x5, x6, x7, x8,
|
|
// x9, x10,x11,x12,x13,x14,x15,x16};
|
|
// return vld1q_u8(array);
|
|
uint8x16_t x{};
|
|
// incredibly, Visual Studio does not allow x[0] = x1
|
|
x = vsetq_lane_u8(x1, x, 0);
|
|
x = vsetq_lane_u8(x2, x, 1);
|
|
x = vsetq_lane_u8(x3, x, 2);
|
|
x = vsetq_lane_u8(x4, x, 3);
|
|
x = vsetq_lane_u8(x5, x, 4);
|
|
x = vsetq_lane_u8(x6, x, 5);
|
|
x = vsetq_lane_u8(x7, x, 6);
|
|
x = vsetq_lane_u8(x8, x, 7);
|
|
x = vsetq_lane_u8(x9, x, 8);
|
|
x = vsetq_lane_u8(x10, x, 9);
|
|
x = vsetq_lane_u8(x11, x, 10);
|
|
x = vsetq_lane_u8(x12, x, 11);
|
|
x = vsetq_lane_u8(x13, x, 12);
|
|
x = vsetq_lane_u8(x14, x, 13);
|
|
x = vsetq_lane_u8(x15, x, 14);
|
|
x = vsetq_lane_u8(x16, x, 15);
|
|
return x;
|
|
}
|
|
|
|
|
|
// We have to do the same work for make_int8x16_t
|
|
really_inline int8x16_t make_int8x16_t(int8_t x1, int8_t x2, int8_t x3, int8_t x4,
|
|
int8_t x5, int8_t x6, int8_t x7, int8_t x8,
|
|
int8_t x9, int8_t x10, int8_t x11, int8_t x12,
|
|
int8_t x13, int8_t x14, int8_t x15, int8_t x16) {
|
|
// Doing a load like so end ups generating worse code.
|
|
// int8_t array[16] = {x1, x2, x3, x4, x5, x6, x7, x8,
|
|
// x9, x10,x11,x12,x13,x14,x15,x16};
|
|
// return vld1q_s8(array);
|
|
int8x16_t x{};
|
|
// incredibly, Visual Studio does not allow x[0] = x1
|
|
x = vsetq_lane_s8(x1, x, 0);
|
|
x = vsetq_lane_s8(x2, x, 1);
|
|
x = vsetq_lane_s8(x3, x, 2);
|
|
x = vsetq_lane_s8(x4, x, 3);
|
|
x = vsetq_lane_s8(x5, x, 4);
|
|
x = vsetq_lane_s8(x6, x, 5);
|
|
x = vsetq_lane_s8(x7, x, 6);
|
|
x = vsetq_lane_s8(x8, x, 7);
|
|
x = vsetq_lane_s8(x9, x, 8);
|
|
x = vsetq_lane_s8(x10, x, 9);
|
|
x = vsetq_lane_s8(x11, x, 10);
|
|
x = vsetq_lane_s8(x12, x, 11);
|
|
x = vsetq_lane_s8(x13, x, 12);
|
|
x = vsetq_lane_s8(x14, x, 13);
|
|
x = vsetq_lane_s8(x15, x, 14);
|
|
x = vsetq_lane_s8(x16, x, 15);
|
|
return x;
|
|
}
|
|
|
|
// End of private section with Visual Studio workaround
|
|
} // namespace
|
|
#endif // SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
|
|
|
|
template<typename T>
|
|
struct simd8;
|
|
|
|
//
|
|
// Base class of simd8<uint8_t> and simd8<bool>, both of which use uint8x16_t internally.
|
|
//
|
|
template<typename T, typename Mask=simd8<bool>>
|
|
struct base_u8 {
|
|
uint8x16_t value;
|
|
static const int SIZE = sizeof(value);
|
|
|
|
// Conversion from/to SIMD register
|
|
really_inline base_u8(const uint8x16_t _value) : value(_value) {}
|
|
really_inline operator const uint8x16_t&() const { return this->value; }
|
|
really_inline operator uint8x16_t&() { return this->value; }
|
|
|
|
// Bit operations
|
|
really_inline simd8<T> operator|(const simd8<T> other) const { return vorrq_u8(*this, other); }
|
|
really_inline simd8<T> operator&(const simd8<T> other) const { return vandq_u8(*this, other); }
|
|
really_inline simd8<T> operator^(const simd8<T> other) const { return veorq_u8(*this, other); }
|
|
really_inline simd8<T> bit_andnot(const simd8<T> other) const { return vbicq_u8(*this, other); }
|
|
really_inline simd8<T> operator~() const { return *this ^ 0xFFu; }
|
|
really_inline simd8<T>& operator|=(const simd8<T> other) { auto this_cast = (simd8<T>*)this; *this_cast = *this_cast | other; return *this_cast; }
|
|
really_inline simd8<T>& operator&=(const simd8<T> other) { auto this_cast = (simd8<T>*)this; *this_cast = *this_cast & other; return *this_cast; }
|
|
really_inline simd8<T>& operator^=(const simd8<T> other) { auto this_cast = (simd8<T>*)this; *this_cast = *this_cast ^ other; return *this_cast; }
|
|
|
|
really_inline Mask operator==(const simd8<T> other) const { return vceqq_u8(*this, other); }
|
|
|
|
template<int N=1>
|
|
really_inline simd8<T> prev(const simd8<T> prev_chunk) const {
|
|
return vextq_u8(prev_chunk, *this, 16 - N);
|
|
}
|
|
};
|
|
|
|
// SIMD byte mask type (returned by things like eq and gt)
|
|
template<>
|
|
struct simd8<bool>: base_u8<bool> {
|
|
typedef uint16_t bitmask_t;
|
|
typedef uint32_t bitmask2_t;
|
|
|
|
static really_inline simd8<bool> splat(bool _value) { return vmovq_n_u8(uint8_t(-(!!_value))); }
|
|
|
|
really_inline simd8(const uint8x16_t _value) : base_u8<bool>(_value) {}
|
|
// False constructor
|
|
really_inline simd8() : simd8(vdupq_n_u8(0)) {}
|
|
// Splat constructor
|
|
really_inline simd8(bool _value) : simd8(splat(_value)) {}
|
|
|
|
// We return uint32_t instead of uint16_t because that seems to be more efficient for most
|
|
// purposes (cutting it down to uint16_t costs performance in some compilers).
|
|
really_inline uint32_t to_bitmask() const {
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
const uint8x16_t bit_mask = make_uint8x16_t(0x01, 0x02, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80,
|
|
0x01, 0x02, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80);
|
|
#else
|
|
const uint8x16_t bit_mask = {0x01, 0x02, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80,
|
|
0x01, 0x02, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80};
|
|
#endif
|
|
auto minput = *this & bit_mask;
|
|
uint8x16_t tmp = vpaddq_u8(minput, minput);
|
|
tmp = vpaddq_u8(tmp, tmp);
|
|
tmp = vpaddq_u8(tmp, tmp);
|
|
return vgetq_lane_u16(vreinterpretq_u16_u8(tmp), 0);
|
|
}
|
|
really_inline bool any() const { return vmaxvq_u8(*this) != 0; }
|
|
};
|
|
|
|
// Unsigned bytes
|
|
template<>
|
|
struct simd8<uint8_t>: base_u8<uint8_t> {
|
|
static really_inline uint8x16_t splat(uint8_t _value) { return vmovq_n_u8(_value); }
|
|
static really_inline uint8x16_t zero() { return vdupq_n_u8(0); }
|
|
static really_inline uint8x16_t load(const uint8_t* values) { return vld1q_u8(values); }
|
|
|
|
really_inline simd8(const uint8x16_t _value) : base_u8<uint8_t>(_value) {}
|
|
// Zero constructor
|
|
really_inline simd8() : simd8(zero()) {}
|
|
// Array constructor
|
|
really_inline simd8(const uint8_t values[16]) : simd8(load(values)) {}
|
|
// Splat constructor
|
|
really_inline simd8(uint8_t _value) : simd8(splat(_value)) {}
|
|
// Member-by-member initialization
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
really_inline simd8(
|
|
uint8_t v0, uint8_t v1, uint8_t v2, uint8_t v3, uint8_t v4, uint8_t v5, uint8_t v6, uint8_t v7,
|
|
uint8_t v8, uint8_t v9, uint8_t v10, uint8_t v11, uint8_t v12, uint8_t v13, uint8_t v14, uint8_t v15
|
|
) : simd8(make_uint8x16_t(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
)) {}
|
|
#else
|
|
really_inline simd8(
|
|
uint8_t v0, uint8_t v1, uint8_t v2, uint8_t v3, uint8_t v4, uint8_t v5, uint8_t v6, uint8_t v7,
|
|
uint8_t v8, uint8_t v9, uint8_t v10, uint8_t v11, uint8_t v12, uint8_t v13, uint8_t v14, uint8_t v15
|
|
) : simd8(uint8x16_t{
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
}) {}
|
|
#endif
|
|
|
|
// Repeat 16 values as many times as necessary (usually for lookup tables)
|
|
really_inline static simd8<uint8_t> repeat_16(
|
|
uint8_t v0, uint8_t v1, uint8_t v2, uint8_t v3, uint8_t v4, uint8_t v5, uint8_t v6, uint8_t v7,
|
|
uint8_t v8, uint8_t v9, uint8_t v10, uint8_t v11, uint8_t v12, uint8_t v13, uint8_t v14, uint8_t v15
|
|
) {
|
|
return simd8<uint8_t>(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
);
|
|
}
|
|
|
|
// Store to array
|
|
really_inline void store(uint8_t dst[16]) const { return vst1q_u8(dst, *this); }
|
|
|
|
// Saturated math
|
|
really_inline simd8<uint8_t> saturating_add(const simd8<uint8_t> other) const { return vqaddq_u8(*this, other); }
|
|
really_inline simd8<uint8_t> saturating_sub(const simd8<uint8_t> other) const { return vqsubq_u8(*this, other); }
|
|
|
|
// Addition/subtraction are the same for signed and unsigned
|
|
really_inline simd8<uint8_t> operator+(const simd8<uint8_t> other) const { return vaddq_u8(*this, other); }
|
|
really_inline simd8<uint8_t> operator-(const simd8<uint8_t> other) const { return vsubq_u8(*this, other); }
|
|
really_inline simd8<uint8_t>& operator+=(const simd8<uint8_t> other) { *this = *this + other; return *this; }
|
|
really_inline simd8<uint8_t>& operator-=(const simd8<uint8_t> other) { *this = *this - other; return *this; }
|
|
|
|
// Order-specific operations
|
|
really_inline uint8_t max() const { return vmaxvq_u8(*this); }
|
|
really_inline uint8_t min() const { return vminvq_u8(*this); }
|
|
really_inline simd8<uint8_t> max(const simd8<uint8_t> other) const { return vmaxq_u8(*this, other); }
|
|
really_inline simd8<uint8_t> min(const simd8<uint8_t> other) const { return vminq_u8(*this, other); }
|
|
really_inline simd8<bool> operator<=(const simd8<uint8_t> other) const { return vcleq_u8(*this, other); }
|
|
really_inline simd8<bool> operator>=(const simd8<uint8_t> other) const { return vcgeq_u8(*this, other); }
|
|
really_inline simd8<bool> operator<(const simd8<uint8_t> other) const { return vcltq_u8(*this, other); }
|
|
really_inline simd8<bool> operator>(const simd8<uint8_t> other) const { return vcgtq_u8(*this, other); }
|
|
// Same as >, but instead of guaranteeing all 1's == true, false = 0 and true = nonzero. For ARM, returns all 1's.
|
|
really_inline simd8<uint8_t> gt_bits(const simd8<uint8_t> other) const { return simd8<uint8_t>(*this > other); }
|
|
// Same as <, but instead of guaranteeing all 1's == true, false = 0 and true = nonzero. For ARM, returns all 1's.
|
|
really_inline simd8<uint8_t> lt_bits(const simd8<uint8_t> other) const { return simd8<uint8_t>(*this < other); }
|
|
|
|
// Bit-specific operations
|
|
really_inline simd8<bool> any_bits_set(simd8<uint8_t> bits) const { return vtstq_u8(*this, bits); }
|
|
really_inline bool any_bits_set_anywhere() const { return this->max() != 0; }
|
|
really_inline bool any_bits_set_anywhere(simd8<uint8_t> bits) const { return (*this & bits).any_bits_set_anywhere(); }
|
|
template<int N>
|
|
really_inline simd8<uint8_t> shr() const { return vshrq_n_u8(*this, N); }
|
|
template<int N>
|
|
really_inline simd8<uint8_t> shl() const { return vshlq_n_u8(*this, N); }
|
|
|
|
// Perform a lookup assuming the value is between 0 and 16 (undefined behavior for out of range values)
|
|
template<typename L>
|
|
really_inline simd8<L> lookup_16(simd8<L> lookup_table) const {
|
|
return lookup_table.apply_lookup_16_to(*this);
|
|
}
|
|
|
|
|
|
// Copies to 'output" all bytes corresponding to a 0 in the mask (interpreted as a bitset).
|
|
// Passing a 0 value for mask would be equivalent to writing out every byte to output.
|
|
// Only the first 16 - count_ones(mask) bytes of the result are significant but 16 bytes
|
|
// get written.
|
|
// Design consideration: it seems like a function with the
|
|
// signature simd8<L> compress(uint16_t mask) would be
|
|
// sensible, but the AVX ISA makes this kind of approach difficult.
|
|
template<typename L>
|
|
really_inline void compress(uint16_t mask, L * output) const {
|
|
// this particular implementation was inspired by work done by @animetosho
|
|
// we do it in two steps, first 8 bytes and then second 8 bytes
|
|
uint8_t mask1 = uint8_t(mask); // least significant 8 bits
|
|
uint8_t mask2 = uint8_t(mask >> 8); // most significant 8 bits
|
|
// next line just loads the 64-bit values thintable_epi8[mask1] and
|
|
// thintable_epi8[mask2] into a 128-bit register, using only
|
|
// two instructions on most compilers.
|
|
uint64x2_t shufmask64 = {thintable_epi8[mask1], thintable_epi8[mask2]};
|
|
uint8x16_t shufmask = vreinterpretq_u8_u64(shufmask64);
|
|
// we increment by 0x08 the second half of the mask
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
uint8x16_t inc = make_uint8x16_t(0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08);
|
|
#else
|
|
uint8x16_t inc = {0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08};
|
|
#endif
|
|
shufmask = vaddq_u8(shufmask, inc);
|
|
// this is the version "nearly pruned"
|
|
uint8x16_t pruned = vqtbl1q_u8(*this, shufmask);
|
|
// we still need to put the two halves together.
|
|
// we compute the popcount of the first half:
|
|
int pop1 = BitsSetTable256mul2[mask1];
|
|
// then load the corresponding mask, what it does is to write
|
|
// only the first pop1 bytes from the first 8 bytes, and then
|
|
// it fills in with the bytes from the second 8 bytes + some filling
|
|
// at the end.
|
|
uint8x16_t compactmask = vld1q_u8((const uint8_t *)(pshufb_combine_table + pop1 * 8));
|
|
uint8x16_t answer = vqtbl1q_u8(pruned, compactmask);
|
|
vst1q_u8((uint8_t*) output, answer);
|
|
}
|
|
|
|
template<typename L>
|
|
really_inline simd8<L> lookup_16(
|
|
L replace0, L replace1, L replace2, L replace3,
|
|
L replace4, L replace5, L replace6, L replace7,
|
|
L replace8, L replace9, L replace10, L replace11,
|
|
L replace12, L replace13, L replace14, L replace15) const {
|
|
return lookup_16(simd8<L>::repeat_16(
|
|
replace0, replace1, replace2, replace3,
|
|
replace4, replace5, replace6, replace7,
|
|
replace8, replace9, replace10, replace11,
|
|
replace12, replace13, replace14, replace15
|
|
));
|
|
}
|
|
|
|
template<typename T>
|
|
really_inline simd8<uint8_t> apply_lookup_16_to(const simd8<T> original) {
|
|
return vqtbl1q_u8(*this, simd8<uint8_t>(original));
|
|
}
|
|
};
|
|
|
|
// Signed bytes
|
|
template<>
|
|
struct simd8<int8_t> {
|
|
int8x16_t value;
|
|
|
|
static really_inline simd8<int8_t> splat(int8_t _value) { return vmovq_n_s8(_value); }
|
|
static really_inline simd8<int8_t> zero() { return vdupq_n_s8(0); }
|
|
static really_inline simd8<int8_t> load(const int8_t values[16]) { return vld1q_s8(values); }
|
|
|
|
// Conversion from/to SIMD register
|
|
really_inline simd8(const int8x16_t _value) : value{_value} {}
|
|
really_inline operator const int8x16_t&() const { return this->value; }
|
|
really_inline operator int8x16_t&() { return this->value; }
|
|
|
|
// Zero constructor
|
|
really_inline simd8() : simd8(zero()) {}
|
|
// Splat constructor
|
|
really_inline simd8(int8_t _value) : simd8(splat(_value)) {}
|
|
// Array constructor
|
|
really_inline simd8(const int8_t* values) : simd8(load(values)) {}
|
|
// Member-by-member initialization
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
really_inline simd8(
|
|
int8_t v0, int8_t v1, int8_t v2, int8_t v3, int8_t v4, int8_t v5, int8_t v6, int8_t v7,
|
|
int8_t v8, int8_t v9, int8_t v10, int8_t v11, int8_t v12, int8_t v13, int8_t v14, int8_t v15
|
|
) : simd8(make_int8x16_t(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
)) {}
|
|
#else
|
|
really_inline simd8(
|
|
int8_t v0, int8_t v1, int8_t v2, int8_t v3, int8_t v4, int8_t v5, int8_t v6, int8_t v7,
|
|
int8_t v8, int8_t v9, int8_t v10, int8_t v11, int8_t v12, int8_t v13, int8_t v14, int8_t v15
|
|
) : simd8(int8x16_t{
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
}) {}
|
|
#endif
|
|
// Repeat 16 values as many times as necessary (usually for lookup tables)
|
|
really_inline static simd8<int8_t> repeat_16(
|
|
int8_t v0, int8_t v1, int8_t v2, int8_t v3, int8_t v4, int8_t v5, int8_t v6, int8_t v7,
|
|
int8_t v8, int8_t v9, int8_t v10, int8_t v11, int8_t v12, int8_t v13, int8_t v14, int8_t v15
|
|
) {
|
|
return simd8<int8_t>(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
);
|
|
}
|
|
|
|
// Store to array
|
|
really_inline void store(int8_t dst[16]) const { return vst1q_s8(dst, *this); }
|
|
|
|
// Explicit conversion to/from unsigned
|
|
//
|
|
// Under Visual Studio/ARM64 uint8x16_t and int8x16_t are apparently the same type.
|
|
// In theory, we could check this occurence with std::same_as and std::enabled_if but it is C++14
|
|
// and relatively ugly and hard to read.
|
|
#ifndef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
really_inline explicit simd8(const uint8x16_t other): simd8(vreinterpretq_s8_u8(other)) {}
|
|
#endif
|
|
really_inline explicit operator simd8<uint8_t>() const { return vreinterpretq_u8_s8(this->value); }
|
|
|
|
// Math
|
|
really_inline simd8<int8_t> operator+(const simd8<int8_t> other) const { return vaddq_s8(*this, other); }
|
|
really_inline simd8<int8_t> operator-(const simd8<int8_t> other) const { return vsubq_s8(*this, other); }
|
|
really_inline simd8<int8_t>& operator+=(const simd8<int8_t> other) { *this = *this + other; return *this; }
|
|
really_inline simd8<int8_t>& operator-=(const simd8<int8_t> other) { *this = *this - other; return *this; }
|
|
|
|
// Order-sensitive comparisons
|
|
really_inline simd8<int8_t> max(const simd8<int8_t> other) const { return vmaxq_s8(*this, other); }
|
|
really_inline simd8<int8_t> min(const simd8<int8_t> other) const { return vminq_s8(*this, other); }
|
|
really_inline simd8<bool> operator>(const simd8<int8_t> other) const { return vcgtq_s8(*this, other); }
|
|
really_inline simd8<bool> operator<(const simd8<int8_t> other) const { return vcltq_s8(*this, other); }
|
|
really_inline simd8<bool> operator==(const simd8<int8_t> other) const { return vceqq_s8(*this, other); }
|
|
|
|
template<int N=1>
|
|
really_inline simd8<int8_t> prev(const simd8<int8_t> prev_chunk) const {
|
|
return vextq_s8(prev_chunk, *this, 16 - N);
|
|
}
|
|
|
|
// Perform a lookup assuming no value is larger than 16
|
|
template<typename L>
|
|
really_inline simd8<L> lookup_16(simd8<L> lookup_table) const {
|
|
return lookup_table.apply_lookup_16_to(*this);
|
|
}
|
|
template<typename L>
|
|
really_inline simd8<L> lookup_16(
|
|
L replace0, L replace1, L replace2, L replace3,
|
|
L replace4, L replace5, L replace6, L replace7,
|
|
L replace8, L replace9, L replace10, L replace11,
|
|
L replace12, L replace13, L replace14, L replace15) const {
|
|
return lookup_16(simd8<L>::repeat_16(
|
|
replace0, replace1, replace2, replace3,
|
|
replace4, replace5, replace6, replace7,
|
|
replace8, replace9, replace10, replace11,
|
|
replace12, replace13, replace14, replace15
|
|
));
|
|
}
|
|
|
|
template<typename T>
|
|
really_inline simd8<int8_t> apply_lookup_16_to(const simd8<T> original) {
|
|
return vqtbl1q_s8(*this, simd8<uint8_t>(original));
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
struct simd8x64 {
|
|
static const int NUM_CHUNKS = 64 / sizeof(simd8<T>);
|
|
const simd8<T> chunks[NUM_CHUNKS];
|
|
|
|
really_inline simd8x64() : chunks{simd8<T>(), simd8<T>(), simd8<T>(), simd8<T>()} {}
|
|
really_inline simd8x64(const simd8<T> chunk0, const simd8<T> chunk1, const simd8<T> chunk2, const simd8<T> chunk3) : chunks{chunk0, chunk1, chunk2, chunk3} {}
|
|
really_inline simd8x64(const T ptr[64]) : chunks{simd8<T>::load(ptr), simd8<T>::load(ptr+16), simd8<T>::load(ptr+32), simd8<T>::load(ptr+48)} {}
|
|
|
|
really_inline void store(T ptr[64]) const {
|
|
this->chunks[0].store(ptr+sizeof(simd8<T>)*0);
|
|
this->chunks[1].store(ptr+sizeof(simd8<T>)*1);
|
|
this->chunks[2].store(ptr+sizeof(simd8<T>)*2);
|
|
this->chunks[3].store(ptr+sizeof(simd8<T>)*3);
|
|
}
|
|
|
|
really_inline void compress(uint64_t mask, T * output) const {
|
|
this->chunks[0].compress(uint16_t(mask), output);
|
|
this->chunks[1].compress(uint16_t(mask >> 16), output + 16 - count_ones(mask & 0xFFFF));
|
|
this->chunks[2].compress(uint16_t(mask >> 32), output + 32 - count_ones(mask & 0xFFFFFFFF));
|
|
this->chunks[3].compress(uint16_t(mask >> 48), output + 48 - count_ones(mask & 0xFFFFFFFFFFFF));
|
|
}
|
|
|
|
template <typename F>
|
|
static really_inline void each_index(F const& each) {
|
|
each(0);
|
|
each(1);
|
|
each(2);
|
|
each(3);
|
|
}
|
|
|
|
template <typename F>
|
|
really_inline void each(F const& each_chunk) const
|
|
{
|
|
each_chunk(this->chunks[0]);
|
|
each_chunk(this->chunks[1]);
|
|
each_chunk(this->chunks[2]);
|
|
each_chunk(this->chunks[3]);
|
|
}
|
|
|
|
template <typename R=bool, typename F>
|
|
really_inline simd8x64<R> map(F const& map_chunk) const {
|
|
return simd8x64<R>(
|
|
map_chunk(this->chunks[0]),
|
|
map_chunk(this->chunks[1]),
|
|
map_chunk(this->chunks[2]),
|
|
map_chunk(this->chunks[3])
|
|
);
|
|
}
|
|
|
|
template <typename R=bool, typename F>
|
|
really_inline simd8x64<R> map(const simd8x64<T> b, F const& map_chunk) const {
|
|
return simd8x64<R>(
|
|
map_chunk(this->chunks[0], b.chunks[0]),
|
|
map_chunk(this->chunks[1], b.chunks[1]),
|
|
map_chunk(this->chunks[2], b.chunks[2]),
|
|
map_chunk(this->chunks[3], b.chunks[3])
|
|
);
|
|
}
|
|
|
|
template <typename F>
|
|
really_inline simd8<T> reduce(F const& reduce_pair) const {
|
|
return reduce_pair(
|
|
reduce_pair(this->chunks[0], this->chunks[1]),
|
|
reduce_pair(this->chunks[2], this->chunks[3])
|
|
);
|
|
}
|
|
|
|
really_inline uint64_t to_bitmask() const {
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
const uint8x16_t bit_mask = make_uint8x16_t(
|
|
0x01, 0x02, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80,
|
|
0x01, 0x02, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80
|
|
);
|
|
#else
|
|
const uint8x16_t bit_mask = {
|
|
0x01, 0x02, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80,
|
|
0x01, 0x02, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80
|
|
};
|
|
#endif
|
|
// Add each of the elements next to each other, successively, to stuff each 8 byte mask into one.
|
|
uint8x16_t sum0 = vpaddq_u8(this->chunks[0] & bit_mask, this->chunks[1] & bit_mask);
|
|
uint8x16_t sum1 = vpaddq_u8(this->chunks[2] & bit_mask, this->chunks[3] & bit_mask);
|
|
sum0 = vpaddq_u8(sum0, sum1);
|
|
sum0 = vpaddq_u8(sum0, sum0);
|
|
return vgetq_lane_u64(vreinterpretq_u64_u8(sum0), 0);
|
|
}
|
|
|
|
really_inline simd8x64<T> bit_or(const T m) const {
|
|
const simd8<T> mask = simd8<T>::splat(m);
|
|
return this->map( [&](simd8<T> a) { return a | mask; } );
|
|
}
|
|
|
|
really_inline uint64_t eq(const T m) const {
|
|
const simd8<T> mask = simd8<T>::splat(m);
|
|
return this->map( [&](simd8<T> a) { return a == mask; } ).to_bitmask();
|
|
}
|
|
|
|
really_inline uint64_t lteq(const T m) const {
|
|
const simd8<T> mask = simd8<T>::splat(m);
|
|
return this->map( [&](simd8<T> a) { return a <= mask; } ).to_bitmask();
|
|
}
|
|
}; // struct simd8x64<T>
|
|
|
|
} // namespace simd
|
|
} // namespace arm64
|
|
} // namespace simdjson
|
|
|
|
#endif // SIMDJSON_ARM64_SIMD_H
|
|
/* end file src/arm64/bitmanipulation.h */
|
|
/* arm64/bitmanipulation.h already included: #include "arm64/bitmanipulation.h" */
|
|
|
|
namespace simdjson {
|
|
namespace arm64 {
|
|
|
|
using namespace simd;
|
|
|
|
struct json_character_block {
|
|
static really_inline json_character_block classify(const simd::simd8x64<uint8_t> in);
|
|
|
|
really_inline uint64_t whitespace() const { return _whitespace; }
|
|
really_inline uint64_t op() const { return _op; }
|
|
really_inline uint64_t scalar() { return ~(op() | whitespace()); }
|
|
|
|
uint64_t _whitespace;
|
|
uint64_t _op;
|
|
};
|
|
|
|
really_inline json_character_block json_character_block::classify(const simd::simd8x64<uint8_t> in) {
|
|
auto v = in.map<uint8_t>([&](simd8<uint8_t> chunk) {
|
|
auto nib_lo = chunk & 0xf;
|
|
auto nib_hi = chunk.shr<4>();
|
|
auto shuf_lo = nib_lo.lookup_16<uint8_t>(16, 0, 0, 0, 0, 0, 0, 0, 0, 8, 12, 1, 2, 9, 0, 0);
|
|
auto shuf_hi = nib_hi.lookup_16<uint8_t>(8, 0, 18, 4, 0, 1, 0, 1, 0, 0, 0, 3, 2, 1, 0, 0);
|
|
return shuf_lo & shuf_hi;
|
|
});
|
|
|
|
|
|
// We compute whitespace and op separately. If the code later only use one or the
|
|
// other, given the fact that all functions are aggressively inlined, we can
|
|
// hope that useless computations will be omitted. This is namely case when
|
|
// minifying (we only need whitespace). *However* if we only need spaces,
|
|
// it is likely that we will still compute 'v' above with two lookup_16: one
|
|
// could do it a bit cheaper. This is in contrast with the x64 implementations
|
|
// where we can, efficiently, do the white space and structural matching
|
|
// separately. One reason for this difference is that on ARM NEON, the table
|
|
// lookups either zero or leave unchanged the characters exceeding 0xF whereas
|
|
// on x64, the equivalent instruction (pshufb) automatically applies a mask,
|
|
// ignoring the 4 most significant bits. Thus the x64 implementation is
|
|
// optimized differently. This being said, if you use this code strictly
|
|
// just for minification (or just to identify the structural characters),
|
|
// there is a small untaken optimization opportunity here. We deliberately
|
|
// do not pick it up.
|
|
|
|
uint64_t op = v.map([&](simd8<uint8_t> _v) { return _v.any_bits_set(0x7); }).to_bitmask();
|
|
uint64_t whitespace = v.map([&](simd8<uint8_t> _v) { return _v.any_bits_set(0x18); }).to_bitmask();
|
|
return { whitespace, op };
|
|
}
|
|
|
|
really_inline bool is_ascii(simd8x64<uint8_t> input) {
|
|
simd8<uint8_t> bits = input.reduce([&](simd8<uint8_t> a,simd8<uint8_t> b) { return a|b; });
|
|
return bits.max() < 0b10000000u;
|
|
}
|
|
|
|
really_inline simd8<bool> must_be_continuation(simd8<uint8_t> prev1, simd8<uint8_t> prev2, simd8<uint8_t> prev3) {
|
|
simd8<bool> is_second_byte = prev1 >= uint8_t(0b11000000u);
|
|
simd8<bool> is_third_byte = prev2 >= uint8_t(0b11100000u);
|
|
simd8<bool> is_fourth_byte = prev3 >= uint8_t(0b11110000u);
|
|
// Use ^ instead of | for is_*_byte, because ^ is commutative, and the caller is using ^ as well.
|
|
// This will work fine because we only have to report errors for cases with 0-1 lead bytes.
|
|
// Multiple lead bytes implies 2 overlapping multibyte characters, and if that happens, there is
|
|
// guaranteed to be at least *one* lead byte that is part of only 1 other multibyte character.
|
|
// The error will be detected there.
|
|
return is_second_byte ^ is_third_byte ^ is_fourth_byte;
|
|
}
|
|
|
|
really_inline simd8<bool> must_be_2_3_continuation(simd8<uint8_t> prev2, simd8<uint8_t> prev3) {
|
|
simd8<bool> is_third_byte = prev2 >= uint8_t(0b11100000u);
|
|
simd8<bool> is_fourth_byte = prev3 >= uint8_t(0b11110000u);
|
|
return is_third_byte ^ is_fourth_byte;
|
|
}
|
|
|
|
/* begin file src/generic/stage1/buf_block_reader.h */
|
|
// Walks through a buffer in block-sized increments, loading the last part with spaces
|
|
template<size_t STEP_SIZE>
|
|
struct buf_block_reader {
|
|
public:
|
|
really_inline buf_block_reader(const uint8_t *_buf, size_t _len);
|
|
really_inline size_t block_index();
|
|
really_inline bool has_full_block() const;
|
|
really_inline const uint8_t *full_block() const;
|
|
/**
|
|
* Get the last block, padded with spaces.
|
|
*
|
|
* There will always be a last block, with at least 1 byte, unless len == 0 (in which case this
|
|
* function fills the buffer with spaces and returns 0. In particular, if len == STEP_SIZE there
|
|
* will be 0 full_blocks and 1 remainder block with STEP_SIZE bytes and no spaces for padding.
|
|
*
|
|
* @return the number of effective characters in the last block.
|
|
*/
|
|
really_inline size_t get_remainder(uint8_t *dst) const;
|
|
really_inline void advance();
|
|
private:
|
|
const uint8_t *buf;
|
|
const size_t len;
|
|
const size_t lenminusstep;
|
|
size_t idx;
|
|
};
|
|
|
|
constexpr const int TITLE_SIZE = 12;
|
|
|
|
// Routines to print masks and text for debugging bitmask operations
|
|
UNUSED static char * format_input_text_64(const uint8_t *text) {
|
|
static char *buf = (char*)malloc(sizeof(simd8x64<uint8_t>) + 1);
|
|
for (size_t i=0; i<sizeof(simd8x64<uint8_t>); i++) {
|
|
buf[i] = int8_t(text[i]) < ' ' ? '_' : int8_t(text[i]);
|
|
}
|
|
buf[sizeof(simd8x64<uint8_t>)] = '\0';
|
|
return buf;
|
|
}
|
|
|
|
// Routines to print masks and text for debugging bitmask operations
|
|
UNUSED static char * format_input_text(const simd8x64<uint8_t> in) {
|
|
static char *buf = (char*)malloc(sizeof(simd8x64<uint8_t>) + 1);
|
|
in.store((uint8_t*)buf);
|
|
for (size_t i=0; i<sizeof(simd8x64<uint8_t>); i++) {
|
|
if (buf[i] < ' ') { buf[i] = '_'; }
|
|
}
|
|
buf[sizeof(simd8x64<uint8_t>)] = '\0';
|
|
return buf;
|
|
}
|
|
|
|
UNUSED static char * format_mask(uint64_t mask) {
|
|
static char *buf = (char*)malloc(64 + 1);
|
|
for (size_t i=0; i<64; i++) {
|
|
buf[i] = (mask & (size_t(1) << i)) ? 'X' : ' ';
|
|
}
|
|
buf[64] = '\0';
|
|
return buf;
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
really_inline buf_block_reader<STEP_SIZE>::buf_block_reader(const uint8_t *_buf, size_t _len) : buf{_buf}, len{_len}, lenminusstep{len < STEP_SIZE ? 0 : len - STEP_SIZE}, idx{0} {}
|
|
|
|
template<size_t STEP_SIZE>
|
|
really_inline size_t buf_block_reader<STEP_SIZE>::block_index() { return idx; }
|
|
|
|
template<size_t STEP_SIZE>
|
|
really_inline bool buf_block_reader<STEP_SIZE>::has_full_block() const {
|
|
return idx < lenminusstep;
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
really_inline const uint8_t *buf_block_reader<STEP_SIZE>::full_block() const {
|
|
return &buf[idx];
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
really_inline size_t buf_block_reader<STEP_SIZE>::get_remainder(uint8_t *dst) const {
|
|
memset(dst, 0x20, STEP_SIZE); // memset STEP_SIZE because it's more efficient to write out 8 or 16 bytes at once.
|
|
memcpy(dst, buf + idx, len - idx);
|
|
return len - idx;
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
really_inline void buf_block_reader<STEP_SIZE>::advance() {
|
|
idx += STEP_SIZE;
|
|
}
|
|
/* end file src/generic/stage1/buf_block_reader.h */
|
|
/* begin file src/generic/stage1/json_string_scanner.h */
|
|
namespace stage1 {
|
|
|
|
struct json_string_block {
|
|
// Escaped characters (characters following an escape() character)
|
|
really_inline uint64_t escaped() const { return _escaped; }
|
|
// Escape characters (backslashes that are not escaped--i.e. in \\, includes only the first \)
|
|
really_inline uint64_t escape() const { return _backslash & ~_escaped; }
|
|
// Real (non-backslashed) quotes
|
|
really_inline uint64_t quote() const { return _quote; }
|
|
// Start quotes of strings
|
|
really_inline uint64_t string_end() const { return _quote & _in_string; }
|
|
// End quotes of strings
|
|
really_inline uint64_t string_start() const { return _quote & ~_in_string; }
|
|
// Only characters inside the string (not including the quotes)
|
|
really_inline uint64_t string_content() const { return _in_string & ~_quote; }
|
|
// Return a mask of whether the given characters are inside a string (only works on non-quotes)
|
|
really_inline uint64_t non_quote_inside_string(uint64_t mask) const { return mask & _in_string; }
|
|
// Return a mask of whether the given characters are inside a string (only works on non-quotes)
|
|
really_inline uint64_t non_quote_outside_string(uint64_t mask) const { return mask & ~_in_string; }
|
|
// Tail of string (everything except the start quote)
|
|
really_inline uint64_t string_tail() const { return _in_string ^ _quote; }
|
|
|
|
// backslash characters
|
|
uint64_t _backslash;
|
|
// escaped characters (backslashed--does not include the hex characters after \u)
|
|
uint64_t _escaped;
|
|
// real quotes (non-backslashed ones)
|
|
uint64_t _quote;
|
|
// string characters (includes start quote but not end quote)
|
|
uint64_t _in_string;
|
|
};
|
|
|
|
// Scans blocks for string characters, storing the state necessary to do so
|
|
class json_string_scanner {
|
|
public:
|
|
really_inline json_string_block next(const simd::simd8x64<uint8_t> in);
|
|
really_inline error_code finish(bool streaming);
|
|
|
|
private:
|
|
// Intended to be defined by the implementation
|
|
really_inline uint64_t find_escaped(uint64_t escape);
|
|
really_inline uint64_t find_escaped_branchless(uint64_t escape);
|
|
|
|
// Whether the last iteration was still inside a string (all 1's = true, all 0's = false).
|
|
uint64_t prev_in_string = 0ULL;
|
|
// Whether the first character of the next iteration is escaped.
|
|
uint64_t prev_escaped = 0ULL;
|
|
};
|
|
|
|
//
|
|
// Finds escaped characters (characters following \).
|
|
//
|
|
// Handles runs of backslashes like \\\" and \\\\" correctly (yielding 0101 and 01010, respectively).
|
|
//
|
|
// Does this by:
|
|
// - Shift the escape mask to get potentially escaped characters (characters after backslashes).
|
|
// - Mask escaped sequences that start on *even* bits with 1010101010 (odd bits are escaped, even bits are not)
|
|
// - Mask escaped sequences that start on *odd* bits with 0101010101 (even bits are escaped, odd bits are not)
|
|
//
|
|
// To distinguish between escaped sequences starting on even/odd bits, it finds the start of all
|
|
// escape sequences, filters out the ones that start on even bits, and adds that to the mask of
|
|
// escape sequences. This causes the addition to clear out the sequences starting on odd bits (since
|
|
// the start bit causes a carry), and leaves even-bit sequences alone.
|
|
//
|
|
// Example:
|
|
//
|
|
// text | \\\ | \\\"\\\" \\\" \\"\\" |
|
|
// escape | xxx | xx xxx xxx xx xx | Removed overflow backslash; will | it into follows_escape
|
|
// odd_starts | x | x x x | escape & ~even_bits & ~follows_escape
|
|
// even_seq | c| cxxx c xx c | c = carry bit -- will be masked out later
|
|
// invert_mask | | cxxx c xx c| even_seq << 1
|
|
// follows_escape | xx | x xx xxx xxx xx xx | Includes overflow bit
|
|
// escaped | x | x x x x x x x x |
|
|
// desired | x | x x x x x x x x |
|
|
// text | \\\ | \\\"\\\" \\\" \\"\\" |
|
|
//
|
|
really_inline uint64_t json_string_scanner::find_escaped_branchless(uint64_t backslash) {
|
|
// If there was overflow, pretend the first character isn't a backslash
|
|
backslash &= ~prev_escaped;
|
|
uint64_t follows_escape = backslash << 1 | prev_escaped;
|
|
|
|
// Get sequences starting on even bits by clearing out the odd series using +
|
|
const uint64_t even_bits = 0x5555555555555555ULL;
|
|
uint64_t odd_sequence_starts = backslash & ~even_bits & ~follows_escape;
|
|
uint64_t sequences_starting_on_even_bits;
|
|
prev_escaped = add_overflow(odd_sequence_starts, backslash, &sequences_starting_on_even_bits);
|
|
uint64_t invert_mask = sequences_starting_on_even_bits << 1; // The mask we want to return is the *escaped* bits, not escapes.
|
|
|
|
// Mask every other backslashed character as an escaped character
|
|
// Flip the mask for sequences that start on even bits, to correct them
|
|
return (even_bits ^ invert_mask) & follows_escape;
|
|
}
|
|
|
|
//
|
|
// Return a mask of all string characters plus end quotes.
|
|
//
|
|
// prev_escaped is overflow saying whether the next character is escaped.
|
|
// prev_in_string is overflow saying whether we're still in a string.
|
|
//
|
|
// Backslash sequences outside of quotes will be detected in stage 2.
|
|
//
|
|
really_inline json_string_block json_string_scanner::next(const simd::simd8x64<uint8_t> in) {
|
|
const uint64_t backslash = in.eq('\\');
|
|
const uint64_t escaped = find_escaped(backslash);
|
|
const uint64_t quote = in.eq('"') & ~escaped;
|
|
|
|
//
|
|
// prefix_xor flips on bits inside the string (and flips off the end quote).
|
|
//
|
|
// Then we xor with prev_in_string: if we were in a string already, its effect is flipped
|
|
// (characters inside strings are outside, and characters outside strings are inside).
|
|
//
|
|
const uint64_t in_string = prefix_xor(quote) ^ prev_in_string;
|
|
|
|
//
|
|
// Check if we're still in a string at the end of the box so the next block will know
|
|
//
|
|
// right shift of a signed value expected to be well-defined and standard
|
|
// compliant as of C++20, John Regher from Utah U. says this is fine code
|
|
//
|
|
prev_in_string = uint64_t(static_cast<int64_t>(in_string) >> 63);
|
|
|
|
// Use ^ to turn the beginning quote off, and the end quote on.
|
|
return {
|
|
backslash,
|
|
escaped,
|
|
quote,
|
|
in_string
|
|
};
|
|
}
|
|
|
|
really_inline error_code json_string_scanner::finish(bool streaming) {
|
|
if (prev_in_string and (not streaming)) {
|
|
return UNCLOSED_STRING;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace stage1
|
|
/* end file src/generic/stage1/json_string_scanner.h */
|
|
/* begin file src/generic/stage1/json_scanner.h */
|
|
namespace stage1 {
|
|
|
|
/**
|
|
* A block of scanned json, with information on operators and scalars.
|
|
*/
|
|
struct json_block {
|
|
public:
|
|
/** The start of structurals */
|
|
really_inline uint64_t structural_start() { return potential_structural_start() & ~_string.string_tail(); }
|
|
/** All JSON whitespace (i.e. not in a string) */
|
|
really_inline uint64_t whitespace() { return non_quote_outside_string(_characters.whitespace()); }
|
|
|
|
// Helpers
|
|
|
|
/** Whether the given characters are inside a string (only works on non-quotes) */
|
|
really_inline uint64_t non_quote_inside_string(uint64_t mask) { return _string.non_quote_inside_string(mask); }
|
|
/** Whether the given characters are outside a string (only works on non-quotes) */
|
|
really_inline uint64_t non_quote_outside_string(uint64_t mask) { return _string.non_quote_outside_string(mask); }
|
|
|
|
// string and escape characters
|
|
json_string_block _string;
|
|
// whitespace, operators, scalars
|
|
json_character_block _characters;
|
|
// whether the previous character was a scalar
|
|
uint64_t _follows_potential_scalar;
|
|
private:
|
|
// Potential structurals (i.e. disregarding strings)
|
|
|
|
/** operators plus scalar starts like 123, true and "abc" */
|
|
really_inline uint64_t potential_structural_start() { return _characters.op() | potential_scalar_start(); }
|
|
/** the start of non-operator runs, like 123, true and "abc" */
|
|
really_inline uint64_t potential_scalar_start() { return _characters.scalar() & ~follows_potential_scalar(); }
|
|
/** whether the given character is immediately after a non-operator like 123, true or " */
|
|
really_inline uint64_t follows_potential_scalar() { return _follows_potential_scalar; }
|
|
};
|
|
|
|
/**
|
|
* Scans JSON for important bits: operators, strings, and scalars.
|
|
*
|
|
* The scanner starts by calculating two distinct things:
|
|
* - string characters (taking \" into account)
|
|
* - operators ([]{},:) and scalars (runs of non-operators like 123, true and "abc")
|
|
*
|
|
* To minimize data dependency (a key component of the scanner's speed), it finds these in parallel:
|
|
* in particular, the operator/scalar bit will find plenty of things that are actually part of
|
|
* strings. When we're done, json_block will fuse the two together by masking out tokens that are
|
|
* part of a string.
|
|
*/
|
|
class json_scanner {
|
|
public:
|
|
json_scanner() {}
|
|
really_inline json_block next(const simd::simd8x64<uint8_t> in);
|
|
really_inline error_code finish(bool streaming);
|
|
|
|
private:
|
|
// Whether the last character of the previous iteration is part of a scalar token
|
|
// (anything except whitespace or an operator).
|
|
uint64_t prev_scalar = 0ULL;
|
|
json_string_scanner string_scanner{};
|
|
};
|
|
|
|
|
|
//
|
|
// Check if the current character immediately follows a matching character.
|
|
//
|
|
// For example, this checks for quotes with backslashes in front of them:
|
|
//
|
|
// const uint64_t backslashed_quote = in.eq('"') & immediately_follows(in.eq('\'), prev_backslash);
|
|
//
|
|
really_inline uint64_t follows(const uint64_t match, uint64_t &overflow) {
|
|
const uint64_t result = match << 1 | overflow;
|
|
overflow = match >> 63;
|
|
return result;
|
|
}
|
|
|
|
//
|
|
// Check if the current character follows a matching character, with possible "filler" between.
|
|
// For example, this checks for empty curly braces, e.g.
|
|
//
|
|
// in.eq('}') & follows(in.eq('['), in.eq(' '), prev_empty_array) // { <whitespace>* }
|
|
//
|
|
really_inline uint64_t follows(const uint64_t match, const uint64_t filler, uint64_t &overflow) {
|
|
uint64_t follows_match = follows(match, overflow);
|
|
uint64_t result;
|
|
overflow |= uint64_t(add_overflow(follows_match, filler, &result));
|
|
return result;
|
|
}
|
|
|
|
really_inline json_block json_scanner::next(const simd::simd8x64<uint8_t> in) {
|
|
json_string_block strings = string_scanner.next(in);
|
|
json_character_block characters = json_character_block::classify(in);
|
|
uint64_t follows_scalar = follows(characters.scalar(), prev_scalar);
|
|
return {
|
|
strings,
|
|
characters,
|
|
follows_scalar
|
|
};
|
|
}
|
|
|
|
really_inline error_code json_scanner::finish(bool streaming) {
|
|
return string_scanner.finish(streaming);
|
|
}
|
|
|
|
} // namespace stage1
|
|
/* end file src/generic/stage1/json_scanner.h */
|
|
|
|
namespace stage1 {
|
|
really_inline uint64_t json_string_scanner::find_escaped(uint64_t backslash) {
|
|
// On ARM, we don't short-circuit this if there are no backslashes, because the branch gives us no
|
|
// benefit and therefore makes things worse.
|
|
// if (!backslash) { uint64_t escaped = prev_escaped; prev_escaped = 0; return escaped; }
|
|
return find_escaped_branchless(backslash);
|
|
}
|
|
}
|
|
|
|
/* begin file src/generic/stage1/json_minifier.h */
|
|
// This file contains the common code every implementation uses in stage1
|
|
// It is intended to be included multiple times and compiled multiple times
|
|
// We assume the file in which it is included already includes
|
|
// "simdjson/stage1.h" (this simplifies amalgation)
|
|
|
|
namespace stage1 {
|
|
|
|
class json_minifier {
|
|
public:
|
|
template<size_t STEP_SIZE>
|
|
static error_code minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) noexcept;
|
|
|
|
private:
|
|
really_inline json_minifier(uint8_t *_dst)
|
|
: dst{_dst}
|
|
{}
|
|
template<size_t STEP_SIZE>
|
|
really_inline void step(const uint8_t *block_buf, buf_block_reader<STEP_SIZE> &reader) noexcept;
|
|
really_inline void next(simd::simd8x64<uint8_t> in, json_block block);
|
|
really_inline error_code finish(uint8_t *dst_start, size_t &dst_len);
|
|
json_scanner scanner{};
|
|
uint8_t *dst;
|
|
};
|
|
|
|
really_inline void json_minifier::next(simd::simd8x64<uint8_t> in, json_block block) {
|
|
uint64_t mask = block.whitespace();
|
|
in.compress(mask, dst);
|
|
dst += 64 - count_ones(mask);
|
|
}
|
|
|
|
really_inline error_code json_minifier::finish(uint8_t *dst_start, size_t &dst_len) {
|
|
*dst = '\0';
|
|
error_code error = scanner.finish(false);
|
|
if (error) { dst_len = 0; return error; }
|
|
dst_len = dst - dst_start;
|
|
return SUCCESS;
|
|
}
|
|
|
|
template<>
|
|
really_inline void json_minifier::step<128>(const uint8_t *block_buf, buf_block_reader<128> &reader) noexcept {
|
|
simd::simd8x64<uint8_t> in_1(block_buf);
|
|
simd::simd8x64<uint8_t> in_2(block_buf+64);
|
|
json_block block_1 = scanner.next(in_1);
|
|
json_block block_2 = scanner.next(in_2);
|
|
this->next(in_1, block_1);
|
|
this->next(in_2, block_2);
|
|
reader.advance();
|
|
}
|
|
|
|
template<>
|
|
really_inline void json_minifier::step<64>(const uint8_t *block_buf, buf_block_reader<64> &reader) noexcept {
|
|
simd::simd8x64<uint8_t> in_1(block_buf);
|
|
json_block block_1 = scanner.next(in_1);
|
|
this->next(block_buf, block_1);
|
|
reader.advance();
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
error_code json_minifier::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) noexcept {
|
|
buf_block_reader<STEP_SIZE> reader(buf, len);
|
|
json_minifier minifier(dst);
|
|
|
|
// Index the first n-1 blocks
|
|
while (reader.has_full_block()) {
|
|
minifier.step<STEP_SIZE>(reader.full_block(), reader);
|
|
}
|
|
|
|
// Index the last (remainder) block, padded with spaces
|
|
uint8_t block[STEP_SIZE];
|
|
if (likely(reader.get_remainder(block)) > 0) {
|
|
minifier.step<STEP_SIZE>(block, reader);
|
|
}
|
|
|
|
return minifier.finish(dst, dst_len);
|
|
}
|
|
|
|
} // namespace stage1
|
|
/* end file src/generic/stage1/json_minifier.h */
|
|
WARN_UNUSED error_code implementation::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept {
|
|
return arm64::stage1::json_minifier::minify<64>(buf, len, dst, dst_len);
|
|
}
|
|
|
|
/* begin file src/generic/stage1/find_next_document_index.h */
|
|
/**
|
|
* This algorithm is used to quickly identify the last structural position that
|
|
* makes up a complete document.
|
|
*
|
|
* It does this by going backwards and finding the last *document boundary* (a
|
|
* place where one value follows another without a comma between them). If the
|
|
* last document (the characters after the boundary) has an equal number of
|
|
* start and end brackets, it is considered complete.
|
|
*
|
|
* Simply put, we iterate over the structural characters, starting from
|
|
* the end. We consider that we found the end of a JSON document when the
|
|
* first element of the pair is NOT one of these characters: '{' '[' ';' ','
|
|
* and when the second element is NOT one of these characters: '}' '}' ';' ','.
|
|
*
|
|
* This simple comparison works most of the time, but it does not cover cases
|
|
* where the batch's structural indexes contain a perfect amount of documents.
|
|
* In such a case, we do not have access to the structural index which follows
|
|
* the last document, therefore, we do not have access to the second element in
|
|
* the pair, and that means we cannot identify the last document. To fix this
|
|
* issue, we keep a count of the open and closed curly/square braces we found
|
|
* while searching for the pair. When we find a pair AND the count of open and
|
|
* closed curly/square braces is the same, we know that we just passed a
|
|
* complete document, therefore the last json buffer location is the end of the
|
|
* batch.
|
|
*/
|
|
really_inline static uint32_t find_next_document_index(dom_parser_implementation &parser) {
|
|
// TODO don't count separately, just figure out depth
|
|
auto arr_cnt = 0;
|
|
auto obj_cnt = 0;
|
|
for (auto i = parser.n_structural_indexes - 1; i > 0; i--) {
|
|
auto idxb = parser.structural_indexes[i];
|
|
switch (parser.buf[idxb]) {
|
|
case ':':
|
|
case ',':
|
|
continue;
|
|
case '}':
|
|
obj_cnt--;
|
|
continue;
|
|
case ']':
|
|
arr_cnt--;
|
|
continue;
|
|
case '{':
|
|
obj_cnt++;
|
|
break;
|
|
case '[':
|
|
arr_cnt++;
|
|
break;
|
|
}
|
|
auto idxa = parser.structural_indexes[i - 1];
|
|
switch (parser.buf[idxa]) {
|
|
case '{':
|
|
case '[':
|
|
case ':':
|
|
case ',':
|
|
continue;
|
|
}
|
|
// Last document is complete, so the next document will appear after!
|
|
if (!arr_cnt && !obj_cnt) {
|
|
return parser.n_structural_indexes;
|
|
}
|
|
// Last document is incomplete; mark the document at i + 1 as the next one
|
|
return i;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Skip the last character if it is partial
|
|
really_inline static size_t trim_partial_utf8(const uint8_t *buf, size_t len) {
|
|
if (unlikely(len < 3)) {
|
|
switch (len) {
|
|
case 2:
|
|
if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left
|
|
if (buf[len-2] >= 0b11100000) { return len-2; } // 3- and 4-byte characters with only 2 bytes left
|
|
return len;
|
|
case 1:
|
|
if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left
|
|
return len;
|
|
case 0:
|
|
return len;
|
|
}
|
|
}
|
|
if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left
|
|
if (buf[len-2] >= 0b11100000) { return len-2; } // 3- and 4-byte characters with only 1 byte left
|
|
if (buf[len-3] >= 0b11110000) { return len-3; } // 4-byte characters with only 3 bytes left
|
|
return len;
|
|
}
|
|
/* end file src/generic/stage1/find_next_document_index.h */
|
|
/* begin file src/generic/stage1/utf8_lookup3_algorithm.h */
|
|
//
|
|
// Detect Unicode errors.
|
|
//
|
|
// UTF-8 is designed to allow multiple bytes and be compatible with ASCII. It's a fairly basic
|
|
// encoding that uses the first few bits on each byte to denote a "byte type", and all other bits
|
|
// are straight up concatenated into the final value. The first byte of a multibyte character is a
|
|
// "leading byte" and starts with N 1's, where N is the total number of bytes (110_____ = 2 byte
|
|
// lead). The remaining bytes of a multibyte character all start with 10. 1-byte characters just
|
|
// start with 0, because that's what ASCII looks like. Here's what each size looks like:
|
|
//
|
|
// - ASCII (7 bits): 0_______
|
|
// - 2 byte character (11 bits): 110_____ 10______
|
|
// - 3 byte character (17 bits): 1110____ 10______ 10______
|
|
// - 4 byte character (23 bits): 11110___ 10______ 10______ 10______
|
|
// - 5+ byte character (illegal): 11111___ <illegal>
|
|
//
|
|
// There are 5 classes of error that can happen in Unicode:
|
|
//
|
|
// - TOO_SHORT: when you have a multibyte character with too few bytes (i.e. missing continuation).
|
|
// We detect this by looking for new characters (lead bytes) inside the range of a multibyte
|
|
// character.
|
|
//
|
|
// e.g. 11000000 01100001 (2-byte character where second byte is ASCII)
|
|
//
|
|
// - TOO_LONG: when there are more bytes in your character than you need (i.e. extra continuation).
|
|
// We detect this by requiring that the next byte after your multibyte character be a new
|
|
// character--so a continuation after your character is wrong.
|
|
//
|
|
// e.g. 11011111 10111111 10111111 (2-byte character followed by *another* continuation byte)
|
|
//
|
|
// - TOO_LARGE: Unicode only goes up to U+10FFFF. These characters are too large.
|
|
//
|
|
// e.g. 11110111 10111111 10111111 10111111 (bigger than 10FFFF).
|
|
//
|
|
// - OVERLONG: multibyte characters with a bunch of leading zeroes, where you could have
|
|
// used fewer bytes to make the same character. Like encoding an ASCII character in 4 bytes is
|
|
// technically possible, but UTF-8 disallows it so that there is only one way to write an "a".
|
|
//
|
|
// e.g. 11000001 10100001 (2-byte encoding of "a", which only requires 1 byte: 01100001)
|
|
//
|
|
// - SURROGATE: Unicode U+D800-U+DFFF is a *surrogate* character, reserved for use in UCS-2 and
|
|
// WTF-8 encodings for characters with > 2 bytes. These are illegal in pure UTF-8.
|
|
//
|
|
// e.g. 11101101 10100000 10000000 (U+D800)
|
|
//
|
|
// - INVALID_5_BYTE: 5-byte, 6-byte, 7-byte and 8-byte characters are unsupported; Unicode does not
|
|
// support values with more than 23 bits (which a 4-byte character supports).
|
|
//
|
|
// e.g. 11111000 10100000 10000000 10000000 10000000 (U+800000)
|
|
//
|
|
// Legal utf-8 byte sequences per http://www.unicode.org/versions/Unicode6.0.0/ch03.pdf - page 94:
|
|
//
|
|
// Code Points 1st 2s 3s 4s
|
|
// U+0000..U+007F 00..7F
|
|
// U+0080..U+07FF C2..DF 80..BF
|
|
// U+0800..U+0FFF E0 A0..BF 80..BF
|
|
// U+1000..U+CFFF E1..EC 80..BF 80..BF
|
|
// U+D000..U+D7FF ED 80..9F 80..BF
|
|
// U+E000..U+FFFF EE..EF 80..BF 80..BF
|
|
// U+10000..U+3FFFF F0 90..BF 80..BF 80..BF
|
|
// U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF
|
|
// U+100000..U+10FFFF F4 80..8F 80..BF 80..BF
|
|
//
|
|
using namespace simd;
|
|
|
|
namespace utf8_validation {
|
|
// For a detailed description of the lookup2 algorithm, see the file HACKING.md under "UTF-8 validation (lookup2)".
|
|
|
|
//
|
|
// Find special case UTF-8 errors where the character is technically readable (has the right length)
|
|
// but the *value* is disallowed.
|
|
//
|
|
// This includes overlong encodings, surrogates and values too large for Unicode.
|
|
//
|
|
// It turns out the bad character ranges can all be detected by looking at the first 12 bits of the
|
|
// UTF-8 encoded character (i.e. all of byte 1, and the high 4 bits of byte 2). This algorithm does a
|
|
// 3 4-bit table lookups, identifying which errors that 4 bits could match, and then &'s them together.
|
|
// If all 3 lookups detect the same error, it's an error.
|
|
//
|
|
really_inline simd8<uint8_t> check_special_cases(const simd8<uint8_t> input, const simd8<uint8_t> prev1) {
|
|
//
|
|
// These are the errors we're going to match for bytes 1-2, by looking at the first three
|
|
// nibbles of the character: <high bits of byte 1>> & <low bits of byte 1> & <high bits of byte 2>
|
|
//
|
|
static const int OVERLONG_2 = 0x01; // 1100000_ 10______ (technically we match 10______ but we could match ________, they both yield errors either way)
|
|
static const int OVERLONG_3 = 0x02; // 11100000 100_____ ________
|
|
static const int OVERLONG_4 = 0x04; // 11110000 1000____ ________ ________
|
|
static const int SURROGATE = 0x08; // 11101101 [101_]____
|
|
static const int TOO_LARGE = 0x10; // 11110100 (1001|101_)____
|
|
static const int TOO_LARGE_2 = 0x20; // 1111(1___|011_|0101) 10______
|
|
|
|
// New with lookup3. We want to catch the case where an non-continuation
|
|
// follows a leading byte
|
|
static const int TOO_SHORT_2_3_4 = 0x40; // (110_|1110|1111) ____ (0___|110_|1111) ____
|
|
// We also want to catch a continuation that is preceded by an ASCII byte
|
|
static const int LONELY_CONTINUATION = 0x80; // 0___ ____ 01__ ____
|
|
|
|
// After processing the rest of byte 1 (the low bits), we're still not done--we have to check
|
|
// byte 2 to be sure which things are errors and which aren't.
|
|
// Since high_bits is byte 5, byte 2 is high_bits.prev<3>
|
|
static const int CARRY = OVERLONG_2 | TOO_LARGE_2;
|
|
const simd8<uint8_t> byte_2_high = input.shr<4>().lookup_16<uint8_t>(
|
|
// ASCII: ________ [0___]____
|
|
CARRY | TOO_SHORT_2_3_4, CARRY | TOO_SHORT_2_3_4,
|
|
CARRY | TOO_SHORT_2_3_4, CARRY | TOO_SHORT_2_3_4,
|
|
// ASCII: ________ [0___]____
|
|
CARRY | TOO_SHORT_2_3_4, CARRY | TOO_SHORT_2_3_4,
|
|
CARRY | TOO_SHORT_2_3_4, CARRY | TOO_SHORT_2_3_4,
|
|
// Continuations: ________ [10__]____
|
|
CARRY | OVERLONG_3 | OVERLONG_4 | LONELY_CONTINUATION, // ________ [1000]____
|
|
CARRY | OVERLONG_3 | TOO_LARGE | LONELY_CONTINUATION, // ________ [1001]____
|
|
CARRY | TOO_LARGE | SURROGATE | LONELY_CONTINUATION, // ________ [1010]____
|
|
CARRY | TOO_LARGE | SURROGATE | LONELY_CONTINUATION, // ________ [1011]____
|
|
// Multibyte Leads: ________ [11__]____
|
|
CARRY | TOO_SHORT_2_3_4, CARRY | TOO_SHORT_2_3_4, // 110_
|
|
CARRY | TOO_SHORT_2_3_4, CARRY | TOO_SHORT_2_3_4
|
|
);
|
|
const simd8<uint8_t> byte_1_high = prev1.shr<4>().lookup_16<uint8_t>(
|
|
// [0___]____ (ASCII)
|
|
LONELY_CONTINUATION, LONELY_CONTINUATION, LONELY_CONTINUATION, LONELY_CONTINUATION,
|
|
LONELY_CONTINUATION, LONELY_CONTINUATION, LONELY_CONTINUATION, LONELY_CONTINUATION,
|
|
// [10__]____ (continuation)
|
|
0, 0, 0, 0,
|
|
// [11__]____ (2+-byte leads)
|
|
OVERLONG_2 | TOO_SHORT_2_3_4, TOO_SHORT_2_3_4, // [110_]____ (2-byte lead)
|
|
OVERLONG_3 | SURROGATE | TOO_SHORT_2_3_4, // [1110]____ (3-byte lead)
|
|
OVERLONG_4 | TOO_LARGE | TOO_LARGE_2 | TOO_SHORT_2_3_4 // [1111]____ (4+-byte lead)
|
|
);
|
|
const simd8<uint8_t> byte_1_low = (prev1 & 0x0F).lookup_16<uint8_t>(
|
|
// ____[00__] ________
|
|
OVERLONG_2 | OVERLONG_3 | OVERLONG_4 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION, // ____[0000] ________
|
|
OVERLONG_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION, // ____[0001] ________
|
|
TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
// ____[01__] ________
|
|
TOO_LARGE | TOO_SHORT_2_3_4 | LONELY_CONTINUATION, // ____[0100] ________
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
// ____[10__] ________
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
// ____[11__] ________
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
TOO_LARGE_2 | SURROGATE | TOO_SHORT_2_3_4 | LONELY_CONTINUATION, // ____[1101] ________
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4| LONELY_CONTINUATION,
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION
|
|
);
|
|
return byte_1_high & byte_1_low & byte_2_high;
|
|
}
|
|
|
|
really_inline simd8<uint8_t> check_multibyte_lengths(simd8<uint8_t> input, simd8<uint8_t> prev_input,
|
|
simd8<uint8_t> prev1) {
|
|
simd8<uint8_t> prev2 = input.prev<2>(prev_input);
|
|
simd8<uint8_t> prev3 = input.prev<3>(prev_input);
|
|
// is_2_3_continuation uses one more instruction than lookup2
|
|
simd8<bool> is_2_3_continuation = (simd8<int8_t>(input).max(simd8<int8_t>(prev1))) < int8_t(-64);
|
|
// must_be_2_3_continuation has two fewer instructions than lookup 2
|
|
return simd8<uint8_t>(must_be_2_3_continuation(prev2, prev3) ^ is_2_3_continuation);
|
|
}
|
|
|
|
|
|
//
|
|
// Return nonzero if there are incomplete multibyte characters at the end of the block:
|
|
// e.g. if there is a 4-byte character, but it's 3 bytes from the end.
|
|
//
|
|
really_inline simd8<uint8_t> is_incomplete(simd8<uint8_t> input) {
|
|
// If the previous input's last 3 bytes match this, they're too short (they ended at EOF):
|
|
// ... 1111____ 111_____ 11______
|
|
static const uint8_t max_array[32] = {
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 0b11110000u-1, 0b11100000u-1, 0b11000000u-1
|
|
};
|
|
const simd8<uint8_t> max_value(&max_array[sizeof(max_array)-sizeof(simd8<uint8_t>)]);
|
|
return input.gt_bits(max_value);
|
|
}
|
|
|
|
struct utf8_checker {
|
|
// If this is nonzero, there has been a UTF-8 error.
|
|
simd8<uint8_t> error;
|
|
// The last input we received
|
|
simd8<uint8_t> prev_input_block;
|
|
// Whether the last input we received was incomplete (used for ASCII fast path)
|
|
simd8<uint8_t> prev_incomplete;
|
|
|
|
//
|
|
// Check whether the current bytes are valid UTF-8.
|
|
//
|
|
really_inline void check_utf8_bytes(const simd8<uint8_t> input, const simd8<uint8_t> prev_input) {
|
|
// Flip prev1...prev3 so we can easily determine if they are 2+, 3+ or 4+ lead bytes
|
|
// (2, 3, 4-byte leads become large positive numbers instead of small negative numbers)
|
|
simd8<uint8_t> prev1 = input.prev<1>(prev_input);
|
|
this->error |= check_special_cases(input, prev1);
|
|
this->error |= check_multibyte_lengths(input, prev_input, prev1);
|
|
}
|
|
|
|
// The only problem that can happen at EOF is that a multibyte character is too short.
|
|
really_inline void check_eof() {
|
|
// If the previous block had incomplete UTF-8 characters at the end, an ASCII block can't
|
|
// possibly finish them.
|
|
this->error |= this->prev_incomplete;
|
|
}
|
|
|
|
really_inline void check_next_input(simd8x64<uint8_t> input) {
|
|
if (likely(is_ascii(input))) {
|
|
// If the previous block had incomplete UTF-8 characters at the end, an ASCII block can't
|
|
// possibly finish them.
|
|
this->error |= this->prev_incomplete;
|
|
} else {
|
|
this->check_utf8_bytes(input.chunks[0], this->prev_input_block);
|
|
for (int i=1; i<simd8x64<uint8_t>::NUM_CHUNKS; i++) {
|
|
this->check_utf8_bytes(input.chunks[i], input.chunks[i-1]);
|
|
}
|
|
this->prev_incomplete = is_incomplete(input.chunks[simd8x64<uint8_t>::NUM_CHUNKS-1]);
|
|
this->prev_input_block = input.chunks[simd8x64<uint8_t>::NUM_CHUNKS-1];
|
|
}
|
|
}
|
|
|
|
really_inline error_code errors() {
|
|
return this->error.any_bits_set_anywhere() ? simdjson::UTF8_ERROR : simdjson::SUCCESS;
|
|
}
|
|
|
|
}; // struct utf8_checker
|
|
}
|
|
|
|
using utf8_validation::utf8_checker;
|
|
/* end file src/generic/stage1/utf8_lookup3_algorithm.h */
|
|
/* begin file src/generic/stage1/json_structural_indexer.h */
|
|
// This file contains the common code every implementation uses in stage1
|
|
// It is intended to be included multiple times and compiled multiple times
|
|
// We assume the file in which it is included already includes
|
|
// "simdjson/stage1.h" (this simplifies amalgation)
|
|
|
|
namespace stage1 {
|
|
|
|
class bit_indexer {
|
|
public:
|
|
uint32_t *tail;
|
|
|
|
really_inline bit_indexer(uint32_t *index_buf) : tail(index_buf) {}
|
|
|
|
// flatten out values in 'bits' assuming that they are are to have values of idx
|
|
// plus their position in the bitvector, and store these indexes at
|
|
// base_ptr[base] incrementing base as we go
|
|
// will potentially store extra values beyond end of valid bits, so base_ptr
|
|
// needs to be large enough to handle this
|
|
really_inline void write(uint32_t idx, uint64_t bits) {
|
|
// In some instances, the next branch is expensive because it is mispredicted.
|
|
// Unfortunately, in other cases,
|
|
// it helps tremendously.
|
|
if (bits == 0)
|
|
return;
|
|
int cnt = static_cast<int>(count_ones(bits));
|
|
|
|
// Do the first 8 all together
|
|
for (int i=0; i<8; i++) {
|
|
this->tail[i] = idx + trailing_zeroes(bits);
|
|
bits = clear_lowest_bit(bits);
|
|
}
|
|
|
|
// Do the next 8 all together (we hope in most cases it won't happen at all
|
|
// and the branch is easily predicted).
|
|
if (unlikely(cnt > 8)) {
|
|
for (int i=8; i<16; i++) {
|
|
this->tail[i] = idx + trailing_zeroes(bits);
|
|
bits = clear_lowest_bit(bits);
|
|
}
|
|
|
|
// Most files don't have 16+ structurals per block, so we take several basically guaranteed
|
|
// branch mispredictions here. 16+ structurals per block means either punctuation ({} [] , :)
|
|
// or the start of a value ("abc" true 123) every four characters.
|
|
if (unlikely(cnt > 16)) {
|
|
int i = 16;
|
|
do {
|
|
this->tail[i] = idx + trailing_zeroes(bits);
|
|
bits = clear_lowest_bit(bits);
|
|
i++;
|
|
} while (i < cnt);
|
|
}
|
|
}
|
|
|
|
this->tail += cnt;
|
|
}
|
|
};
|
|
|
|
class json_structural_indexer {
|
|
public:
|
|
/**
|
|
* Find the important bits of JSON in a 128-byte chunk, and add them to structural_indexes.
|
|
*
|
|
* @param partial Setting the partial parameter to true allows the find_structural_bits to
|
|
* tolerate unclosed strings. The caller should still ensure that the input is valid UTF-8. If
|
|
* you are processing substrings, you may want to call on a function like trimmed_length_safe_utf8.
|
|
*/
|
|
template<size_t STEP_SIZE>
|
|
static error_code index(const uint8_t *buf, size_t len, dom_parser_implementation &parser, bool partial) noexcept;
|
|
|
|
private:
|
|
really_inline json_structural_indexer(uint32_t *structural_indexes);
|
|
template<size_t STEP_SIZE>
|
|
really_inline void step(const uint8_t *block, buf_block_reader<STEP_SIZE> &reader) noexcept;
|
|
really_inline void next(simd::simd8x64<uint8_t> in, json_block block, size_t idx);
|
|
really_inline error_code finish(dom_parser_implementation &parser, size_t idx, size_t len, bool partial);
|
|
|
|
json_scanner scanner{};
|
|
utf8_checker checker{};
|
|
bit_indexer indexer;
|
|
uint64_t prev_structurals = 0;
|
|
uint64_t unescaped_chars_error = 0;
|
|
};
|
|
|
|
really_inline json_structural_indexer::json_structural_indexer(uint32_t *structural_indexes) : indexer{structural_indexes} {}
|
|
|
|
//
|
|
// PERF NOTES:
|
|
// We pipe 2 inputs through these stages:
|
|
// 1. Load JSON into registers. This takes a long time and is highly parallelizable, so we load
|
|
// 2 inputs' worth at once so that by the time step 2 is looking for them input, it's available.
|
|
// 2. Scan the JSON for critical data: strings, scalars and operators. This is the critical path.
|
|
// The output of step 1 depends entirely on this information. These functions don't quite use
|
|
// up enough CPU: the second half of the functions is highly serial, only using 1 execution core
|
|
// at a time. The second input's scans has some dependency on the first ones finishing it, but
|
|
// they can make a lot of progress before they need that information.
|
|
// 3. Step 1 doesn't use enough capacity, so we run some extra stuff while we're waiting for that
|
|
// to finish: utf-8 checks and generating the output from the last iteration.
|
|
//
|
|
// The reason we run 2 inputs at a time, is steps 2 and 3 are *still* not enough to soak up all
|
|
// available capacity with just one input. Running 2 at a time seems to give the CPU a good enough
|
|
// workout.
|
|
//
|
|
template<size_t STEP_SIZE>
|
|
error_code json_structural_indexer::index(const uint8_t *buf, size_t len, dom_parser_implementation &parser, bool partial) noexcept {
|
|
if (unlikely(len > parser.capacity())) { return CAPACITY; }
|
|
if (partial) { len = trim_partial_utf8(buf, len); }
|
|
|
|
buf_block_reader<STEP_SIZE> reader(buf, len);
|
|
json_structural_indexer indexer(parser.structural_indexes.get());
|
|
|
|
// Read all but the last block
|
|
while (reader.has_full_block()) {
|
|
indexer.step<STEP_SIZE>(reader.full_block(), reader);
|
|
}
|
|
|
|
// Take care of the last block (will always be there unless file is empty)
|
|
uint8_t block[STEP_SIZE];
|
|
if (unlikely(reader.get_remainder(block) == 0)) { return EMPTY; }
|
|
indexer.step<STEP_SIZE>(block, reader);
|
|
|
|
return indexer.finish(parser, reader.block_index(), len, partial);
|
|
}
|
|
|
|
template<>
|
|
really_inline void json_structural_indexer::step<128>(const uint8_t *block, buf_block_reader<128> &reader) noexcept {
|
|
simd::simd8x64<uint8_t> in_1(block);
|
|
simd::simd8x64<uint8_t> in_2(block+64);
|
|
json_block block_1 = scanner.next(in_1);
|
|
json_block block_2 = scanner.next(in_2);
|
|
this->next(in_1, block_1, reader.block_index());
|
|
this->next(in_2, block_2, reader.block_index()+64);
|
|
reader.advance();
|
|
}
|
|
|
|
template<>
|
|
really_inline void json_structural_indexer::step<64>(const uint8_t *block, buf_block_reader<64> &reader) noexcept {
|
|
simd::simd8x64<uint8_t> in_1(block);
|
|
json_block block_1 = scanner.next(in_1);
|
|
this->next(in_1, block_1, reader.block_index());
|
|
reader.advance();
|
|
}
|
|
|
|
really_inline void json_structural_indexer::next(simd::simd8x64<uint8_t> in, json_block block, size_t idx) {
|
|
uint64_t unescaped = in.lteq(0x1F);
|
|
checker.check_next_input(in);
|
|
indexer.write(uint32_t(idx-64), prev_structurals); // Output *last* iteration's structurals to the parser
|
|
prev_structurals = block.structural_start();
|
|
unescaped_chars_error |= block.non_quote_inside_string(unescaped);
|
|
}
|
|
|
|
really_inline error_code json_structural_indexer::finish(dom_parser_implementation &parser, size_t idx, size_t len, bool partial) {
|
|
// Write out the final iteration's structurals
|
|
indexer.write(uint32_t(idx-64), prev_structurals);
|
|
|
|
error_code error = scanner.finish(partial);
|
|
if (unlikely(error != SUCCESS)) { return error; }
|
|
|
|
if (unescaped_chars_error) {
|
|
return UNESCAPED_CHARS;
|
|
}
|
|
|
|
parser.n_structural_indexes = uint32_t(indexer.tail - parser.structural_indexes.get());
|
|
/***
|
|
* This is related to https://github.com/simdjson/simdjson/issues/906
|
|
* Basically, we want to make sure that if the parsing continues beyond the last (valid)
|
|
* structural character, it quickly stops.
|
|
* Only three structural characters can be repeated without triggering an error in JSON: [,] and }.
|
|
* We repeat the padding character (at 'len'). We don't know what it is, but if the parsing
|
|
* continues, then it must be [,] or }.
|
|
* Suppose it is ] or }. We backtrack to the first character, what could it be that would
|
|
* not trigger an error? It could be ] or } but no, because you can't start a document that way.
|
|
* It can't be a comma, a colon or any simple value. So the only way we could continue is
|
|
* if the repeated character is [. But if so, the document must start with [. But if the document
|
|
* starts with [, it should end with ]. If we enforce that rule, then we would get
|
|
* ][[ which is invalid.
|
|
**/
|
|
parser.structural_indexes[parser.n_structural_indexes] = uint32_t(len);
|
|
parser.structural_indexes[parser.n_structural_indexes + 1] = uint32_t(len);
|
|
parser.structural_indexes[parser.n_structural_indexes + 2] = 0;
|
|
parser.next_structural_index = 0;
|
|
// a valid JSON file cannot have zero structural indexes - we should have found something
|
|
if (unlikely(parser.n_structural_indexes == 0u)) {
|
|
return EMPTY;
|
|
}
|
|
if (unlikely(parser.structural_indexes[parser.n_structural_indexes - 1] > len)) {
|
|
return UNEXPECTED_ERROR;
|
|
}
|
|
if (partial) {
|
|
auto new_structural_indexes = find_next_document_index(parser);
|
|
if (new_structural_indexes == 0 && parser.n_structural_indexes > 0) {
|
|
return CAPACITY; // If the buffer is partial but the document is incomplete, it's too big to parse.
|
|
}
|
|
parser.n_structural_indexes = new_structural_indexes;
|
|
}
|
|
return checker.errors();
|
|
}
|
|
|
|
} // namespace stage1
|
|
/* end file src/generic/stage1/json_structural_indexer.h */
|
|
WARN_UNUSED error_code dom_parser_implementation::stage1(const uint8_t *_buf, size_t _len, bool streaming) noexcept {
|
|
this->buf = _buf;
|
|
this->len = _len;
|
|
return arm64::stage1::json_structural_indexer::index<64>(buf, len, *this, streaming);
|
|
}
|
|
/* begin file src/generic/stage1/utf8_validator.h */
|
|
namespace stage1 {
|
|
/**
|
|
* Validates that the string is actual UTF-8.
|
|
*/
|
|
template<class checker>
|
|
bool generic_validate_utf8(const uint8_t * input, size_t length) {
|
|
checker c{};
|
|
buf_block_reader<64> reader(input, length);
|
|
while (reader.has_full_block()) {
|
|
simd::simd8x64<uint8_t> in(reader.full_block());
|
|
c.check_next_input(in);
|
|
reader.advance();
|
|
}
|
|
uint8_t block[64]{};
|
|
reader.get_remainder(block);
|
|
simd::simd8x64<uint8_t> in(block);
|
|
c.check_next_input(in);
|
|
reader.advance();
|
|
return c.errors() == error_code::SUCCESS;
|
|
}
|
|
|
|
bool generic_validate_utf8(const char * input, size_t length) {
|
|
return generic_validate_utf8<utf8_checker>((const uint8_t *)input,length);
|
|
}
|
|
|
|
} // namespace stage1
|
|
/* end file src/generic/stage1/utf8_validator.h */
|
|
WARN_UNUSED bool implementation::validate_utf8(const char *buf, size_t len) const noexcept {
|
|
return simdjson::arm64::stage1::generic_validate_utf8(buf,len);
|
|
}
|
|
} // namespace arm64
|
|
} // namespace simdjson
|
|
|
|
//
|
|
// Stage 2
|
|
//
|
|
|
|
/* begin file src/arm64/stringparsing.h */
|
|
#ifndef SIMDJSON_ARM64_STRINGPARSING_H
|
|
#define SIMDJSON_ARM64_STRINGPARSING_H
|
|
|
|
/* jsoncharutils.h already included: #include "jsoncharutils.h" */
|
|
/* arm64/simd.h already included: #include "arm64/simd.h" */
|
|
/* arm64/intrinsics.h already included: #include "arm64/intrinsics.h" */
|
|
/* arm64/bitmanipulation.h already included: #include "arm64/bitmanipulation.h" */
|
|
|
|
namespace simdjson {
|
|
namespace arm64 {
|
|
|
|
using namespace simd;
|
|
|
|
// Holds backslashes and quotes locations.
|
|
struct backslash_and_quote {
|
|
public:
|
|
static constexpr uint32_t BYTES_PROCESSED = 32;
|
|
really_inline static backslash_and_quote copy_and_find(const uint8_t *src, uint8_t *dst);
|
|
|
|
really_inline bool has_quote_first() { return ((bs_bits - 1) & quote_bits) != 0; }
|
|
really_inline bool has_backslash() { return bs_bits != 0; }
|
|
really_inline int quote_index() { return trailing_zeroes(quote_bits); }
|
|
really_inline int backslash_index() { return trailing_zeroes(bs_bits); }
|
|
|
|
uint32_t bs_bits;
|
|
uint32_t quote_bits;
|
|
}; // struct backslash_and_quote
|
|
|
|
really_inline backslash_and_quote backslash_and_quote::copy_and_find(const uint8_t *src, uint8_t *dst) {
|
|
// this can read up to 31 bytes beyond the buffer size, but we require
|
|
// SIMDJSON_PADDING of padding
|
|
static_assert(SIMDJSON_PADDING >= (BYTES_PROCESSED - 1), "backslash and quote finder must process fewer than SIMDJSON_PADDING bytes");
|
|
simd8<uint8_t> v0(src);
|
|
simd8<uint8_t> v1(src + sizeof(v0));
|
|
v0.store(dst);
|
|
v1.store(dst + sizeof(v0));
|
|
|
|
// Getting a 64-bit bitmask is much cheaper than multiple 16-bit bitmasks on ARM; therefore, we
|
|
// smash them together into a 64-byte mask and get the bitmask from there.
|
|
uint64_t bs_and_quote = simd8x64<bool>(v0 == '\\', v1 == '\\', v0 == '"', v1 == '"').to_bitmask();
|
|
return {
|
|
uint32_t(bs_and_quote), // bs_bits
|
|
uint32_t(bs_and_quote >> 32) // quote_bits
|
|
};
|
|
}
|
|
|
|
/* begin file src/generic/stage2/stringparsing.h */
|
|
// This file contains the common code every implementation uses
|
|
// It is intended to be included multiple times and compiled multiple times
|
|
// We assume the file in which it is include already includes
|
|
// "stringparsing.h" (this simplifies amalgation)
|
|
|
|
namespace stage2 {
|
|
namespace stringparsing {
|
|
|
|
// begin copypasta
|
|
// These chars yield themselves: " \ /
|
|
// b -> backspace, f -> formfeed, n -> newline, r -> cr, t -> horizontal tab
|
|
// u not handled in this table as it's complex
|
|
static const uint8_t escape_map[256] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x0.
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0x22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x2f,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x4.
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x5c, 0, 0, 0, // 0x5.
|
|
0, 0, 0x08, 0, 0, 0, 0x0c, 0, 0, 0, 0, 0, 0, 0, 0x0a, 0, // 0x6.
|
|
0, 0, 0x0d, 0, 0x09, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x7.
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
};
|
|
|
|
// handle a unicode codepoint
|
|
// write appropriate values into dest
|
|
// src will advance 6 bytes or 12 bytes
|
|
// dest will advance a variable amount (return via pointer)
|
|
// return true if the unicode codepoint was valid
|
|
// We work in little-endian then swap at write time
|
|
WARN_UNUSED
|
|
really_inline bool handle_unicode_codepoint(const uint8_t **src_ptr,
|
|
uint8_t **dst_ptr) {
|
|
// hex_to_u32_nocheck fills high 16 bits of the return value with 1s if the
|
|
// conversion isn't valid; we defer the check for this to inside the
|
|
// multilingual plane check
|
|
uint32_t code_point = hex_to_u32_nocheck(*src_ptr + 2);
|
|
*src_ptr += 6;
|
|
// check for low surrogate for characters outside the Basic
|
|
// Multilingual Plane.
|
|
if (code_point >= 0xd800 && code_point < 0xdc00) {
|
|
if (((*src_ptr)[0] != '\\') || (*src_ptr)[1] != 'u') {
|
|
return false;
|
|
}
|
|
uint32_t code_point_2 = hex_to_u32_nocheck(*src_ptr + 2);
|
|
|
|
// if the first code point is invalid we will get here, as we will go past
|
|
// the check for being outside the Basic Multilingual plane. If we don't
|
|
// find a \u immediately afterwards we fail out anyhow, but if we do,
|
|
// this check catches both the case of the first code point being invalid
|
|
// or the second code point being invalid.
|
|
if ((code_point | code_point_2) >> 16) {
|
|
return false;
|
|
}
|
|
|
|
code_point =
|
|
(((code_point - 0xd800) << 10) | (code_point_2 - 0xdc00)) + 0x10000;
|
|
*src_ptr += 6;
|
|
}
|
|
size_t offset = codepoint_to_utf8(code_point, *dst_ptr);
|
|
*dst_ptr += offset;
|
|
return offset > 0;
|
|
}
|
|
|
|
WARN_UNUSED really_inline uint8_t *parse_string(const uint8_t *src, uint8_t *dst) {
|
|
src++;
|
|
while (1) {
|
|
// Copy the next n bytes, and find the backslash and quote in them.
|
|
auto bs_quote = backslash_and_quote::copy_and_find(src, dst);
|
|
// If the next thing is the end quote, copy and return
|
|
if (bs_quote.has_quote_first()) {
|
|
// we encountered quotes first. Move dst to point to quotes and exit
|
|
return dst + bs_quote.quote_index();
|
|
}
|
|
if (bs_quote.has_backslash()) {
|
|
/* find out where the backspace is */
|
|
auto bs_dist = bs_quote.backslash_index();
|
|
uint8_t escape_char = src[bs_dist + 1];
|
|
/* we encountered backslash first. Handle backslash */
|
|
if (escape_char == 'u') {
|
|
/* move src/dst up to the start; they will be further adjusted
|
|
within the unicode codepoint handling code. */
|
|
src += bs_dist;
|
|
dst += bs_dist;
|
|
if (!handle_unicode_codepoint(&src, &dst)) {
|
|
return nullptr;
|
|
}
|
|
} else {
|
|
/* simple 1:1 conversion. Will eat bs_dist+2 characters in input and
|
|
* write bs_dist+1 characters to output
|
|
* note this may reach beyond the part of the buffer we've actually
|
|
* seen. I think this is ok */
|
|
uint8_t escape_result = escape_map[escape_char];
|
|
if (escape_result == 0u) {
|
|
return nullptr; /* bogus escape value is an error */
|
|
}
|
|
dst[bs_dist] = escape_result;
|
|
src += bs_dist + 2;
|
|
dst += bs_dist + 1;
|
|
}
|
|
} else {
|
|
/* they are the same. Since they can't co-occur, it means we
|
|
* encountered neither. */
|
|
src += backslash_and_quote::BYTES_PROCESSED;
|
|
dst += backslash_and_quote::BYTES_PROCESSED;
|
|
}
|
|
}
|
|
/* can't be reached */
|
|
return nullptr;
|
|
}
|
|
|
|
} // namespace stringparsing
|
|
} // namespace stage2
|
|
/* end file src/generic/stage2/stringparsing.h */
|
|
|
|
} // namespace arm64
|
|
} // namespace simdjson
|
|
|
|
#endif // SIMDJSON_ARM64_STRINGPARSING_H
|
|
/* end file src/generic/stage2/stringparsing.h */
|
|
/* begin file src/arm64/numberparsing.h */
|
|
#ifndef SIMDJSON_ARM64_NUMBERPARSING_H
|
|
#define SIMDJSON_ARM64_NUMBERPARSING_H
|
|
|
|
/* jsoncharutils.h already included: #include "jsoncharutils.h" */
|
|
/* arm64/intrinsics.h already included: #include "arm64/intrinsics.h" */
|
|
/* arm64/bitmanipulation.h already included: #include "arm64/bitmanipulation.h" */
|
|
#include <cmath>
|
|
#include <limits>
|
|
|
|
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
void found_invalid_number(const uint8_t *buf);
|
|
void found_integer(int64_t result, const uint8_t *buf);
|
|
void found_unsigned_integer(uint64_t result, const uint8_t *buf);
|
|
void found_float(double result, const uint8_t *buf);
|
|
#endif
|
|
|
|
namespace simdjson {
|
|
namespace arm64 {
|
|
|
|
// we don't have SSE, so let us use a scalar function
|
|
// credit: https://johnnylee-sde.github.io/Fast-numeric-string-to-int/
|
|
static inline uint32_t parse_eight_digits_unrolled(const char *chars) {
|
|
uint64_t val;
|
|
memcpy(&val, chars, sizeof(uint64_t));
|
|
val = (val & 0x0F0F0F0F0F0F0F0F) * 2561 >> 8;
|
|
val = (val & 0x00FF00FF00FF00FF) * 6553601 >> 16;
|
|
return uint32_t((val & 0x0000FFFF0000FFFF) * 42949672960001 >> 32);
|
|
}
|
|
|
|
#define SWAR_NUMBER_PARSING
|
|
|
|
/* begin file src/generic/stage2/numberparsing.h */
|
|
namespace stage2 {
|
|
namespace numberparsing {
|
|
|
|
// Attempts to compute i * 10^(power) exactly; and if "negative" is
|
|
// true, negate the result.
|
|
// This function will only work in some cases, when it does not work, success is
|
|
// set to false. This should work *most of the time* (like 99% of the time).
|
|
// We assume that power is in the [FASTFLOAT_SMALLEST_POWER,
|
|
// FASTFLOAT_LARGEST_POWER] interval: the caller is responsible for this check.
|
|
really_inline double compute_float_64(int64_t power, uint64_t i, bool negative,
|
|
bool *success) {
|
|
// we start with a fast path
|
|
// It was described in
|
|
// Clinger WD. How to read floating point numbers accurately.
|
|
// ACM SIGPLAN Notices. 1990
|
|
if (-22 <= power && power <= 22 && i <= 9007199254740991) {
|
|
// convert the integer into a double. This is lossless since
|
|
// 0 <= i <= 2^53 - 1.
|
|
double d = double(i);
|
|
//
|
|
// The general idea is as follows.
|
|
// If 0 <= s < 2^53 and if 10^0 <= p <= 10^22 then
|
|
// 1) Both s and p can be represented exactly as 64-bit floating-point
|
|
// values
|
|
// (binary64).
|
|
// 2) Because s and p can be represented exactly as floating-point values,
|
|
// then s * p
|
|
// and s / p will produce correctly rounded values.
|
|
//
|
|
if (power < 0) {
|
|
d = d / power_of_ten[-power];
|
|
} else {
|
|
d = d * power_of_ten[power];
|
|
}
|
|
if (negative) {
|
|
d = -d;
|
|
}
|
|
*success = true;
|
|
return d;
|
|
}
|
|
// When 22 < power && power < 22 + 16, we could
|
|
// hope for another, secondary fast path. It wa
|
|
// described by David M. Gay in "Correctly rounded
|
|
// binary-decimal and decimal-binary conversions." (1990)
|
|
// If you need to compute i * 10^(22 + x) for x < 16,
|
|
// first compute i * 10^x, if you know that result is exact
|
|
// (e.g., when i * 10^x < 2^53),
|
|
// then you can still proceed and do (i * 10^x) * 10^22.
|
|
// Is this worth your time?
|
|
// You need 22 < power *and* power < 22 + 16 *and* (i * 10^(x-22) < 2^53)
|
|
// for this second fast path to work.
|
|
// If you you have 22 < power *and* power < 22 + 16, and then you
|
|
// optimistically compute "i * 10^(x-22)", there is still a chance that you
|
|
// have wasted your time if i * 10^(x-22) >= 2^53. It makes the use cases of
|
|
// this optimization maybe less common than we would like. Source:
|
|
// http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/
|
|
// also used in RapidJSON: https://rapidjson.org/strtod_8h_source.html
|
|
|
|
// The fast path has now failed, so we are failing back on the slower path.
|
|
|
|
// In the slow path, we need to adjust i so that it is > 1<<63 which is always
|
|
// possible, except if i == 0, so we handle i == 0 separately.
|
|
if(i == 0) {
|
|
return 0.0;
|
|
}
|
|
|
|
// We are going to need to do some 64-bit arithmetic to get a more precise product.
|
|
// We use a table lookup approach.
|
|
components c =
|
|
power_of_ten_components[power - FASTFLOAT_SMALLEST_POWER];
|
|
// safe because
|
|
// power >= FASTFLOAT_SMALLEST_POWER
|
|
// and power <= FASTFLOAT_LARGEST_POWER
|
|
// we recover the mantissa of the power, it has a leading 1. It is always
|
|
// rounded down.
|
|
uint64_t factor_mantissa = c.mantissa;
|
|
|
|
// We want the most significant bit of i to be 1. Shift if needed.
|
|
int lz = leading_zeroes(i);
|
|
i <<= lz;
|
|
// We want the most significant 64 bits of the product. We know
|
|
// this will be non-zero because the most significant bit of i is
|
|
// 1.
|
|
value128 product = full_multiplication(i, factor_mantissa);
|
|
uint64_t lower = product.low;
|
|
uint64_t upper = product.high;
|
|
|
|
// We know that upper has at most one leading zero because
|
|
// both i and factor_mantissa have a leading one. This means
|
|
// that the result is at least as large as ((1<<63)*(1<<63))/(1<<64).
|
|
|
|
// As long as the first 9 bits of "upper" are not "1", then we
|
|
// know that we have an exact computed value for the leading
|
|
// 55 bits because any imprecision would play out as a +1, in
|
|
// the worst case.
|
|
if (unlikely((upper & 0x1FF) == 0x1FF) && (lower + i < lower)) {
|
|
uint64_t factor_mantissa_low =
|
|
mantissa_128[power - FASTFLOAT_SMALLEST_POWER];
|
|
// next, we compute the 64-bit x 128-bit multiplication, getting a 192-bit
|
|
// result (three 64-bit values)
|
|
product = full_multiplication(i, factor_mantissa_low);
|
|
uint64_t product_low = product.low;
|
|
uint64_t product_middle2 = product.high;
|
|
uint64_t product_middle1 = lower;
|
|
uint64_t product_high = upper;
|
|
uint64_t product_middle = product_middle1 + product_middle2;
|
|
if (product_middle < product_middle1) {
|
|
product_high++; // overflow carry
|
|
}
|
|
// We want to check whether mantissa *i + i would affect our result.
|
|
// This does happen, e.g. with 7.3177701707893310e+15.
|
|
if (((product_middle + 1 == 0) && ((product_high & 0x1FF) == 0x1FF) &&
|
|
(product_low + i < product_low))) { // let us be prudent and bail out.
|
|
*success = false;
|
|
return 0;
|
|
}
|
|
upper = product_high;
|
|
lower = product_middle;
|
|
}
|
|
// The final mantissa should be 53 bits with a leading 1.
|
|
// We shift it so that it occupies 54 bits with a leading 1.
|
|
///////
|
|
uint64_t upperbit = upper >> 63;
|
|
uint64_t mantissa = upper >> (upperbit + 9);
|
|
lz += int(1 ^ upperbit);
|
|
|
|
// Here we have mantissa < (1<<54).
|
|
|
|
// We have to round to even. The "to even" part
|
|
// is only a problem when we are right in between two floats
|
|
// which we guard against.
|
|
// If we have lots of trailing zeros, we may fall right between two
|
|
// floating-point values.
|
|
if (unlikely((lower == 0) && ((upper & 0x1FF) == 0) &&
|
|
((mantissa & 3) == 1))) {
|
|
// if mantissa & 1 == 1 we might need to round up.
|
|
//
|
|
// Scenarios:
|
|
// 1. We are not in the middle. Then we should round up.
|
|
//
|
|
// 2. We are right in the middle. Whether we round up depends
|
|
// on the last significant bit: if it is "one" then we round
|
|
// up (round to even) otherwise, we do not.
|
|
//
|
|
// So if the last significant bit is 1, we can safely round up.
|
|
// Hence we only need to bail out if (mantissa & 3) == 1.
|
|
// Otherwise we may need more accuracy or analysis to determine whether
|
|
// we are exactly between two floating-point numbers.
|
|
// It can be triggered with 1e23.
|
|
// Note: because the factor_mantissa and factor_mantissa_low are
|
|
// almost always rounded down (except for small positive powers),
|
|
// almost always should round up.
|
|
*success = false;
|
|
return 0;
|
|
}
|
|
|
|
mantissa += mantissa & 1;
|
|
mantissa >>= 1;
|
|
|
|
// Here we have mantissa < (1<<53), unless there was an overflow
|
|
if (mantissa >= (1ULL << 53)) {
|
|
//////////
|
|
// This will happen when parsing values such as 7.2057594037927933e+16
|
|
////////
|
|
mantissa = (1ULL << 52);
|
|
lz--; // undo previous addition
|
|
}
|
|
mantissa &= ~(1ULL << 52);
|
|
uint64_t real_exponent = c.exp - lz;
|
|
// we have to check that real_exponent is in range, otherwise we bail out
|
|
if (unlikely((real_exponent < 1) || (real_exponent > 2046))) {
|
|
*success = false;
|
|
return 0;
|
|
}
|
|
mantissa |= real_exponent << 52;
|
|
mantissa |= (((uint64_t)negative) << 63);
|
|
double d;
|
|
memcpy(&d, &mantissa, sizeof(d));
|
|
*success = true;
|
|
return d;
|
|
}
|
|
|
|
static bool parse_float_strtod(const char *ptr, double *outDouble) {
|
|
char *endptr;
|
|
*outDouble = strtod(ptr, &endptr);
|
|
// Some libraries will set errno = ERANGE when the value is subnormal,
|
|
// yet we may want to be able to parse subnormal values.
|
|
// However, we do not want to tolerate NAN or infinite values.
|
|
//
|
|
// Values like infinity or NaN are not allowed in the JSON specification.
|
|
// If you consume a large value and you map it to "infinity", you will no
|
|
// longer be able to serialize back a standard-compliant JSON. And there is
|
|
// no realistic application where you might need values so large than they
|
|
// can't fit in binary64. The maximal value is about 1.7976931348623157 x
|
|
// 10^308 It is an unimaginable large number. There will never be any piece of
|
|
// engineering involving as many as 10^308 parts. It is estimated that there
|
|
// are about 10^80 atoms in the universe. The estimate for the total number
|
|
// of electrons is similar. Using a double-precision floating-point value, we
|
|
// can represent easily the number of atoms in the universe. We could also
|
|
// represent the number of ways you can pick any three individual atoms at
|
|
// random in the universe. If you ever encounter a number much larger than
|
|
// 10^308, you know that you have a bug. RapidJSON will reject a document with
|
|
// a float that does not fit in binary64. JSON for Modern C++ (nlohmann/json)
|
|
// will flat out throw an exception.
|
|
//
|
|
if ((endptr == ptr) || (!std::isfinite(*outDouble))) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
really_inline bool is_integer(char c) {
|
|
return (c >= '0' && c <= '9');
|
|
// this gets compiled to (uint8_t)(c - '0') <= 9 on all decent compilers
|
|
}
|
|
|
|
|
|
// check quickly whether the next 8 chars are made of digits
|
|
// at a glance, it looks better than Mula's
|
|
// http://0x80.pl/articles/swar-digits-validate.html
|
|
really_inline bool is_made_of_eight_digits_fast(const char *chars) {
|
|
uint64_t val;
|
|
// this can read up to 7 bytes beyond the buffer size, but we require
|
|
// SIMDJSON_PADDING of padding
|
|
static_assert(7 <= SIMDJSON_PADDING, "SIMDJSON_PADDING must be bigger than 7");
|
|
memcpy(&val, chars, 8);
|
|
// a branchy method might be faster:
|
|
// return (( val & 0xF0F0F0F0F0F0F0F0 ) == 0x3030303030303030)
|
|
// && (( (val + 0x0606060606060606) & 0xF0F0F0F0F0F0F0F0 ) ==
|
|
// 0x3030303030303030);
|
|
return (((val & 0xF0F0F0F0F0F0F0F0) |
|
|
(((val + 0x0606060606060606) & 0xF0F0F0F0F0F0F0F0) >> 4)) ==
|
|
0x3333333333333333);
|
|
}
|
|
|
|
// called by parse_number when we know that the output is an integer,
|
|
// but where there might be some integer overflow.
|
|
// we want to catch overflows!
|
|
// Do not call this function directly as it skips some of the checks from
|
|
// parse_number
|
|
//
|
|
// This function will almost never be called!!!
|
|
//
|
|
template<typename W>
|
|
never_inline bool parse_large_integer(const uint8_t *const src,
|
|
W writer,
|
|
bool found_minus) {
|
|
const char *p = reinterpret_cast<const char *>(src);
|
|
|
|
bool negative = false;
|
|
if (found_minus) {
|
|
++p;
|
|
negative = true;
|
|
}
|
|
uint64_t i;
|
|
if (*p == '0') { // 0 cannot be followed by an integer
|
|
++p;
|
|
i = 0;
|
|
} else {
|
|
unsigned char digit = static_cast<unsigned char>(*p - '0');
|
|
i = digit;
|
|
p++;
|
|
// the is_made_of_eight_digits_fast routine is unlikely to help here because
|
|
// we rarely see large integer parts like 123456789
|
|
while (is_integer(*p)) {
|
|
digit = static_cast<unsigned char>(*p - '0');
|
|
if (mul_overflow(i, 10, &i)) {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false; // overflow
|
|
}
|
|
if (add_overflow(i, digit, &i)) {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false; // overflow
|
|
}
|
|
++p;
|
|
}
|
|
}
|
|
if (negative) {
|
|
if (i > 0x8000000000000000) {
|
|
// overflows!
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false; // overflow
|
|
} else if (i == 0x8000000000000000) {
|
|
// In two's complement, we cannot represent 0x8000000000000000
|
|
// as a positive signed integer, but the negative version is
|
|
// possible.
|
|
constexpr int64_t signed_answer = INT64_MIN;
|
|
writer.append_s64(signed_answer);
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_integer(signed_answer, src);
|
|
#endif
|
|
} else {
|
|
// we can negate safely
|
|
int64_t signed_answer = -static_cast<int64_t>(i);
|
|
writer.append_s64(signed_answer);
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_integer(signed_answer, src);
|
|
#endif
|
|
}
|
|
} else {
|
|
// we have a positive integer, the contract is that
|
|
// we try to represent it as a signed integer and only
|
|
// fallback on unsigned integers if absolutely necessary.
|
|
if (i < 0x8000000000000000) {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_integer(i, src);
|
|
#endif
|
|
writer.append_s64(i);
|
|
} else {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_unsigned_integer(i, src);
|
|
#endif
|
|
writer.append_u64(i);
|
|
}
|
|
}
|
|
return is_structural_or_whitespace(*p);
|
|
}
|
|
|
|
template<typename W>
|
|
bool slow_float_parsing(UNUSED const char * src, W writer) {
|
|
double d;
|
|
if (parse_float_strtod(src, &d)) {
|
|
writer.append_double(d);
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_float(d, (const uint8_t *)src);
|
|
#endif
|
|
return true;
|
|
}
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number((const uint8_t *)src);
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
// parse the number at src
|
|
// define JSON_TEST_NUMBERS for unit testing
|
|
//
|
|
// It is assumed that the number is followed by a structural ({,},],[) character
|
|
// or a white space character. If that is not the case (e.g., when the JSON
|
|
// document is made of a single number), then it is necessary to copy the
|
|
// content and append a space before calling this function.
|
|
//
|
|
// Our objective is accurate parsing (ULP of 0) at high speed.
|
|
template<typename W>
|
|
really_inline bool parse_number(UNUSED const uint8_t *const src,
|
|
UNUSED bool found_minus,
|
|
W &writer) {
|
|
#ifdef SIMDJSON_SKIPNUMBERPARSING // for performance analysis, it is sometimes
|
|
// useful to skip parsing
|
|
writer.append_s64(0); // always write zero
|
|
return true; // always succeeds
|
|
#else
|
|
const char *p = reinterpret_cast<const char *>(src);
|
|
bool negative = false;
|
|
if (found_minus) {
|
|
++p;
|
|
negative = true;
|
|
if (!is_integer(*p)) { // a negative sign must be followed by an integer
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
}
|
|
const char *const start_digits = p;
|
|
|
|
uint64_t i; // an unsigned int avoids signed overflows (which are bad)
|
|
if (*p == '0') { // 0 cannot be followed by an integer
|
|
++p;
|
|
if (is_integer(*p)) {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
i = 0;
|
|
} else {
|
|
if (!(is_integer(*p))) { // must start with an integer
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
unsigned char digit = static_cast<unsigned char>(*p - '0');
|
|
i = digit;
|
|
p++;
|
|
// the is_made_of_eight_digits_fast routine is unlikely to help here because
|
|
// we rarely see large integer parts like 123456789
|
|
while (is_integer(*p)) {
|
|
digit = static_cast<unsigned char>(*p - '0');
|
|
// a multiplication by 10 is cheaper than an arbitrary integer
|
|
// multiplication
|
|
i = 10 * i + digit; // might overflow, we will handle the overflow later
|
|
++p;
|
|
}
|
|
}
|
|
int64_t exponent = 0;
|
|
bool is_float = false;
|
|
if ('.' == *p) {
|
|
is_float = true; // At this point we know that we have a float
|
|
// we continue with the fiction that we have an integer. If the
|
|
// floating point number is representable as x * 10^z for some integer
|
|
// z that fits in 53 bits, then we will be able to convert back the
|
|
// the integer into a float in a lossless manner.
|
|
++p;
|
|
const char *const first_after_period = p;
|
|
if (is_integer(*p)) {
|
|
unsigned char digit = static_cast<unsigned char>(*p - '0');
|
|
++p;
|
|
i = i * 10 + digit; // might overflow + multiplication by 10 is likely
|
|
// cheaper than arbitrary mult.
|
|
// we will handle the overflow later
|
|
} else {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
#ifdef SWAR_NUMBER_PARSING
|
|
// this helps if we have lots of decimals!
|
|
// this turns out to be frequent enough.
|
|
if (is_made_of_eight_digits_fast(p)) {
|
|
i = i * 100000000 + parse_eight_digits_unrolled(p);
|
|
p += 8;
|
|
}
|
|
#endif
|
|
while (is_integer(*p)) {
|
|
unsigned char digit = static_cast<unsigned char>(*p - '0');
|
|
++p;
|
|
i = i * 10 + digit; // in rare cases, this will overflow, but that's ok
|
|
// because we have parse_highprecision_float later.
|
|
}
|
|
exponent = first_after_period - p;
|
|
}
|
|
int digit_count =
|
|
int(p - start_digits) - 1; // used later to guard against overflows
|
|
int64_t exp_number = 0; // exponential part
|
|
if (('e' == *p) || ('E' == *p)) {
|
|
is_float = true;
|
|
++p;
|
|
bool neg_exp = false;
|
|
if ('-' == *p) {
|
|
neg_exp = true;
|
|
++p;
|
|
} else if ('+' == *p) {
|
|
++p;
|
|
}
|
|
if (!is_integer(*p)) {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
unsigned char digit = static_cast<unsigned char>(*p - '0');
|
|
exp_number = digit;
|
|
p++;
|
|
if (is_integer(*p)) {
|
|
digit = static_cast<unsigned char>(*p - '0');
|
|
exp_number = 10 * exp_number + digit;
|
|
++p;
|
|
}
|
|
if (is_integer(*p)) {
|
|
digit = static_cast<unsigned char>(*p - '0');
|
|
exp_number = 10 * exp_number + digit;
|
|
++p;
|
|
}
|
|
while (is_integer(*p)) {
|
|
if (exp_number > 0x100000000) { // we need to check for overflows
|
|
// we refuse to parse this
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
digit = static_cast<unsigned char>(*p - '0');
|
|
exp_number = 10 * exp_number + digit;
|
|
++p;
|
|
}
|
|
exponent += (neg_exp ? -exp_number : exp_number);
|
|
}
|
|
if (is_float) {
|
|
// If we frequently had to deal with long strings of digits,
|
|
// we could extend our code by using a 128-bit integer instead
|
|
// of a 64-bit integer. However, this is uncommon in practice.
|
|
if (unlikely((digit_count >= 19))) { // this is uncommon
|
|
// It is possible that the integer had an overflow.
|
|
// We have to handle the case where we have 0.0000somenumber.
|
|
const char *start = start_digits;
|
|
while ((*start == '0') || (*start == '.')) {
|
|
start++;
|
|
}
|
|
// we over-decrement by one when there is a '.'
|
|
digit_count -= int(start - start_digits);
|
|
if (digit_count >= 19) {
|
|
// Ok, chances are good that we had an overflow!
|
|
// this is almost never going to get called!!!
|
|
// we start anew, going slowly!!!
|
|
// This will happen in the following examples:
|
|
// 10000000000000000000000000000000000000000000e+308
|
|
// 3.1415926535897932384626433832795028841971693993751
|
|
//
|
|
bool success = slow_float_parsing((const char *) src, writer);
|
|
// The number was already written, but we made a copy of the writer
|
|
// when we passed it to the parse_large_integer() function, so
|
|
writer.skip_double();
|
|
return success;
|
|
}
|
|
}
|
|
if (unlikely(exponent < FASTFLOAT_SMALLEST_POWER) ||
|
|
(exponent > FASTFLOAT_LARGEST_POWER)) { // this is uncommon!!!
|
|
// this is almost never going to get called!!!
|
|
// we start anew, going slowly!!!
|
|
bool success = slow_float_parsing((const char *) src, writer);
|
|
// The number was already written, but we made a copy of the writer when we passed it to the
|
|
// slow_float_parsing() function, so we have to skip those tape spots now that we've returned
|
|
writer.skip_double();
|
|
return success;
|
|
}
|
|
bool success = true;
|
|
double d = compute_float_64(exponent, i, negative, &success);
|
|
if (!success) {
|
|
// we are almost never going to get here.
|
|
success = parse_float_strtod((const char *)src, &d);
|
|
}
|
|
if (success) {
|
|
writer.append_double(d);
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_float(d, src);
|
|
#endif
|
|
return true;
|
|
} else {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
} else {
|
|
if (unlikely(digit_count >= 18)) { // this is uncommon!!!
|
|
// there is a good chance that we had an overflow, so we need
|
|
// need to recover: we parse the whole thing again.
|
|
bool success = parse_large_integer(src, writer, found_minus);
|
|
// The number was already written, but we made a copy of the writer
|
|
// when we passed it to the parse_large_integer() function, so
|
|
writer.skip_large_integer();
|
|
return success;
|
|
}
|
|
i = negative ? 0 - i : i;
|
|
writer.append_s64(i);
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_integer(i, src);
|
|
#endif
|
|
}
|
|
return is_structural_or_whitespace(*p);
|
|
#endif // SIMDJSON_SKIPNUMBERPARSING
|
|
}
|
|
|
|
} // namespace numberparsing
|
|
} // namespace stage2
|
|
/* end file src/generic/stage2/numberparsing.h */
|
|
|
|
} // namespace arm64
|
|
} // namespace simdjson
|
|
|
|
#endif // SIMDJSON_ARM64_NUMBERPARSING_H
|
|
/* end file src/generic/stage2/numberparsing.h */
|
|
|
|
namespace simdjson {
|
|
namespace arm64 {
|
|
|
|
/* begin file src/generic/stage2/logger.h */
|
|
// This is for an internal-only stage 2 specific logger.
|
|
// Set LOG_ENABLED = true to log what stage 2 is doing!
|
|
namespace logger {
|
|
static constexpr const char * DASHES = "----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------";
|
|
|
|
static constexpr const bool LOG_ENABLED = false;
|
|
static constexpr const int LOG_EVENT_LEN = 30;
|
|
static constexpr const int LOG_BUFFER_LEN = 20;
|
|
static constexpr const int LOG_DETAIL_LEN = 50;
|
|
static constexpr const int LOG_INDEX_LEN = 10;
|
|
|
|
static int log_depth; // Not threadsafe. Log only.
|
|
|
|
// Helper to turn unprintable or newline characters into spaces
|
|
static really_inline char printable_char(char c) {
|
|
if (c >= 0x20) {
|
|
return c;
|
|
} else {
|
|
return ' ';
|
|
}
|
|
}
|
|
|
|
// Print the header and set up log_start
|
|
static really_inline void log_start() {
|
|
if (LOG_ENABLED) {
|
|
log_depth = 0;
|
|
printf("\n");
|
|
printf("| %-*s | %-*s | %*s | %*s | %*s | %-*s | %-*s | %-*s |\n", LOG_EVENT_LEN, "Event", LOG_BUFFER_LEN, "Buffer", 4, "Curr", 4, "Next", 5, "Next#", 5, "Tape#", LOG_DETAIL_LEN, "Detail", LOG_INDEX_LEN, "index");
|
|
printf("|%.*s|%.*s|%.*s|%.*s|%.*s|%.*s|%.*s|%.*s|\n", LOG_EVENT_LEN+2, DASHES, LOG_BUFFER_LEN+2, DASHES, 4+2, DASHES, 4+2, DASHES, 5+2, DASHES, 5+2, DASHES, LOG_DETAIL_LEN+2, DASHES, LOG_INDEX_LEN+2, DASHES);
|
|
}
|
|
}
|
|
|
|
static really_inline void log_string(const char *message) {
|
|
if (LOG_ENABLED) {
|
|
printf("%s\n", message);
|
|
}
|
|
}
|
|
|
|
// Logs a single line of
|
|
template<typename S>
|
|
static really_inline void log_line(S &structurals, const char *title_prefix, const char *title, const char *detail) {
|
|
if (LOG_ENABLED) {
|
|
printf("| %*s%s%-*s ", log_depth*2, "", title_prefix, LOG_EVENT_LEN - log_depth*2 - int(strlen(title_prefix)), title);
|
|
{
|
|
// Print the next N characters in the buffer.
|
|
printf("| ");
|
|
// Otherwise, print the characters starting from the buffer position.
|
|
// Print spaces for unprintable or newline characters.
|
|
for (int i=0;i<LOG_BUFFER_LEN;i++) {
|
|
printf("%c", printable_char(structurals.current()[i]));
|
|
}
|
|
printf(" ");
|
|
}
|
|
printf("| %c ", printable_char(structurals.current_char()));
|
|
printf("| %c ", printable_char(structurals.peek_next_char()));
|
|
printf("| %5u ", structurals.parser.structural_indexes[*(structurals.current_structural+1)]);
|
|
printf("| %5u ", structurals.next_tape_index());
|
|
printf("| %-*s ", LOG_DETAIL_LEN, detail);
|
|
printf("| %*u ", LOG_INDEX_LEN, *structurals.current_structural);
|
|
printf("|\n");
|
|
}
|
|
}
|
|
} // namespace logger
|
|
|
|
/* end file src/generic/stage2/logger.h */
|
|
/* begin file src/generic/stage2/atomparsing.h */
|
|
namespace stage2 {
|
|
namespace atomparsing {
|
|
|
|
really_inline uint32_t string_to_uint32(const char* str) { return *reinterpret_cast<const uint32_t *>(str); }
|
|
|
|
WARN_UNUSED
|
|
really_inline uint32_t str4ncmp(const uint8_t *src, const char* atom) {
|
|
uint32_t srcval; // we want to avoid unaligned 64-bit loads (undefined in C/C++)
|
|
static_assert(sizeof(uint32_t) <= SIMDJSON_PADDING, "SIMDJSON_PADDING must be larger than 4 bytes");
|
|
std::memcpy(&srcval, src, sizeof(uint32_t));
|
|
return srcval ^ string_to_uint32(atom);
|
|
}
|
|
|
|
WARN_UNUSED
|
|
really_inline bool is_valid_true_atom(const uint8_t *src) {
|
|
return (str4ncmp(src, "true") | is_not_structural_or_whitespace(src[4])) == 0;
|
|
}
|
|
|
|
WARN_UNUSED
|
|
really_inline bool is_valid_true_atom(const uint8_t *src, size_t len) {
|
|
if (len > 4) { return is_valid_true_atom(src); }
|
|
else if (len == 4) { return !str4ncmp(src, "true"); }
|
|
else { return false; }
|
|
}
|
|
|
|
WARN_UNUSED
|
|
really_inline bool is_valid_false_atom(const uint8_t *src) {
|
|
return (str4ncmp(src+1, "alse") | is_not_structural_or_whitespace(src[5])) == 0;
|
|
}
|
|
|
|
WARN_UNUSED
|
|
really_inline bool is_valid_false_atom(const uint8_t *src, size_t len) {
|
|
if (len > 5) { return is_valid_false_atom(src); }
|
|
else if (len == 5) { return !str4ncmp(src+1, "alse"); }
|
|
else { return false; }
|
|
}
|
|
|
|
WARN_UNUSED
|
|
really_inline bool is_valid_null_atom(const uint8_t *src) {
|
|
return (str4ncmp(src, "null") | is_not_structural_or_whitespace(src[4])) == 0;
|
|
}
|
|
|
|
WARN_UNUSED
|
|
really_inline bool is_valid_null_atom(const uint8_t *src, size_t len) {
|
|
if (len > 4) { return is_valid_null_atom(src); }
|
|
else if (len == 4) { return !str4ncmp(src, "null"); }
|
|
else { return false; }
|
|
}
|
|
|
|
} // namespace atomparsing
|
|
} // namespace stage2
|
|
/* end file src/generic/stage2/atomparsing.h */
|
|
/* begin file src/generic/stage2/structural_iterator.h */
|
|
namespace stage2 {
|
|
|
|
class structural_iterator {
|
|
public:
|
|
const uint8_t* const buf;
|
|
uint32_t *current_structural;
|
|
dom_parser_implementation &parser;
|
|
|
|
// Start a structural
|
|
really_inline structural_iterator(dom_parser_implementation &_parser, size_t start_structural_index)
|
|
: buf{_parser.buf},
|
|
current_structural{&_parser.structural_indexes[start_structural_index]},
|
|
parser{_parser} {
|
|
}
|
|
// Get the buffer position of the current structural character
|
|
really_inline const uint8_t* current() {
|
|
return &buf[*current_structural];
|
|
}
|
|
// Get the current structural character
|
|
really_inline char current_char() {
|
|
return buf[*current_structural];
|
|
}
|
|
// Get the next structural character without advancing
|
|
really_inline char peek_next_char() {
|
|
return buf[*(current_structural+1)];
|
|
}
|
|
really_inline char advance_char() {
|
|
current_structural++;
|
|
return buf[*current_structural];
|
|
}
|
|
really_inline size_t remaining_len() {
|
|
return parser.len - *current_structural;
|
|
}
|
|
template<typename F>
|
|
really_inline bool with_space_terminated_copy(const F& f) {
|
|
/**
|
|
* We need to make a copy to make sure that the string is space terminated.
|
|
* This is not about padding the input, which should already padded up
|
|
* to len + SIMDJSON_PADDING. However, we have no control at this stage
|
|
* on how the padding was done. What if the input string was padded with nulls?
|
|
* It is quite common for an input string to have an extra null character (C string).
|
|
* We do not want to allow 9\0 (where \0 is the null character) inside a JSON
|
|
* document, but the string "9\0" by itself is fine. So we make a copy and
|
|
* pad the input with spaces when we know that there is just one input element.
|
|
* This copy is relatively expensive, but it will almost never be called in
|
|
* practice unless you are in the strange scenario where you have many JSON
|
|
* documents made of single atoms.
|
|
*/
|
|
char *copy = static_cast<char *>(malloc(parser.len + SIMDJSON_PADDING));
|
|
if (copy == nullptr) {
|
|
return true;
|
|
}
|
|
memcpy(copy, buf, parser.len);
|
|
memset(copy + parser.len, ' ', SIMDJSON_PADDING);
|
|
bool result = f(reinterpret_cast<const uint8_t*>(copy), *current_structural);
|
|
free(copy);
|
|
return result;
|
|
}
|
|
really_inline bool past_end(uint32_t n_structural_indexes) {
|
|
return current_structural >= &parser.structural_indexes[n_structural_indexes];
|
|
}
|
|
really_inline bool at_end(uint32_t n_structural_indexes) {
|
|
return current_structural == &parser.structural_indexes[n_structural_indexes];
|
|
}
|
|
really_inline bool at_beginning() {
|
|
return current_structural == parser.structural_indexes.get();
|
|
}
|
|
};
|
|
|
|
} // namespace stage2
|
|
/* end file src/generic/stage2/structural_iterator.h */
|
|
/* begin file src/generic/stage2/structural_parser.h */
|
|
// This file contains the common code every implementation uses for stage2
|
|
// It is intended to be included multiple times and compiled multiple times
|
|
// We assume the file in which it is include already includes
|
|
// "simdjson/stage2.h" (this simplifies amalgation)
|
|
|
|
namespace stage2 {
|
|
namespace { // Make everything here private
|
|
|
|
/* begin file src/generic/stage2/tape_writer.h */
|
|
struct tape_writer {
|
|
/** The next place to write to tape */
|
|
uint64_t *next_tape_loc;
|
|
|
|
/** Write a signed 64-bit value to tape. */
|
|
really_inline void append_s64(int64_t value) noexcept;
|
|
|
|
/** Write an unsigned 64-bit value to tape. */
|
|
really_inline void append_u64(uint64_t value) noexcept;
|
|
|
|
/** Write a double value to tape. */
|
|
really_inline void append_double(double value) noexcept;
|
|
|
|
/**
|
|
* Append a tape entry (an 8-bit type,and 56 bits worth of value).
|
|
*/
|
|
really_inline void append(uint64_t val, internal::tape_type t) noexcept;
|
|
|
|
/**
|
|
* Skip the current tape entry without writing.
|
|
*
|
|
* Used to skip the start of the container, since we'll come back later to fill it in when the
|
|
* container ends.
|
|
*/
|
|
really_inline void skip() noexcept;
|
|
|
|
/**
|
|
* Skip the number of tape entries necessary to write a large u64 or i64.
|
|
*/
|
|
really_inline void skip_large_integer() noexcept;
|
|
|
|
/**
|
|
* Skip the number of tape entries necessary to write a double.
|
|
*/
|
|
really_inline void skip_double() noexcept;
|
|
|
|
/**
|
|
* Write a value to a known location on tape.
|
|
*
|
|
* Used to go back and write out the start of a container after the container ends.
|
|
*/
|
|
really_inline static void write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept;
|
|
|
|
private:
|
|
/**
|
|
* Append both the tape entry, and a supplementary value following it. Used for types that need
|
|
* all 64 bits, such as double and uint64_t.
|
|
*/
|
|
template<typename T>
|
|
really_inline void append2(uint64_t val, T val2, internal::tape_type t) noexcept;
|
|
}; // struct number_writer
|
|
|
|
really_inline void tape_writer::append_s64(int64_t value) noexcept {
|
|
append2(0, value, internal::tape_type::INT64);
|
|
}
|
|
|
|
really_inline void tape_writer::append_u64(uint64_t value) noexcept {
|
|
append(0, internal::tape_type::UINT64);
|
|
*next_tape_loc = value;
|
|
next_tape_loc++;
|
|
}
|
|
|
|
/** Write a double value to tape. */
|
|
really_inline void tape_writer::append_double(double value) noexcept {
|
|
append2(0, value, internal::tape_type::DOUBLE);
|
|
}
|
|
|
|
really_inline void tape_writer::skip() noexcept {
|
|
next_tape_loc++;
|
|
}
|
|
|
|
really_inline void tape_writer::skip_large_integer() noexcept {
|
|
next_tape_loc += 2;
|
|
}
|
|
|
|
really_inline void tape_writer::skip_double() noexcept {
|
|
next_tape_loc += 2;
|
|
}
|
|
|
|
really_inline void tape_writer::append(uint64_t val, internal::tape_type t) noexcept {
|
|
*next_tape_loc = val | ((uint64_t(char(t))) << 56);
|
|
next_tape_loc++;
|
|
}
|
|
|
|
template<typename T>
|
|
really_inline void tape_writer::append2(uint64_t val, T val2, internal::tape_type t) noexcept {
|
|
append(val, t);
|
|
static_assert(sizeof(val2) == sizeof(*next_tape_loc), "Type is not 64 bits!");
|
|
memcpy(next_tape_loc, &val2, sizeof(val2));
|
|
next_tape_loc++;
|
|
}
|
|
|
|
really_inline void tape_writer::write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept {
|
|
tape_loc = val | ((uint64_t(char(t))) << 56);
|
|
}
|
|
/* end file src/generic/stage2/tape_writer.h */
|
|
|
|
#ifdef SIMDJSON_USE_COMPUTED_GOTO
|
|
#define INIT_ADDRESSES() { &&array_begin, &&array_continue, &&error, &&finish, &&object_begin, &&object_continue }
|
|
#define GOTO(address) { goto *(address); }
|
|
#define CONTINUE(address) { goto *(address); }
|
|
#else // SIMDJSON_USE_COMPUTED_GOTO
|
|
#define INIT_ADDRESSES() { '[', 'a', 'e', 'f', '{', 'o' };
|
|
#define GOTO(address) \
|
|
{ \
|
|
switch(address) { \
|
|
case '[': goto array_begin; \
|
|
case 'a': goto array_continue; \
|
|
case 'e': goto error; \
|
|
case 'f': goto finish; \
|
|
case '{': goto object_begin; \
|
|
case 'o': goto object_continue; \
|
|
} \
|
|
}
|
|
// For the more constrained end_xxx() situation
|
|
#define CONTINUE(address) \
|
|
{ \
|
|
switch(address) { \
|
|
case 'a': goto array_continue; \
|
|
case 'o': goto object_continue; \
|
|
case 'f': goto finish; \
|
|
} \
|
|
}
|
|
#endif // SIMDJSON_USE_COMPUTED_GOTO
|
|
|
|
struct unified_machine_addresses {
|
|
ret_address_t array_begin;
|
|
ret_address_t array_continue;
|
|
ret_address_t error;
|
|
ret_address_t finish;
|
|
ret_address_t object_begin;
|
|
ret_address_t object_continue;
|
|
};
|
|
|
|
#undef FAIL_IF
|
|
#define FAIL_IF(EXPR) { if (EXPR) { return addresses.error; } }
|
|
|
|
struct structural_parser : structural_iterator {
|
|
/** Lets you append to the tape */
|
|
tape_writer tape;
|
|
/** Next write location in the string buf for stage 2 parsing */
|
|
uint8_t *current_string_buf_loc;
|
|
/** Current depth (nested objects and arrays) */
|
|
uint32_t depth{0};
|
|
|
|
// For non-streaming, to pass an explicit 0 as next_structural, which enables optimizations
|
|
really_inline structural_parser(dom_parser_implementation &_parser, uint32_t start_structural_index)
|
|
: structural_iterator(_parser, start_structural_index),
|
|
tape{parser.doc->tape.get()},
|
|
current_string_buf_loc{parser.doc->string_buf.get()} {
|
|
}
|
|
|
|
WARN_UNUSED really_inline bool start_scope(ret_address_t continue_state) {
|
|
parser.containing_scope[depth].tape_index = next_tape_index();
|
|
parser.containing_scope[depth].count = 0;
|
|
tape.skip(); // We don't actually *write* the start element until the end.
|
|
parser.ret_address[depth] = continue_state;
|
|
depth++;
|
|
bool exceeded_max_depth = depth >= parser.max_depth();
|
|
if (exceeded_max_depth) { log_error("Exceeded max depth!"); }
|
|
return exceeded_max_depth;
|
|
}
|
|
|
|
WARN_UNUSED really_inline bool start_document(ret_address_t continue_state) {
|
|
log_start_value("document");
|
|
return start_scope(continue_state);
|
|
}
|
|
|
|
WARN_UNUSED really_inline bool start_object(ret_address_t continue_state) {
|
|
log_start_value("object");
|
|
return start_scope(continue_state);
|
|
}
|
|
|
|
WARN_UNUSED really_inline bool start_array(ret_address_t continue_state) {
|
|
log_start_value("array");
|
|
return start_scope(continue_state);
|
|
}
|
|
|
|
// this function is responsible for annotating the start of the scope
|
|
really_inline void end_scope(internal::tape_type start, internal::tape_type end) noexcept {
|
|
depth--;
|
|
// write our doc->tape location to the header scope
|
|
// The root scope gets written *at* the previous location.
|
|
tape.append(parser.containing_scope[depth].tape_index, end);
|
|
// count can overflow if it exceeds 24 bits... so we saturate
|
|
// the convention being that a cnt of 0xffffff or more is undetermined in value (>= 0xffffff).
|
|
const uint32_t start_tape_index = parser.containing_scope[depth].tape_index;
|
|
const uint32_t count = parser.containing_scope[depth].count;
|
|
const uint32_t cntsat = count > 0xFFFFFF ? 0xFFFFFF : count;
|
|
// This is a load and an OR. It would be possible to just write once at doc->tape[d.tape_index]
|
|
tape_writer::write(parser.doc->tape[start_tape_index], next_tape_index() | (uint64_t(cntsat) << 32), start);
|
|
}
|
|
|
|
really_inline uint32_t next_tape_index() {
|
|
return uint32_t(tape.next_tape_loc - parser.doc->tape.get());
|
|
}
|
|
|
|
really_inline void end_object() {
|
|
log_end_value("object");
|
|
end_scope(internal::tape_type::START_OBJECT, internal::tape_type::END_OBJECT);
|
|
}
|
|
really_inline void end_array() {
|
|
log_end_value("array");
|
|
end_scope(internal::tape_type::START_ARRAY, internal::tape_type::END_ARRAY);
|
|
}
|
|
really_inline void end_document() {
|
|
log_end_value("document");
|
|
end_scope(internal::tape_type::ROOT, internal::tape_type::ROOT);
|
|
}
|
|
|
|
// increment_count increments the count of keys in an object or values in an array.
|
|
// Note that if you are at the level of the values or elements, the count
|
|
// must be increment in the preceding depth (depth-1) where the array or
|
|
// the object resides.
|
|
really_inline void increment_count() {
|
|
parser.containing_scope[depth - 1].count++; // we have a key value pair in the object at parser.depth - 1
|
|
}
|
|
|
|
really_inline uint8_t *on_start_string() noexcept {
|
|
// we advance the point, accounting for the fact that we have a NULL termination
|
|
tape.append(current_string_buf_loc - parser.doc->string_buf.get(), internal::tape_type::STRING);
|
|
return current_string_buf_loc + sizeof(uint32_t);
|
|
}
|
|
|
|
really_inline void on_end_string(uint8_t *dst) noexcept {
|
|
uint32_t str_length = uint32_t(dst - (current_string_buf_loc + sizeof(uint32_t)));
|
|
// TODO check for overflow in case someone has a crazy string (>=4GB?)
|
|
// But only add the overflow check when the document itself exceeds 4GB
|
|
// Currently unneeded because we refuse to parse docs larger or equal to 4GB.
|
|
memcpy(current_string_buf_loc, &str_length, sizeof(uint32_t));
|
|
// NULL termination is still handy if you expect all your strings to
|
|
// be NULL terminated? It comes at a small cost
|
|
*dst = 0;
|
|
current_string_buf_loc = dst + 1;
|
|
}
|
|
|
|
WARN_UNUSED really_inline bool parse_string(bool key = false) {
|
|
log_value(key ? "key" : "string");
|
|
uint8_t *dst = on_start_string();
|
|
dst = stringparsing::parse_string(current(), dst);
|
|
if (dst == nullptr) {
|
|
log_error("Invalid escape in string");
|
|
return true;
|
|
}
|
|
on_end_string(dst);
|
|
return false;
|
|
}
|
|
|
|
WARN_UNUSED really_inline bool parse_number(const uint8_t *src, bool found_minus) {
|
|
log_value("number");
|
|
bool succeeded = numberparsing::parse_number(src, found_minus, tape);
|
|
if (!succeeded) { log_error("Invalid number"); }
|
|
return !succeeded;
|
|
}
|
|
WARN_UNUSED really_inline bool parse_number(bool found_minus) {
|
|
return parse_number(current(), found_minus);
|
|
}
|
|
|
|
WARN_UNUSED really_inline ret_address_t parse_value(const unified_machine_addresses &addresses, ret_address_t continue_state) {
|
|
switch (advance_char()) {
|
|
case '"':
|
|
FAIL_IF( parse_string() );
|
|
return continue_state;
|
|
case 't':
|
|
log_value("true");
|
|
FAIL_IF( !atomparsing::is_valid_true_atom(current()) );
|
|
tape.append(0, internal::tape_type::TRUE_VALUE);
|
|
return continue_state;
|
|
case 'f':
|
|
log_value("false");
|
|
FAIL_IF( !atomparsing::is_valid_false_atom(current()) );
|
|
tape.append(0, internal::tape_type::FALSE_VALUE);
|
|
return continue_state;
|
|
case 'n':
|
|
log_value("null");
|
|
FAIL_IF( !atomparsing::is_valid_null_atom(current()) );
|
|
tape.append(0, internal::tape_type::NULL_VALUE);
|
|
return continue_state;
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
FAIL_IF( parse_number(false) );
|
|
return continue_state;
|
|
case '-':
|
|
FAIL_IF( parse_number(true) );
|
|
return continue_state;
|
|
case '{':
|
|
FAIL_IF( start_object(continue_state) );
|
|
return addresses.object_begin;
|
|
case '[':
|
|
FAIL_IF( start_array(continue_state) );
|
|
return addresses.array_begin;
|
|
default:
|
|
log_error("Non-value found when value was expected!");
|
|
return addresses.error;
|
|
}
|
|
}
|
|
|
|
WARN_UNUSED really_inline error_code finish() {
|
|
end_document();
|
|
parser.next_structural_index = uint32_t(current_structural + 1 - &parser.structural_indexes[0]);
|
|
|
|
if (depth != 0) {
|
|
log_error("Unclosed objects or arrays!");
|
|
return parser.error = TAPE_ERROR;
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
WARN_UNUSED really_inline error_code error() {
|
|
/* We do not need the next line because this is done by parser.init_stage2(),
|
|
* pessimistically.
|
|
* parser.is_valid = false;
|
|
* At this point in the code, we have all the time in the world.
|
|
* Note that we know exactly where we are in the document so we could,
|
|
* without any overhead on the processing code, report a specific
|
|
* location.
|
|
* We could even trigger special code paths to assess what happened
|
|
* carefully,
|
|
* all without any added cost. */
|
|
if (depth >= parser.max_depth()) {
|
|
return parser.error = DEPTH_ERROR;
|
|
}
|
|
switch (current_char()) {
|
|
case '"':
|
|
return parser.error = STRING_ERROR;
|
|
case '0':
|
|
case '1':
|
|
case '2':
|
|
case '3':
|
|
case '4':
|
|
case '5':
|
|
case '6':
|
|
case '7':
|
|
case '8':
|
|
case '9':
|
|
case '-':
|
|
return parser.error = NUMBER_ERROR;
|
|
case 't':
|
|
return parser.error = T_ATOM_ERROR;
|
|
case 'n':
|
|
return parser.error = N_ATOM_ERROR;
|
|
case 'f':
|
|
return parser.error = F_ATOM_ERROR;
|
|
default:
|
|
return parser.error = TAPE_ERROR;
|
|
}
|
|
}
|
|
|
|
really_inline void init() {
|
|
log_start();
|
|
parser.error = UNINITIALIZED;
|
|
}
|
|
|
|
WARN_UNUSED really_inline error_code start(ret_address_t finish_state) {
|
|
// If there are no structurals left, return EMPTY
|
|
if (at_end(parser.n_structural_indexes)) {
|
|
return parser.error = EMPTY;
|
|
}
|
|
|
|
init();
|
|
// Push the root scope (there is always at least one scope)
|
|
if (start_document(finish_state)) {
|
|
return parser.error = DEPTH_ERROR;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
really_inline void log_value(const char *type) {
|
|
logger::log_line(*this, "", type, "");
|
|
}
|
|
|
|
static really_inline void log_start() {
|
|
logger::log_start();
|
|
}
|
|
|
|
really_inline void log_start_value(const char *type) {
|
|
logger::log_line(*this, "+", type, "");
|
|
if (logger::LOG_ENABLED) { logger::log_depth++; }
|
|
}
|
|
|
|
really_inline void log_end_value(const char *type) {
|
|
if (logger::LOG_ENABLED) { logger::log_depth--; }
|
|
logger::log_line(*this, "-", type, "");
|
|
}
|
|
|
|
really_inline void log_error(const char *error) {
|
|
logger::log_line(*this, "", "ERROR", error);
|
|
}
|
|
}; // struct structural_parser
|
|
|
|
// Redefine FAIL_IF to use goto since it'll be used inside the function now
|
|
#undef FAIL_IF
|
|
#define FAIL_IF(EXPR) { if (EXPR) { goto error; } }
|
|
|
|
template<bool STREAMING>
|
|
WARN_UNUSED static error_code parse_structurals(dom_parser_implementation &dom_parser, dom::document &doc) noexcept {
|
|
dom_parser.doc = &doc;
|
|
static constexpr stage2::unified_machine_addresses addresses = INIT_ADDRESSES();
|
|
stage2::structural_parser parser(dom_parser, STREAMING ? dom_parser.next_structural_index : 0);
|
|
error_code result = parser.start(addresses.finish);
|
|
if (result) { return result; }
|
|
|
|
//
|
|
// Read first value
|
|
//
|
|
switch (parser.current_char()) {
|
|
case '{':
|
|
FAIL_IF( parser.start_object(addresses.finish) );
|
|
goto object_begin;
|
|
case '[':
|
|
FAIL_IF( parser.start_array(addresses.finish) );
|
|
// Make sure the outer array is closed before continuing; otherwise, there are ways we could get
|
|
// into memory corruption. See https://github.com/simdjson/simdjson/issues/906
|
|
if (!STREAMING) {
|
|
if (parser.buf[dom_parser.structural_indexes[dom_parser.n_structural_indexes - 1]] != ']') {
|
|
goto error;
|
|
}
|
|
}
|
|
goto array_begin;
|
|
case '"':
|
|
FAIL_IF( parser.parse_string() );
|
|
goto finish;
|
|
case 't':
|
|
parser.log_value("true");
|
|
FAIL_IF( !atomparsing::is_valid_true_atom(parser.current(), parser.remaining_len()) );
|
|
parser.tape.append(0, internal::tape_type::TRUE_VALUE);
|
|
goto finish;
|
|
case 'f':
|
|
parser.log_value("false");
|
|
FAIL_IF( !atomparsing::is_valid_false_atom(parser.current(), parser.remaining_len()) );
|
|
parser.tape.append(0, internal::tape_type::FALSE_VALUE);
|
|
goto finish;
|
|
case 'n':
|
|
parser.log_value("null");
|
|
FAIL_IF( !atomparsing::is_valid_null_atom(parser.current(), parser.remaining_len()) );
|
|
parser.tape.append(0, internal::tape_type::NULL_VALUE);
|
|
goto finish;
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
FAIL_IF(
|
|
parser.with_space_terminated_copy([&](const uint8_t *copy, size_t idx) {
|
|
return parser.parse_number(©[idx], false);
|
|
})
|
|
);
|
|
goto finish;
|
|
case '-':
|
|
FAIL_IF(
|
|
parser.with_space_terminated_copy([&](const uint8_t *copy, size_t idx) {
|
|
return parser.parse_number(©[idx], true);
|
|
})
|
|
);
|
|
goto finish;
|
|
default:
|
|
parser.log_error("Document starts with a non-value character");
|
|
goto error;
|
|
}
|
|
|
|
//
|
|
// Object parser states
|
|
//
|
|
object_begin:
|
|
switch (parser.advance_char()) {
|
|
case '"': {
|
|
parser.increment_count();
|
|
FAIL_IF( parser.parse_string(true) );
|
|
goto object_key_state;
|
|
}
|
|
case '}':
|
|
parser.end_object();
|
|
goto scope_end;
|
|
default:
|
|
parser.log_error("Object does not start with a key");
|
|
goto error;
|
|
}
|
|
|
|
object_key_state:
|
|
if (parser.advance_char() != ':' ) { parser.log_error("Missing colon after key in object"); goto error; }
|
|
GOTO( parser.parse_value(addresses, addresses.object_continue) );
|
|
|
|
object_continue:
|
|
switch (parser.advance_char()) {
|
|
case ',':
|
|
parser.increment_count();
|
|
if (parser.advance_char() != '"' ) { parser.log_error("Key string missing at beginning of field in object"); goto error; }
|
|
FAIL_IF( parser.parse_string(true) );
|
|
goto object_key_state;
|
|
case '}':
|
|
parser.end_object();
|
|
goto scope_end;
|
|
default:
|
|
parser.log_error("No comma between object fields");
|
|
goto error;
|
|
}
|
|
|
|
scope_end:
|
|
CONTINUE( parser.parser.ret_address[parser.depth] );
|
|
|
|
//
|
|
// Array parser states
|
|
//
|
|
array_begin:
|
|
if (parser.peek_next_char() == ']') {
|
|
parser.advance_char();
|
|
parser.end_array();
|
|
goto scope_end;
|
|
}
|
|
parser.increment_count();
|
|
|
|
main_array_switch:
|
|
/* we call update char on all paths in, so we can peek at parser.c on the
|
|
* on paths that can accept a close square brace (post-, and at start) */
|
|
GOTO( parser.parse_value(addresses, addresses.array_continue) );
|
|
|
|
array_continue:
|
|
switch (parser.advance_char()) {
|
|
case ',':
|
|
parser.increment_count();
|
|
goto main_array_switch;
|
|
case ']':
|
|
parser.end_array();
|
|
goto scope_end;
|
|
default:
|
|
parser.log_error("Missing comma between array values");
|
|
goto error;
|
|
}
|
|
|
|
finish:
|
|
return parser.finish();
|
|
|
|
error:
|
|
return parser.error();
|
|
}
|
|
|
|
} // namespace {}
|
|
} // namespace stage2
|
|
|
|
/************
|
|
* The JSON is parsed to a tape, see the accompanying tape.md file
|
|
* for documentation.
|
|
***********/
|
|
WARN_UNUSED error_code dom_parser_implementation::stage2(dom::document &_doc) noexcept {
|
|
error_code result = stage2::parse_structurals<false>(*this, _doc);
|
|
if (result) { return result; }
|
|
|
|
// If we didn't make it to the end, it's an error
|
|
if ( next_structural_index != n_structural_indexes ) {
|
|
logger::log_string("More than one JSON value at the root of the document, or extra characters at the end of the JSON!");
|
|
return error = TAPE_ERROR;
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
/************
|
|
* The JSON is parsed to a tape, see the accompanying tape.md file
|
|
* for documentation.
|
|
***********/
|
|
WARN_UNUSED error_code dom_parser_implementation::stage2_next(dom::document &_doc) noexcept {
|
|
return stage2::parse_structurals<true>(*this, _doc);
|
|
}
|
|
/* end file src/generic/stage2/tape_writer.h */
|
|
|
|
WARN_UNUSED error_code dom_parser_implementation::parse(const uint8_t *_buf, size_t _len, dom::document &_doc) noexcept {
|
|
error_code err = stage1(_buf, _len, false);
|
|
if (err) { return err; }
|
|
return stage2(_doc);
|
|
}
|
|
|
|
} // namespace arm64
|
|
} // namespace simdjson
|
|
/* end file src/generic/stage2/tape_writer.h */
|
|
#endif
|
|
#if SIMDJSON_IMPLEMENTATION_FALLBACK
|
|
/* begin file src/fallback/implementation.cpp */
|
|
/* fallback/implementation.h already included: #include "fallback/implementation.h" */
|
|
/* begin file src/fallback/dom_parser_implementation.h */
|
|
#ifndef SIMDJSON_FALLBACK_DOM_PARSER_IMPLEMENTATION_H
|
|
#define SIMDJSON_FALLBACK_DOM_PARSER_IMPLEMENTATION_H
|
|
|
|
/* isadetection.h already included: #include "isadetection.h" */
|
|
|
|
namespace simdjson {
|
|
namespace fallback {
|
|
|
|
/* begin file src/generic/dom_parser_implementation.h */
|
|
// expectation: sizeof(scope_descriptor) = 64/8.
|
|
struct scope_descriptor {
|
|
uint32_t tape_index; // where, on the tape, does the scope ([,{) begins
|
|
uint32_t count; // how many elements in the scope
|
|
}; // struct scope_descriptor
|
|
|
|
#ifdef SIMDJSON_USE_COMPUTED_GOTO
|
|
typedef void* ret_address_t;
|
|
#else
|
|
typedef char ret_address_t;
|
|
#endif
|
|
|
|
class dom_parser_implementation final : public internal::dom_parser_implementation {
|
|
public:
|
|
/** Tape location of each open { or [ */
|
|
std::unique_ptr<scope_descriptor[]> containing_scope{};
|
|
/** Return address of each open { or [ */
|
|
std::unique_ptr<ret_address_t[]> ret_address{};
|
|
/** Buffer passed to stage 1 */
|
|
const uint8_t *buf{};
|
|
/** Length passed to stage 1 */
|
|
size_t len{0};
|
|
/** Document passed to stage 2 */
|
|
dom::document *doc{};
|
|
/** Error code (TODO remove, this is not even used, we just set it so the g++ optimizer doesn't get confused) */
|
|
error_code error{UNINITIALIZED};
|
|
|
|
really_inline dom_parser_implementation();
|
|
dom_parser_implementation(const dom_parser_implementation &) = delete;
|
|
dom_parser_implementation & operator=(const dom_parser_implementation &) = delete;
|
|
|
|
WARN_UNUSED error_code parse(const uint8_t *buf, size_t len, dom::document &doc) noexcept final;
|
|
WARN_UNUSED error_code stage1(const uint8_t *buf, size_t len, bool partial) noexcept final;
|
|
WARN_UNUSED error_code check_for_unclosed_array() noexcept;
|
|
WARN_UNUSED error_code stage2(dom::document &doc) noexcept final;
|
|
WARN_UNUSED error_code stage2_next(dom::document &doc) noexcept final;
|
|
WARN_UNUSED error_code set_capacity(size_t capacity) noexcept final;
|
|
WARN_UNUSED error_code set_max_depth(size_t max_depth) noexcept final;
|
|
};
|
|
|
|
/* begin file src/generic/stage1/allocate.h */
|
|
namespace stage1 {
|
|
namespace allocate {
|
|
|
|
//
|
|
// Allocates stage 1 internal state and outputs in the parser
|
|
//
|
|
really_inline error_code set_capacity(internal::dom_parser_implementation &parser, size_t capacity) {
|
|
size_t max_structures = ROUNDUP_N(capacity, 64) + 2 + 7;
|
|
parser.structural_indexes.reset( new (std::nothrow) uint32_t[max_structures] );
|
|
if (!parser.structural_indexes) { return MEMALLOC; }
|
|
parser.structural_indexes[0] = 0;
|
|
parser.n_structural_indexes = 0;
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace allocate
|
|
} // namespace stage1
|
|
/* end file src/generic/stage1/allocate.h */
|
|
/* begin file src/generic/stage2/allocate.h */
|
|
namespace stage2 {
|
|
namespace allocate {
|
|
|
|
//
|
|
// Allocates stage 2 internal state and outputs in the parser
|
|
//
|
|
really_inline error_code set_max_depth(dom_parser_implementation &parser, size_t max_depth) {
|
|
parser.containing_scope.reset(new (std::nothrow) scope_descriptor[max_depth]);
|
|
parser.ret_address.reset(new (std::nothrow) ret_address_t[max_depth]);
|
|
|
|
if (!parser.ret_address || !parser.containing_scope) {
|
|
return MEMALLOC;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace allocate
|
|
} // namespace stage2
|
|
/* end file src/generic/stage2/allocate.h */
|
|
|
|
really_inline dom_parser_implementation::dom_parser_implementation() {}
|
|
|
|
// Leaving these here so they can be inlined if so desired
|
|
WARN_UNUSED error_code dom_parser_implementation::set_capacity(size_t capacity) noexcept {
|
|
error_code err = stage1::allocate::set_capacity(*this, capacity);
|
|
if (err) { _capacity = 0; return err; }
|
|
_capacity = capacity;
|
|
return SUCCESS;
|
|
}
|
|
|
|
WARN_UNUSED error_code dom_parser_implementation::set_max_depth(size_t max_depth) noexcept {
|
|
error_code err = stage2::allocate::set_max_depth(*this, max_depth);
|
|
if (err) { _max_depth = 0; return err; }
|
|
_max_depth = max_depth;
|
|
return SUCCESS;
|
|
}
|
|
/* end file src/generic/stage2/allocate.h */
|
|
|
|
} // namespace fallback
|
|
} // namespace simdjson
|
|
|
|
#endif // SIMDJSON_FALLBACK_DOM_PARSER_IMPLEMENTATION_H
|
|
/* end file src/generic/stage2/allocate.h */
|
|
|
|
TARGET_HASWELL
|
|
|
|
namespace simdjson {
|
|
namespace fallback {
|
|
|
|
WARN_UNUSED error_code implementation::create_dom_parser_implementation(
|
|
size_t capacity,
|
|
size_t max_depth,
|
|
std::unique_ptr<internal::dom_parser_implementation>& dst
|
|
) const noexcept {
|
|
dst.reset( new (std::nothrow) dom_parser_implementation() );
|
|
if (!dst) { return MEMALLOC; }
|
|
dst->set_capacity(capacity);
|
|
dst->set_max_depth(max_depth);
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace fallback
|
|
} // namespace simdjson
|
|
|
|
UNTARGET_REGION
|
|
/* end file src/generic/stage2/allocate.h */
|
|
/* begin file src/fallback/dom_parser_implementation.cpp */
|
|
/* fallback/implementation.h already included: #include "fallback/implementation.h" */
|
|
/* fallback/dom_parser_implementation.h already included: #include "fallback/dom_parser_implementation.h" */
|
|
|
|
//
|
|
// Stage 1
|
|
//
|
|
namespace simdjson {
|
|
namespace fallback {
|
|
namespace stage1 {
|
|
|
|
/* begin file src/generic/stage1/find_next_document_index.h */
|
|
/**
|
|
* This algorithm is used to quickly identify the last structural position that
|
|
* makes up a complete document.
|
|
*
|
|
* It does this by going backwards and finding the last *document boundary* (a
|
|
* place where one value follows another without a comma between them). If the
|
|
* last document (the characters after the boundary) has an equal number of
|
|
* start and end brackets, it is considered complete.
|
|
*
|
|
* Simply put, we iterate over the structural characters, starting from
|
|
* the end. We consider that we found the end of a JSON document when the
|
|
* first element of the pair is NOT one of these characters: '{' '[' ';' ','
|
|
* and when the second element is NOT one of these characters: '}' '}' ';' ','.
|
|
*
|
|
* This simple comparison works most of the time, but it does not cover cases
|
|
* where the batch's structural indexes contain a perfect amount of documents.
|
|
* In such a case, we do not have access to the structural index which follows
|
|
* the last document, therefore, we do not have access to the second element in
|
|
* the pair, and that means we cannot identify the last document. To fix this
|
|
* issue, we keep a count of the open and closed curly/square braces we found
|
|
* while searching for the pair. When we find a pair AND the count of open and
|
|
* closed curly/square braces is the same, we know that we just passed a
|
|
* complete document, therefore the last json buffer location is the end of the
|
|
* batch.
|
|
*/
|
|
really_inline static uint32_t find_next_document_index(dom_parser_implementation &parser) {
|
|
// TODO don't count separately, just figure out depth
|
|
auto arr_cnt = 0;
|
|
auto obj_cnt = 0;
|
|
for (auto i = parser.n_structural_indexes - 1; i > 0; i--) {
|
|
auto idxb = parser.structural_indexes[i];
|
|
switch (parser.buf[idxb]) {
|
|
case ':':
|
|
case ',':
|
|
continue;
|
|
case '}':
|
|
obj_cnt--;
|
|
continue;
|
|
case ']':
|
|
arr_cnt--;
|
|
continue;
|
|
case '{':
|
|
obj_cnt++;
|
|
break;
|
|
case '[':
|
|
arr_cnt++;
|
|
break;
|
|
}
|
|
auto idxa = parser.structural_indexes[i - 1];
|
|
switch (parser.buf[idxa]) {
|
|
case '{':
|
|
case '[':
|
|
case ':':
|
|
case ',':
|
|
continue;
|
|
}
|
|
// Last document is complete, so the next document will appear after!
|
|
if (!arr_cnt && !obj_cnt) {
|
|
return parser.n_structural_indexes;
|
|
}
|
|
// Last document is incomplete; mark the document at i + 1 as the next one
|
|
return i;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Skip the last character if it is partial
|
|
really_inline static size_t trim_partial_utf8(const uint8_t *buf, size_t len) {
|
|
if (unlikely(len < 3)) {
|
|
switch (len) {
|
|
case 2:
|
|
if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left
|
|
if (buf[len-2] >= 0b11100000) { return len-2; } // 3- and 4-byte characters with only 2 bytes left
|
|
return len;
|
|
case 1:
|
|
if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left
|
|
return len;
|
|
case 0:
|
|
return len;
|
|
}
|
|
}
|
|
if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left
|
|
if (buf[len-2] >= 0b11100000) { return len-2; } // 3- and 4-byte characters with only 1 byte left
|
|
if (buf[len-3] >= 0b11110000) { return len-3; } // 4-byte characters with only 3 bytes left
|
|
return len;
|
|
}
|
|
/* end file src/generic/stage1/find_next_document_index.h */
|
|
|
|
class structural_scanner {
|
|
public:
|
|
|
|
really_inline structural_scanner(dom_parser_implementation &_parser, bool _partial)
|
|
: buf{_parser.buf},
|
|
next_structural_index{_parser.structural_indexes.get()},
|
|
parser{_parser},
|
|
len{static_cast<uint32_t>(_parser.len)},
|
|
partial{_partial} {
|
|
}
|
|
|
|
really_inline void add_structural() {
|
|
*next_structural_index = idx;
|
|
next_structural_index++;
|
|
}
|
|
|
|
really_inline bool is_continuation(uint8_t c) {
|
|
return (c & 0b11000000) == 0b10000000;
|
|
}
|
|
|
|
really_inline void validate_utf8_character() {
|
|
// Continuation
|
|
if (unlikely((buf[idx] & 0b01000000) == 0)) {
|
|
// extra continuation
|
|
error = UTF8_ERROR;
|
|
idx++;
|
|
return;
|
|
}
|
|
|
|
// 2-byte
|
|
if ((buf[idx] & 0b00100000) == 0) {
|
|
// missing continuation
|
|
if (unlikely(idx+1 > len || !is_continuation(buf[idx+1]))) {
|
|
if (idx+1 > len && partial) { idx = len; return; }
|
|
error = UTF8_ERROR;
|
|
idx++;
|
|
return;
|
|
}
|
|
// overlong: 1100000_ 10______
|
|
if (buf[idx] <= 0b11000001) { error = UTF8_ERROR; }
|
|
idx += 2;
|
|
return;
|
|
}
|
|
|
|
// 3-byte
|
|
if ((buf[idx] & 0b00010000) == 0) {
|
|
// missing continuation
|
|
if (unlikely(idx+2 > len || !is_continuation(buf[idx+1]) || !is_continuation(buf[idx+2]))) {
|
|
if (idx+2 > len && partial) { idx = len; return; }
|
|
error = UTF8_ERROR;
|
|
idx++;
|
|
return;
|
|
}
|
|
// overlong: 11100000 100_____ ________
|
|
if (buf[idx] == 0b11100000 && buf[idx+1] <= 0b10011111) { error = UTF8_ERROR; }
|
|
// surrogates: U+D800-U+DFFF 11101101 101_____
|
|
if (buf[idx] == 0b11101101 && buf[idx+1] >= 0b10100000) { error = UTF8_ERROR; }
|
|
idx += 3;
|
|
return;
|
|
}
|
|
|
|
// 4-byte
|
|
// missing continuation
|
|
if (unlikely(idx+3 > len || !is_continuation(buf[idx+1]) || !is_continuation(buf[idx+2]) || !is_continuation(buf[idx+3]))) {
|
|
if (idx+2 > len && partial) { idx = len; return; }
|
|
error = UTF8_ERROR;
|
|
idx++;
|
|
return;
|
|
}
|
|
// overlong: 11110000 1000____ ________ ________
|
|
if (buf[idx] == 0b11110000 && buf[idx+1] <= 0b10001111) { error = UTF8_ERROR; }
|
|
// too large: > U+10FFFF:
|
|
// 11110100 (1001|101_)____
|
|
// 1111(1___|011_|0101) 10______
|
|
// also includes 5, 6, 7 and 8 byte characters:
|
|
// 11111___
|
|
if (buf[idx] == 0b11110100 && buf[idx+1] >= 0b10010000) { error = UTF8_ERROR; }
|
|
if (buf[idx] >= 0b11110101) { error = UTF8_ERROR; }
|
|
idx += 4;
|
|
}
|
|
|
|
really_inline void validate_string() {
|
|
idx++; // skip first quote
|
|
while (idx < len && buf[idx] != '"') {
|
|
if (buf[idx] == '\\') {
|
|
idx += 2;
|
|
} else if (unlikely(buf[idx] & 0b10000000)) {
|
|
validate_utf8_character();
|
|
} else {
|
|
if (buf[idx] < 0x20) { error = UNESCAPED_CHARS; }
|
|
idx++;
|
|
}
|
|
}
|
|
if (idx >= len && !partial) { error = UNCLOSED_STRING; }
|
|
}
|
|
|
|
really_inline bool is_whitespace_or_operator(uint8_t c) {
|
|
switch (c) {
|
|
case '{': case '}': case '[': case ']': case ',': case ':':
|
|
case ' ': case '\r': case '\n': case '\t':
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Parse the entire input in STEP_SIZE-byte chunks.
|
|
//
|
|
really_inline error_code scan() {
|
|
for (;idx<len;idx++) {
|
|
switch (buf[idx]) {
|
|
// String
|
|
case '"':
|
|
add_structural();
|
|
validate_string();
|
|
break;
|
|
// Operator
|
|
case '{': case '}': case '[': case ']': case ',': case ':':
|
|
add_structural();
|
|
break;
|
|
// Whitespace
|
|
case ' ': case '\r': case '\n': case '\t':
|
|
break;
|
|
// Primitive or invalid character (invalid characters will be checked in stage 2)
|
|
default:
|
|
// Anything else, add the structural and go until we find the next one
|
|
add_structural();
|
|
while (idx+1<len && !is_whitespace_or_operator(buf[idx+1])) {
|
|
idx++;
|
|
};
|
|
break;
|
|
}
|
|
}
|
|
*next_structural_index = len;
|
|
// We pad beyond.
|
|
// https://github.com/simdjson/simdjson/issues/906
|
|
next_structural_index[1] = len;
|
|
next_structural_index[2] = 0;
|
|
parser.n_structural_indexes = uint32_t(next_structural_index - parser.structural_indexes.get());
|
|
parser.next_structural_index = 0;
|
|
|
|
if (unlikely(parser.n_structural_indexes == 0)) {
|
|
return EMPTY;
|
|
}
|
|
|
|
if (partial) {
|
|
auto new_structural_indexes = find_next_document_index(parser);
|
|
if (new_structural_indexes == 0 && parser.n_structural_indexes > 0) {
|
|
return CAPACITY; // If the buffer is partial but the document is incomplete, it's too big to parse.
|
|
}
|
|
parser.n_structural_indexes = new_structural_indexes;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
private:
|
|
const uint8_t *buf;
|
|
uint32_t *next_structural_index;
|
|
dom_parser_implementation &parser;
|
|
uint32_t len;
|
|
uint32_t idx{0};
|
|
error_code error{SUCCESS};
|
|
bool partial;
|
|
}; // structural_scanner
|
|
|
|
} // namespace stage1
|
|
|
|
|
|
WARN_UNUSED error_code dom_parser_implementation::stage1(const uint8_t *_buf, size_t _len, bool partial) noexcept {
|
|
this->buf = _buf;
|
|
this->len = _len;
|
|
stage1::structural_scanner scanner(*this, partial);
|
|
return scanner.scan();
|
|
}
|
|
|
|
// big table for the minifier
|
|
static uint8_t jump_table[256 * 3] = {
|
|
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
|
|
1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1,
|
|
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
|
|
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0,
|
|
1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
|
|
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
|
|
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
|
|
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
|
|
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
|
|
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
|
|
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
|
|
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
|
|
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
|
|
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
|
|
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
|
|
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
|
|
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
|
|
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
|
|
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
|
|
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
|
|
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
|
|
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
|
|
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
|
|
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
|
|
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
|
|
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
|
|
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
|
|
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
|
|
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
|
|
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
|
|
};
|
|
|
|
WARN_UNUSED error_code implementation::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept {
|
|
size_t i = 0, pos = 0;
|
|
uint8_t quote = 0;
|
|
uint8_t nonescape = 1;
|
|
|
|
while (i < len) {
|
|
unsigned char c = buf[i];
|
|
uint8_t *meta = jump_table + 3 * c;
|
|
|
|
quote = quote ^ (meta[0] & nonescape);
|
|
dst[pos] = c;
|
|
pos += meta[2] | quote;
|
|
|
|
i += 1;
|
|
nonescape = uint8_t(~nonescape) | (meta[1]);
|
|
}
|
|
dst_len = pos; // we intentionally do not work with a reference
|
|
// for fear of aliasing
|
|
return SUCCESS;
|
|
}
|
|
|
|
// credit: based on code from Google Fuchsia (Apache Licensed)
|
|
WARN_UNUSED bool implementation::validate_utf8(const char *buf, size_t len) const noexcept {
|
|
const uint8_t *data = (const uint8_t *)buf;
|
|
uint64_t pos = 0;
|
|
uint64_t next_pos = 0;
|
|
uint32_t code_point = 0;
|
|
while (pos < len) {
|
|
// check of the next 8 bytes are ascii.
|
|
next_pos = pos + 16;
|
|
if (next_pos <= len) { // if it is safe to read 8 more bytes, check that they are ascii
|
|
uint64_t v1;
|
|
memcpy(&v1, data + pos, sizeof(uint64_t));
|
|
uint64_t v2;
|
|
memcpy(&v2, data + pos + sizeof(uint64_t), sizeof(uint64_t));
|
|
uint64_t v{v1 | v2};
|
|
if ((v & 0x8080808080808080) == 0) {
|
|
pos = next_pos;
|
|
continue;
|
|
}
|
|
}
|
|
unsigned char byte = data[pos];
|
|
if (byte < 0b10000000) {
|
|
pos++;
|
|
continue;
|
|
} else if ((byte & 0b11100000) == 0b11000000) {
|
|
next_pos = pos + 2;
|
|
if (next_pos > len) { return false; }
|
|
if ((data[pos + 1] & 0b11000000) != 0b10000000) { return false; }
|
|
// range check
|
|
code_point = (byte & 0b00011111) << 6 | (data[pos + 1] & 0b00111111);
|
|
if (code_point < 0x80 || 0x7ff < code_point) { return false; }
|
|
} else if ((byte & 0b11110000) == 0b11100000) {
|
|
next_pos = pos + 3;
|
|
if (next_pos > len) { return false; }
|
|
if ((data[pos + 1] & 0b11000000) != 0b10000000) { return false; }
|
|
if ((data[pos + 2] & 0b11000000) != 0b10000000) { return false; }
|
|
// range check
|
|
code_point = (byte & 0b00001111) << 12 |
|
|
(data[pos + 1] & 0b00111111) << 6 |
|
|
(data[pos + 2] & 0b00111111);
|
|
if (code_point < 0x800 || 0xffff < code_point ||
|
|
(0xd7ff < code_point && code_point < 0xe000)) {
|
|
return false;
|
|
}
|
|
} else if ((byte & 0b11111000) == 0b11110000) { // 0b11110000
|
|
next_pos = pos + 4;
|
|
if (next_pos > len) { return false; }
|
|
if ((data[pos + 1] & 0b11000000) != 0b10000000) { return false; }
|
|
if ((data[pos + 2] & 0b11000000) != 0b10000000) { return false; }
|
|
if ((data[pos + 3] & 0b11000000) != 0b10000000) { return false; }
|
|
// range check
|
|
code_point =
|
|
(byte & 0b00000111) << 18 | (data[pos + 1] & 0b00111111) << 12 |
|
|
(data[pos + 2] & 0b00111111) << 6 | (data[pos + 3] & 0b00111111);
|
|
if (code_point < 0xffff || 0x10ffff < code_point) { return false; }
|
|
} else {
|
|
// we may have a continuation
|
|
return false;
|
|
}
|
|
pos = next_pos;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace fallback
|
|
} // namespace simdjson
|
|
|
|
//
|
|
// Stage 2
|
|
//
|
|
/* begin file src/fallback/stringparsing.h */
|
|
#ifndef SIMDJSON_FALLBACK_STRINGPARSING_H
|
|
#define SIMDJSON_FALLBACK_STRINGPARSING_H
|
|
|
|
/* jsoncharutils.h already included: #include "jsoncharutils.h" */
|
|
|
|
namespace simdjson {
|
|
namespace fallback {
|
|
|
|
// Holds backslashes and quotes locations.
|
|
struct backslash_and_quote {
|
|
public:
|
|
static constexpr uint32_t BYTES_PROCESSED = 1;
|
|
really_inline static backslash_and_quote copy_and_find(const uint8_t *src, uint8_t *dst);
|
|
|
|
really_inline bool has_quote_first() { return c == '"'; }
|
|
really_inline bool has_backslash() { return c == '\\'; }
|
|
really_inline int quote_index() { return c == '"' ? 0 : 1; }
|
|
really_inline int backslash_index() { return c == '\\' ? 0 : 1; }
|
|
|
|
uint8_t c;
|
|
}; // struct backslash_and_quote
|
|
|
|
really_inline backslash_and_quote backslash_and_quote::copy_and_find(const uint8_t *src, uint8_t *dst) {
|
|
// store to dest unconditionally - we can overwrite the bits we don't like later
|
|
dst[0] = src[0];
|
|
return { src[0] };
|
|
}
|
|
|
|
/* begin file src/generic/stage2/stringparsing.h */
|
|
// This file contains the common code every implementation uses
|
|
// It is intended to be included multiple times and compiled multiple times
|
|
// We assume the file in which it is include already includes
|
|
// "stringparsing.h" (this simplifies amalgation)
|
|
|
|
namespace stage2 {
|
|
namespace stringparsing {
|
|
|
|
// begin copypasta
|
|
// These chars yield themselves: " \ /
|
|
// b -> backspace, f -> formfeed, n -> newline, r -> cr, t -> horizontal tab
|
|
// u not handled in this table as it's complex
|
|
static const uint8_t escape_map[256] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x0.
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0x22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x2f,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x4.
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x5c, 0, 0, 0, // 0x5.
|
|
0, 0, 0x08, 0, 0, 0, 0x0c, 0, 0, 0, 0, 0, 0, 0, 0x0a, 0, // 0x6.
|
|
0, 0, 0x0d, 0, 0x09, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x7.
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
};
|
|
|
|
// handle a unicode codepoint
|
|
// write appropriate values into dest
|
|
// src will advance 6 bytes or 12 bytes
|
|
// dest will advance a variable amount (return via pointer)
|
|
// return true if the unicode codepoint was valid
|
|
// We work in little-endian then swap at write time
|
|
WARN_UNUSED
|
|
really_inline bool handle_unicode_codepoint(const uint8_t **src_ptr,
|
|
uint8_t **dst_ptr) {
|
|
// hex_to_u32_nocheck fills high 16 bits of the return value with 1s if the
|
|
// conversion isn't valid; we defer the check for this to inside the
|
|
// multilingual plane check
|
|
uint32_t code_point = hex_to_u32_nocheck(*src_ptr + 2);
|
|
*src_ptr += 6;
|
|
// check for low surrogate for characters outside the Basic
|
|
// Multilingual Plane.
|
|
if (code_point >= 0xd800 && code_point < 0xdc00) {
|
|
if (((*src_ptr)[0] != '\\') || (*src_ptr)[1] != 'u') {
|
|
return false;
|
|
}
|
|
uint32_t code_point_2 = hex_to_u32_nocheck(*src_ptr + 2);
|
|
|
|
// if the first code point is invalid we will get here, as we will go past
|
|
// the check for being outside the Basic Multilingual plane. If we don't
|
|
// find a \u immediately afterwards we fail out anyhow, but if we do,
|
|
// this check catches both the case of the first code point being invalid
|
|
// or the second code point being invalid.
|
|
if ((code_point | code_point_2) >> 16) {
|
|
return false;
|
|
}
|
|
|
|
code_point =
|
|
(((code_point - 0xd800) << 10) | (code_point_2 - 0xdc00)) + 0x10000;
|
|
*src_ptr += 6;
|
|
}
|
|
size_t offset = codepoint_to_utf8(code_point, *dst_ptr);
|
|
*dst_ptr += offset;
|
|
return offset > 0;
|
|
}
|
|
|
|
WARN_UNUSED really_inline uint8_t *parse_string(const uint8_t *src, uint8_t *dst) {
|
|
src++;
|
|
while (1) {
|
|
// Copy the next n bytes, and find the backslash and quote in them.
|
|
auto bs_quote = backslash_and_quote::copy_and_find(src, dst);
|
|
// If the next thing is the end quote, copy and return
|
|
if (bs_quote.has_quote_first()) {
|
|
// we encountered quotes first. Move dst to point to quotes and exit
|
|
return dst + bs_quote.quote_index();
|
|
}
|
|
if (bs_quote.has_backslash()) {
|
|
/* find out where the backspace is */
|
|
auto bs_dist = bs_quote.backslash_index();
|
|
uint8_t escape_char = src[bs_dist + 1];
|
|
/* we encountered backslash first. Handle backslash */
|
|
if (escape_char == 'u') {
|
|
/* move src/dst up to the start; they will be further adjusted
|
|
within the unicode codepoint handling code. */
|
|
src += bs_dist;
|
|
dst += bs_dist;
|
|
if (!handle_unicode_codepoint(&src, &dst)) {
|
|
return nullptr;
|
|
}
|
|
} else {
|
|
/* simple 1:1 conversion. Will eat bs_dist+2 characters in input and
|
|
* write bs_dist+1 characters to output
|
|
* note this may reach beyond the part of the buffer we've actually
|
|
* seen. I think this is ok */
|
|
uint8_t escape_result = escape_map[escape_char];
|
|
if (escape_result == 0u) {
|
|
return nullptr; /* bogus escape value is an error */
|
|
}
|
|
dst[bs_dist] = escape_result;
|
|
src += bs_dist + 2;
|
|
dst += bs_dist + 1;
|
|
}
|
|
} else {
|
|
/* they are the same. Since they can't co-occur, it means we
|
|
* encountered neither. */
|
|
src += backslash_and_quote::BYTES_PROCESSED;
|
|
dst += backslash_and_quote::BYTES_PROCESSED;
|
|
}
|
|
}
|
|
/* can't be reached */
|
|
return nullptr;
|
|
}
|
|
|
|
} // namespace stringparsing
|
|
} // namespace stage2
|
|
/* end file src/generic/stage2/stringparsing.h */
|
|
|
|
} // namespace fallback
|
|
} // namespace simdjson
|
|
|
|
#endif // SIMDJSON_FALLBACK_STRINGPARSING_H
|
|
/* end file src/generic/stage2/stringparsing.h */
|
|
/* begin file src/fallback/numberparsing.h */
|
|
#ifndef SIMDJSON_FALLBACK_NUMBERPARSING_H
|
|
#define SIMDJSON_FALLBACK_NUMBERPARSING_H
|
|
|
|
/* jsoncharutils.h already included: #include "jsoncharutils.h" */
|
|
/* begin file src/fallback/bitmanipulation.h */
|
|
#ifndef SIMDJSON_FALLBACK_BITMANIPULATION_H
|
|
#define SIMDJSON_FALLBACK_BITMANIPULATION_H
|
|
|
|
#include <limits>
|
|
|
|
namespace simdjson {
|
|
namespace fallback {
|
|
|
|
#if defined(_MSC_VER) && !defined(_M_ARM64) && !defined(_M_X64)
|
|
static inline unsigned char _BitScanForward64(unsigned long* ret, uint64_t x) {
|
|
unsigned long x0 = (unsigned long)x, top, bottom;
|
|
_BitScanForward(&top, (unsigned long)(x >> 32));
|
|
_BitScanForward(&bottom, x0);
|
|
*ret = x0 ? bottom : 32 + top;
|
|
return x != 0;
|
|
}
|
|
static unsigned char _BitScanReverse64(unsigned long* ret, uint64_t x) {
|
|
unsigned long x1 = (unsigned long)(x >> 32), top, bottom;
|
|
_BitScanReverse(&top, x1);
|
|
_BitScanReverse(&bottom, (unsigned long)x);
|
|
*ret = x1 ? top + 32 : bottom;
|
|
return x != 0;
|
|
}
|
|
#endif
|
|
|
|
// We sometimes call trailing_zero on inputs that are zero,
|
|
// but the algorithms do not end up using the returned value.
|
|
// Sadly, sanitizers are not smart enough to figure it out.
|
|
NO_SANITIZE_UNDEFINED
|
|
really_inline int trailing_zeroes(uint64_t input_num) {
|
|
#ifdef _MSC_VER
|
|
unsigned long ret;
|
|
// Search the mask data from least significant bit (LSB)
|
|
// to the most significant bit (MSB) for a set bit (1).
|
|
_BitScanForward64(&ret, input_num);
|
|
return (int)ret;
|
|
#else // _MSC_VER
|
|
return __builtin_ctzll(input_num);
|
|
#endif // _MSC_VER
|
|
}
|
|
|
|
/* result might be undefined when input_num is zero */
|
|
really_inline uint64_t clear_lowest_bit(uint64_t input_num) {
|
|
return input_num & (input_num-1);
|
|
}
|
|
|
|
/* result might be undefined when input_num is zero */
|
|
really_inline int leading_zeroes(uint64_t input_num) {
|
|
#ifdef _MSC_VER
|
|
unsigned long leading_zero = 0;
|
|
// Search the mask data from most significant bit (MSB)
|
|
// to least significant bit (LSB) for a set bit (1).
|
|
if (_BitScanReverse64(&leading_zero, input_num))
|
|
return (int)(63 - leading_zero);
|
|
else
|
|
return 64;
|
|
#else
|
|
return __builtin_clzll(input_num);
|
|
#endif// _MSC_VER
|
|
}
|
|
|
|
really_inline bool add_overflow(uint64_t value1, uint64_t value2, uint64_t *result) {
|
|
*result = value1 + value2;
|
|
return *result < value1;
|
|
}
|
|
|
|
really_inline bool mul_overflow(uint64_t value1, uint64_t value2, uint64_t *result) {
|
|
*result = value1 * value2;
|
|
// TODO there must be a faster way
|
|
return value2 > 0 && value1 > std::numeric_limits<uint64_t>::max() / value2;
|
|
}
|
|
|
|
} // namespace fallback
|
|
} // namespace simdjson
|
|
|
|
#endif // SIMDJSON_FALLBACK_BITMANIPULATION_H
|
|
/* end file src/fallback/bitmanipulation.h */
|
|
#include <cmath>
|
|
#include <limits>
|
|
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
void found_invalid_number(const uint8_t *buf);
|
|
void found_integer(int64_t result, const uint8_t *buf);
|
|
void found_unsigned_integer(uint64_t result, const uint8_t *buf);
|
|
void found_float(double result, const uint8_t *buf);
|
|
#endif
|
|
|
|
namespace simdjson {
|
|
namespace fallback {
|
|
static inline uint32_t parse_eight_digits_unrolled(const char *chars) {
|
|
uint32_t result = 0;
|
|
for (int i=0;i<8;i++) {
|
|
result = result*10 + (chars[i] - '0');
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#define SWAR_NUMBER_PARSING
|
|
|
|
/* begin file src/generic/stage2/numberparsing.h */
|
|
namespace stage2 {
|
|
namespace numberparsing {
|
|
|
|
// Attempts to compute i * 10^(power) exactly; and if "negative" is
|
|
// true, negate the result.
|
|
// This function will only work in some cases, when it does not work, success is
|
|
// set to false. This should work *most of the time* (like 99% of the time).
|
|
// We assume that power is in the [FASTFLOAT_SMALLEST_POWER,
|
|
// FASTFLOAT_LARGEST_POWER] interval: the caller is responsible for this check.
|
|
really_inline double compute_float_64(int64_t power, uint64_t i, bool negative,
|
|
bool *success) {
|
|
// we start with a fast path
|
|
// It was described in
|
|
// Clinger WD. How to read floating point numbers accurately.
|
|
// ACM SIGPLAN Notices. 1990
|
|
if (-22 <= power && power <= 22 && i <= 9007199254740991) {
|
|
// convert the integer into a double. This is lossless since
|
|
// 0 <= i <= 2^53 - 1.
|
|
double d = double(i);
|
|
//
|
|
// The general idea is as follows.
|
|
// If 0 <= s < 2^53 and if 10^0 <= p <= 10^22 then
|
|
// 1) Both s and p can be represented exactly as 64-bit floating-point
|
|
// values
|
|
// (binary64).
|
|
// 2) Because s and p can be represented exactly as floating-point values,
|
|
// then s * p
|
|
// and s / p will produce correctly rounded values.
|
|
//
|
|
if (power < 0) {
|
|
d = d / power_of_ten[-power];
|
|
} else {
|
|
d = d * power_of_ten[power];
|
|
}
|
|
if (negative) {
|
|
d = -d;
|
|
}
|
|
*success = true;
|
|
return d;
|
|
}
|
|
// When 22 < power && power < 22 + 16, we could
|
|
// hope for another, secondary fast path. It wa
|
|
// described by David M. Gay in "Correctly rounded
|
|
// binary-decimal and decimal-binary conversions." (1990)
|
|
// If you need to compute i * 10^(22 + x) for x < 16,
|
|
// first compute i * 10^x, if you know that result is exact
|
|
// (e.g., when i * 10^x < 2^53),
|
|
// then you can still proceed and do (i * 10^x) * 10^22.
|
|
// Is this worth your time?
|
|
// You need 22 < power *and* power < 22 + 16 *and* (i * 10^(x-22) < 2^53)
|
|
// for this second fast path to work.
|
|
// If you you have 22 < power *and* power < 22 + 16, and then you
|
|
// optimistically compute "i * 10^(x-22)", there is still a chance that you
|
|
// have wasted your time if i * 10^(x-22) >= 2^53. It makes the use cases of
|
|
// this optimization maybe less common than we would like. Source:
|
|
// http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/
|
|
// also used in RapidJSON: https://rapidjson.org/strtod_8h_source.html
|
|
|
|
// The fast path has now failed, so we are failing back on the slower path.
|
|
|
|
// In the slow path, we need to adjust i so that it is > 1<<63 which is always
|
|
// possible, except if i == 0, so we handle i == 0 separately.
|
|
if(i == 0) {
|
|
return 0.0;
|
|
}
|
|
|
|
// We are going to need to do some 64-bit arithmetic to get a more precise product.
|
|
// We use a table lookup approach.
|
|
components c =
|
|
power_of_ten_components[power - FASTFLOAT_SMALLEST_POWER];
|
|
// safe because
|
|
// power >= FASTFLOAT_SMALLEST_POWER
|
|
// and power <= FASTFLOAT_LARGEST_POWER
|
|
// we recover the mantissa of the power, it has a leading 1. It is always
|
|
// rounded down.
|
|
uint64_t factor_mantissa = c.mantissa;
|
|
|
|
// We want the most significant bit of i to be 1. Shift if needed.
|
|
int lz = leading_zeroes(i);
|
|
i <<= lz;
|
|
// We want the most significant 64 bits of the product. We know
|
|
// this will be non-zero because the most significant bit of i is
|
|
// 1.
|
|
value128 product = full_multiplication(i, factor_mantissa);
|
|
uint64_t lower = product.low;
|
|
uint64_t upper = product.high;
|
|
|
|
// We know that upper has at most one leading zero because
|
|
// both i and factor_mantissa have a leading one. This means
|
|
// that the result is at least as large as ((1<<63)*(1<<63))/(1<<64).
|
|
|
|
// As long as the first 9 bits of "upper" are not "1", then we
|
|
// know that we have an exact computed value for the leading
|
|
// 55 bits because any imprecision would play out as a +1, in
|
|
// the worst case.
|
|
if (unlikely((upper & 0x1FF) == 0x1FF) && (lower + i < lower)) {
|
|
uint64_t factor_mantissa_low =
|
|
mantissa_128[power - FASTFLOAT_SMALLEST_POWER];
|
|
// next, we compute the 64-bit x 128-bit multiplication, getting a 192-bit
|
|
// result (three 64-bit values)
|
|
product = full_multiplication(i, factor_mantissa_low);
|
|
uint64_t product_low = product.low;
|
|
uint64_t product_middle2 = product.high;
|
|
uint64_t product_middle1 = lower;
|
|
uint64_t product_high = upper;
|
|
uint64_t product_middle = product_middle1 + product_middle2;
|
|
if (product_middle < product_middle1) {
|
|
product_high++; // overflow carry
|
|
}
|
|
// We want to check whether mantissa *i + i would affect our result.
|
|
// This does happen, e.g. with 7.3177701707893310e+15.
|
|
if (((product_middle + 1 == 0) && ((product_high & 0x1FF) == 0x1FF) &&
|
|
(product_low + i < product_low))) { // let us be prudent and bail out.
|
|
*success = false;
|
|
return 0;
|
|
}
|
|
upper = product_high;
|
|
lower = product_middle;
|
|
}
|
|
// The final mantissa should be 53 bits with a leading 1.
|
|
// We shift it so that it occupies 54 bits with a leading 1.
|
|
///////
|
|
uint64_t upperbit = upper >> 63;
|
|
uint64_t mantissa = upper >> (upperbit + 9);
|
|
lz += int(1 ^ upperbit);
|
|
|
|
// Here we have mantissa < (1<<54).
|
|
|
|
// We have to round to even. The "to even" part
|
|
// is only a problem when we are right in between two floats
|
|
// which we guard against.
|
|
// If we have lots of trailing zeros, we may fall right between two
|
|
// floating-point values.
|
|
if (unlikely((lower == 0) && ((upper & 0x1FF) == 0) &&
|
|
((mantissa & 3) == 1))) {
|
|
// if mantissa & 1 == 1 we might need to round up.
|
|
//
|
|
// Scenarios:
|
|
// 1. We are not in the middle. Then we should round up.
|
|
//
|
|
// 2. We are right in the middle. Whether we round up depends
|
|
// on the last significant bit: if it is "one" then we round
|
|
// up (round to even) otherwise, we do not.
|
|
//
|
|
// So if the last significant bit is 1, we can safely round up.
|
|
// Hence we only need to bail out if (mantissa & 3) == 1.
|
|
// Otherwise we may need more accuracy or analysis to determine whether
|
|
// we are exactly between two floating-point numbers.
|
|
// It can be triggered with 1e23.
|
|
// Note: because the factor_mantissa and factor_mantissa_low are
|
|
// almost always rounded down (except for small positive powers),
|
|
// almost always should round up.
|
|
*success = false;
|
|
return 0;
|
|
}
|
|
|
|
mantissa += mantissa & 1;
|
|
mantissa >>= 1;
|
|
|
|
// Here we have mantissa < (1<<53), unless there was an overflow
|
|
if (mantissa >= (1ULL << 53)) {
|
|
//////////
|
|
// This will happen when parsing values such as 7.2057594037927933e+16
|
|
////////
|
|
mantissa = (1ULL << 52);
|
|
lz--; // undo previous addition
|
|
}
|
|
mantissa &= ~(1ULL << 52);
|
|
uint64_t real_exponent = c.exp - lz;
|
|
// we have to check that real_exponent is in range, otherwise we bail out
|
|
if (unlikely((real_exponent < 1) || (real_exponent > 2046))) {
|
|
*success = false;
|
|
return 0;
|
|
}
|
|
mantissa |= real_exponent << 52;
|
|
mantissa |= (((uint64_t)negative) << 63);
|
|
double d;
|
|
memcpy(&d, &mantissa, sizeof(d));
|
|
*success = true;
|
|
return d;
|
|
}
|
|
|
|
static bool parse_float_strtod(const char *ptr, double *outDouble) {
|
|
char *endptr;
|
|
*outDouble = strtod(ptr, &endptr);
|
|
// Some libraries will set errno = ERANGE when the value is subnormal,
|
|
// yet we may want to be able to parse subnormal values.
|
|
// However, we do not want to tolerate NAN or infinite values.
|
|
//
|
|
// Values like infinity or NaN are not allowed in the JSON specification.
|
|
// If you consume a large value and you map it to "infinity", you will no
|
|
// longer be able to serialize back a standard-compliant JSON. And there is
|
|
// no realistic application where you might need values so large than they
|
|
// can't fit in binary64. The maximal value is about 1.7976931348623157 x
|
|
// 10^308 It is an unimaginable large number. There will never be any piece of
|
|
// engineering involving as many as 10^308 parts. It is estimated that there
|
|
// are about 10^80 atoms in the universe. The estimate for the total number
|
|
// of electrons is similar. Using a double-precision floating-point value, we
|
|
// can represent easily the number of atoms in the universe. We could also
|
|
// represent the number of ways you can pick any three individual atoms at
|
|
// random in the universe. If you ever encounter a number much larger than
|
|
// 10^308, you know that you have a bug. RapidJSON will reject a document with
|
|
// a float that does not fit in binary64. JSON for Modern C++ (nlohmann/json)
|
|
// will flat out throw an exception.
|
|
//
|
|
if ((endptr == ptr) || (!std::isfinite(*outDouble))) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
really_inline bool is_integer(char c) {
|
|
return (c >= '0' && c <= '9');
|
|
// this gets compiled to (uint8_t)(c - '0') <= 9 on all decent compilers
|
|
}
|
|
|
|
|
|
// check quickly whether the next 8 chars are made of digits
|
|
// at a glance, it looks better than Mula's
|
|
// http://0x80.pl/articles/swar-digits-validate.html
|
|
really_inline bool is_made_of_eight_digits_fast(const char *chars) {
|
|
uint64_t val;
|
|
// this can read up to 7 bytes beyond the buffer size, but we require
|
|
// SIMDJSON_PADDING of padding
|
|
static_assert(7 <= SIMDJSON_PADDING, "SIMDJSON_PADDING must be bigger than 7");
|
|
memcpy(&val, chars, 8);
|
|
// a branchy method might be faster:
|
|
// return (( val & 0xF0F0F0F0F0F0F0F0 ) == 0x3030303030303030)
|
|
// && (( (val + 0x0606060606060606) & 0xF0F0F0F0F0F0F0F0 ) ==
|
|
// 0x3030303030303030);
|
|
return (((val & 0xF0F0F0F0F0F0F0F0) |
|
|
(((val + 0x0606060606060606) & 0xF0F0F0F0F0F0F0F0) >> 4)) ==
|
|
0x3333333333333333);
|
|
}
|
|
|
|
// called by parse_number when we know that the output is an integer,
|
|
// but where there might be some integer overflow.
|
|
// we want to catch overflows!
|
|
// Do not call this function directly as it skips some of the checks from
|
|
// parse_number
|
|
//
|
|
// This function will almost never be called!!!
|
|
//
|
|
template<typename W>
|
|
never_inline bool parse_large_integer(const uint8_t *const src,
|
|
W writer,
|
|
bool found_minus) {
|
|
const char *p = reinterpret_cast<const char *>(src);
|
|
|
|
bool negative = false;
|
|
if (found_minus) {
|
|
++p;
|
|
negative = true;
|
|
}
|
|
uint64_t i;
|
|
if (*p == '0') { // 0 cannot be followed by an integer
|
|
++p;
|
|
i = 0;
|
|
} else {
|
|
unsigned char digit = static_cast<unsigned char>(*p - '0');
|
|
i = digit;
|
|
p++;
|
|
// the is_made_of_eight_digits_fast routine is unlikely to help here because
|
|
// we rarely see large integer parts like 123456789
|
|
while (is_integer(*p)) {
|
|
digit = static_cast<unsigned char>(*p - '0');
|
|
if (mul_overflow(i, 10, &i)) {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false; // overflow
|
|
}
|
|
if (add_overflow(i, digit, &i)) {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false; // overflow
|
|
}
|
|
++p;
|
|
}
|
|
}
|
|
if (negative) {
|
|
if (i > 0x8000000000000000) {
|
|
// overflows!
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false; // overflow
|
|
} else if (i == 0x8000000000000000) {
|
|
// In two's complement, we cannot represent 0x8000000000000000
|
|
// as a positive signed integer, but the negative version is
|
|
// possible.
|
|
constexpr int64_t signed_answer = INT64_MIN;
|
|
writer.append_s64(signed_answer);
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_integer(signed_answer, src);
|
|
#endif
|
|
} else {
|
|
// we can negate safely
|
|
int64_t signed_answer = -static_cast<int64_t>(i);
|
|
writer.append_s64(signed_answer);
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_integer(signed_answer, src);
|
|
#endif
|
|
}
|
|
} else {
|
|
// we have a positive integer, the contract is that
|
|
// we try to represent it as a signed integer and only
|
|
// fallback on unsigned integers if absolutely necessary.
|
|
if (i < 0x8000000000000000) {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_integer(i, src);
|
|
#endif
|
|
writer.append_s64(i);
|
|
} else {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_unsigned_integer(i, src);
|
|
#endif
|
|
writer.append_u64(i);
|
|
}
|
|
}
|
|
return is_structural_or_whitespace(*p);
|
|
}
|
|
|
|
template<typename W>
|
|
bool slow_float_parsing(UNUSED const char * src, W writer) {
|
|
double d;
|
|
if (parse_float_strtod(src, &d)) {
|
|
writer.append_double(d);
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_float(d, (const uint8_t *)src);
|
|
#endif
|
|
return true;
|
|
}
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number((const uint8_t *)src);
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
// parse the number at src
|
|
// define JSON_TEST_NUMBERS for unit testing
|
|
//
|
|
// It is assumed that the number is followed by a structural ({,},],[) character
|
|
// or a white space character. If that is not the case (e.g., when the JSON
|
|
// document is made of a single number), then it is necessary to copy the
|
|
// content and append a space before calling this function.
|
|
//
|
|
// Our objective is accurate parsing (ULP of 0) at high speed.
|
|
template<typename W>
|
|
really_inline bool parse_number(UNUSED const uint8_t *const src,
|
|
UNUSED bool found_minus,
|
|
W &writer) {
|
|
#ifdef SIMDJSON_SKIPNUMBERPARSING // for performance analysis, it is sometimes
|
|
// useful to skip parsing
|
|
writer.append_s64(0); // always write zero
|
|
return true; // always succeeds
|
|
#else
|
|
const char *p = reinterpret_cast<const char *>(src);
|
|
bool negative = false;
|
|
if (found_minus) {
|
|
++p;
|
|
negative = true;
|
|
if (!is_integer(*p)) { // a negative sign must be followed by an integer
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
}
|
|
const char *const start_digits = p;
|
|
|
|
uint64_t i; // an unsigned int avoids signed overflows (which are bad)
|
|
if (*p == '0') { // 0 cannot be followed by an integer
|
|
++p;
|
|
if (is_integer(*p)) {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
i = 0;
|
|
} else {
|
|
if (!(is_integer(*p))) { // must start with an integer
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
unsigned char digit = static_cast<unsigned char>(*p - '0');
|
|
i = digit;
|
|
p++;
|
|
// the is_made_of_eight_digits_fast routine is unlikely to help here because
|
|
// we rarely see large integer parts like 123456789
|
|
while (is_integer(*p)) {
|
|
digit = static_cast<unsigned char>(*p - '0');
|
|
// a multiplication by 10 is cheaper than an arbitrary integer
|
|
// multiplication
|
|
i = 10 * i + digit; // might overflow, we will handle the overflow later
|
|
++p;
|
|
}
|
|
}
|
|
int64_t exponent = 0;
|
|
bool is_float = false;
|
|
if ('.' == *p) {
|
|
is_float = true; // At this point we know that we have a float
|
|
// we continue with the fiction that we have an integer. If the
|
|
// floating point number is representable as x * 10^z for some integer
|
|
// z that fits in 53 bits, then we will be able to convert back the
|
|
// the integer into a float in a lossless manner.
|
|
++p;
|
|
const char *const first_after_period = p;
|
|
if (is_integer(*p)) {
|
|
unsigned char digit = static_cast<unsigned char>(*p - '0');
|
|
++p;
|
|
i = i * 10 + digit; // might overflow + multiplication by 10 is likely
|
|
// cheaper than arbitrary mult.
|
|
// we will handle the overflow later
|
|
} else {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
#ifdef SWAR_NUMBER_PARSING
|
|
// this helps if we have lots of decimals!
|
|
// this turns out to be frequent enough.
|
|
if (is_made_of_eight_digits_fast(p)) {
|
|
i = i * 100000000 + parse_eight_digits_unrolled(p);
|
|
p += 8;
|
|
}
|
|
#endif
|
|
while (is_integer(*p)) {
|
|
unsigned char digit = static_cast<unsigned char>(*p - '0');
|
|
++p;
|
|
i = i * 10 + digit; // in rare cases, this will overflow, but that's ok
|
|
// because we have parse_highprecision_float later.
|
|
}
|
|
exponent = first_after_period - p;
|
|
}
|
|
int digit_count =
|
|
int(p - start_digits) - 1; // used later to guard against overflows
|
|
int64_t exp_number = 0; // exponential part
|
|
if (('e' == *p) || ('E' == *p)) {
|
|
is_float = true;
|
|
++p;
|
|
bool neg_exp = false;
|
|
if ('-' == *p) {
|
|
neg_exp = true;
|
|
++p;
|
|
} else if ('+' == *p) {
|
|
++p;
|
|
}
|
|
if (!is_integer(*p)) {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
unsigned char digit = static_cast<unsigned char>(*p - '0');
|
|
exp_number = digit;
|
|
p++;
|
|
if (is_integer(*p)) {
|
|
digit = static_cast<unsigned char>(*p - '0');
|
|
exp_number = 10 * exp_number + digit;
|
|
++p;
|
|
}
|
|
if (is_integer(*p)) {
|
|
digit = static_cast<unsigned char>(*p - '0');
|
|
exp_number = 10 * exp_number + digit;
|
|
++p;
|
|
}
|
|
while (is_integer(*p)) {
|
|
if (exp_number > 0x100000000) { // we need to check for overflows
|
|
// we refuse to parse this
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
digit = static_cast<unsigned char>(*p - '0');
|
|
exp_number = 10 * exp_number + digit;
|
|
++p;
|
|
}
|
|
exponent += (neg_exp ? -exp_number : exp_number);
|
|
}
|
|
if (is_float) {
|
|
// If we frequently had to deal with long strings of digits,
|
|
// we could extend our code by using a 128-bit integer instead
|
|
// of a 64-bit integer. However, this is uncommon in practice.
|
|
if (unlikely((digit_count >= 19))) { // this is uncommon
|
|
// It is possible that the integer had an overflow.
|
|
// We have to handle the case where we have 0.0000somenumber.
|
|
const char *start = start_digits;
|
|
while ((*start == '0') || (*start == '.')) {
|
|
start++;
|
|
}
|
|
// we over-decrement by one when there is a '.'
|
|
digit_count -= int(start - start_digits);
|
|
if (digit_count >= 19) {
|
|
// Ok, chances are good that we had an overflow!
|
|
// this is almost never going to get called!!!
|
|
// we start anew, going slowly!!!
|
|
// This will happen in the following examples:
|
|
// 10000000000000000000000000000000000000000000e+308
|
|
// 3.1415926535897932384626433832795028841971693993751
|
|
//
|
|
bool success = slow_float_parsing((const char *) src, writer);
|
|
// The number was already written, but we made a copy of the writer
|
|
// when we passed it to the parse_large_integer() function, so
|
|
writer.skip_double();
|
|
return success;
|
|
}
|
|
}
|
|
if (unlikely(exponent < FASTFLOAT_SMALLEST_POWER) ||
|
|
(exponent > FASTFLOAT_LARGEST_POWER)) { // this is uncommon!!!
|
|
// this is almost never going to get called!!!
|
|
// we start anew, going slowly!!!
|
|
bool success = slow_float_parsing((const char *) src, writer);
|
|
// The number was already written, but we made a copy of the writer when we passed it to the
|
|
// slow_float_parsing() function, so we have to skip those tape spots now that we've returned
|
|
writer.skip_double();
|
|
return success;
|
|
}
|
|
bool success = true;
|
|
double d = compute_float_64(exponent, i, negative, &success);
|
|
if (!success) {
|
|
// we are almost never going to get here.
|
|
success = parse_float_strtod((const char *)src, &d);
|
|
}
|
|
if (success) {
|
|
writer.append_double(d);
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_float(d, src);
|
|
#endif
|
|
return true;
|
|
} else {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
} else {
|
|
if (unlikely(digit_count >= 18)) { // this is uncommon!!!
|
|
// there is a good chance that we had an overflow, so we need
|
|
// need to recover: we parse the whole thing again.
|
|
bool success = parse_large_integer(src, writer, found_minus);
|
|
// The number was already written, but we made a copy of the writer
|
|
// when we passed it to the parse_large_integer() function, so
|
|
writer.skip_large_integer();
|
|
return success;
|
|
}
|
|
i = negative ? 0 - i : i;
|
|
writer.append_s64(i);
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_integer(i, src);
|
|
#endif
|
|
}
|
|
return is_structural_or_whitespace(*p);
|
|
#endif // SIMDJSON_SKIPNUMBERPARSING
|
|
}
|
|
|
|
} // namespace numberparsing
|
|
} // namespace stage2
|
|
/* end file src/generic/stage2/numberparsing.h */
|
|
|
|
} // namespace fallback
|
|
|
|
} // namespace simdjson
|
|
|
|
#endif // SIMDJSON_FALLBACK_NUMBERPARSING_H
|
|
/* end file src/generic/stage2/numberparsing.h */
|
|
|
|
namespace simdjson {
|
|
namespace fallback {
|
|
|
|
/* begin file src/generic/stage2/logger.h */
|
|
// This is for an internal-only stage 2 specific logger.
|
|
// Set LOG_ENABLED = true to log what stage 2 is doing!
|
|
namespace logger {
|
|
static constexpr const char * DASHES = "----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------";
|
|
|
|
static constexpr const bool LOG_ENABLED = false;
|
|
static constexpr const int LOG_EVENT_LEN = 30;
|
|
static constexpr const int LOG_BUFFER_LEN = 20;
|
|
static constexpr const int LOG_DETAIL_LEN = 50;
|
|
static constexpr const int LOG_INDEX_LEN = 10;
|
|
|
|
static int log_depth; // Not threadsafe. Log only.
|
|
|
|
// Helper to turn unprintable or newline characters into spaces
|
|
static really_inline char printable_char(char c) {
|
|
if (c >= 0x20) {
|
|
return c;
|
|
} else {
|
|
return ' ';
|
|
}
|
|
}
|
|
|
|
// Print the header and set up log_start
|
|
static really_inline void log_start() {
|
|
if (LOG_ENABLED) {
|
|
log_depth = 0;
|
|
printf("\n");
|
|
printf("| %-*s | %-*s | %*s | %*s | %*s | %-*s | %-*s | %-*s |\n", LOG_EVENT_LEN, "Event", LOG_BUFFER_LEN, "Buffer", 4, "Curr", 4, "Next", 5, "Next#", 5, "Tape#", LOG_DETAIL_LEN, "Detail", LOG_INDEX_LEN, "index");
|
|
printf("|%.*s|%.*s|%.*s|%.*s|%.*s|%.*s|%.*s|%.*s|\n", LOG_EVENT_LEN+2, DASHES, LOG_BUFFER_LEN+2, DASHES, 4+2, DASHES, 4+2, DASHES, 5+2, DASHES, 5+2, DASHES, LOG_DETAIL_LEN+2, DASHES, LOG_INDEX_LEN+2, DASHES);
|
|
}
|
|
}
|
|
|
|
static really_inline void log_string(const char *message) {
|
|
if (LOG_ENABLED) {
|
|
printf("%s\n", message);
|
|
}
|
|
}
|
|
|
|
// Logs a single line of
|
|
template<typename S>
|
|
static really_inline void log_line(S &structurals, const char *title_prefix, const char *title, const char *detail) {
|
|
if (LOG_ENABLED) {
|
|
printf("| %*s%s%-*s ", log_depth*2, "", title_prefix, LOG_EVENT_LEN - log_depth*2 - int(strlen(title_prefix)), title);
|
|
{
|
|
// Print the next N characters in the buffer.
|
|
printf("| ");
|
|
// Otherwise, print the characters starting from the buffer position.
|
|
// Print spaces for unprintable or newline characters.
|
|
for (int i=0;i<LOG_BUFFER_LEN;i++) {
|
|
printf("%c", printable_char(structurals.current()[i]));
|
|
}
|
|
printf(" ");
|
|
}
|
|
printf("| %c ", printable_char(structurals.current_char()));
|
|
printf("| %c ", printable_char(structurals.peek_next_char()));
|
|
printf("| %5u ", structurals.parser.structural_indexes[*(structurals.current_structural+1)]);
|
|
printf("| %5u ", structurals.next_tape_index());
|
|
printf("| %-*s ", LOG_DETAIL_LEN, detail);
|
|
printf("| %*u ", LOG_INDEX_LEN, *structurals.current_structural);
|
|
printf("|\n");
|
|
}
|
|
}
|
|
} // namespace logger
|
|
|
|
/* end file src/generic/stage2/logger.h */
|
|
/* begin file src/generic/stage2/atomparsing.h */
|
|
namespace stage2 {
|
|
namespace atomparsing {
|
|
|
|
really_inline uint32_t string_to_uint32(const char* str) { return *reinterpret_cast<const uint32_t *>(str); }
|
|
|
|
WARN_UNUSED
|
|
really_inline uint32_t str4ncmp(const uint8_t *src, const char* atom) {
|
|
uint32_t srcval; // we want to avoid unaligned 64-bit loads (undefined in C/C++)
|
|
static_assert(sizeof(uint32_t) <= SIMDJSON_PADDING, "SIMDJSON_PADDING must be larger than 4 bytes");
|
|
std::memcpy(&srcval, src, sizeof(uint32_t));
|
|
return srcval ^ string_to_uint32(atom);
|
|
}
|
|
|
|
WARN_UNUSED
|
|
really_inline bool is_valid_true_atom(const uint8_t *src) {
|
|
return (str4ncmp(src, "true") | is_not_structural_or_whitespace(src[4])) == 0;
|
|
}
|
|
|
|
WARN_UNUSED
|
|
really_inline bool is_valid_true_atom(const uint8_t *src, size_t len) {
|
|
if (len > 4) { return is_valid_true_atom(src); }
|
|
else if (len == 4) { return !str4ncmp(src, "true"); }
|
|
else { return false; }
|
|
}
|
|
|
|
WARN_UNUSED
|
|
really_inline bool is_valid_false_atom(const uint8_t *src) {
|
|
return (str4ncmp(src+1, "alse") | is_not_structural_or_whitespace(src[5])) == 0;
|
|
}
|
|
|
|
WARN_UNUSED
|
|
really_inline bool is_valid_false_atom(const uint8_t *src, size_t len) {
|
|
if (len > 5) { return is_valid_false_atom(src); }
|
|
else if (len == 5) { return !str4ncmp(src+1, "alse"); }
|
|
else { return false; }
|
|
}
|
|
|
|
WARN_UNUSED
|
|
really_inline bool is_valid_null_atom(const uint8_t *src) {
|
|
return (str4ncmp(src, "null") | is_not_structural_or_whitespace(src[4])) == 0;
|
|
}
|
|
|
|
WARN_UNUSED
|
|
really_inline bool is_valid_null_atom(const uint8_t *src, size_t len) {
|
|
if (len > 4) { return is_valid_null_atom(src); }
|
|
else if (len == 4) { return !str4ncmp(src, "null"); }
|
|
else { return false; }
|
|
}
|
|
|
|
} // namespace atomparsing
|
|
} // namespace stage2
|
|
/* end file src/generic/stage2/atomparsing.h */
|
|
/* begin file src/generic/stage2/structural_iterator.h */
|
|
namespace stage2 {
|
|
|
|
class structural_iterator {
|
|
public:
|
|
const uint8_t* const buf;
|
|
uint32_t *current_structural;
|
|
dom_parser_implementation &parser;
|
|
|
|
// Start a structural
|
|
really_inline structural_iterator(dom_parser_implementation &_parser, size_t start_structural_index)
|
|
: buf{_parser.buf},
|
|
current_structural{&_parser.structural_indexes[start_structural_index]},
|
|
parser{_parser} {
|
|
}
|
|
// Get the buffer position of the current structural character
|
|
really_inline const uint8_t* current() {
|
|
return &buf[*current_structural];
|
|
}
|
|
// Get the current structural character
|
|
really_inline char current_char() {
|
|
return buf[*current_structural];
|
|
}
|
|
// Get the next structural character without advancing
|
|
really_inline char peek_next_char() {
|
|
return buf[*(current_structural+1)];
|
|
}
|
|
really_inline char advance_char() {
|
|
current_structural++;
|
|
return buf[*current_structural];
|
|
}
|
|
really_inline size_t remaining_len() {
|
|
return parser.len - *current_structural;
|
|
}
|
|
template<typename F>
|
|
really_inline bool with_space_terminated_copy(const F& f) {
|
|
/**
|
|
* We need to make a copy to make sure that the string is space terminated.
|
|
* This is not about padding the input, which should already padded up
|
|
* to len + SIMDJSON_PADDING. However, we have no control at this stage
|
|
* on how the padding was done. What if the input string was padded with nulls?
|
|
* It is quite common for an input string to have an extra null character (C string).
|
|
* We do not want to allow 9\0 (where \0 is the null character) inside a JSON
|
|
* document, but the string "9\0" by itself is fine. So we make a copy and
|
|
* pad the input with spaces when we know that there is just one input element.
|
|
* This copy is relatively expensive, but it will almost never be called in
|
|
* practice unless you are in the strange scenario where you have many JSON
|
|
* documents made of single atoms.
|
|
*/
|
|
char *copy = static_cast<char *>(malloc(parser.len + SIMDJSON_PADDING));
|
|
if (copy == nullptr) {
|
|
return true;
|
|
}
|
|
memcpy(copy, buf, parser.len);
|
|
memset(copy + parser.len, ' ', SIMDJSON_PADDING);
|
|
bool result = f(reinterpret_cast<const uint8_t*>(copy), *current_structural);
|
|
free(copy);
|
|
return result;
|
|
}
|
|
really_inline bool past_end(uint32_t n_structural_indexes) {
|
|
return current_structural >= &parser.structural_indexes[n_structural_indexes];
|
|
}
|
|
really_inline bool at_end(uint32_t n_structural_indexes) {
|
|
return current_structural == &parser.structural_indexes[n_structural_indexes];
|
|
}
|
|
really_inline bool at_beginning() {
|
|
return current_structural == parser.structural_indexes.get();
|
|
}
|
|
};
|
|
|
|
} // namespace stage2
|
|
/* end file src/generic/stage2/structural_iterator.h */
|
|
/* begin file src/generic/stage2/structural_parser.h */
|
|
// This file contains the common code every implementation uses for stage2
|
|
// It is intended to be included multiple times and compiled multiple times
|
|
// We assume the file in which it is include already includes
|
|
// "simdjson/stage2.h" (this simplifies amalgation)
|
|
|
|
namespace stage2 {
|
|
namespace { // Make everything here private
|
|
|
|
/* begin file src/generic/stage2/tape_writer.h */
|
|
struct tape_writer {
|
|
/** The next place to write to tape */
|
|
uint64_t *next_tape_loc;
|
|
|
|
/** Write a signed 64-bit value to tape. */
|
|
really_inline void append_s64(int64_t value) noexcept;
|
|
|
|
/** Write an unsigned 64-bit value to tape. */
|
|
really_inline void append_u64(uint64_t value) noexcept;
|
|
|
|
/** Write a double value to tape. */
|
|
really_inline void append_double(double value) noexcept;
|
|
|
|
/**
|
|
* Append a tape entry (an 8-bit type,and 56 bits worth of value).
|
|
*/
|
|
really_inline void append(uint64_t val, internal::tape_type t) noexcept;
|
|
|
|
/**
|
|
* Skip the current tape entry without writing.
|
|
*
|
|
* Used to skip the start of the container, since we'll come back later to fill it in when the
|
|
* container ends.
|
|
*/
|
|
really_inline void skip() noexcept;
|
|
|
|
/**
|
|
* Skip the number of tape entries necessary to write a large u64 or i64.
|
|
*/
|
|
really_inline void skip_large_integer() noexcept;
|
|
|
|
/**
|
|
* Skip the number of tape entries necessary to write a double.
|
|
*/
|
|
really_inline void skip_double() noexcept;
|
|
|
|
/**
|
|
* Write a value to a known location on tape.
|
|
*
|
|
* Used to go back and write out the start of a container after the container ends.
|
|
*/
|
|
really_inline static void write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept;
|
|
|
|
private:
|
|
/**
|
|
* Append both the tape entry, and a supplementary value following it. Used for types that need
|
|
* all 64 bits, such as double and uint64_t.
|
|
*/
|
|
template<typename T>
|
|
really_inline void append2(uint64_t val, T val2, internal::tape_type t) noexcept;
|
|
}; // struct number_writer
|
|
|
|
really_inline void tape_writer::append_s64(int64_t value) noexcept {
|
|
append2(0, value, internal::tape_type::INT64);
|
|
}
|
|
|
|
really_inline void tape_writer::append_u64(uint64_t value) noexcept {
|
|
append(0, internal::tape_type::UINT64);
|
|
*next_tape_loc = value;
|
|
next_tape_loc++;
|
|
}
|
|
|
|
/** Write a double value to tape. */
|
|
really_inline void tape_writer::append_double(double value) noexcept {
|
|
append2(0, value, internal::tape_type::DOUBLE);
|
|
}
|
|
|
|
really_inline void tape_writer::skip() noexcept {
|
|
next_tape_loc++;
|
|
}
|
|
|
|
really_inline void tape_writer::skip_large_integer() noexcept {
|
|
next_tape_loc += 2;
|
|
}
|
|
|
|
really_inline void tape_writer::skip_double() noexcept {
|
|
next_tape_loc += 2;
|
|
}
|
|
|
|
really_inline void tape_writer::append(uint64_t val, internal::tape_type t) noexcept {
|
|
*next_tape_loc = val | ((uint64_t(char(t))) << 56);
|
|
next_tape_loc++;
|
|
}
|
|
|
|
template<typename T>
|
|
really_inline void tape_writer::append2(uint64_t val, T val2, internal::tape_type t) noexcept {
|
|
append(val, t);
|
|
static_assert(sizeof(val2) == sizeof(*next_tape_loc), "Type is not 64 bits!");
|
|
memcpy(next_tape_loc, &val2, sizeof(val2));
|
|
next_tape_loc++;
|
|
}
|
|
|
|
really_inline void tape_writer::write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept {
|
|
tape_loc = val | ((uint64_t(char(t))) << 56);
|
|
}
|
|
/* end file src/generic/stage2/tape_writer.h */
|
|
|
|
#ifdef SIMDJSON_USE_COMPUTED_GOTO
|
|
#define INIT_ADDRESSES() { &&array_begin, &&array_continue, &&error, &&finish, &&object_begin, &&object_continue }
|
|
#define GOTO(address) { goto *(address); }
|
|
#define CONTINUE(address) { goto *(address); }
|
|
#else // SIMDJSON_USE_COMPUTED_GOTO
|
|
#define INIT_ADDRESSES() { '[', 'a', 'e', 'f', '{', 'o' };
|
|
#define GOTO(address) \
|
|
{ \
|
|
switch(address) { \
|
|
case '[': goto array_begin; \
|
|
case 'a': goto array_continue; \
|
|
case 'e': goto error; \
|
|
case 'f': goto finish; \
|
|
case '{': goto object_begin; \
|
|
case 'o': goto object_continue; \
|
|
} \
|
|
}
|
|
// For the more constrained end_xxx() situation
|
|
#define CONTINUE(address) \
|
|
{ \
|
|
switch(address) { \
|
|
case 'a': goto array_continue; \
|
|
case 'o': goto object_continue; \
|
|
case 'f': goto finish; \
|
|
} \
|
|
}
|
|
#endif // SIMDJSON_USE_COMPUTED_GOTO
|
|
|
|
struct unified_machine_addresses {
|
|
ret_address_t array_begin;
|
|
ret_address_t array_continue;
|
|
ret_address_t error;
|
|
ret_address_t finish;
|
|
ret_address_t object_begin;
|
|
ret_address_t object_continue;
|
|
};
|
|
|
|
#undef FAIL_IF
|
|
#define FAIL_IF(EXPR) { if (EXPR) { return addresses.error; } }
|
|
|
|
struct structural_parser : structural_iterator {
|
|
/** Lets you append to the tape */
|
|
tape_writer tape;
|
|
/** Next write location in the string buf for stage 2 parsing */
|
|
uint8_t *current_string_buf_loc;
|
|
/** Current depth (nested objects and arrays) */
|
|
uint32_t depth{0};
|
|
|
|
// For non-streaming, to pass an explicit 0 as next_structural, which enables optimizations
|
|
really_inline structural_parser(dom_parser_implementation &_parser, uint32_t start_structural_index)
|
|
: structural_iterator(_parser, start_structural_index),
|
|
tape{parser.doc->tape.get()},
|
|
current_string_buf_loc{parser.doc->string_buf.get()} {
|
|
}
|
|
|
|
WARN_UNUSED really_inline bool start_scope(ret_address_t continue_state) {
|
|
parser.containing_scope[depth].tape_index = next_tape_index();
|
|
parser.containing_scope[depth].count = 0;
|
|
tape.skip(); // We don't actually *write* the start element until the end.
|
|
parser.ret_address[depth] = continue_state;
|
|
depth++;
|
|
bool exceeded_max_depth = depth >= parser.max_depth();
|
|
if (exceeded_max_depth) { log_error("Exceeded max depth!"); }
|
|
return exceeded_max_depth;
|
|
}
|
|
|
|
WARN_UNUSED really_inline bool start_document(ret_address_t continue_state) {
|
|
log_start_value("document");
|
|
return start_scope(continue_state);
|
|
}
|
|
|
|
WARN_UNUSED really_inline bool start_object(ret_address_t continue_state) {
|
|
log_start_value("object");
|
|
return start_scope(continue_state);
|
|
}
|
|
|
|
WARN_UNUSED really_inline bool start_array(ret_address_t continue_state) {
|
|
log_start_value("array");
|
|
return start_scope(continue_state);
|
|
}
|
|
|
|
// this function is responsible for annotating the start of the scope
|
|
really_inline void end_scope(internal::tape_type start, internal::tape_type end) noexcept {
|
|
depth--;
|
|
// write our doc->tape location to the header scope
|
|
// The root scope gets written *at* the previous location.
|
|
tape.append(parser.containing_scope[depth].tape_index, end);
|
|
// count can overflow if it exceeds 24 bits... so we saturate
|
|
// the convention being that a cnt of 0xffffff or more is undetermined in value (>= 0xffffff).
|
|
const uint32_t start_tape_index = parser.containing_scope[depth].tape_index;
|
|
const uint32_t count = parser.containing_scope[depth].count;
|
|
const uint32_t cntsat = count > 0xFFFFFF ? 0xFFFFFF : count;
|
|
// This is a load and an OR. It would be possible to just write once at doc->tape[d.tape_index]
|
|
tape_writer::write(parser.doc->tape[start_tape_index], next_tape_index() | (uint64_t(cntsat) << 32), start);
|
|
}
|
|
|
|
really_inline uint32_t next_tape_index() {
|
|
return uint32_t(tape.next_tape_loc - parser.doc->tape.get());
|
|
}
|
|
|
|
really_inline void end_object() {
|
|
log_end_value("object");
|
|
end_scope(internal::tape_type::START_OBJECT, internal::tape_type::END_OBJECT);
|
|
}
|
|
really_inline void end_array() {
|
|
log_end_value("array");
|
|
end_scope(internal::tape_type::START_ARRAY, internal::tape_type::END_ARRAY);
|
|
}
|
|
really_inline void end_document() {
|
|
log_end_value("document");
|
|
end_scope(internal::tape_type::ROOT, internal::tape_type::ROOT);
|
|
}
|
|
|
|
// increment_count increments the count of keys in an object or values in an array.
|
|
// Note that if you are at the level of the values or elements, the count
|
|
// must be increment in the preceding depth (depth-1) where the array or
|
|
// the object resides.
|
|
really_inline void increment_count() {
|
|
parser.containing_scope[depth - 1].count++; // we have a key value pair in the object at parser.depth - 1
|
|
}
|
|
|
|
really_inline uint8_t *on_start_string() noexcept {
|
|
// we advance the point, accounting for the fact that we have a NULL termination
|
|
tape.append(current_string_buf_loc - parser.doc->string_buf.get(), internal::tape_type::STRING);
|
|
return current_string_buf_loc + sizeof(uint32_t);
|
|
}
|
|
|
|
really_inline void on_end_string(uint8_t *dst) noexcept {
|
|
uint32_t str_length = uint32_t(dst - (current_string_buf_loc + sizeof(uint32_t)));
|
|
// TODO check for overflow in case someone has a crazy string (>=4GB?)
|
|
// But only add the overflow check when the document itself exceeds 4GB
|
|
// Currently unneeded because we refuse to parse docs larger or equal to 4GB.
|
|
memcpy(current_string_buf_loc, &str_length, sizeof(uint32_t));
|
|
// NULL termination is still handy if you expect all your strings to
|
|
// be NULL terminated? It comes at a small cost
|
|
*dst = 0;
|
|
current_string_buf_loc = dst + 1;
|
|
}
|
|
|
|
WARN_UNUSED really_inline bool parse_string(bool key = false) {
|
|
log_value(key ? "key" : "string");
|
|
uint8_t *dst = on_start_string();
|
|
dst = stringparsing::parse_string(current(), dst);
|
|
if (dst == nullptr) {
|
|
log_error("Invalid escape in string");
|
|
return true;
|
|
}
|
|
on_end_string(dst);
|
|
return false;
|
|
}
|
|
|
|
WARN_UNUSED really_inline bool parse_number(const uint8_t *src, bool found_minus) {
|
|
log_value("number");
|
|
bool succeeded = numberparsing::parse_number(src, found_minus, tape);
|
|
if (!succeeded) { log_error("Invalid number"); }
|
|
return !succeeded;
|
|
}
|
|
WARN_UNUSED really_inline bool parse_number(bool found_minus) {
|
|
return parse_number(current(), found_minus);
|
|
}
|
|
|
|
WARN_UNUSED really_inline ret_address_t parse_value(const unified_machine_addresses &addresses, ret_address_t continue_state) {
|
|
switch (advance_char()) {
|
|
case '"':
|
|
FAIL_IF( parse_string() );
|
|
return continue_state;
|
|
case 't':
|
|
log_value("true");
|
|
FAIL_IF( !atomparsing::is_valid_true_atom(current()) );
|
|
tape.append(0, internal::tape_type::TRUE_VALUE);
|
|
return continue_state;
|
|
case 'f':
|
|
log_value("false");
|
|
FAIL_IF( !atomparsing::is_valid_false_atom(current()) );
|
|
tape.append(0, internal::tape_type::FALSE_VALUE);
|
|
return continue_state;
|
|
case 'n':
|
|
log_value("null");
|
|
FAIL_IF( !atomparsing::is_valid_null_atom(current()) );
|
|
tape.append(0, internal::tape_type::NULL_VALUE);
|
|
return continue_state;
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
FAIL_IF( parse_number(false) );
|
|
return continue_state;
|
|
case '-':
|
|
FAIL_IF( parse_number(true) );
|
|
return continue_state;
|
|
case '{':
|
|
FAIL_IF( start_object(continue_state) );
|
|
return addresses.object_begin;
|
|
case '[':
|
|
FAIL_IF( start_array(continue_state) );
|
|
return addresses.array_begin;
|
|
default:
|
|
log_error("Non-value found when value was expected!");
|
|
return addresses.error;
|
|
}
|
|
}
|
|
|
|
WARN_UNUSED really_inline error_code finish() {
|
|
end_document();
|
|
parser.next_structural_index = uint32_t(current_structural + 1 - &parser.structural_indexes[0]);
|
|
|
|
if (depth != 0) {
|
|
log_error("Unclosed objects or arrays!");
|
|
return parser.error = TAPE_ERROR;
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
WARN_UNUSED really_inline error_code error() {
|
|
/* We do not need the next line because this is done by parser.init_stage2(),
|
|
* pessimistically.
|
|
* parser.is_valid = false;
|
|
* At this point in the code, we have all the time in the world.
|
|
* Note that we know exactly where we are in the document so we could,
|
|
* without any overhead on the processing code, report a specific
|
|
* location.
|
|
* We could even trigger special code paths to assess what happened
|
|
* carefully,
|
|
* all without any added cost. */
|
|
if (depth >= parser.max_depth()) {
|
|
return parser.error = DEPTH_ERROR;
|
|
}
|
|
switch (current_char()) {
|
|
case '"':
|
|
return parser.error = STRING_ERROR;
|
|
case '0':
|
|
case '1':
|
|
case '2':
|
|
case '3':
|
|
case '4':
|
|
case '5':
|
|
case '6':
|
|
case '7':
|
|
case '8':
|
|
case '9':
|
|
case '-':
|
|
return parser.error = NUMBER_ERROR;
|
|
case 't':
|
|
return parser.error = T_ATOM_ERROR;
|
|
case 'n':
|
|
return parser.error = N_ATOM_ERROR;
|
|
case 'f':
|
|
return parser.error = F_ATOM_ERROR;
|
|
default:
|
|
return parser.error = TAPE_ERROR;
|
|
}
|
|
}
|
|
|
|
really_inline void init() {
|
|
log_start();
|
|
parser.error = UNINITIALIZED;
|
|
}
|
|
|
|
WARN_UNUSED really_inline error_code start(ret_address_t finish_state) {
|
|
// If there are no structurals left, return EMPTY
|
|
if (at_end(parser.n_structural_indexes)) {
|
|
return parser.error = EMPTY;
|
|
}
|
|
|
|
init();
|
|
// Push the root scope (there is always at least one scope)
|
|
if (start_document(finish_state)) {
|
|
return parser.error = DEPTH_ERROR;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
really_inline void log_value(const char *type) {
|
|
logger::log_line(*this, "", type, "");
|
|
}
|
|
|
|
static really_inline void log_start() {
|
|
logger::log_start();
|
|
}
|
|
|
|
really_inline void log_start_value(const char *type) {
|
|
logger::log_line(*this, "+", type, "");
|
|
if (logger::LOG_ENABLED) { logger::log_depth++; }
|
|
}
|
|
|
|
really_inline void log_end_value(const char *type) {
|
|
if (logger::LOG_ENABLED) { logger::log_depth--; }
|
|
logger::log_line(*this, "-", type, "");
|
|
}
|
|
|
|
really_inline void log_error(const char *error) {
|
|
logger::log_line(*this, "", "ERROR", error);
|
|
}
|
|
}; // struct structural_parser
|
|
|
|
// Redefine FAIL_IF to use goto since it'll be used inside the function now
|
|
#undef FAIL_IF
|
|
#define FAIL_IF(EXPR) { if (EXPR) { goto error; } }
|
|
|
|
template<bool STREAMING>
|
|
WARN_UNUSED static error_code parse_structurals(dom_parser_implementation &dom_parser, dom::document &doc) noexcept {
|
|
dom_parser.doc = &doc;
|
|
static constexpr stage2::unified_machine_addresses addresses = INIT_ADDRESSES();
|
|
stage2::structural_parser parser(dom_parser, STREAMING ? dom_parser.next_structural_index : 0);
|
|
error_code result = parser.start(addresses.finish);
|
|
if (result) { return result; }
|
|
|
|
//
|
|
// Read first value
|
|
//
|
|
switch (parser.current_char()) {
|
|
case '{':
|
|
FAIL_IF( parser.start_object(addresses.finish) );
|
|
goto object_begin;
|
|
case '[':
|
|
FAIL_IF( parser.start_array(addresses.finish) );
|
|
// Make sure the outer array is closed before continuing; otherwise, there are ways we could get
|
|
// into memory corruption. See https://github.com/simdjson/simdjson/issues/906
|
|
if (!STREAMING) {
|
|
if (parser.buf[dom_parser.structural_indexes[dom_parser.n_structural_indexes - 1]] != ']') {
|
|
goto error;
|
|
}
|
|
}
|
|
goto array_begin;
|
|
case '"':
|
|
FAIL_IF( parser.parse_string() );
|
|
goto finish;
|
|
case 't':
|
|
parser.log_value("true");
|
|
FAIL_IF( !atomparsing::is_valid_true_atom(parser.current(), parser.remaining_len()) );
|
|
parser.tape.append(0, internal::tape_type::TRUE_VALUE);
|
|
goto finish;
|
|
case 'f':
|
|
parser.log_value("false");
|
|
FAIL_IF( !atomparsing::is_valid_false_atom(parser.current(), parser.remaining_len()) );
|
|
parser.tape.append(0, internal::tape_type::FALSE_VALUE);
|
|
goto finish;
|
|
case 'n':
|
|
parser.log_value("null");
|
|
FAIL_IF( !atomparsing::is_valid_null_atom(parser.current(), parser.remaining_len()) );
|
|
parser.tape.append(0, internal::tape_type::NULL_VALUE);
|
|
goto finish;
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
FAIL_IF(
|
|
parser.with_space_terminated_copy([&](const uint8_t *copy, size_t idx) {
|
|
return parser.parse_number(©[idx], false);
|
|
})
|
|
);
|
|
goto finish;
|
|
case '-':
|
|
FAIL_IF(
|
|
parser.with_space_terminated_copy([&](const uint8_t *copy, size_t idx) {
|
|
return parser.parse_number(©[idx], true);
|
|
})
|
|
);
|
|
goto finish;
|
|
default:
|
|
parser.log_error("Document starts with a non-value character");
|
|
goto error;
|
|
}
|
|
|
|
//
|
|
// Object parser states
|
|
//
|
|
object_begin:
|
|
switch (parser.advance_char()) {
|
|
case '"': {
|
|
parser.increment_count();
|
|
FAIL_IF( parser.parse_string(true) );
|
|
goto object_key_state;
|
|
}
|
|
case '}':
|
|
parser.end_object();
|
|
goto scope_end;
|
|
default:
|
|
parser.log_error("Object does not start with a key");
|
|
goto error;
|
|
}
|
|
|
|
object_key_state:
|
|
if (parser.advance_char() != ':' ) { parser.log_error("Missing colon after key in object"); goto error; }
|
|
GOTO( parser.parse_value(addresses, addresses.object_continue) );
|
|
|
|
object_continue:
|
|
switch (parser.advance_char()) {
|
|
case ',':
|
|
parser.increment_count();
|
|
if (parser.advance_char() != '"' ) { parser.log_error("Key string missing at beginning of field in object"); goto error; }
|
|
FAIL_IF( parser.parse_string(true) );
|
|
goto object_key_state;
|
|
case '}':
|
|
parser.end_object();
|
|
goto scope_end;
|
|
default:
|
|
parser.log_error("No comma between object fields");
|
|
goto error;
|
|
}
|
|
|
|
scope_end:
|
|
CONTINUE( parser.parser.ret_address[parser.depth] );
|
|
|
|
//
|
|
// Array parser states
|
|
//
|
|
array_begin:
|
|
if (parser.peek_next_char() == ']') {
|
|
parser.advance_char();
|
|
parser.end_array();
|
|
goto scope_end;
|
|
}
|
|
parser.increment_count();
|
|
|
|
main_array_switch:
|
|
/* we call update char on all paths in, so we can peek at parser.c on the
|
|
* on paths that can accept a close square brace (post-, and at start) */
|
|
GOTO( parser.parse_value(addresses, addresses.array_continue) );
|
|
|
|
array_continue:
|
|
switch (parser.advance_char()) {
|
|
case ',':
|
|
parser.increment_count();
|
|
goto main_array_switch;
|
|
case ']':
|
|
parser.end_array();
|
|
goto scope_end;
|
|
default:
|
|
parser.log_error("Missing comma between array values");
|
|
goto error;
|
|
}
|
|
|
|
finish:
|
|
return parser.finish();
|
|
|
|
error:
|
|
return parser.error();
|
|
}
|
|
|
|
} // namespace {}
|
|
} // namespace stage2
|
|
|
|
/************
|
|
* The JSON is parsed to a tape, see the accompanying tape.md file
|
|
* for documentation.
|
|
***********/
|
|
WARN_UNUSED error_code dom_parser_implementation::stage2(dom::document &_doc) noexcept {
|
|
error_code result = stage2::parse_structurals<false>(*this, _doc);
|
|
if (result) { return result; }
|
|
|
|
// If we didn't make it to the end, it's an error
|
|
if ( next_structural_index != n_structural_indexes ) {
|
|
logger::log_string("More than one JSON value at the root of the document, or extra characters at the end of the JSON!");
|
|
return error = TAPE_ERROR;
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
/************
|
|
* The JSON is parsed to a tape, see the accompanying tape.md file
|
|
* for documentation.
|
|
***********/
|
|
WARN_UNUSED error_code dom_parser_implementation::stage2_next(dom::document &_doc) noexcept {
|
|
return stage2::parse_structurals<true>(*this, _doc);
|
|
}
|
|
/* end file src/generic/stage2/tape_writer.h */
|
|
|
|
WARN_UNUSED error_code dom_parser_implementation::parse(const uint8_t *_buf, size_t _len, dom::document &_doc) noexcept {
|
|
error_code err = stage1(_buf, _len, false);
|
|
if (err) { return err; }
|
|
return stage2(_doc);
|
|
}
|
|
|
|
} // namespace fallback
|
|
} // namespace simdjson
|
|
/* end file src/generic/stage2/tape_writer.h */
|
|
#endif
|
|
#if SIMDJSON_IMPLEMENTATION_HASWELL
|
|
/* begin file src/haswell/implementation.cpp */
|
|
/* haswell/implementation.h already included: #include "haswell/implementation.h" */
|
|
/* begin file src/haswell/dom_parser_implementation.h */
|
|
#ifndef SIMDJSON_HASWELL_DOM_PARSER_IMPLEMENTATION_H
|
|
#define SIMDJSON_HASWELL_DOM_PARSER_IMPLEMENTATION_H
|
|
|
|
/* isadetection.h already included: #include "isadetection.h" */
|
|
|
|
namespace simdjson {
|
|
namespace haswell {
|
|
|
|
/* begin file src/generic/dom_parser_implementation.h */
|
|
// expectation: sizeof(scope_descriptor) = 64/8.
|
|
struct scope_descriptor {
|
|
uint32_t tape_index; // where, on the tape, does the scope ([,{) begins
|
|
uint32_t count; // how many elements in the scope
|
|
}; // struct scope_descriptor
|
|
|
|
#ifdef SIMDJSON_USE_COMPUTED_GOTO
|
|
typedef void* ret_address_t;
|
|
#else
|
|
typedef char ret_address_t;
|
|
#endif
|
|
|
|
class dom_parser_implementation final : public internal::dom_parser_implementation {
|
|
public:
|
|
/** Tape location of each open { or [ */
|
|
std::unique_ptr<scope_descriptor[]> containing_scope{};
|
|
/** Return address of each open { or [ */
|
|
std::unique_ptr<ret_address_t[]> ret_address{};
|
|
/** Buffer passed to stage 1 */
|
|
const uint8_t *buf{};
|
|
/** Length passed to stage 1 */
|
|
size_t len{0};
|
|
/** Document passed to stage 2 */
|
|
dom::document *doc{};
|
|
/** Error code (TODO remove, this is not even used, we just set it so the g++ optimizer doesn't get confused) */
|
|
error_code error{UNINITIALIZED};
|
|
|
|
really_inline dom_parser_implementation();
|
|
dom_parser_implementation(const dom_parser_implementation &) = delete;
|
|
dom_parser_implementation & operator=(const dom_parser_implementation &) = delete;
|
|
|
|
WARN_UNUSED error_code parse(const uint8_t *buf, size_t len, dom::document &doc) noexcept final;
|
|
WARN_UNUSED error_code stage1(const uint8_t *buf, size_t len, bool partial) noexcept final;
|
|
WARN_UNUSED error_code check_for_unclosed_array() noexcept;
|
|
WARN_UNUSED error_code stage2(dom::document &doc) noexcept final;
|
|
WARN_UNUSED error_code stage2_next(dom::document &doc) noexcept final;
|
|
WARN_UNUSED error_code set_capacity(size_t capacity) noexcept final;
|
|
WARN_UNUSED error_code set_max_depth(size_t max_depth) noexcept final;
|
|
};
|
|
|
|
/* begin file src/generic/stage1/allocate.h */
|
|
namespace stage1 {
|
|
namespace allocate {
|
|
|
|
//
|
|
// Allocates stage 1 internal state and outputs in the parser
|
|
//
|
|
really_inline error_code set_capacity(internal::dom_parser_implementation &parser, size_t capacity) {
|
|
size_t max_structures = ROUNDUP_N(capacity, 64) + 2 + 7;
|
|
parser.structural_indexes.reset( new (std::nothrow) uint32_t[max_structures] );
|
|
if (!parser.structural_indexes) { return MEMALLOC; }
|
|
parser.structural_indexes[0] = 0;
|
|
parser.n_structural_indexes = 0;
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace allocate
|
|
} // namespace stage1
|
|
/* end file src/generic/stage1/allocate.h */
|
|
/* begin file src/generic/stage2/allocate.h */
|
|
namespace stage2 {
|
|
namespace allocate {
|
|
|
|
//
|
|
// Allocates stage 2 internal state and outputs in the parser
|
|
//
|
|
really_inline error_code set_max_depth(dom_parser_implementation &parser, size_t max_depth) {
|
|
parser.containing_scope.reset(new (std::nothrow) scope_descriptor[max_depth]);
|
|
parser.ret_address.reset(new (std::nothrow) ret_address_t[max_depth]);
|
|
|
|
if (!parser.ret_address || !parser.containing_scope) {
|
|
return MEMALLOC;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace allocate
|
|
} // namespace stage2
|
|
/* end file src/generic/stage2/allocate.h */
|
|
|
|
really_inline dom_parser_implementation::dom_parser_implementation() {}
|
|
|
|
// Leaving these here so they can be inlined if so desired
|
|
WARN_UNUSED error_code dom_parser_implementation::set_capacity(size_t capacity) noexcept {
|
|
error_code err = stage1::allocate::set_capacity(*this, capacity);
|
|
if (err) { _capacity = 0; return err; }
|
|
_capacity = capacity;
|
|
return SUCCESS;
|
|
}
|
|
|
|
WARN_UNUSED error_code dom_parser_implementation::set_max_depth(size_t max_depth) noexcept {
|
|
error_code err = stage2::allocate::set_max_depth(*this, max_depth);
|
|
if (err) { _max_depth = 0; return err; }
|
|
_max_depth = max_depth;
|
|
return SUCCESS;
|
|
}
|
|
/* end file src/generic/stage2/allocate.h */
|
|
|
|
} // namespace haswell
|
|
} // namespace simdjson
|
|
|
|
#endif // SIMDJSON_HASWELL_DOM_PARSER_IMPLEMENTATION_H
|
|
/* end file src/generic/stage2/allocate.h */
|
|
|
|
TARGET_HASWELL
|
|
|
|
namespace simdjson {
|
|
namespace haswell {
|
|
|
|
WARN_UNUSED error_code implementation::create_dom_parser_implementation(
|
|
size_t capacity,
|
|
size_t max_depth,
|
|
std::unique_ptr<internal::dom_parser_implementation>& dst
|
|
) const noexcept {
|
|
dst.reset( new (std::nothrow) dom_parser_implementation() );
|
|
if (!dst) { return MEMALLOC; }
|
|
dst->set_capacity(capacity);
|
|
dst->set_max_depth(max_depth);
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace haswell
|
|
} // namespace simdjson
|
|
|
|
UNTARGET_REGION
|
|
/* end file src/generic/stage2/allocate.h */
|
|
/* begin file src/haswell/dom_parser_implementation.cpp */
|
|
/* haswell/implementation.h already included: #include "haswell/implementation.h" */
|
|
/* haswell/dom_parser_implementation.h already included: #include "haswell/dom_parser_implementation.h" */
|
|
|
|
//
|
|
// Stage 1
|
|
//
|
|
/* begin file src/haswell/bitmask.h */
|
|
#ifndef SIMDJSON_HASWELL_BITMASK_H
|
|
#define SIMDJSON_HASWELL_BITMASK_H
|
|
|
|
|
|
/* begin file src/haswell/intrinsics.h */
|
|
#ifndef SIMDJSON_HASWELL_INTRINSICS_H
|
|
#define SIMDJSON_HASWELL_INTRINSICS_H
|
|
|
|
|
|
#ifdef SIMDJSON_VISUAL_STUDIO
|
|
// under clang within visual studio, this will include <x86intrin.h>
|
|
#include <intrin.h> // visual studio or clang
|
|
#else
|
|
#include <x86intrin.h> // elsewhere
|
|
#endif // SIMDJSON_VISUAL_STUDIO
|
|
|
|
#ifdef SIMDJSON_CLANG_VISUAL_STUDIO
|
|
/**
|
|
* You are not supposed, normally, to include these
|
|
* headers directly. Instead you should either include intrin.h
|
|
* or x86intrin.h. However, when compiling with clang
|
|
* under Windows (i.e., when _MSC_VER is set), these headers
|
|
* only get included *if* the corresponding features are detected
|
|
* from macros:
|
|
* e.g., if __AVX2__ is set... in turn, we normally set these
|
|
* macros by compiling against the corresponding architecture
|
|
* (e.g., arch:AVX2, -mavx2, etc.) which compiles the whole
|
|
* software with these advanced instructions. In simdjson, we
|
|
* want to compile the whole program for a generic target,
|
|
* and only target our specific kernels. As a workaround,
|
|
* we directly include the needed headers. These headers would
|
|
* normally guard against such usage, but we carefully included
|
|
* <x86intrin.h> (or <intrin.h>) before, so the headers
|
|
* are fooled.
|
|
*/
|
|
#include <bmiintrin.h> // for _blsr_u64
|
|
#include <lzcntintrin.h> // for __lzcnt64
|
|
#include <immintrin.h> // for most things (AVX2, AVX512, _popcnt64)
|
|
#include <smmintrin.h>
|
|
#include <tmmintrin.h>
|
|
#include <avxintrin.h>
|
|
#include <avx2intrin.h>
|
|
#include <wmmintrin.h> // for _mm_clmulepi64_si128
|
|
// unfortunately, we may not get _blsr_u64, but, thankfully, clang
|
|
// has it as a macro.
|
|
#ifndef _blsr_u64
|
|
// we roll our own
|
|
TARGET_HASWELL
|
|
static really_inline uint64_t simdjson_blsr_u64(uint64_t n) {
|
|
return (n - 1) & n;
|
|
}
|
|
UNTARGET_REGION
|
|
#define _blsr_u64(a) (simdjson_blsr_u64((a)))
|
|
#endif // _blsr_u64
|
|
#endif
|
|
|
|
|
|
#endif // SIMDJSON_HASWELL_INTRINSICS_H
|
|
/* end file src/haswell/intrinsics.h */
|
|
|
|
TARGET_HASWELL
|
|
namespace simdjson {
|
|
namespace haswell {
|
|
|
|
//
|
|
// Perform a "cumulative bitwise xor," flipping bits each time a 1 is encountered.
|
|
//
|
|
// For example, prefix_xor(00100100) == 00011100
|
|
//
|
|
really_inline uint64_t prefix_xor(const uint64_t bitmask) {
|
|
// There should be no such thing with a processor supporting avx2
|
|
// but not clmul.
|
|
__m128i all_ones = _mm_set1_epi8('\xFF');
|
|
__m128i result = _mm_clmulepi64_si128(_mm_set_epi64x(0ULL, bitmask), all_ones, 0);
|
|
return _mm_cvtsi128_si64(result);
|
|
}
|
|
|
|
} // namespace haswell
|
|
|
|
} // namespace simdjson
|
|
UNTARGET_REGION
|
|
|
|
#endif // SIMDJSON_HASWELL_BITMASK_H
|
|
/* end file src/haswell/intrinsics.h */
|
|
/* begin file src/haswell/simd.h */
|
|
#ifndef SIMDJSON_HASWELL_SIMD_H
|
|
#define SIMDJSON_HASWELL_SIMD_H
|
|
|
|
/* simdprune_tables.h already included: #include "simdprune_tables.h" */
|
|
/* begin file src/haswell/bitmanipulation.h */
|
|
#ifndef SIMDJSON_HASWELL_BITMANIPULATION_H
|
|
#define SIMDJSON_HASWELL_BITMANIPULATION_H
|
|
|
|
|
|
/* haswell/intrinsics.h already included: #include "haswell/intrinsics.h" */
|
|
|
|
TARGET_HASWELL
|
|
namespace simdjson {
|
|
namespace haswell {
|
|
|
|
// We sometimes call trailing_zero on inputs that are zero,
|
|
// but the algorithms do not end up using the returned value.
|
|
// Sadly, sanitizers are not smart enough to figure it out.
|
|
NO_SANITIZE_UNDEFINED
|
|
really_inline int trailing_zeroes(uint64_t input_num) {
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
return (int)_tzcnt_u64(input_num);
|
|
#else // SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
////////
|
|
// You might expect the next line to be equivalent to
|
|
// return (int)_tzcnt_u64(input_num);
|
|
// but the generated code differs and might be less efficient?
|
|
////////
|
|
return __builtin_ctzll(input_num);
|
|
#endif // SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
}
|
|
|
|
/* result might be undefined when input_num is zero */
|
|
really_inline uint64_t clear_lowest_bit(uint64_t input_num) {
|
|
return _blsr_u64(input_num);
|
|
}
|
|
|
|
/* result might be undefined when input_num is zero */
|
|
really_inline int leading_zeroes(uint64_t input_num) {
|
|
return int(_lzcnt_u64(input_num));
|
|
}
|
|
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
really_inline unsigned __int64 count_ones(uint64_t input_num) {
|
|
// note: we do not support legacy 32-bit Windows
|
|
return __popcnt64(input_num);// Visual Studio wants two underscores
|
|
}
|
|
#else
|
|
really_inline long long int count_ones(uint64_t input_num) {
|
|
return _popcnt64(input_num);
|
|
}
|
|
#endif
|
|
|
|
really_inline bool add_overflow(uint64_t value1, uint64_t value2,
|
|
uint64_t *result) {
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
return _addcarry_u64(0, value1, value2,
|
|
reinterpret_cast<unsigned __int64 *>(result));
|
|
#else
|
|
return __builtin_uaddll_overflow(value1, value2,
|
|
(unsigned long long *)result);
|
|
#endif
|
|
}
|
|
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
#pragma intrinsic(_umul128)
|
|
#endif
|
|
really_inline bool mul_overflow(uint64_t value1, uint64_t value2,
|
|
uint64_t *result) {
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
uint64_t high;
|
|
*result = _umul128(value1, value2, &high);
|
|
return high;
|
|
#else
|
|
return __builtin_umulll_overflow(value1, value2,
|
|
(unsigned long long *)result);
|
|
#endif
|
|
}
|
|
|
|
} // namespace haswell
|
|
} // namespace simdjson
|
|
UNTARGET_REGION
|
|
|
|
#endif // SIMDJSON_HASWELL_BITMANIPULATION_H
|
|
/* end file src/haswell/bitmanipulation.h */
|
|
/* haswell/intrinsics.h already included: #include "haswell/intrinsics.h" */
|
|
|
|
TARGET_HASWELL
|
|
namespace simdjson {
|
|
namespace haswell {
|
|
namespace simd {
|
|
|
|
// Forward-declared so they can be used by splat and friends.
|
|
template<typename Child>
|
|
struct base {
|
|
__m256i value;
|
|
|
|
// Zero constructor
|
|
really_inline base() : value{__m256i()} {}
|
|
|
|
// Conversion from SIMD register
|
|
really_inline base(const __m256i _value) : value(_value) {}
|
|
|
|
// Conversion to SIMD register
|
|
really_inline operator const __m256i&() const { return this->value; }
|
|
really_inline operator __m256i&() { return this->value; }
|
|
|
|
// Bit operations
|
|
really_inline Child operator|(const Child other) const { return _mm256_or_si256(*this, other); }
|
|
really_inline Child operator&(const Child other) const { return _mm256_and_si256(*this, other); }
|
|
really_inline Child operator^(const Child other) const { return _mm256_xor_si256(*this, other); }
|
|
really_inline Child bit_andnot(const Child other) const { return _mm256_andnot_si256(other, *this); }
|
|
really_inline Child& operator|=(const Child other) { auto this_cast = (Child*)this; *this_cast = *this_cast | other; return *this_cast; }
|
|
really_inline Child& operator&=(const Child other) { auto this_cast = (Child*)this; *this_cast = *this_cast & other; return *this_cast; }
|
|
really_inline Child& operator^=(const Child other) { auto this_cast = (Child*)this; *this_cast = *this_cast ^ other; return *this_cast; }
|
|
};
|
|
|
|
// Forward-declared so they can be used by splat and friends.
|
|
template<typename T>
|
|
struct simd8;
|
|
|
|
template<typename T, typename Mask=simd8<bool>>
|
|
struct base8: base<simd8<T>> {
|
|
typedef uint32_t bitmask_t;
|
|
typedef uint64_t bitmask2_t;
|
|
|
|
really_inline base8() : base<simd8<T>>() {}
|
|
really_inline base8(const __m256i _value) : base<simd8<T>>(_value) {}
|
|
|
|
really_inline Mask operator==(const simd8<T> other) const { return _mm256_cmpeq_epi8(*this, other); }
|
|
|
|
static const int SIZE = sizeof(base<T>::value);
|
|
|
|
template<int N=1>
|
|
really_inline simd8<T> prev(const simd8<T> prev_chunk) const {
|
|
return _mm256_alignr_epi8(*this, _mm256_permute2x128_si256(prev_chunk, *this, 0x21), 16 - N);
|
|
}
|
|
};
|
|
|
|
// SIMD byte mask type (returned by things like eq and gt)
|
|
template<>
|
|
struct simd8<bool>: base8<bool> {
|
|
static really_inline simd8<bool> splat(bool _value) { return _mm256_set1_epi8(uint8_t(-(!!_value))); }
|
|
|
|
really_inline simd8<bool>() : base8() {}
|
|
really_inline simd8<bool>(const __m256i _value) : base8<bool>(_value) {}
|
|
// Splat constructor
|
|
really_inline simd8<bool>(bool _value) : base8<bool>(splat(_value)) {}
|
|
|
|
really_inline int to_bitmask() const { return _mm256_movemask_epi8(*this); }
|
|
really_inline bool any() const { return !_mm256_testz_si256(*this, *this); }
|
|
really_inline simd8<bool> operator~() const { return *this ^ true; }
|
|
};
|
|
|
|
template<typename T>
|
|
struct base8_numeric: base8<T> {
|
|
static really_inline simd8<T> splat(T _value) { return _mm256_set1_epi8(_value); }
|
|
static really_inline simd8<T> zero() { return _mm256_setzero_si256(); }
|
|
static really_inline simd8<T> load(const T values[32]) {
|
|
return _mm256_loadu_si256(reinterpret_cast<const __m256i *>(values));
|
|
}
|
|
// Repeat 16 values as many times as necessary (usually for lookup tables)
|
|
static really_inline simd8<T> repeat_16(
|
|
T v0, T v1, T v2, T v3, T v4, T v5, T v6, T v7,
|
|
T v8, T v9, T v10, T v11, T v12, T v13, T v14, T v15
|
|
) {
|
|
return simd8<T>(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15,
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
);
|
|
}
|
|
|
|
really_inline base8_numeric() : base8<T>() {}
|
|
really_inline base8_numeric(const __m256i _value) : base8<T>(_value) {}
|
|
|
|
// Store to array
|
|
really_inline void store(T dst[32]) const { return _mm256_storeu_si256(reinterpret_cast<__m256i *>(dst), *this); }
|
|
|
|
// Addition/subtraction are the same for signed and unsigned
|
|
really_inline simd8<T> operator+(const simd8<T> other) const { return _mm256_add_epi8(*this, other); }
|
|
really_inline simd8<T> operator-(const simd8<T> other) const { return _mm256_sub_epi8(*this, other); }
|
|
really_inline simd8<T>& operator+=(const simd8<T> other) { *this = *this + other; return *(simd8<T>*)this; }
|
|
really_inline simd8<T>& operator-=(const simd8<T> other) { *this = *this - other; return *(simd8<T>*)this; }
|
|
|
|
// Override to distinguish from bool version
|
|
really_inline simd8<T> operator~() const { return *this ^ 0xFFu; }
|
|
|
|
// Perform a lookup assuming the value is between 0 and 16 (undefined behavior for out of range values)
|
|
template<typename L>
|
|
really_inline simd8<L> lookup_16(simd8<L> lookup_table) const {
|
|
return _mm256_shuffle_epi8(lookup_table, *this);
|
|
}
|
|
|
|
// Copies to 'output" all bytes corresponding to a 0 in the mask (interpreted as a bitset).
|
|
// Passing a 0 value for mask would be equivalent to writing out every byte to output.
|
|
// Only the first 32 - count_ones(mask) bytes of the result are significant but 32 bytes
|
|
// get written.
|
|
// Design consideration: it seems like a function with the
|
|
// signature simd8<L> compress(uint32_t mask) would be
|
|
// sensible, but the AVX ISA makes this kind of approach difficult.
|
|
template<typename L>
|
|
really_inline void compress(uint32_t mask, L * output) const {
|
|
// this particular implementation was inspired by work done by @animetosho
|
|
// we do it in four steps, first 8 bytes and then second 8 bytes...
|
|
uint8_t mask1 = uint8_t(mask); // least significant 8 bits
|
|
uint8_t mask2 = uint8_t(mask >> 8); // second least significant 8 bits
|
|
uint8_t mask3 = uint8_t(mask >> 16); // ...
|
|
uint8_t mask4 = uint8_t(mask >> 24); // ...
|
|
// next line just loads the 64-bit values thintable_epi8[mask1] and
|
|
// thintable_epi8[mask2] into a 128-bit register, using only
|
|
// two instructions on most compilers.
|
|
__m256i shufmask = _mm256_set_epi64x(thintable_epi8[mask4], thintable_epi8[mask3],
|
|
thintable_epi8[mask2], thintable_epi8[mask1]);
|
|
// we increment by 0x08 the second half of the mask and so forth
|
|
shufmask =
|
|
_mm256_add_epi8(shufmask, _mm256_set_epi32(0x18181818, 0x18181818,
|
|
0x10101010, 0x10101010, 0x08080808, 0x08080808, 0, 0));
|
|
// this is the version "nearly pruned"
|
|
__m256i pruned = _mm256_shuffle_epi8(*this, shufmask);
|
|
// we still need to put the pieces back together.
|
|
// we compute the popcount of the first words:
|
|
int pop1 = BitsSetTable256mul2[mask1];
|
|
int pop3 = BitsSetTable256mul2[mask3];
|
|
|
|
// then load the corresponding mask
|
|
// could be done with _mm256_loadu2_m128i but many standard libraries omit this intrinsic.
|
|
__m256i v256 = _mm256_castsi128_si256(
|
|
_mm_loadu_si128((const __m128i *)(pshufb_combine_table + pop1 * 8)));
|
|
__m256i compactmask = _mm256_insertf128_si256(v256,
|
|
_mm_loadu_si128((const __m128i *)(pshufb_combine_table + pop3 * 8)), 1);
|
|
__m256i almostthere = _mm256_shuffle_epi8(pruned, compactmask);
|
|
// We just need to write out the result.
|
|
// This is the tricky bit that is hard to do
|
|
// if we want to return a SIMD register, since there
|
|
// is no single-instruction approach to recombine
|
|
// the two 128-bit lanes with an offset.
|
|
__m128i v128;
|
|
v128 = _mm256_castsi256_si128(almostthere);
|
|
_mm_storeu_si128( (__m128i *)output, v128);
|
|
v128 = _mm256_extractf128_si256(almostthere, 1);
|
|
_mm_storeu_si128( (__m128i *)(output + 16 - count_ones(mask & 0xFFFF)), v128);
|
|
}
|
|
|
|
template<typename L>
|
|
really_inline simd8<L> lookup_16(
|
|
L replace0, L replace1, L replace2, L replace3,
|
|
L replace4, L replace5, L replace6, L replace7,
|
|
L replace8, L replace9, L replace10, L replace11,
|
|
L replace12, L replace13, L replace14, L replace15) const {
|
|
return lookup_16(simd8<L>::repeat_16(
|
|
replace0, replace1, replace2, replace3,
|
|
replace4, replace5, replace6, replace7,
|
|
replace8, replace9, replace10, replace11,
|
|
replace12, replace13, replace14, replace15
|
|
));
|
|
}
|
|
};
|
|
|
|
// Signed bytes
|
|
template<>
|
|
struct simd8<int8_t> : base8_numeric<int8_t> {
|
|
really_inline simd8() : base8_numeric<int8_t>() {}
|
|
really_inline simd8(const __m256i _value) : base8_numeric<int8_t>(_value) {}
|
|
// Splat constructor
|
|
really_inline simd8(int8_t _value) : simd8(splat(_value)) {}
|
|
// Array constructor
|
|
really_inline simd8(const int8_t values[32]) : simd8(load(values)) {}
|
|
// Member-by-member initialization
|
|
really_inline simd8(
|
|
int8_t v0, int8_t v1, int8_t v2, int8_t v3, int8_t v4, int8_t v5, int8_t v6, int8_t v7,
|
|
int8_t v8, int8_t v9, int8_t v10, int8_t v11, int8_t v12, int8_t v13, int8_t v14, int8_t v15,
|
|
int8_t v16, int8_t v17, int8_t v18, int8_t v19, int8_t v20, int8_t v21, int8_t v22, int8_t v23,
|
|
int8_t v24, int8_t v25, int8_t v26, int8_t v27, int8_t v28, int8_t v29, int8_t v30, int8_t v31
|
|
) : simd8(_mm256_setr_epi8(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15,
|
|
v16,v17,v18,v19,v20,v21,v22,v23,
|
|
v24,v25,v26,v27,v28,v29,v30,v31
|
|
)) {}
|
|
// Repeat 16 values as many times as necessary (usually for lookup tables)
|
|
really_inline static simd8<int8_t> repeat_16(
|
|
int8_t v0, int8_t v1, int8_t v2, int8_t v3, int8_t v4, int8_t v5, int8_t v6, int8_t v7,
|
|
int8_t v8, int8_t v9, int8_t v10, int8_t v11, int8_t v12, int8_t v13, int8_t v14, int8_t v15
|
|
) {
|
|
return simd8<int8_t>(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15,
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
);
|
|
}
|
|
|
|
// Order-sensitive comparisons
|
|
really_inline simd8<int8_t> max(const simd8<int8_t> other) const { return _mm256_max_epi8(*this, other); }
|
|
really_inline simd8<int8_t> min(const simd8<int8_t> other) const { return _mm256_min_epi8(*this, other); }
|
|
really_inline simd8<bool> operator>(const simd8<int8_t> other) const { return _mm256_cmpgt_epi8(*this, other); }
|
|
really_inline simd8<bool> operator<(const simd8<int8_t> other) const { return _mm256_cmpgt_epi8(other, *this); }
|
|
};
|
|
|
|
// Unsigned bytes
|
|
template<>
|
|
struct simd8<uint8_t>: base8_numeric<uint8_t> {
|
|
really_inline simd8() : base8_numeric<uint8_t>() {}
|
|
really_inline simd8(const __m256i _value) : base8_numeric<uint8_t>(_value) {}
|
|
// Splat constructor
|
|
really_inline simd8(uint8_t _value) : simd8(splat(_value)) {}
|
|
// Array constructor
|
|
really_inline simd8(const uint8_t values[32]) : simd8(load(values)) {}
|
|
// Member-by-member initialization
|
|
really_inline simd8(
|
|
uint8_t v0, uint8_t v1, uint8_t v2, uint8_t v3, uint8_t v4, uint8_t v5, uint8_t v6, uint8_t v7,
|
|
uint8_t v8, uint8_t v9, uint8_t v10, uint8_t v11, uint8_t v12, uint8_t v13, uint8_t v14, uint8_t v15,
|
|
uint8_t v16, uint8_t v17, uint8_t v18, uint8_t v19, uint8_t v20, uint8_t v21, uint8_t v22, uint8_t v23,
|
|
uint8_t v24, uint8_t v25, uint8_t v26, uint8_t v27, uint8_t v28, uint8_t v29, uint8_t v30, uint8_t v31
|
|
) : simd8(_mm256_setr_epi8(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15,
|
|
v16,v17,v18,v19,v20,v21,v22,v23,
|
|
v24,v25,v26,v27,v28,v29,v30,v31
|
|
)) {}
|
|
// Repeat 16 values as many times as necessary (usually for lookup tables)
|
|
really_inline static simd8<uint8_t> repeat_16(
|
|
uint8_t v0, uint8_t v1, uint8_t v2, uint8_t v3, uint8_t v4, uint8_t v5, uint8_t v6, uint8_t v7,
|
|
uint8_t v8, uint8_t v9, uint8_t v10, uint8_t v11, uint8_t v12, uint8_t v13, uint8_t v14, uint8_t v15
|
|
) {
|
|
return simd8<uint8_t>(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15,
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
);
|
|
}
|
|
|
|
// Saturated math
|
|
really_inline simd8<uint8_t> saturating_add(const simd8<uint8_t> other) const { return _mm256_adds_epu8(*this, other); }
|
|
really_inline simd8<uint8_t> saturating_sub(const simd8<uint8_t> other) const { return _mm256_subs_epu8(*this, other); }
|
|
|
|
// Order-specific operations
|
|
really_inline simd8<uint8_t> max(const simd8<uint8_t> other) const { return _mm256_max_epu8(*this, other); }
|
|
really_inline simd8<uint8_t> min(const simd8<uint8_t> other) const { return _mm256_min_epu8(other, *this); }
|
|
// Same as >, but only guarantees true is nonzero (< guarantees true = -1)
|
|
really_inline simd8<uint8_t> gt_bits(const simd8<uint8_t> other) const { return this->saturating_sub(other); }
|
|
// Same as <, but only guarantees true is nonzero (< guarantees true = -1)
|
|
really_inline simd8<uint8_t> lt_bits(const simd8<uint8_t> other) const { return other.saturating_sub(*this); }
|
|
really_inline simd8<bool> operator<=(const simd8<uint8_t> other) const { return other.max(*this) == other; }
|
|
really_inline simd8<bool> operator>=(const simd8<uint8_t> other) const { return other.min(*this) == other; }
|
|
really_inline simd8<bool> operator>(const simd8<uint8_t> other) const { return this->gt_bits(other).any_bits_set(); }
|
|
really_inline simd8<bool> operator<(const simd8<uint8_t> other) const { return this->lt_bits(other).any_bits_set(); }
|
|
|
|
// Bit-specific operations
|
|
really_inline simd8<bool> bits_not_set() const { return *this == uint8_t(0); }
|
|
really_inline simd8<bool> bits_not_set(simd8<uint8_t> bits) const { return (*this & bits).bits_not_set(); }
|
|
really_inline simd8<bool> any_bits_set() const { return ~this->bits_not_set(); }
|
|
really_inline simd8<bool> any_bits_set(simd8<uint8_t> bits) const { return ~this->bits_not_set(bits); }
|
|
really_inline bool bits_not_set_anywhere() const { return _mm256_testz_si256(*this, *this); }
|
|
really_inline bool any_bits_set_anywhere() const { return !bits_not_set_anywhere(); }
|
|
really_inline bool bits_not_set_anywhere(simd8<uint8_t> bits) const { return _mm256_testz_si256(*this, bits); }
|
|
really_inline bool any_bits_set_anywhere(simd8<uint8_t> bits) const { return !bits_not_set_anywhere(bits); }
|
|
template<int N>
|
|
really_inline simd8<uint8_t> shr() const { return simd8<uint8_t>(_mm256_srli_epi16(*this, N)) & uint8_t(0xFFu >> N); }
|
|
template<int N>
|
|
really_inline simd8<uint8_t> shl() const { return simd8<uint8_t>(_mm256_slli_epi16(*this, N)) & uint8_t(0xFFu << N); }
|
|
// Get one of the bits and make a bitmask out of it.
|
|
// e.g. value.get_bit<7>() gets the high bit
|
|
template<int N>
|
|
really_inline int get_bit() const { return _mm256_movemask_epi8(_mm256_slli_epi16(*this, 7-N)); }
|
|
};
|
|
|
|
template<typename T>
|
|
struct simd8x64 {
|
|
static const int NUM_CHUNKS = 64 / sizeof(simd8<T>);
|
|
const simd8<T> chunks[NUM_CHUNKS];
|
|
|
|
really_inline simd8x64() : chunks{simd8<T>(), simd8<T>()} {}
|
|
really_inline simd8x64(const simd8<T> chunk0, const simd8<T> chunk1) : chunks{chunk0, chunk1} {}
|
|
really_inline simd8x64(const T ptr[64]) : chunks{simd8<T>::load(ptr), simd8<T>::load(ptr+32)} {}
|
|
|
|
template <typename F>
|
|
static really_inline void each_index(F const& each) {
|
|
each(0);
|
|
each(1);
|
|
}
|
|
|
|
really_inline void compress(uint64_t mask, T * output) const {
|
|
uint32_t mask1 = uint32_t(mask);
|
|
uint32_t mask2 = uint32_t(mask >> 32);
|
|
this->chunks[0].compress(mask1, output);
|
|
this->chunks[1].compress(mask2, output + 32 - count_ones(mask1));
|
|
}
|
|
|
|
really_inline void store(T ptr[64]) const {
|
|
this->chunks[0].store(ptr+sizeof(simd8<T>)*0);
|
|
this->chunks[1].store(ptr+sizeof(simd8<T>)*1);
|
|
}
|
|
|
|
template <typename F>
|
|
really_inline void each(F const& each_chunk) const
|
|
{
|
|
each_chunk(this->chunks[0]);
|
|
each_chunk(this->chunks[1]);
|
|
}
|
|
|
|
template <typename R=bool, typename F>
|
|
really_inline simd8x64<R> map(F const& map_chunk) const {
|
|
return simd8x64<R>(
|
|
map_chunk(this->chunks[0]),
|
|
map_chunk(this->chunks[1])
|
|
);
|
|
}
|
|
|
|
|
|
|
|
template <typename R=bool, typename F>
|
|
really_inline simd8x64<R> map(const simd8x64<uint8_t> b, F const& map_chunk) const {
|
|
return simd8x64<R>(
|
|
map_chunk(this->chunks[0], b.chunks[0]),
|
|
map_chunk(this->chunks[1], b.chunks[1])
|
|
);
|
|
}
|
|
|
|
template <typename F>
|
|
really_inline simd8<T> reduce(F const& reduce_pair) const {
|
|
return reduce_pair(this->chunks[0], this->chunks[1]);
|
|
}
|
|
|
|
really_inline uint64_t to_bitmask() const {
|
|
uint64_t r_lo = uint32_t(this->chunks[0].to_bitmask());
|
|
uint64_t r_hi = this->chunks[1].to_bitmask();
|
|
return r_lo | (r_hi << 32);
|
|
}
|
|
|
|
really_inline simd8x64<T> bit_or(const T m) const {
|
|
const simd8<T> mask = simd8<T>::splat(m);
|
|
return this->map( [&](simd8<T> a) { return a | mask; } );
|
|
}
|
|
|
|
really_inline uint64_t eq(const T m) const {
|
|
const simd8<T> mask = simd8<T>::splat(m);
|
|
return this->map( [&](simd8<T> a) { return a == mask; } ).to_bitmask();
|
|
}
|
|
|
|
really_inline uint64_t lteq(const T m) const {
|
|
const simd8<T> mask = simd8<T>::splat(m);
|
|
return this->map( [&](simd8<T> a) { return a <= mask; } ).to_bitmask();
|
|
}
|
|
}; // struct simd8x64<T>
|
|
|
|
} // namespace simd
|
|
|
|
} // namespace haswell
|
|
} // namespace simdjson
|
|
UNTARGET_REGION
|
|
|
|
#endif // SIMDJSON_HASWELL_SIMD_H
|
|
/* end file src/haswell/bitmanipulation.h */
|
|
/* haswell/bitmanipulation.h already included: #include "haswell/bitmanipulation.h" */
|
|
|
|
TARGET_HASWELL
|
|
namespace simdjson {
|
|
namespace haswell {
|
|
|
|
using namespace simd;
|
|
|
|
struct json_character_block {
|
|
static really_inline json_character_block classify(const simd::simd8x64<uint8_t> in);
|
|
|
|
really_inline uint64_t whitespace() const { return _whitespace; }
|
|
really_inline uint64_t op() const { return _op; }
|
|
really_inline uint64_t scalar() { return ~(op() | whitespace()); }
|
|
|
|
uint64_t _whitespace;
|
|
uint64_t _op;
|
|
};
|
|
|
|
really_inline json_character_block json_character_block::classify(const simd::simd8x64<uint8_t> in) {
|
|
// These lookups rely on the fact that anything < 127 will match the lower 4 bits, which is why
|
|
// we can't use the generic lookup_16.
|
|
auto whitespace_table = simd8<uint8_t>::repeat_16(' ', 100, 100, 100, 17, 100, 113, 2, 100, '\t', '\n', 112, 100, '\r', 100, 100);
|
|
auto op_table = simd8<uint8_t>::repeat_16(',', '}', 0, 0, 0xc0u, 0, 0, 0, 0, 0, 0, 0, 0, 0, ':', '{');
|
|
|
|
// We compute whitespace and op separately. If the code later only use one or the
|
|
// other, given the fact that all functions are aggressively inlined, we can
|
|
// hope that useless computations will be omitted. This is namely case when
|
|
// minifying (we only need whitespace).
|
|
|
|
uint64_t whitespace = in.map([&](simd8<uint8_t> _in) {
|
|
return _in == simd8<uint8_t>(_mm256_shuffle_epi8(whitespace_table, _in));
|
|
}).to_bitmask();
|
|
|
|
uint64_t op = in.map([&](simd8<uint8_t> _in) {
|
|
// | 32 handles the fact that { } and [ ] are exactly 32 bytes apart
|
|
return (_in | 32) == simd8<uint8_t>(_mm256_shuffle_epi8(op_table, _in-','));
|
|
}).to_bitmask();
|
|
return { whitespace, op };
|
|
}
|
|
|
|
really_inline bool is_ascii(simd8x64<uint8_t> input) {
|
|
simd8<uint8_t> bits = input.reduce([&](simd8<uint8_t> a,simd8<uint8_t> b) { return a|b; });
|
|
return !bits.any_bits_set_anywhere(0b10000000u);
|
|
}
|
|
|
|
really_inline simd8<bool> must_be_continuation(simd8<uint8_t> prev1, simd8<uint8_t> prev2, simd8<uint8_t> prev3) {
|
|
simd8<uint8_t> is_second_byte = prev1.saturating_sub(0b11000000u-1); // Only 11______ will be > 0
|
|
simd8<uint8_t> is_third_byte = prev2.saturating_sub(0b11100000u-1); // Only 111_____ will be > 0
|
|
simd8<uint8_t> is_fourth_byte = prev3.saturating_sub(0b11110000u-1); // Only 1111____ will be > 0
|
|
// Caller requires a bool (all 1's). All values resulting from the subtraction will be <= 64, so signed comparison is fine.
|
|
return simd8<int8_t>(is_second_byte | is_third_byte | is_fourth_byte) > int8_t(0);
|
|
}
|
|
|
|
really_inline simd8<bool> must_be_2_3_continuation(simd8<uint8_t> prev2, simd8<uint8_t> prev3) {
|
|
simd8<uint8_t> is_third_byte = prev2.saturating_sub(0b11100000u-1); // Only 111_____ will be > 0
|
|
simd8<uint8_t> is_fourth_byte = prev3.saturating_sub(0b11110000u-1); // Only 1111____ will be > 0
|
|
// Caller requires a bool (all 1's). All values resulting from the subtraction will be <= 64, so signed comparison is fine.
|
|
return simd8<int8_t>(is_third_byte | is_fourth_byte) > int8_t(0);
|
|
}
|
|
|
|
|
|
/* begin file src/generic/stage1/buf_block_reader.h */
|
|
// Walks through a buffer in block-sized increments, loading the last part with spaces
|
|
template<size_t STEP_SIZE>
|
|
struct buf_block_reader {
|
|
public:
|
|
really_inline buf_block_reader(const uint8_t *_buf, size_t _len);
|
|
really_inline size_t block_index();
|
|
really_inline bool has_full_block() const;
|
|
really_inline const uint8_t *full_block() const;
|
|
/**
|
|
* Get the last block, padded with spaces.
|
|
*
|
|
* There will always be a last block, with at least 1 byte, unless len == 0 (in which case this
|
|
* function fills the buffer with spaces and returns 0. In particular, if len == STEP_SIZE there
|
|
* will be 0 full_blocks and 1 remainder block with STEP_SIZE bytes and no spaces for padding.
|
|
*
|
|
* @return the number of effective characters in the last block.
|
|
*/
|
|
really_inline size_t get_remainder(uint8_t *dst) const;
|
|
really_inline void advance();
|
|
private:
|
|
const uint8_t *buf;
|
|
const size_t len;
|
|
const size_t lenminusstep;
|
|
size_t idx;
|
|
};
|
|
|
|
constexpr const int TITLE_SIZE = 12;
|
|
|
|
// Routines to print masks and text for debugging bitmask operations
|
|
UNUSED static char * format_input_text_64(const uint8_t *text) {
|
|
static char *buf = (char*)malloc(sizeof(simd8x64<uint8_t>) + 1);
|
|
for (size_t i=0; i<sizeof(simd8x64<uint8_t>); i++) {
|
|
buf[i] = int8_t(text[i]) < ' ' ? '_' : int8_t(text[i]);
|
|
}
|
|
buf[sizeof(simd8x64<uint8_t>)] = '\0';
|
|
return buf;
|
|
}
|
|
|
|
// Routines to print masks and text for debugging bitmask operations
|
|
UNUSED static char * format_input_text(const simd8x64<uint8_t> in) {
|
|
static char *buf = (char*)malloc(sizeof(simd8x64<uint8_t>) + 1);
|
|
in.store((uint8_t*)buf);
|
|
for (size_t i=0; i<sizeof(simd8x64<uint8_t>); i++) {
|
|
if (buf[i] < ' ') { buf[i] = '_'; }
|
|
}
|
|
buf[sizeof(simd8x64<uint8_t>)] = '\0';
|
|
return buf;
|
|
}
|
|
|
|
UNUSED static char * format_mask(uint64_t mask) {
|
|
static char *buf = (char*)malloc(64 + 1);
|
|
for (size_t i=0; i<64; i++) {
|
|
buf[i] = (mask & (size_t(1) << i)) ? 'X' : ' ';
|
|
}
|
|
buf[64] = '\0';
|
|
return buf;
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
really_inline buf_block_reader<STEP_SIZE>::buf_block_reader(const uint8_t *_buf, size_t _len) : buf{_buf}, len{_len}, lenminusstep{len < STEP_SIZE ? 0 : len - STEP_SIZE}, idx{0} {}
|
|
|
|
template<size_t STEP_SIZE>
|
|
really_inline size_t buf_block_reader<STEP_SIZE>::block_index() { return idx; }
|
|
|
|
template<size_t STEP_SIZE>
|
|
really_inline bool buf_block_reader<STEP_SIZE>::has_full_block() const {
|
|
return idx < lenminusstep;
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
really_inline const uint8_t *buf_block_reader<STEP_SIZE>::full_block() const {
|
|
return &buf[idx];
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
really_inline size_t buf_block_reader<STEP_SIZE>::get_remainder(uint8_t *dst) const {
|
|
memset(dst, 0x20, STEP_SIZE); // memset STEP_SIZE because it's more efficient to write out 8 or 16 bytes at once.
|
|
memcpy(dst, buf + idx, len - idx);
|
|
return len - idx;
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
really_inline void buf_block_reader<STEP_SIZE>::advance() {
|
|
idx += STEP_SIZE;
|
|
}
|
|
/* end file src/generic/stage1/buf_block_reader.h */
|
|
/* begin file src/generic/stage1/json_string_scanner.h */
|
|
namespace stage1 {
|
|
|
|
struct json_string_block {
|
|
// Escaped characters (characters following an escape() character)
|
|
really_inline uint64_t escaped() const { return _escaped; }
|
|
// Escape characters (backslashes that are not escaped--i.e. in \\, includes only the first \)
|
|
really_inline uint64_t escape() const { return _backslash & ~_escaped; }
|
|
// Real (non-backslashed) quotes
|
|
really_inline uint64_t quote() const { return _quote; }
|
|
// Start quotes of strings
|
|
really_inline uint64_t string_end() const { return _quote & _in_string; }
|
|
// End quotes of strings
|
|
really_inline uint64_t string_start() const { return _quote & ~_in_string; }
|
|
// Only characters inside the string (not including the quotes)
|
|
really_inline uint64_t string_content() const { return _in_string & ~_quote; }
|
|
// Return a mask of whether the given characters are inside a string (only works on non-quotes)
|
|
really_inline uint64_t non_quote_inside_string(uint64_t mask) const { return mask & _in_string; }
|
|
// Return a mask of whether the given characters are inside a string (only works on non-quotes)
|
|
really_inline uint64_t non_quote_outside_string(uint64_t mask) const { return mask & ~_in_string; }
|
|
// Tail of string (everything except the start quote)
|
|
really_inline uint64_t string_tail() const { return _in_string ^ _quote; }
|
|
|
|
// backslash characters
|
|
uint64_t _backslash;
|
|
// escaped characters (backslashed--does not include the hex characters after \u)
|
|
uint64_t _escaped;
|
|
// real quotes (non-backslashed ones)
|
|
uint64_t _quote;
|
|
// string characters (includes start quote but not end quote)
|
|
uint64_t _in_string;
|
|
};
|
|
|
|
// Scans blocks for string characters, storing the state necessary to do so
|
|
class json_string_scanner {
|
|
public:
|
|
really_inline json_string_block next(const simd::simd8x64<uint8_t> in);
|
|
really_inline error_code finish(bool streaming);
|
|
|
|
private:
|
|
// Intended to be defined by the implementation
|
|
really_inline uint64_t find_escaped(uint64_t escape);
|
|
really_inline uint64_t find_escaped_branchless(uint64_t escape);
|
|
|
|
// Whether the last iteration was still inside a string (all 1's = true, all 0's = false).
|
|
uint64_t prev_in_string = 0ULL;
|
|
// Whether the first character of the next iteration is escaped.
|
|
uint64_t prev_escaped = 0ULL;
|
|
};
|
|
|
|
//
|
|
// Finds escaped characters (characters following \).
|
|
//
|
|
// Handles runs of backslashes like \\\" and \\\\" correctly (yielding 0101 and 01010, respectively).
|
|
//
|
|
// Does this by:
|
|
// - Shift the escape mask to get potentially escaped characters (characters after backslashes).
|
|
// - Mask escaped sequences that start on *even* bits with 1010101010 (odd bits are escaped, even bits are not)
|
|
// - Mask escaped sequences that start on *odd* bits with 0101010101 (even bits are escaped, odd bits are not)
|
|
//
|
|
// To distinguish between escaped sequences starting on even/odd bits, it finds the start of all
|
|
// escape sequences, filters out the ones that start on even bits, and adds that to the mask of
|
|
// escape sequences. This causes the addition to clear out the sequences starting on odd bits (since
|
|
// the start bit causes a carry), and leaves even-bit sequences alone.
|
|
//
|
|
// Example:
|
|
//
|
|
// text | \\\ | \\\"\\\" \\\" \\"\\" |
|
|
// escape | xxx | xx xxx xxx xx xx | Removed overflow backslash; will | it into follows_escape
|
|
// odd_starts | x | x x x | escape & ~even_bits & ~follows_escape
|
|
// even_seq | c| cxxx c xx c | c = carry bit -- will be masked out later
|
|
// invert_mask | | cxxx c xx c| even_seq << 1
|
|
// follows_escape | xx | x xx xxx xxx xx xx | Includes overflow bit
|
|
// escaped | x | x x x x x x x x |
|
|
// desired | x | x x x x x x x x |
|
|
// text | \\\ | \\\"\\\" \\\" \\"\\" |
|
|
//
|
|
really_inline uint64_t json_string_scanner::find_escaped_branchless(uint64_t backslash) {
|
|
// If there was overflow, pretend the first character isn't a backslash
|
|
backslash &= ~prev_escaped;
|
|
uint64_t follows_escape = backslash << 1 | prev_escaped;
|
|
|
|
// Get sequences starting on even bits by clearing out the odd series using +
|
|
const uint64_t even_bits = 0x5555555555555555ULL;
|
|
uint64_t odd_sequence_starts = backslash & ~even_bits & ~follows_escape;
|
|
uint64_t sequences_starting_on_even_bits;
|
|
prev_escaped = add_overflow(odd_sequence_starts, backslash, &sequences_starting_on_even_bits);
|
|
uint64_t invert_mask = sequences_starting_on_even_bits << 1; // The mask we want to return is the *escaped* bits, not escapes.
|
|
|
|
// Mask every other backslashed character as an escaped character
|
|
// Flip the mask for sequences that start on even bits, to correct them
|
|
return (even_bits ^ invert_mask) & follows_escape;
|
|
}
|
|
|
|
//
|
|
// Return a mask of all string characters plus end quotes.
|
|
//
|
|
// prev_escaped is overflow saying whether the next character is escaped.
|
|
// prev_in_string is overflow saying whether we're still in a string.
|
|
//
|
|
// Backslash sequences outside of quotes will be detected in stage 2.
|
|
//
|
|
really_inline json_string_block json_string_scanner::next(const simd::simd8x64<uint8_t> in) {
|
|
const uint64_t backslash = in.eq('\\');
|
|
const uint64_t escaped = find_escaped(backslash);
|
|
const uint64_t quote = in.eq('"') & ~escaped;
|
|
|
|
//
|
|
// prefix_xor flips on bits inside the string (and flips off the end quote).
|
|
//
|
|
// Then we xor with prev_in_string: if we were in a string already, its effect is flipped
|
|
// (characters inside strings are outside, and characters outside strings are inside).
|
|
//
|
|
const uint64_t in_string = prefix_xor(quote) ^ prev_in_string;
|
|
|
|
//
|
|
// Check if we're still in a string at the end of the box so the next block will know
|
|
//
|
|
// right shift of a signed value expected to be well-defined and standard
|
|
// compliant as of C++20, John Regher from Utah U. says this is fine code
|
|
//
|
|
prev_in_string = uint64_t(static_cast<int64_t>(in_string) >> 63);
|
|
|
|
// Use ^ to turn the beginning quote off, and the end quote on.
|
|
return {
|
|
backslash,
|
|
escaped,
|
|
quote,
|
|
in_string
|
|
};
|
|
}
|
|
|
|
really_inline error_code json_string_scanner::finish(bool streaming) {
|
|
if (prev_in_string and (not streaming)) {
|
|
return UNCLOSED_STRING;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace stage1
|
|
/* end file src/generic/stage1/json_string_scanner.h */
|
|
/* begin file src/generic/stage1/json_scanner.h */
|
|
namespace stage1 {
|
|
|
|
/**
|
|
* A block of scanned json, with information on operators and scalars.
|
|
*/
|
|
struct json_block {
|
|
public:
|
|
/** The start of structurals */
|
|
really_inline uint64_t structural_start() { return potential_structural_start() & ~_string.string_tail(); }
|
|
/** All JSON whitespace (i.e. not in a string) */
|
|
really_inline uint64_t whitespace() { return non_quote_outside_string(_characters.whitespace()); }
|
|
|
|
// Helpers
|
|
|
|
/** Whether the given characters are inside a string (only works on non-quotes) */
|
|
really_inline uint64_t non_quote_inside_string(uint64_t mask) { return _string.non_quote_inside_string(mask); }
|
|
/** Whether the given characters are outside a string (only works on non-quotes) */
|
|
really_inline uint64_t non_quote_outside_string(uint64_t mask) { return _string.non_quote_outside_string(mask); }
|
|
|
|
// string and escape characters
|
|
json_string_block _string;
|
|
// whitespace, operators, scalars
|
|
json_character_block _characters;
|
|
// whether the previous character was a scalar
|
|
uint64_t _follows_potential_scalar;
|
|
private:
|
|
// Potential structurals (i.e. disregarding strings)
|
|
|
|
/** operators plus scalar starts like 123, true and "abc" */
|
|
really_inline uint64_t potential_structural_start() { return _characters.op() | potential_scalar_start(); }
|
|
/** the start of non-operator runs, like 123, true and "abc" */
|
|
really_inline uint64_t potential_scalar_start() { return _characters.scalar() & ~follows_potential_scalar(); }
|
|
/** whether the given character is immediately after a non-operator like 123, true or " */
|
|
really_inline uint64_t follows_potential_scalar() { return _follows_potential_scalar; }
|
|
};
|
|
|
|
/**
|
|
* Scans JSON for important bits: operators, strings, and scalars.
|
|
*
|
|
* The scanner starts by calculating two distinct things:
|
|
* - string characters (taking \" into account)
|
|
* - operators ([]{},:) and scalars (runs of non-operators like 123, true and "abc")
|
|
*
|
|
* To minimize data dependency (a key component of the scanner's speed), it finds these in parallel:
|
|
* in particular, the operator/scalar bit will find plenty of things that are actually part of
|
|
* strings. When we're done, json_block will fuse the two together by masking out tokens that are
|
|
* part of a string.
|
|
*/
|
|
class json_scanner {
|
|
public:
|
|
json_scanner() {}
|
|
really_inline json_block next(const simd::simd8x64<uint8_t> in);
|
|
really_inline error_code finish(bool streaming);
|
|
|
|
private:
|
|
// Whether the last character of the previous iteration is part of a scalar token
|
|
// (anything except whitespace or an operator).
|
|
uint64_t prev_scalar = 0ULL;
|
|
json_string_scanner string_scanner{};
|
|
};
|
|
|
|
|
|
//
|
|
// Check if the current character immediately follows a matching character.
|
|
//
|
|
// For example, this checks for quotes with backslashes in front of them:
|
|
//
|
|
// const uint64_t backslashed_quote = in.eq('"') & immediately_follows(in.eq('\'), prev_backslash);
|
|
//
|
|
really_inline uint64_t follows(const uint64_t match, uint64_t &overflow) {
|
|
const uint64_t result = match << 1 | overflow;
|
|
overflow = match >> 63;
|
|
return result;
|
|
}
|
|
|
|
//
|
|
// Check if the current character follows a matching character, with possible "filler" between.
|
|
// For example, this checks for empty curly braces, e.g.
|
|
//
|
|
// in.eq('}') & follows(in.eq('['), in.eq(' '), prev_empty_array) // { <whitespace>* }
|
|
//
|
|
really_inline uint64_t follows(const uint64_t match, const uint64_t filler, uint64_t &overflow) {
|
|
uint64_t follows_match = follows(match, overflow);
|
|
uint64_t result;
|
|
overflow |= uint64_t(add_overflow(follows_match, filler, &result));
|
|
return result;
|
|
}
|
|
|
|
really_inline json_block json_scanner::next(const simd::simd8x64<uint8_t> in) {
|
|
json_string_block strings = string_scanner.next(in);
|
|
json_character_block characters = json_character_block::classify(in);
|
|
uint64_t follows_scalar = follows(characters.scalar(), prev_scalar);
|
|
return {
|
|
strings,
|
|
characters,
|
|
follows_scalar
|
|
};
|
|
}
|
|
|
|
really_inline error_code json_scanner::finish(bool streaming) {
|
|
return string_scanner.finish(streaming);
|
|
}
|
|
|
|
} // namespace stage1
|
|
/* end file src/generic/stage1/json_scanner.h */
|
|
|
|
namespace stage1 {
|
|
really_inline uint64_t json_string_scanner::find_escaped(uint64_t backslash) {
|
|
if (!backslash) { uint64_t escaped = prev_escaped; prev_escaped = 0; return escaped; }
|
|
return find_escaped_branchless(backslash);
|
|
}
|
|
}
|
|
|
|
/* begin file src/generic/stage1/json_minifier.h */
|
|
// This file contains the common code every implementation uses in stage1
|
|
// It is intended to be included multiple times and compiled multiple times
|
|
// We assume the file in which it is included already includes
|
|
// "simdjson/stage1.h" (this simplifies amalgation)
|
|
|
|
namespace stage1 {
|
|
|
|
class json_minifier {
|
|
public:
|
|
template<size_t STEP_SIZE>
|
|
static error_code minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) noexcept;
|
|
|
|
private:
|
|
really_inline json_minifier(uint8_t *_dst)
|
|
: dst{_dst}
|
|
{}
|
|
template<size_t STEP_SIZE>
|
|
really_inline void step(const uint8_t *block_buf, buf_block_reader<STEP_SIZE> &reader) noexcept;
|
|
really_inline void next(simd::simd8x64<uint8_t> in, json_block block);
|
|
really_inline error_code finish(uint8_t *dst_start, size_t &dst_len);
|
|
json_scanner scanner{};
|
|
uint8_t *dst;
|
|
};
|
|
|
|
really_inline void json_minifier::next(simd::simd8x64<uint8_t> in, json_block block) {
|
|
uint64_t mask = block.whitespace();
|
|
in.compress(mask, dst);
|
|
dst += 64 - count_ones(mask);
|
|
}
|
|
|
|
really_inline error_code json_minifier::finish(uint8_t *dst_start, size_t &dst_len) {
|
|
*dst = '\0';
|
|
error_code error = scanner.finish(false);
|
|
if (error) { dst_len = 0; return error; }
|
|
dst_len = dst - dst_start;
|
|
return SUCCESS;
|
|
}
|
|
|
|
template<>
|
|
really_inline void json_minifier::step<128>(const uint8_t *block_buf, buf_block_reader<128> &reader) noexcept {
|
|
simd::simd8x64<uint8_t> in_1(block_buf);
|
|
simd::simd8x64<uint8_t> in_2(block_buf+64);
|
|
json_block block_1 = scanner.next(in_1);
|
|
json_block block_2 = scanner.next(in_2);
|
|
this->next(in_1, block_1);
|
|
this->next(in_2, block_2);
|
|
reader.advance();
|
|
}
|
|
|
|
template<>
|
|
really_inline void json_minifier::step<64>(const uint8_t *block_buf, buf_block_reader<64> &reader) noexcept {
|
|
simd::simd8x64<uint8_t> in_1(block_buf);
|
|
json_block block_1 = scanner.next(in_1);
|
|
this->next(block_buf, block_1);
|
|
reader.advance();
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
error_code json_minifier::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) noexcept {
|
|
buf_block_reader<STEP_SIZE> reader(buf, len);
|
|
json_minifier minifier(dst);
|
|
|
|
// Index the first n-1 blocks
|
|
while (reader.has_full_block()) {
|
|
minifier.step<STEP_SIZE>(reader.full_block(), reader);
|
|
}
|
|
|
|
// Index the last (remainder) block, padded with spaces
|
|
uint8_t block[STEP_SIZE];
|
|
if (likely(reader.get_remainder(block)) > 0) {
|
|
minifier.step<STEP_SIZE>(block, reader);
|
|
}
|
|
|
|
return minifier.finish(dst, dst_len);
|
|
}
|
|
|
|
} // namespace stage1
|
|
/* end file src/generic/stage1/json_minifier.h */
|
|
WARN_UNUSED error_code implementation::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept {
|
|
return haswell::stage1::json_minifier::minify<128>(buf, len, dst, dst_len);
|
|
}
|
|
|
|
/* begin file src/generic/stage1/find_next_document_index.h */
|
|
/**
|
|
* This algorithm is used to quickly identify the last structural position that
|
|
* makes up a complete document.
|
|
*
|
|
* It does this by going backwards and finding the last *document boundary* (a
|
|
* place where one value follows another without a comma between them). If the
|
|
* last document (the characters after the boundary) has an equal number of
|
|
* start and end brackets, it is considered complete.
|
|
*
|
|
* Simply put, we iterate over the structural characters, starting from
|
|
* the end. We consider that we found the end of a JSON document when the
|
|
* first element of the pair is NOT one of these characters: '{' '[' ';' ','
|
|
* and when the second element is NOT one of these characters: '}' '}' ';' ','.
|
|
*
|
|
* This simple comparison works most of the time, but it does not cover cases
|
|
* where the batch's structural indexes contain a perfect amount of documents.
|
|
* In such a case, we do not have access to the structural index which follows
|
|
* the last document, therefore, we do not have access to the second element in
|
|
* the pair, and that means we cannot identify the last document. To fix this
|
|
* issue, we keep a count of the open and closed curly/square braces we found
|
|
* while searching for the pair. When we find a pair AND the count of open and
|
|
* closed curly/square braces is the same, we know that we just passed a
|
|
* complete document, therefore the last json buffer location is the end of the
|
|
* batch.
|
|
*/
|
|
really_inline static uint32_t find_next_document_index(dom_parser_implementation &parser) {
|
|
// TODO don't count separately, just figure out depth
|
|
auto arr_cnt = 0;
|
|
auto obj_cnt = 0;
|
|
for (auto i = parser.n_structural_indexes - 1; i > 0; i--) {
|
|
auto idxb = parser.structural_indexes[i];
|
|
switch (parser.buf[idxb]) {
|
|
case ':':
|
|
case ',':
|
|
continue;
|
|
case '}':
|
|
obj_cnt--;
|
|
continue;
|
|
case ']':
|
|
arr_cnt--;
|
|
continue;
|
|
case '{':
|
|
obj_cnt++;
|
|
break;
|
|
case '[':
|
|
arr_cnt++;
|
|
break;
|
|
}
|
|
auto idxa = parser.structural_indexes[i - 1];
|
|
switch (parser.buf[idxa]) {
|
|
case '{':
|
|
case '[':
|
|
case ':':
|
|
case ',':
|
|
continue;
|
|
}
|
|
// Last document is complete, so the next document will appear after!
|
|
if (!arr_cnt && !obj_cnt) {
|
|
return parser.n_structural_indexes;
|
|
}
|
|
// Last document is incomplete; mark the document at i + 1 as the next one
|
|
return i;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Skip the last character if it is partial
|
|
really_inline static size_t trim_partial_utf8(const uint8_t *buf, size_t len) {
|
|
if (unlikely(len < 3)) {
|
|
switch (len) {
|
|
case 2:
|
|
if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left
|
|
if (buf[len-2] >= 0b11100000) { return len-2; } // 3- and 4-byte characters with only 2 bytes left
|
|
return len;
|
|
case 1:
|
|
if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left
|
|
return len;
|
|
case 0:
|
|
return len;
|
|
}
|
|
}
|
|
if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left
|
|
if (buf[len-2] >= 0b11100000) { return len-2; } // 3- and 4-byte characters with only 1 byte left
|
|
if (buf[len-3] >= 0b11110000) { return len-3; } // 4-byte characters with only 3 bytes left
|
|
return len;
|
|
}
|
|
/* end file src/generic/stage1/find_next_document_index.h */
|
|
/* begin file src/generic/stage1/utf8_lookup3_algorithm.h */
|
|
//
|
|
// Detect Unicode errors.
|
|
//
|
|
// UTF-8 is designed to allow multiple bytes and be compatible with ASCII. It's a fairly basic
|
|
// encoding that uses the first few bits on each byte to denote a "byte type", and all other bits
|
|
// are straight up concatenated into the final value. The first byte of a multibyte character is a
|
|
// "leading byte" and starts with N 1's, where N is the total number of bytes (110_____ = 2 byte
|
|
// lead). The remaining bytes of a multibyte character all start with 10. 1-byte characters just
|
|
// start with 0, because that's what ASCII looks like. Here's what each size looks like:
|
|
//
|
|
// - ASCII (7 bits): 0_______
|
|
// - 2 byte character (11 bits): 110_____ 10______
|
|
// - 3 byte character (17 bits): 1110____ 10______ 10______
|
|
// - 4 byte character (23 bits): 11110___ 10______ 10______ 10______
|
|
// - 5+ byte character (illegal): 11111___ <illegal>
|
|
//
|
|
// There are 5 classes of error that can happen in Unicode:
|
|
//
|
|
// - TOO_SHORT: when you have a multibyte character with too few bytes (i.e. missing continuation).
|
|
// We detect this by looking for new characters (lead bytes) inside the range of a multibyte
|
|
// character.
|
|
//
|
|
// e.g. 11000000 01100001 (2-byte character where second byte is ASCII)
|
|
//
|
|
// - TOO_LONG: when there are more bytes in your character than you need (i.e. extra continuation).
|
|
// We detect this by requiring that the next byte after your multibyte character be a new
|
|
// character--so a continuation after your character is wrong.
|
|
//
|
|
// e.g. 11011111 10111111 10111111 (2-byte character followed by *another* continuation byte)
|
|
//
|
|
// - TOO_LARGE: Unicode only goes up to U+10FFFF. These characters are too large.
|
|
//
|
|
// e.g. 11110111 10111111 10111111 10111111 (bigger than 10FFFF).
|
|
//
|
|
// - OVERLONG: multibyte characters with a bunch of leading zeroes, where you could have
|
|
// used fewer bytes to make the same character. Like encoding an ASCII character in 4 bytes is
|
|
// technically possible, but UTF-8 disallows it so that there is only one way to write an "a".
|
|
//
|
|
// e.g. 11000001 10100001 (2-byte encoding of "a", which only requires 1 byte: 01100001)
|
|
//
|
|
// - SURROGATE: Unicode U+D800-U+DFFF is a *surrogate* character, reserved for use in UCS-2 and
|
|
// WTF-8 encodings for characters with > 2 bytes. These are illegal in pure UTF-8.
|
|
//
|
|
// e.g. 11101101 10100000 10000000 (U+D800)
|
|
//
|
|
// - INVALID_5_BYTE: 5-byte, 6-byte, 7-byte and 8-byte characters are unsupported; Unicode does not
|
|
// support values with more than 23 bits (which a 4-byte character supports).
|
|
//
|
|
// e.g. 11111000 10100000 10000000 10000000 10000000 (U+800000)
|
|
//
|
|
// Legal utf-8 byte sequences per http://www.unicode.org/versions/Unicode6.0.0/ch03.pdf - page 94:
|
|
//
|
|
// Code Points 1st 2s 3s 4s
|
|
// U+0000..U+007F 00..7F
|
|
// U+0080..U+07FF C2..DF 80..BF
|
|
// U+0800..U+0FFF E0 A0..BF 80..BF
|
|
// U+1000..U+CFFF E1..EC 80..BF 80..BF
|
|
// U+D000..U+D7FF ED 80..9F 80..BF
|
|
// U+E000..U+FFFF EE..EF 80..BF 80..BF
|
|
// U+10000..U+3FFFF F0 90..BF 80..BF 80..BF
|
|
// U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF
|
|
// U+100000..U+10FFFF F4 80..8F 80..BF 80..BF
|
|
//
|
|
using namespace simd;
|
|
|
|
namespace utf8_validation {
|
|
// For a detailed description of the lookup2 algorithm, see the file HACKING.md under "UTF-8 validation (lookup2)".
|
|
|
|
//
|
|
// Find special case UTF-8 errors where the character is technically readable (has the right length)
|
|
// but the *value* is disallowed.
|
|
//
|
|
// This includes overlong encodings, surrogates and values too large for Unicode.
|
|
//
|
|
// It turns out the bad character ranges can all be detected by looking at the first 12 bits of the
|
|
// UTF-8 encoded character (i.e. all of byte 1, and the high 4 bits of byte 2). This algorithm does a
|
|
// 3 4-bit table lookups, identifying which errors that 4 bits could match, and then &'s them together.
|
|
// If all 3 lookups detect the same error, it's an error.
|
|
//
|
|
really_inline simd8<uint8_t> check_special_cases(const simd8<uint8_t> input, const simd8<uint8_t> prev1) {
|
|
//
|
|
// These are the errors we're going to match for bytes 1-2, by looking at the first three
|
|
// nibbles of the character: <high bits of byte 1>> & <low bits of byte 1> & <high bits of byte 2>
|
|
//
|
|
static const int OVERLONG_2 = 0x01; // 1100000_ 10______ (technically we match 10______ but we could match ________, they both yield errors either way)
|
|
static const int OVERLONG_3 = 0x02; // 11100000 100_____ ________
|
|
static const int OVERLONG_4 = 0x04; // 11110000 1000____ ________ ________
|
|
static const int SURROGATE = 0x08; // 11101101 [101_]____
|
|
static const int TOO_LARGE = 0x10; // 11110100 (1001|101_)____
|
|
static const int TOO_LARGE_2 = 0x20; // 1111(1___|011_|0101) 10______
|
|
|
|
// New with lookup3. We want to catch the case where an non-continuation
|
|
// follows a leading byte
|
|
static const int TOO_SHORT_2_3_4 = 0x40; // (110_|1110|1111) ____ (0___|110_|1111) ____
|
|
// We also want to catch a continuation that is preceded by an ASCII byte
|
|
static const int LONELY_CONTINUATION = 0x80; // 0___ ____ 01__ ____
|
|
|
|
// After processing the rest of byte 1 (the low bits), we're still not done--we have to check
|
|
// byte 2 to be sure which things are errors and which aren't.
|
|
// Since high_bits is byte 5, byte 2 is high_bits.prev<3>
|
|
static const int CARRY = OVERLONG_2 | TOO_LARGE_2;
|
|
const simd8<uint8_t> byte_2_high = input.shr<4>().lookup_16<uint8_t>(
|
|
// ASCII: ________ [0___]____
|
|
CARRY | TOO_SHORT_2_3_4, CARRY | TOO_SHORT_2_3_4,
|
|
CARRY | TOO_SHORT_2_3_4, CARRY | TOO_SHORT_2_3_4,
|
|
// ASCII: ________ [0___]____
|
|
CARRY | TOO_SHORT_2_3_4, CARRY | TOO_SHORT_2_3_4,
|
|
CARRY | TOO_SHORT_2_3_4, CARRY | TOO_SHORT_2_3_4,
|
|
// Continuations: ________ [10__]____
|
|
CARRY | OVERLONG_3 | OVERLONG_4 | LONELY_CONTINUATION, // ________ [1000]____
|
|
CARRY | OVERLONG_3 | TOO_LARGE | LONELY_CONTINUATION, // ________ [1001]____
|
|
CARRY | TOO_LARGE | SURROGATE | LONELY_CONTINUATION, // ________ [1010]____
|
|
CARRY | TOO_LARGE | SURROGATE | LONELY_CONTINUATION, // ________ [1011]____
|
|
// Multibyte Leads: ________ [11__]____
|
|
CARRY | TOO_SHORT_2_3_4, CARRY | TOO_SHORT_2_3_4, // 110_
|
|
CARRY | TOO_SHORT_2_3_4, CARRY | TOO_SHORT_2_3_4
|
|
);
|
|
const simd8<uint8_t> byte_1_high = prev1.shr<4>().lookup_16<uint8_t>(
|
|
// [0___]____ (ASCII)
|
|
LONELY_CONTINUATION, LONELY_CONTINUATION, LONELY_CONTINUATION, LONELY_CONTINUATION,
|
|
LONELY_CONTINUATION, LONELY_CONTINUATION, LONELY_CONTINUATION, LONELY_CONTINUATION,
|
|
// [10__]____ (continuation)
|
|
0, 0, 0, 0,
|
|
// [11__]____ (2+-byte leads)
|
|
OVERLONG_2 | TOO_SHORT_2_3_4, TOO_SHORT_2_3_4, // [110_]____ (2-byte lead)
|
|
OVERLONG_3 | SURROGATE | TOO_SHORT_2_3_4, // [1110]____ (3-byte lead)
|
|
OVERLONG_4 | TOO_LARGE | TOO_LARGE_2 | TOO_SHORT_2_3_4 // [1111]____ (4+-byte lead)
|
|
);
|
|
const simd8<uint8_t> byte_1_low = (prev1 & 0x0F).lookup_16<uint8_t>(
|
|
// ____[00__] ________
|
|
OVERLONG_2 | OVERLONG_3 | OVERLONG_4 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION, // ____[0000] ________
|
|
OVERLONG_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION, // ____[0001] ________
|
|
TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
// ____[01__] ________
|
|
TOO_LARGE | TOO_SHORT_2_3_4 | LONELY_CONTINUATION, // ____[0100] ________
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
// ____[10__] ________
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
// ____[11__] ________
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
TOO_LARGE_2 | SURROGATE | TOO_SHORT_2_3_4 | LONELY_CONTINUATION, // ____[1101] ________
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4| LONELY_CONTINUATION,
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION
|
|
);
|
|
return byte_1_high & byte_1_low & byte_2_high;
|
|
}
|
|
|
|
really_inline simd8<uint8_t> check_multibyte_lengths(simd8<uint8_t> input, simd8<uint8_t> prev_input,
|
|
simd8<uint8_t> prev1) {
|
|
simd8<uint8_t> prev2 = input.prev<2>(prev_input);
|
|
simd8<uint8_t> prev3 = input.prev<3>(prev_input);
|
|
// is_2_3_continuation uses one more instruction than lookup2
|
|
simd8<bool> is_2_3_continuation = (simd8<int8_t>(input).max(simd8<int8_t>(prev1))) < int8_t(-64);
|
|
// must_be_2_3_continuation has two fewer instructions than lookup 2
|
|
return simd8<uint8_t>(must_be_2_3_continuation(prev2, prev3) ^ is_2_3_continuation);
|
|
}
|
|
|
|
|
|
//
|
|
// Return nonzero if there are incomplete multibyte characters at the end of the block:
|
|
// e.g. if there is a 4-byte character, but it's 3 bytes from the end.
|
|
//
|
|
really_inline simd8<uint8_t> is_incomplete(simd8<uint8_t> input) {
|
|
// If the previous input's last 3 bytes match this, they're too short (they ended at EOF):
|
|
// ... 1111____ 111_____ 11______
|
|
static const uint8_t max_array[32] = {
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 0b11110000u-1, 0b11100000u-1, 0b11000000u-1
|
|
};
|
|
const simd8<uint8_t> max_value(&max_array[sizeof(max_array)-sizeof(simd8<uint8_t>)]);
|
|
return input.gt_bits(max_value);
|
|
}
|
|
|
|
struct utf8_checker {
|
|
// If this is nonzero, there has been a UTF-8 error.
|
|
simd8<uint8_t> error;
|
|
// The last input we received
|
|
simd8<uint8_t> prev_input_block;
|
|
// Whether the last input we received was incomplete (used for ASCII fast path)
|
|
simd8<uint8_t> prev_incomplete;
|
|
|
|
//
|
|
// Check whether the current bytes are valid UTF-8.
|
|
//
|
|
really_inline void check_utf8_bytes(const simd8<uint8_t> input, const simd8<uint8_t> prev_input) {
|
|
// Flip prev1...prev3 so we can easily determine if they are 2+, 3+ or 4+ lead bytes
|
|
// (2, 3, 4-byte leads become large positive numbers instead of small negative numbers)
|
|
simd8<uint8_t> prev1 = input.prev<1>(prev_input);
|
|
this->error |= check_special_cases(input, prev1);
|
|
this->error |= check_multibyte_lengths(input, prev_input, prev1);
|
|
}
|
|
|
|
// The only problem that can happen at EOF is that a multibyte character is too short.
|
|
really_inline void check_eof() {
|
|
// If the previous block had incomplete UTF-8 characters at the end, an ASCII block can't
|
|
// possibly finish them.
|
|
this->error |= this->prev_incomplete;
|
|
}
|
|
|
|
really_inline void check_next_input(simd8x64<uint8_t> input) {
|
|
if (likely(is_ascii(input))) {
|
|
// If the previous block had incomplete UTF-8 characters at the end, an ASCII block can't
|
|
// possibly finish them.
|
|
this->error |= this->prev_incomplete;
|
|
} else {
|
|
this->check_utf8_bytes(input.chunks[0], this->prev_input_block);
|
|
for (int i=1; i<simd8x64<uint8_t>::NUM_CHUNKS; i++) {
|
|
this->check_utf8_bytes(input.chunks[i], input.chunks[i-1]);
|
|
}
|
|
this->prev_incomplete = is_incomplete(input.chunks[simd8x64<uint8_t>::NUM_CHUNKS-1]);
|
|
this->prev_input_block = input.chunks[simd8x64<uint8_t>::NUM_CHUNKS-1];
|
|
}
|
|
}
|
|
|
|
really_inline error_code errors() {
|
|
return this->error.any_bits_set_anywhere() ? simdjson::UTF8_ERROR : simdjson::SUCCESS;
|
|
}
|
|
|
|
}; // struct utf8_checker
|
|
}
|
|
|
|
using utf8_validation::utf8_checker;
|
|
/* end file src/generic/stage1/utf8_lookup3_algorithm.h */
|
|
/* begin file src/generic/stage1/json_structural_indexer.h */
|
|
// This file contains the common code every implementation uses in stage1
|
|
// It is intended to be included multiple times and compiled multiple times
|
|
// We assume the file in which it is included already includes
|
|
// "simdjson/stage1.h" (this simplifies amalgation)
|
|
|
|
namespace stage1 {
|
|
|
|
class bit_indexer {
|
|
public:
|
|
uint32_t *tail;
|
|
|
|
really_inline bit_indexer(uint32_t *index_buf) : tail(index_buf) {}
|
|
|
|
// flatten out values in 'bits' assuming that they are are to have values of idx
|
|
// plus their position in the bitvector, and store these indexes at
|
|
// base_ptr[base] incrementing base as we go
|
|
// will potentially store extra values beyond end of valid bits, so base_ptr
|
|
// needs to be large enough to handle this
|
|
really_inline void write(uint32_t idx, uint64_t bits) {
|
|
// In some instances, the next branch is expensive because it is mispredicted.
|
|
// Unfortunately, in other cases,
|
|
// it helps tremendously.
|
|
if (bits == 0)
|
|
return;
|
|
int cnt = static_cast<int>(count_ones(bits));
|
|
|
|
// Do the first 8 all together
|
|
for (int i=0; i<8; i++) {
|
|
this->tail[i] = idx + trailing_zeroes(bits);
|
|
bits = clear_lowest_bit(bits);
|
|
}
|
|
|
|
// Do the next 8 all together (we hope in most cases it won't happen at all
|
|
// and the branch is easily predicted).
|
|
if (unlikely(cnt > 8)) {
|
|
for (int i=8; i<16; i++) {
|
|
this->tail[i] = idx + trailing_zeroes(bits);
|
|
bits = clear_lowest_bit(bits);
|
|
}
|
|
|
|
// Most files don't have 16+ structurals per block, so we take several basically guaranteed
|
|
// branch mispredictions here. 16+ structurals per block means either punctuation ({} [] , :)
|
|
// or the start of a value ("abc" true 123) every four characters.
|
|
if (unlikely(cnt > 16)) {
|
|
int i = 16;
|
|
do {
|
|
this->tail[i] = idx + trailing_zeroes(bits);
|
|
bits = clear_lowest_bit(bits);
|
|
i++;
|
|
} while (i < cnt);
|
|
}
|
|
}
|
|
|
|
this->tail += cnt;
|
|
}
|
|
};
|
|
|
|
class json_structural_indexer {
|
|
public:
|
|
/**
|
|
* Find the important bits of JSON in a 128-byte chunk, and add them to structural_indexes.
|
|
*
|
|
* @param partial Setting the partial parameter to true allows the find_structural_bits to
|
|
* tolerate unclosed strings. The caller should still ensure that the input is valid UTF-8. If
|
|
* you are processing substrings, you may want to call on a function like trimmed_length_safe_utf8.
|
|
*/
|
|
template<size_t STEP_SIZE>
|
|
static error_code index(const uint8_t *buf, size_t len, dom_parser_implementation &parser, bool partial) noexcept;
|
|
|
|
private:
|
|
really_inline json_structural_indexer(uint32_t *structural_indexes);
|
|
template<size_t STEP_SIZE>
|
|
really_inline void step(const uint8_t *block, buf_block_reader<STEP_SIZE> &reader) noexcept;
|
|
really_inline void next(simd::simd8x64<uint8_t> in, json_block block, size_t idx);
|
|
really_inline error_code finish(dom_parser_implementation &parser, size_t idx, size_t len, bool partial);
|
|
|
|
json_scanner scanner{};
|
|
utf8_checker checker{};
|
|
bit_indexer indexer;
|
|
uint64_t prev_structurals = 0;
|
|
uint64_t unescaped_chars_error = 0;
|
|
};
|
|
|
|
really_inline json_structural_indexer::json_structural_indexer(uint32_t *structural_indexes) : indexer{structural_indexes} {}
|
|
|
|
//
|
|
// PERF NOTES:
|
|
// We pipe 2 inputs through these stages:
|
|
// 1. Load JSON into registers. This takes a long time and is highly parallelizable, so we load
|
|
// 2 inputs' worth at once so that by the time step 2 is looking for them input, it's available.
|
|
// 2. Scan the JSON for critical data: strings, scalars and operators. This is the critical path.
|
|
// The output of step 1 depends entirely on this information. These functions don't quite use
|
|
// up enough CPU: the second half of the functions is highly serial, only using 1 execution core
|
|
// at a time. The second input's scans has some dependency on the first ones finishing it, but
|
|
// they can make a lot of progress before they need that information.
|
|
// 3. Step 1 doesn't use enough capacity, so we run some extra stuff while we're waiting for that
|
|
// to finish: utf-8 checks and generating the output from the last iteration.
|
|
//
|
|
// The reason we run 2 inputs at a time, is steps 2 and 3 are *still* not enough to soak up all
|
|
// available capacity with just one input. Running 2 at a time seems to give the CPU a good enough
|
|
// workout.
|
|
//
|
|
template<size_t STEP_SIZE>
|
|
error_code json_structural_indexer::index(const uint8_t *buf, size_t len, dom_parser_implementation &parser, bool partial) noexcept {
|
|
if (unlikely(len > parser.capacity())) { return CAPACITY; }
|
|
if (partial) { len = trim_partial_utf8(buf, len); }
|
|
|
|
buf_block_reader<STEP_SIZE> reader(buf, len);
|
|
json_structural_indexer indexer(parser.structural_indexes.get());
|
|
|
|
// Read all but the last block
|
|
while (reader.has_full_block()) {
|
|
indexer.step<STEP_SIZE>(reader.full_block(), reader);
|
|
}
|
|
|
|
// Take care of the last block (will always be there unless file is empty)
|
|
uint8_t block[STEP_SIZE];
|
|
if (unlikely(reader.get_remainder(block) == 0)) { return EMPTY; }
|
|
indexer.step<STEP_SIZE>(block, reader);
|
|
|
|
return indexer.finish(parser, reader.block_index(), len, partial);
|
|
}
|
|
|
|
template<>
|
|
really_inline void json_structural_indexer::step<128>(const uint8_t *block, buf_block_reader<128> &reader) noexcept {
|
|
simd::simd8x64<uint8_t> in_1(block);
|
|
simd::simd8x64<uint8_t> in_2(block+64);
|
|
json_block block_1 = scanner.next(in_1);
|
|
json_block block_2 = scanner.next(in_2);
|
|
this->next(in_1, block_1, reader.block_index());
|
|
this->next(in_2, block_2, reader.block_index()+64);
|
|
reader.advance();
|
|
}
|
|
|
|
template<>
|
|
really_inline void json_structural_indexer::step<64>(const uint8_t *block, buf_block_reader<64> &reader) noexcept {
|
|
simd::simd8x64<uint8_t> in_1(block);
|
|
json_block block_1 = scanner.next(in_1);
|
|
this->next(in_1, block_1, reader.block_index());
|
|
reader.advance();
|
|
}
|
|
|
|
really_inline void json_structural_indexer::next(simd::simd8x64<uint8_t> in, json_block block, size_t idx) {
|
|
uint64_t unescaped = in.lteq(0x1F);
|
|
checker.check_next_input(in);
|
|
indexer.write(uint32_t(idx-64), prev_structurals); // Output *last* iteration's structurals to the parser
|
|
prev_structurals = block.structural_start();
|
|
unescaped_chars_error |= block.non_quote_inside_string(unescaped);
|
|
}
|
|
|
|
really_inline error_code json_structural_indexer::finish(dom_parser_implementation &parser, size_t idx, size_t len, bool partial) {
|
|
// Write out the final iteration's structurals
|
|
indexer.write(uint32_t(idx-64), prev_structurals);
|
|
|
|
error_code error = scanner.finish(partial);
|
|
if (unlikely(error != SUCCESS)) { return error; }
|
|
|
|
if (unescaped_chars_error) {
|
|
return UNESCAPED_CHARS;
|
|
}
|
|
|
|
parser.n_structural_indexes = uint32_t(indexer.tail - parser.structural_indexes.get());
|
|
/***
|
|
* This is related to https://github.com/simdjson/simdjson/issues/906
|
|
* Basically, we want to make sure that if the parsing continues beyond the last (valid)
|
|
* structural character, it quickly stops.
|
|
* Only three structural characters can be repeated without triggering an error in JSON: [,] and }.
|
|
* We repeat the padding character (at 'len'). We don't know what it is, but if the parsing
|
|
* continues, then it must be [,] or }.
|
|
* Suppose it is ] or }. We backtrack to the first character, what could it be that would
|
|
* not trigger an error? It could be ] or } but no, because you can't start a document that way.
|
|
* It can't be a comma, a colon or any simple value. So the only way we could continue is
|
|
* if the repeated character is [. But if so, the document must start with [. But if the document
|
|
* starts with [, it should end with ]. If we enforce that rule, then we would get
|
|
* ][[ which is invalid.
|
|
**/
|
|
parser.structural_indexes[parser.n_structural_indexes] = uint32_t(len);
|
|
parser.structural_indexes[parser.n_structural_indexes + 1] = uint32_t(len);
|
|
parser.structural_indexes[parser.n_structural_indexes + 2] = 0;
|
|
parser.next_structural_index = 0;
|
|
// a valid JSON file cannot have zero structural indexes - we should have found something
|
|
if (unlikely(parser.n_structural_indexes == 0u)) {
|
|
return EMPTY;
|
|
}
|
|
if (unlikely(parser.structural_indexes[parser.n_structural_indexes - 1] > len)) {
|
|
return UNEXPECTED_ERROR;
|
|
}
|
|
if (partial) {
|
|
auto new_structural_indexes = find_next_document_index(parser);
|
|
if (new_structural_indexes == 0 && parser.n_structural_indexes > 0) {
|
|
return CAPACITY; // If the buffer is partial but the document is incomplete, it's too big to parse.
|
|
}
|
|
parser.n_structural_indexes = new_structural_indexes;
|
|
}
|
|
return checker.errors();
|
|
}
|
|
|
|
} // namespace stage1
|
|
/* end file src/generic/stage1/json_structural_indexer.h */
|
|
WARN_UNUSED error_code dom_parser_implementation::stage1(const uint8_t *_buf, size_t _len, bool streaming) noexcept {
|
|
this->buf = _buf;
|
|
this->len = _len;
|
|
return haswell::stage1::json_structural_indexer::index<128>(_buf, _len, *this, streaming);
|
|
}
|
|
/* begin file src/generic/stage1/utf8_validator.h */
|
|
namespace stage1 {
|
|
/**
|
|
* Validates that the string is actual UTF-8.
|
|
*/
|
|
template<class checker>
|
|
bool generic_validate_utf8(const uint8_t * input, size_t length) {
|
|
checker c{};
|
|
buf_block_reader<64> reader(input, length);
|
|
while (reader.has_full_block()) {
|
|
simd::simd8x64<uint8_t> in(reader.full_block());
|
|
c.check_next_input(in);
|
|
reader.advance();
|
|
}
|
|
uint8_t block[64]{};
|
|
reader.get_remainder(block);
|
|
simd::simd8x64<uint8_t> in(block);
|
|
c.check_next_input(in);
|
|
reader.advance();
|
|
return c.errors() == error_code::SUCCESS;
|
|
}
|
|
|
|
bool generic_validate_utf8(const char * input, size_t length) {
|
|
return generic_validate_utf8<utf8_checker>((const uint8_t *)input,length);
|
|
}
|
|
|
|
} // namespace stage1
|
|
/* end file src/generic/stage1/utf8_validator.h */
|
|
WARN_UNUSED bool implementation::validate_utf8(const char *buf, size_t len) const noexcept {
|
|
return simdjson::haswell::stage1::generic_validate_utf8(buf,len);
|
|
}
|
|
} // namespace haswell
|
|
} // namespace simdjson
|
|
UNTARGET_REGION
|
|
|
|
//
|
|
// Stage 2
|
|
//
|
|
/* begin file src/haswell/stringparsing.h */
|
|
#ifndef SIMDJSON_HASWELL_STRINGPARSING_H
|
|
#define SIMDJSON_HASWELL_STRINGPARSING_H
|
|
|
|
/* jsoncharutils.h already included: #include "jsoncharutils.h" */
|
|
/* haswell/simd.h already included: #include "haswell/simd.h" */
|
|
/* haswell/intrinsics.h already included: #include "haswell/intrinsics.h" */
|
|
/* haswell/bitmanipulation.h already included: #include "haswell/bitmanipulation.h" */
|
|
|
|
TARGET_HASWELL
|
|
namespace simdjson {
|
|
namespace haswell {
|
|
|
|
using namespace simd;
|
|
|
|
// Holds backslashes and quotes locations.
|
|
struct backslash_and_quote {
|
|
public:
|
|
static constexpr uint32_t BYTES_PROCESSED = 32;
|
|
really_inline static backslash_and_quote copy_and_find(const uint8_t *src, uint8_t *dst);
|
|
|
|
really_inline bool has_quote_first() { return ((bs_bits - 1) & quote_bits) != 0; }
|
|
really_inline bool has_backslash() { return ((quote_bits - 1) & bs_bits) != 0; }
|
|
really_inline int quote_index() { return trailing_zeroes(quote_bits); }
|
|
really_inline int backslash_index() { return trailing_zeroes(bs_bits); }
|
|
|
|
uint32_t bs_bits;
|
|
uint32_t quote_bits;
|
|
}; // struct backslash_and_quote
|
|
|
|
really_inline backslash_and_quote backslash_and_quote::copy_and_find(const uint8_t *src, uint8_t *dst) {
|
|
// this can read up to 15 bytes beyond the buffer size, but we require
|
|
// SIMDJSON_PADDING of padding
|
|
static_assert(SIMDJSON_PADDING >= (BYTES_PROCESSED - 1), "backslash and quote finder must process fewer than SIMDJSON_PADDING bytes");
|
|
simd8<uint8_t> v(src);
|
|
// store to dest unconditionally - we can overwrite the bits we don't like later
|
|
v.store(dst);
|
|
return {
|
|
(uint32_t)(v == '\\').to_bitmask(), // bs_bits
|
|
(uint32_t)(v == '"').to_bitmask(), // quote_bits
|
|
};
|
|
}
|
|
|
|
/* begin file src/generic/stage2/stringparsing.h */
|
|
// This file contains the common code every implementation uses
|
|
// It is intended to be included multiple times and compiled multiple times
|
|
// We assume the file in which it is include already includes
|
|
// "stringparsing.h" (this simplifies amalgation)
|
|
|
|
namespace stage2 {
|
|
namespace stringparsing {
|
|
|
|
// begin copypasta
|
|
// These chars yield themselves: " \ /
|
|
// b -> backspace, f -> formfeed, n -> newline, r -> cr, t -> horizontal tab
|
|
// u not handled in this table as it's complex
|
|
static const uint8_t escape_map[256] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x0.
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0x22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x2f,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x4.
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x5c, 0, 0, 0, // 0x5.
|
|
0, 0, 0x08, 0, 0, 0, 0x0c, 0, 0, 0, 0, 0, 0, 0, 0x0a, 0, // 0x6.
|
|
0, 0, 0x0d, 0, 0x09, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x7.
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
};
|
|
|
|
// handle a unicode codepoint
|
|
// write appropriate values into dest
|
|
// src will advance 6 bytes or 12 bytes
|
|
// dest will advance a variable amount (return via pointer)
|
|
// return true if the unicode codepoint was valid
|
|
// We work in little-endian then swap at write time
|
|
WARN_UNUSED
|
|
really_inline bool handle_unicode_codepoint(const uint8_t **src_ptr,
|
|
uint8_t **dst_ptr) {
|
|
// hex_to_u32_nocheck fills high 16 bits of the return value with 1s if the
|
|
// conversion isn't valid; we defer the check for this to inside the
|
|
// multilingual plane check
|
|
uint32_t code_point = hex_to_u32_nocheck(*src_ptr + 2);
|
|
*src_ptr += 6;
|
|
// check for low surrogate for characters outside the Basic
|
|
// Multilingual Plane.
|
|
if (code_point >= 0xd800 && code_point < 0xdc00) {
|
|
if (((*src_ptr)[0] != '\\') || (*src_ptr)[1] != 'u') {
|
|
return false;
|
|
}
|
|
uint32_t code_point_2 = hex_to_u32_nocheck(*src_ptr + 2);
|
|
|
|
// if the first code point is invalid we will get here, as we will go past
|
|
// the check for being outside the Basic Multilingual plane. If we don't
|
|
// find a \u immediately afterwards we fail out anyhow, but if we do,
|
|
// this check catches both the case of the first code point being invalid
|
|
// or the second code point being invalid.
|
|
if ((code_point | code_point_2) >> 16) {
|
|
return false;
|
|
}
|
|
|
|
code_point =
|
|
(((code_point - 0xd800) << 10) | (code_point_2 - 0xdc00)) + 0x10000;
|
|
*src_ptr += 6;
|
|
}
|
|
size_t offset = codepoint_to_utf8(code_point, *dst_ptr);
|
|
*dst_ptr += offset;
|
|
return offset > 0;
|
|
}
|
|
|
|
WARN_UNUSED really_inline uint8_t *parse_string(const uint8_t *src, uint8_t *dst) {
|
|
src++;
|
|
while (1) {
|
|
// Copy the next n bytes, and find the backslash and quote in them.
|
|
auto bs_quote = backslash_and_quote::copy_and_find(src, dst);
|
|
// If the next thing is the end quote, copy and return
|
|
if (bs_quote.has_quote_first()) {
|
|
// we encountered quotes first. Move dst to point to quotes and exit
|
|
return dst + bs_quote.quote_index();
|
|
}
|
|
if (bs_quote.has_backslash()) {
|
|
/* find out where the backspace is */
|
|
auto bs_dist = bs_quote.backslash_index();
|
|
uint8_t escape_char = src[bs_dist + 1];
|
|
/* we encountered backslash first. Handle backslash */
|
|
if (escape_char == 'u') {
|
|
/* move src/dst up to the start; they will be further adjusted
|
|
within the unicode codepoint handling code. */
|
|
src += bs_dist;
|
|
dst += bs_dist;
|
|
if (!handle_unicode_codepoint(&src, &dst)) {
|
|
return nullptr;
|
|
}
|
|
} else {
|
|
/* simple 1:1 conversion. Will eat bs_dist+2 characters in input and
|
|
* write bs_dist+1 characters to output
|
|
* note this may reach beyond the part of the buffer we've actually
|
|
* seen. I think this is ok */
|
|
uint8_t escape_result = escape_map[escape_char];
|
|
if (escape_result == 0u) {
|
|
return nullptr; /* bogus escape value is an error */
|
|
}
|
|
dst[bs_dist] = escape_result;
|
|
src += bs_dist + 2;
|
|
dst += bs_dist + 1;
|
|
}
|
|
} else {
|
|
/* they are the same. Since they can't co-occur, it means we
|
|
* encountered neither. */
|
|
src += backslash_and_quote::BYTES_PROCESSED;
|
|
dst += backslash_and_quote::BYTES_PROCESSED;
|
|
}
|
|
}
|
|
/* can't be reached */
|
|
return nullptr;
|
|
}
|
|
|
|
} // namespace stringparsing
|
|
} // namespace stage2
|
|
/* end file src/generic/stage2/stringparsing.h */
|
|
|
|
} // namespace haswell
|
|
} // namespace simdjson
|
|
UNTARGET_REGION
|
|
|
|
#endif // SIMDJSON_HASWELL_STRINGPARSING_H
|
|
/* end file src/generic/stage2/stringparsing.h */
|
|
/* begin file src/haswell/numberparsing.h */
|
|
#ifndef SIMDJSON_HASWELL_NUMBERPARSING_H
|
|
#define SIMDJSON_HASWELL_NUMBERPARSING_H
|
|
|
|
|
|
/* jsoncharutils.h already included: #include "jsoncharutils.h" */
|
|
/* haswell/intrinsics.h already included: #include "haswell/intrinsics.h" */
|
|
/* haswell/bitmanipulation.h already included: #include "haswell/bitmanipulation.h" */
|
|
#include <cmath>
|
|
#include <limits>
|
|
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
void found_invalid_number(const uint8_t *buf);
|
|
void found_integer(int64_t result, const uint8_t *buf);
|
|
void found_unsigned_integer(uint64_t result, const uint8_t *buf);
|
|
void found_float(double result, const uint8_t *buf);
|
|
#endif
|
|
|
|
TARGET_HASWELL
|
|
namespace simdjson {
|
|
namespace haswell {
|
|
static inline uint32_t parse_eight_digits_unrolled(const char *chars) {
|
|
// this actually computes *16* values so we are being wasteful.
|
|
const __m128i ascii0 = _mm_set1_epi8('0');
|
|
const __m128i mul_1_10 =
|
|
_mm_setr_epi8(10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1);
|
|
const __m128i mul_1_100 = _mm_setr_epi16(100, 1, 100, 1, 100, 1, 100, 1);
|
|
const __m128i mul_1_10000 =
|
|
_mm_setr_epi16(10000, 1, 10000, 1, 10000, 1, 10000, 1);
|
|
const __m128i input = _mm_sub_epi8(
|
|
_mm_loadu_si128(reinterpret_cast<const __m128i *>(chars)), ascii0);
|
|
const __m128i t1 = _mm_maddubs_epi16(input, mul_1_10);
|
|
const __m128i t2 = _mm_madd_epi16(t1, mul_1_100);
|
|
const __m128i t3 = _mm_packus_epi32(t2, t2);
|
|
const __m128i t4 = _mm_madd_epi16(t3, mul_1_10000);
|
|
return _mm_cvtsi128_si32(
|
|
t4); // only captures the sum of the first 8 digits, drop the rest
|
|
}
|
|
|
|
#define SWAR_NUMBER_PARSING
|
|
|
|
/* begin file src/generic/stage2/numberparsing.h */
|
|
namespace stage2 {
|
|
namespace numberparsing {
|
|
|
|
// Attempts to compute i * 10^(power) exactly; and if "negative" is
|
|
// true, negate the result.
|
|
// This function will only work in some cases, when it does not work, success is
|
|
// set to false. This should work *most of the time* (like 99% of the time).
|
|
// We assume that power is in the [FASTFLOAT_SMALLEST_POWER,
|
|
// FASTFLOAT_LARGEST_POWER] interval: the caller is responsible for this check.
|
|
really_inline double compute_float_64(int64_t power, uint64_t i, bool negative,
|
|
bool *success) {
|
|
// we start with a fast path
|
|
// It was described in
|
|
// Clinger WD. How to read floating point numbers accurately.
|
|
// ACM SIGPLAN Notices. 1990
|
|
if (-22 <= power && power <= 22 && i <= 9007199254740991) {
|
|
// convert the integer into a double. This is lossless since
|
|
// 0 <= i <= 2^53 - 1.
|
|
double d = double(i);
|
|
//
|
|
// The general idea is as follows.
|
|
// If 0 <= s < 2^53 and if 10^0 <= p <= 10^22 then
|
|
// 1) Both s and p can be represented exactly as 64-bit floating-point
|
|
// values
|
|
// (binary64).
|
|
// 2) Because s and p can be represented exactly as floating-point values,
|
|
// then s * p
|
|
// and s / p will produce correctly rounded values.
|
|
//
|
|
if (power < 0) {
|
|
d = d / power_of_ten[-power];
|
|
} else {
|
|
d = d * power_of_ten[power];
|
|
}
|
|
if (negative) {
|
|
d = -d;
|
|
}
|
|
*success = true;
|
|
return d;
|
|
}
|
|
// When 22 < power && power < 22 + 16, we could
|
|
// hope for another, secondary fast path. It wa
|
|
// described by David M. Gay in "Correctly rounded
|
|
// binary-decimal and decimal-binary conversions." (1990)
|
|
// If you need to compute i * 10^(22 + x) for x < 16,
|
|
// first compute i * 10^x, if you know that result is exact
|
|
// (e.g., when i * 10^x < 2^53),
|
|
// then you can still proceed and do (i * 10^x) * 10^22.
|
|
// Is this worth your time?
|
|
// You need 22 < power *and* power < 22 + 16 *and* (i * 10^(x-22) < 2^53)
|
|
// for this second fast path to work.
|
|
// If you you have 22 < power *and* power < 22 + 16, and then you
|
|
// optimistically compute "i * 10^(x-22)", there is still a chance that you
|
|
// have wasted your time if i * 10^(x-22) >= 2^53. It makes the use cases of
|
|
// this optimization maybe less common than we would like. Source:
|
|
// http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/
|
|
// also used in RapidJSON: https://rapidjson.org/strtod_8h_source.html
|
|
|
|
// The fast path has now failed, so we are failing back on the slower path.
|
|
|
|
// In the slow path, we need to adjust i so that it is > 1<<63 which is always
|
|
// possible, except if i == 0, so we handle i == 0 separately.
|
|
if(i == 0) {
|
|
return 0.0;
|
|
}
|
|
|
|
// We are going to need to do some 64-bit arithmetic to get a more precise product.
|
|
// We use a table lookup approach.
|
|
components c =
|
|
power_of_ten_components[power - FASTFLOAT_SMALLEST_POWER];
|
|
// safe because
|
|
// power >= FASTFLOAT_SMALLEST_POWER
|
|
// and power <= FASTFLOAT_LARGEST_POWER
|
|
// we recover the mantissa of the power, it has a leading 1. It is always
|
|
// rounded down.
|
|
uint64_t factor_mantissa = c.mantissa;
|
|
|
|
// We want the most significant bit of i to be 1. Shift if needed.
|
|
int lz = leading_zeroes(i);
|
|
i <<= lz;
|
|
// We want the most significant 64 bits of the product. We know
|
|
// this will be non-zero because the most significant bit of i is
|
|
// 1.
|
|
value128 product = full_multiplication(i, factor_mantissa);
|
|
uint64_t lower = product.low;
|
|
uint64_t upper = product.high;
|
|
|
|
// We know that upper has at most one leading zero because
|
|
// both i and factor_mantissa have a leading one. This means
|
|
// that the result is at least as large as ((1<<63)*(1<<63))/(1<<64).
|
|
|
|
// As long as the first 9 bits of "upper" are not "1", then we
|
|
// know that we have an exact computed value for the leading
|
|
// 55 bits because any imprecision would play out as a +1, in
|
|
// the worst case.
|
|
if (unlikely((upper & 0x1FF) == 0x1FF) && (lower + i < lower)) {
|
|
uint64_t factor_mantissa_low =
|
|
mantissa_128[power - FASTFLOAT_SMALLEST_POWER];
|
|
// next, we compute the 64-bit x 128-bit multiplication, getting a 192-bit
|
|
// result (three 64-bit values)
|
|
product = full_multiplication(i, factor_mantissa_low);
|
|
uint64_t product_low = product.low;
|
|
uint64_t product_middle2 = product.high;
|
|
uint64_t product_middle1 = lower;
|
|
uint64_t product_high = upper;
|
|
uint64_t product_middle = product_middle1 + product_middle2;
|
|
if (product_middle < product_middle1) {
|
|
product_high++; // overflow carry
|
|
}
|
|
// We want to check whether mantissa *i + i would affect our result.
|
|
// This does happen, e.g. with 7.3177701707893310e+15.
|
|
if (((product_middle + 1 == 0) && ((product_high & 0x1FF) == 0x1FF) &&
|
|
(product_low + i < product_low))) { // let us be prudent and bail out.
|
|
*success = false;
|
|
return 0;
|
|
}
|
|
upper = product_high;
|
|
lower = product_middle;
|
|
}
|
|
// The final mantissa should be 53 bits with a leading 1.
|
|
// We shift it so that it occupies 54 bits with a leading 1.
|
|
///////
|
|
uint64_t upperbit = upper >> 63;
|
|
uint64_t mantissa = upper >> (upperbit + 9);
|
|
lz += int(1 ^ upperbit);
|
|
|
|
// Here we have mantissa < (1<<54).
|
|
|
|
// We have to round to even. The "to even" part
|
|
// is only a problem when we are right in between two floats
|
|
// which we guard against.
|
|
// If we have lots of trailing zeros, we may fall right between two
|
|
// floating-point values.
|
|
if (unlikely((lower == 0) && ((upper & 0x1FF) == 0) &&
|
|
((mantissa & 3) == 1))) {
|
|
// if mantissa & 1 == 1 we might need to round up.
|
|
//
|
|
// Scenarios:
|
|
// 1. We are not in the middle. Then we should round up.
|
|
//
|
|
// 2. We are right in the middle. Whether we round up depends
|
|
// on the last significant bit: if it is "one" then we round
|
|
// up (round to even) otherwise, we do not.
|
|
//
|
|
// So if the last significant bit is 1, we can safely round up.
|
|
// Hence we only need to bail out if (mantissa & 3) == 1.
|
|
// Otherwise we may need more accuracy or analysis to determine whether
|
|
// we are exactly between two floating-point numbers.
|
|
// It can be triggered with 1e23.
|
|
// Note: because the factor_mantissa and factor_mantissa_low are
|
|
// almost always rounded down (except for small positive powers),
|
|
// almost always should round up.
|
|
*success = false;
|
|
return 0;
|
|
}
|
|
|
|
mantissa += mantissa & 1;
|
|
mantissa >>= 1;
|
|
|
|
// Here we have mantissa < (1<<53), unless there was an overflow
|
|
if (mantissa >= (1ULL << 53)) {
|
|
//////////
|
|
// This will happen when parsing values such as 7.2057594037927933e+16
|
|
////////
|
|
mantissa = (1ULL << 52);
|
|
lz--; // undo previous addition
|
|
}
|
|
mantissa &= ~(1ULL << 52);
|
|
uint64_t real_exponent = c.exp - lz;
|
|
// we have to check that real_exponent is in range, otherwise we bail out
|
|
if (unlikely((real_exponent < 1) || (real_exponent > 2046))) {
|
|
*success = false;
|
|
return 0;
|
|
}
|
|
mantissa |= real_exponent << 52;
|
|
mantissa |= (((uint64_t)negative) << 63);
|
|
double d;
|
|
memcpy(&d, &mantissa, sizeof(d));
|
|
*success = true;
|
|
return d;
|
|
}
|
|
|
|
static bool parse_float_strtod(const char *ptr, double *outDouble) {
|
|
char *endptr;
|
|
*outDouble = strtod(ptr, &endptr);
|
|
// Some libraries will set errno = ERANGE when the value is subnormal,
|
|
// yet we may want to be able to parse subnormal values.
|
|
// However, we do not want to tolerate NAN or infinite values.
|
|
//
|
|
// Values like infinity or NaN are not allowed in the JSON specification.
|
|
// If you consume a large value and you map it to "infinity", you will no
|
|
// longer be able to serialize back a standard-compliant JSON. And there is
|
|
// no realistic application where you might need values so large than they
|
|
// can't fit in binary64. The maximal value is about 1.7976931348623157 x
|
|
// 10^308 It is an unimaginable large number. There will never be any piece of
|
|
// engineering involving as many as 10^308 parts. It is estimated that there
|
|
// are about 10^80 atoms in the universe. The estimate for the total number
|
|
// of electrons is similar. Using a double-precision floating-point value, we
|
|
// can represent easily the number of atoms in the universe. We could also
|
|
// represent the number of ways you can pick any three individual atoms at
|
|
// random in the universe. If you ever encounter a number much larger than
|
|
// 10^308, you know that you have a bug. RapidJSON will reject a document with
|
|
// a float that does not fit in binary64. JSON for Modern C++ (nlohmann/json)
|
|
// will flat out throw an exception.
|
|
//
|
|
if ((endptr == ptr) || (!std::isfinite(*outDouble))) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
really_inline bool is_integer(char c) {
|
|
return (c >= '0' && c <= '9');
|
|
// this gets compiled to (uint8_t)(c - '0') <= 9 on all decent compilers
|
|
}
|
|
|
|
|
|
// check quickly whether the next 8 chars are made of digits
|
|
// at a glance, it looks better than Mula's
|
|
// http://0x80.pl/articles/swar-digits-validate.html
|
|
really_inline bool is_made_of_eight_digits_fast(const char *chars) {
|
|
uint64_t val;
|
|
// this can read up to 7 bytes beyond the buffer size, but we require
|
|
// SIMDJSON_PADDING of padding
|
|
static_assert(7 <= SIMDJSON_PADDING, "SIMDJSON_PADDING must be bigger than 7");
|
|
memcpy(&val, chars, 8);
|
|
// a branchy method might be faster:
|
|
// return (( val & 0xF0F0F0F0F0F0F0F0 ) == 0x3030303030303030)
|
|
// && (( (val + 0x0606060606060606) & 0xF0F0F0F0F0F0F0F0 ) ==
|
|
// 0x3030303030303030);
|
|
return (((val & 0xF0F0F0F0F0F0F0F0) |
|
|
(((val + 0x0606060606060606) & 0xF0F0F0F0F0F0F0F0) >> 4)) ==
|
|
0x3333333333333333);
|
|
}
|
|
|
|
// called by parse_number when we know that the output is an integer,
|
|
// but where there might be some integer overflow.
|
|
// we want to catch overflows!
|
|
// Do not call this function directly as it skips some of the checks from
|
|
// parse_number
|
|
//
|
|
// This function will almost never be called!!!
|
|
//
|
|
template<typename W>
|
|
never_inline bool parse_large_integer(const uint8_t *const src,
|
|
W writer,
|
|
bool found_minus) {
|
|
const char *p = reinterpret_cast<const char *>(src);
|
|
|
|
bool negative = false;
|
|
if (found_minus) {
|
|
++p;
|
|
negative = true;
|
|
}
|
|
uint64_t i;
|
|
if (*p == '0') { // 0 cannot be followed by an integer
|
|
++p;
|
|
i = 0;
|
|
} else {
|
|
unsigned char digit = static_cast<unsigned char>(*p - '0');
|
|
i = digit;
|
|
p++;
|
|
// the is_made_of_eight_digits_fast routine is unlikely to help here because
|
|
// we rarely see large integer parts like 123456789
|
|
while (is_integer(*p)) {
|
|
digit = static_cast<unsigned char>(*p - '0');
|
|
if (mul_overflow(i, 10, &i)) {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false; // overflow
|
|
}
|
|
if (add_overflow(i, digit, &i)) {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false; // overflow
|
|
}
|
|
++p;
|
|
}
|
|
}
|
|
if (negative) {
|
|
if (i > 0x8000000000000000) {
|
|
// overflows!
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false; // overflow
|
|
} else if (i == 0x8000000000000000) {
|
|
// In two's complement, we cannot represent 0x8000000000000000
|
|
// as a positive signed integer, but the negative version is
|
|
// possible.
|
|
constexpr int64_t signed_answer = INT64_MIN;
|
|
writer.append_s64(signed_answer);
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_integer(signed_answer, src);
|
|
#endif
|
|
} else {
|
|
// we can negate safely
|
|
int64_t signed_answer = -static_cast<int64_t>(i);
|
|
writer.append_s64(signed_answer);
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_integer(signed_answer, src);
|
|
#endif
|
|
}
|
|
} else {
|
|
// we have a positive integer, the contract is that
|
|
// we try to represent it as a signed integer and only
|
|
// fallback on unsigned integers if absolutely necessary.
|
|
if (i < 0x8000000000000000) {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_integer(i, src);
|
|
#endif
|
|
writer.append_s64(i);
|
|
} else {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_unsigned_integer(i, src);
|
|
#endif
|
|
writer.append_u64(i);
|
|
}
|
|
}
|
|
return is_structural_or_whitespace(*p);
|
|
}
|
|
|
|
template<typename W>
|
|
bool slow_float_parsing(UNUSED const char * src, W writer) {
|
|
double d;
|
|
if (parse_float_strtod(src, &d)) {
|
|
writer.append_double(d);
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_float(d, (const uint8_t *)src);
|
|
#endif
|
|
return true;
|
|
}
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number((const uint8_t *)src);
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
// parse the number at src
|
|
// define JSON_TEST_NUMBERS for unit testing
|
|
//
|
|
// It is assumed that the number is followed by a structural ({,},],[) character
|
|
// or a white space character. If that is not the case (e.g., when the JSON
|
|
// document is made of a single number), then it is necessary to copy the
|
|
// content and append a space before calling this function.
|
|
//
|
|
// Our objective is accurate parsing (ULP of 0) at high speed.
|
|
template<typename W>
|
|
really_inline bool parse_number(UNUSED const uint8_t *const src,
|
|
UNUSED bool found_minus,
|
|
W &writer) {
|
|
#ifdef SIMDJSON_SKIPNUMBERPARSING // for performance analysis, it is sometimes
|
|
// useful to skip parsing
|
|
writer.append_s64(0); // always write zero
|
|
return true; // always succeeds
|
|
#else
|
|
const char *p = reinterpret_cast<const char *>(src);
|
|
bool negative = false;
|
|
if (found_minus) {
|
|
++p;
|
|
negative = true;
|
|
if (!is_integer(*p)) { // a negative sign must be followed by an integer
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
}
|
|
const char *const start_digits = p;
|
|
|
|
uint64_t i; // an unsigned int avoids signed overflows (which are bad)
|
|
if (*p == '0') { // 0 cannot be followed by an integer
|
|
++p;
|
|
if (is_integer(*p)) {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
i = 0;
|
|
} else {
|
|
if (!(is_integer(*p))) { // must start with an integer
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
unsigned char digit = static_cast<unsigned char>(*p - '0');
|
|
i = digit;
|
|
p++;
|
|
// the is_made_of_eight_digits_fast routine is unlikely to help here because
|
|
// we rarely see large integer parts like 123456789
|
|
while (is_integer(*p)) {
|
|
digit = static_cast<unsigned char>(*p - '0');
|
|
// a multiplication by 10 is cheaper than an arbitrary integer
|
|
// multiplication
|
|
i = 10 * i + digit; // might overflow, we will handle the overflow later
|
|
++p;
|
|
}
|
|
}
|
|
int64_t exponent = 0;
|
|
bool is_float = false;
|
|
if ('.' == *p) {
|
|
is_float = true; // At this point we know that we have a float
|
|
// we continue with the fiction that we have an integer. If the
|
|
// floating point number is representable as x * 10^z for some integer
|
|
// z that fits in 53 bits, then we will be able to convert back the
|
|
// the integer into a float in a lossless manner.
|
|
++p;
|
|
const char *const first_after_period = p;
|
|
if (is_integer(*p)) {
|
|
unsigned char digit = static_cast<unsigned char>(*p - '0');
|
|
++p;
|
|
i = i * 10 + digit; // might overflow + multiplication by 10 is likely
|
|
// cheaper than arbitrary mult.
|
|
// we will handle the overflow later
|
|
} else {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
#ifdef SWAR_NUMBER_PARSING
|
|
// this helps if we have lots of decimals!
|
|
// this turns out to be frequent enough.
|
|
if (is_made_of_eight_digits_fast(p)) {
|
|
i = i * 100000000 + parse_eight_digits_unrolled(p);
|
|
p += 8;
|
|
}
|
|
#endif
|
|
while (is_integer(*p)) {
|
|
unsigned char digit = static_cast<unsigned char>(*p - '0');
|
|
++p;
|
|
i = i * 10 + digit; // in rare cases, this will overflow, but that's ok
|
|
// because we have parse_highprecision_float later.
|
|
}
|
|
exponent = first_after_period - p;
|
|
}
|
|
int digit_count =
|
|
int(p - start_digits) - 1; // used later to guard against overflows
|
|
int64_t exp_number = 0; // exponential part
|
|
if (('e' == *p) || ('E' == *p)) {
|
|
is_float = true;
|
|
++p;
|
|
bool neg_exp = false;
|
|
if ('-' == *p) {
|
|
neg_exp = true;
|
|
++p;
|
|
} else if ('+' == *p) {
|
|
++p;
|
|
}
|
|
if (!is_integer(*p)) {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
unsigned char digit = static_cast<unsigned char>(*p - '0');
|
|
exp_number = digit;
|
|
p++;
|
|
if (is_integer(*p)) {
|
|
digit = static_cast<unsigned char>(*p - '0');
|
|
exp_number = 10 * exp_number + digit;
|
|
++p;
|
|
}
|
|
if (is_integer(*p)) {
|
|
digit = static_cast<unsigned char>(*p - '0');
|
|
exp_number = 10 * exp_number + digit;
|
|
++p;
|
|
}
|
|
while (is_integer(*p)) {
|
|
if (exp_number > 0x100000000) { // we need to check for overflows
|
|
// we refuse to parse this
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
digit = static_cast<unsigned char>(*p - '0');
|
|
exp_number = 10 * exp_number + digit;
|
|
++p;
|
|
}
|
|
exponent += (neg_exp ? -exp_number : exp_number);
|
|
}
|
|
if (is_float) {
|
|
// If we frequently had to deal with long strings of digits,
|
|
// we could extend our code by using a 128-bit integer instead
|
|
// of a 64-bit integer. However, this is uncommon in practice.
|
|
if (unlikely((digit_count >= 19))) { // this is uncommon
|
|
// It is possible that the integer had an overflow.
|
|
// We have to handle the case where we have 0.0000somenumber.
|
|
const char *start = start_digits;
|
|
while ((*start == '0') || (*start == '.')) {
|
|
start++;
|
|
}
|
|
// we over-decrement by one when there is a '.'
|
|
digit_count -= int(start - start_digits);
|
|
if (digit_count >= 19) {
|
|
// Ok, chances are good that we had an overflow!
|
|
// this is almost never going to get called!!!
|
|
// we start anew, going slowly!!!
|
|
// This will happen in the following examples:
|
|
// 10000000000000000000000000000000000000000000e+308
|
|
// 3.1415926535897932384626433832795028841971693993751
|
|
//
|
|
bool success = slow_float_parsing((const char *) src, writer);
|
|
// The number was already written, but we made a copy of the writer
|
|
// when we passed it to the parse_large_integer() function, so
|
|
writer.skip_double();
|
|
return success;
|
|
}
|
|
}
|
|
if (unlikely(exponent < FASTFLOAT_SMALLEST_POWER) ||
|
|
(exponent > FASTFLOAT_LARGEST_POWER)) { // this is uncommon!!!
|
|
// this is almost never going to get called!!!
|
|
// we start anew, going slowly!!!
|
|
bool success = slow_float_parsing((const char *) src, writer);
|
|
// The number was already written, but we made a copy of the writer when we passed it to the
|
|
// slow_float_parsing() function, so we have to skip those tape spots now that we've returned
|
|
writer.skip_double();
|
|
return success;
|
|
}
|
|
bool success = true;
|
|
double d = compute_float_64(exponent, i, negative, &success);
|
|
if (!success) {
|
|
// we are almost never going to get here.
|
|
success = parse_float_strtod((const char *)src, &d);
|
|
}
|
|
if (success) {
|
|
writer.append_double(d);
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_float(d, src);
|
|
#endif
|
|
return true;
|
|
} else {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
} else {
|
|
if (unlikely(digit_count >= 18)) { // this is uncommon!!!
|
|
// there is a good chance that we had an overflow, so we need
|
|
// need to recover: we parse the whole thing again.
|
|
bool success = parse_large_integer(src, writer, found_minus);
|
|
// The number was already written, but we made a copy of the writer
|
|
// when we passed it to the parse_large_integer() function, so
|
|
writer.skip_large_integer();
|
|
return success;
|
|
}
|
|
i = negative ? 0 - i : i;
|
|
writer.append_s64(i);
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_integer(i, src);
|
|
#endif
|
|
}
|
|
return is_structural_or_whitespace(*p);
|
|
#endif // SIMDJSON_SKIPNUMBERPARSING
|
|
}
|
|
|
|
} // namespace numberparsing
|
|
} // namespace stage2
|
|
/* end file src/generic/stage2/numberparsing.h */
|
|
|
|
} // namespace haswell
|
|
|
|
} // namespace simdjson
|
|
UNTARGET_REGION
|
|
|
|
#endif // SIMDJSON_HASWELL_NUMBERPARSING_H
|
|
/* end file src/generic/stage2/numberparsing.h */
|
|
|
|
TARGET_HASWELL
|
|
namespace simdjson {
|
|
namespace haswell {
|
|
|
|
/* begin file src/generic/stage2/logger.h */
|
|
// This is for an internal-only stage 2 specific logger.
|
|
// Set LOG_ENABLED = true to log what stage 2 is doing!
|
|
namespace logger {
|
|
static constexpr const char * DASHES = "----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------";
|
|
|
|
static constexpr const bool LOG_ENABLED = false;
|
|
static constexpr const int LOG_EVENT_LEN = 30;
|
|
static constexpr const int LOG_BUFFER_LEN = 20;
|
|
static constexpr const int LOG_DETAIL_LEN = 50;
|
|
static constexpr const int LOG_INDEX_LEN = 10;
|
|
|
|
static int log_depth; // Not threadsafe. Log only.
|
|
|
|
// Helper to turn unprintable or newline characters into spaces
|
|
static really_inline char printable_char(char c) {
|
|
if (c >= 0x20) {
|
|
return c;
|
|
} else {
|
|
return ' ';
|
|
}
|
|
}
|
|
|
|
// Print the header and set up log_start
|
|
static really_inline void log_start() {
|
|
if (LOG_ENABLED) {
|
|
log_depth = 0;
|
|
printf("\n");
|
|
printf("| %-*s | %-*s | %*s | %*s | %*s | %-*s | %-*s | %-*s |\n", LOG_EVENT_LEN, "Event", LOG_BUFFER_LEN, "Buffer", 4, "Curr", 4, "Next", 5, "Next#", 5, "Tape#", LOG_DETAIL_LEN, "Detail", LOG_INDEX_LEN, "index");
|
|
printf("|%.*s|%.*s|%.*s|%.*s|%.*s|%.*s|%.*s|%.*s|\n", LOG_EVENT_LEN+2, DASHES, LOG_BUFFER_LEN+2, DASHES, 4+2, DASHES, 4+2, DASHES, 5+2, DASHES, 5+2, DASHES, LOG_DETAIL_LEN+2, DASHES, LOG_INDEX_LEN+2, DASHES);
|
|
}
|
|
}
|
|
|
|
static really_inline void log_string(const char *message) {
|
|
if (LOG_ENABLED) {
|
|
printf("%s\n", message);
|
|
}
|
|
}
|
|
|
|
// Logs a single line of
|
|
template<typename S>
|
|
static really_inline void log_line(S &structurals, const char *title_prefix, const char *title, const char *detail) {
|
|
if (LOG_ENABLED) {
|
|
printf("| %*s%s%-*s ", log_depth*2, "", title_prefix, LOG_EVENT_LEN - log_depth*2 - int(strlen(title_prefix)), title);
|
|
{
|
|
// Print the next N characters in the buffer.
|
|
printf("| ");
|
|
// Otherwise, print the characters starting from the buffer position.
|
|
// Print spaces for unprintable or newline characters.
|
|
for (int i=0;i<LOG_BUFFER_LEN;i++) {
|
|
printf("%c", printable_char(structurals.current()[i]));
|
|
}
|
|
printf(" ");
|
|
}
|
|
printf("| %c ", printable_char(structurals.current_char()));
|
|
printf("| %c ", printable_char(structurals.peek_next_char()));
|
|
printf("| %5u ", structurals.parser.structural_indexes[*(structurals.current_structural+1)]);
|
|
printf("| %5u ", structurals.next_tape_index());
|
|
printf("| %-*s ", LOG_DETAIL_LEN, detail);
|
|
printf("| %*u ", LOG_INDEX_LEN, *structurals.current_structural);
|
|
printf("|\n");
|
|
}
|
|
}
|
|
} // namespace logger
|
|
|
|
/* end file src/generic/stage2/logger.h */
|
|
/* begin file src/generic/stage2/atomparsing.h */
|
|
namespace stage2 {
|
|
namespace atomparsing {
|
|
|
|
really_inline uint32_t string_to_uint32(const char* str) { return *reinterpret_cast<const uint32_t *>(str); }
|
|
|
|
WARN_UNUSED
|
|
really_inline uint32_t str4ncmp(const uint8_t *src, const char* atom) {
|
|
uint32_t srcval; // we want to avoid unaligned 64-bit loads (undefined in C/C++)
|
|
static_assert(sizeof(uint32_t) <= SIMDJSON_PADDING, "SIMDJSON_PADDING must be larger than 4 bytes");
|
|
std::memcpy(&srcval, src, sizeof(uint32_t));
|
|
return srcval ^ string_to_uint32(atom);
|
|
}
|
|
|
|
WARN_UNUSED
|
|
really_inline bool is_valid_true_atom(const uint8_t *src) {
|
|
return (str4ncmp(src, "true") | is_not_structural_or_whitespace(src[4])) == 0;
|
|
}
|
|
|
|
WARN_UNUSED
|
|
really_inline bool is_valid_true_atom(const uint8_t *src, size_t len) {
|
|
if (len > 4) { return is_valid_true_atom(src); }
|
|
else if (len == 4) { return !str4ncmp(src, "true"); }
|
|
else { return false; }
|
|
}
|
|
|
|
WARN_UNUSED
|
|
really_inline bool is_valid_false_atom(const uint8_t *src) {
|
|
return (str4ncmp(src+1, "alse") | is_not_structural_or_whitespace(src[5])) == 0;
|
|
}
|
|
|
|
WARN_UNUSED
|
|
really_inline bool is_valid_false_atom(const uint8_t *src, size_t len) {
|
|
if (len > 5) { return is_valid_false_atom(src); }
|
|
else if (len == 5) { return !str4ncmp(src+1, "alse"); }
|
|
else { return false; }
|
|
}
|
|
|
|
WARN_UNUSED
|
|
really_inline bool is_valid_null_atom(const uint8_t *src) {
|
|
return (str4ncmp(src, "null") | is_not_structural_or_whitespace(src[4])) == 0;
|
|
}
|
|
|
|
WARN_UNUSED
|
|
really_inline bool is_valid_null_atom(const uint8_t *src, size_t len) {
|
|
if (len > 4) { return is_valid_null_atom(src); }
|
|
else if (len == 4) { return !str4ncmp(src, "null"); }
|
|
else { return false; }
|
|
}
|
|
|
|
} // namespace atomparsing
|
|
} // namespace stage2
|
|
/* end file src/generic/stage2/atomparsing.h */
|
|
/* begin file src/generic/stage2/structural_iterator.h */
|
|
namespace stage2 {
|
|
|
|
class structural_iterator {
|
|
public:
|
|
const uint8_t* const buf;
|
|
uint32_t *current_structural;
|
|
dom_parser_implementation &parser;
|
|
|
|
// Start a structural
|
|
really_inline structural_iterator(dom_parser_implementation &_parser, size_t start_structural_index)
|
|
: buf{_parser.buf},
|
|
current_structural{&_parser.structural_indexes[start_structural_index]},
|
|
parser{_parser} {
|
|
}
|
|
// Get the buffer position of the current structural character
|
|
really_inline const uint8_t* current() {
|
|
return &buf[*current_structural];
|
|
}
|
|
// Get the current structural character
|
|
really_inline char current_char() {
|
|
return buf[*current_structural];
|
|
}
|
|
// Get the next structural character without advancing
|
|
really_inline char peek_next_char() {
|
|
return buf[*(current_structural+1)];
|
|
}
|
|
really_inline char advance_char() {
|
|
current_structural++;
|
|
return buf[*current_structural];
|
|
}
|
|
really_inline size_t remaining_len() {
|
|
return parser.len - *current_structural;
|
|
}
|
|
template<typename F>
|
|
really_inline bool with_space_terminated_copy(const F& f) {
|
|
/**
|
|
* We need to make a copy to make sure that the string is space terminated.
|
|
* This is not about padding the input, which should already padded up
|
|
* to len + SIMDJSON_PADDING. However, we have no control at this stage
|
|
* on how the padding was done. What if the input string was padded with nulls?
|
|
* It is quite common for an input string to have an extra null character (C string).
|
|
* We do not want to allow 9\0 (where \0 is the null character) inside a JSON
|
|
* document, but the string "9\0" by itself is fine. So we make a copy and
|
|
* pad the input with spaces when we know that there is just one input element.
|
|
* This copy is relatively expensive, but it will almost never be called in
|
|
* practice unless you are in the strange scenario where you have many JSON
|
|
* documents made of single atoms.
|
|
*/
|
|
char *copy = static_cast<char *>(malloc(parser.len + SIMDJSON_PADDING));
|
|
if (copy == nullptr) {
|
|
return true;
|
|
}
|
|
memcpy(copy, buf, parser.len);
|
|
memset(copy + parser.len, ' ', SIMDJSON_PADDING);
|
|
bool result = f(reinterpret_cast<const uint8_t*>(copy), *current_structural);
|
|
free(copy);
|
|
return result;
|
|
}
|
|
really_inline bool past_end(uint32_t n_structural_indexes) {
|
|
return current_structural >= &parser.structural_indexes[n_structural_indexes];
|
|
}
|
|
really_inline bool at_end(uint32_t n_structural_indexes) {
|
|
return current_structural == &parser.structural_indexes[n_structural_indexes];
|
|
}
|
|
really_inline bool at_beginning() {
|
|
return current_structural == parser.structural_indexes.get();
|
|
}
|
|
};
|
|
|
|
} // namespace stage2
|
|
/* end file src/generic/stage2/structural_iterator.h */
|
|
/* begin file src/generic/stage2/structural_parser.h */
|
|
// This file contains the common code every implementation uses for stage2
|
|
// It is intended to be included multiple times and compiled multiple times
|
|
// We assume the file in which it is include already includes
|
|
// "simdjson/stage2.h" (this simplifies amalgation)
|
|
|
|
namespace stage2 {
|
|
namespace { // Make everything here private
|
|
|
|
/* begin file src/generic/stage2/tape_writer.h */
|
|
struct tape_writer {
|
|
/** The next place to write to tape */
|
|
uint64_t *next_tape_loc;
|
|
|
|
/** Write a signed 64-bit value to tape. */
|
|
really_inline void append_s64(int64_t value) noexcept;
|
|
|
|
/** Write an unsigned 64-bit value to tape. */
|
|
really_inline void append_u64(uint64_t value) noexcept;
|
|
|
|
/** Write a double value to tape. */
|
|
really_inline void append_double(double value) noexcept;
|
|
|
|
/**
|
|
* Append a tape entry (an 8-bit type,and 56 bits worth of value).
|
|
*/
|
|
really_inline void append(uint64_t val, internal::tape_type t) noexcept;
|
|
|
|
/**
|
|
* Skip the current tape entry without writing.
|
|
*
|
|
* Used to skip the start of the container, since we'll come back later to fill it in when the
|
|
* container ends.
|
|
*/
|
|
really_inline void skip() noexcept;
|
|
|
|
/**
|
|
* Skip the number of tape entries necessary to write a large u64 or i64.
|
|
*/
|
|
really_inline void skip_large_integer() noexcept;
|
|
|
|
/**
|
|
* Skip the number of tape entries necessary to write a double.
|
|
*/
|
|
really_inline void skip_double() noexcept;
|
|
|
|
/**
|
|
* Write a value to a known location on tape.
|
|
*
|
|
* Used to go back and write out the start of a container after the container ends.
|
|
*/
|
|
really_inline static void write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept;
|
|
|
|
private:
|
|
/**
|
|
* Append both the tape entry, and a supplementary value following it. Used for types that need
|
|
* all 64 bits, such as double and uint64_t.
|
|
*/
|
|
template<typename T>
|
|
really_inline void append2(uint64_t val, T val2, internal::tape_type t) noexcept;
|
|
}; // struct number_writer
|
|
|
|
really_inline void tape_writer::append_s64(int64_t value) noexcept {
|
|
append2(0, value, internal::tape_type::INT64);
|
|
}
|
|
|
|
really_inline void tape_writer::append_u64(uint64_t value) noexcept {
|
|
append(0, internal::tape_type::UINT64);
|
|
*next_tape_loc = value;
|
|
next_tape_loc++;
|
|
}
|
|
|
|
/** Write a double value to tape. */
|
|
really_inline void tape_writer::append_double(double value) noexcept {
|
|
append2(0, value, internal::tape_type::DOUBLE);
|
|
}
|
|
|
|
really_inline void tape_writer::skip() noexcept {
|
|
next_tape_loc++;
|
|
}
|
|
|
|
really_inline void tape_writer::skip_large_integer() noexcept {
|
|
next_tape_loc += 2;
|
|
}
|
|
|
|
really_inline void tape_writer::skip_double() noexcept {
|
|
next_tape_loc += 2;
|
|
}
|
|
|
|
really_inline void tape_writer::append(uint64_t val, internal::tape_type t) noexcept {
|
|
*next_tape_loc = val | ((uint64_t(char(t))) << 56);
|
|
next_tape_loc++;
|
|
}
|
|
|
|
template<typename T>
|
|
really_inline void tape_writer::append2(uint64_t val, T val2, internal::tape_type t) noexcept {
|
|
append(val, t);
|
|
static_assert(sizeof(val2) == sizeof(*next_tape_loc), "Type is not 64 bits!");
|
|
memcpy(next_tape_loc, &val2, sizeof(val2));
|
|
next_tape_loc++;
|
|
}
|
|
|
|
really_inline void tape_writer::write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept {
|
|
tape_loc = val | ((uint64_t(char(t))) << 56);
|
|
}
|
|
/* end file src/generic/stage2/tape_writer.h */
|
|
|
|
#ifdef SIMDJSON_USE_COMPUTED_GOTO
|
|
#define INIT_ADDRESSES() { &&array_begin, &&array_continue, &&error, &&finish, &&object_begin, &&object_continue }
|
|
#define GOTO(address) { goto *(address); }
|
|
#define CONTINUE(address) { goto *(address); }
|
|
#else // SIMDJSON_USE_COMPUTED_GOTO
|
|
#define INIT_ADDRESSES() { '[', 'a', 'e', 'f', '{', 'o' };
|
|
#define GOTO(address) \
|
|
{ \
|
|
switch(address) { \
|
|
case '[': goto array_begin; \
|
|
case 'a': goto array_continue; \
|
|
case 'e': goto error; \
|
|
case 'f': goto finish; \
|
|
case '{': goto object_begin; \
|
|
case 'o': goto object_continue; \
|
|
} \
|
|
}
|
|
// For the more constrained end_xxx() situation
|
|
#define CONTINUE(address) \
|
|
{ \
|
|
switch(address) { \
|
|
case 'a': goto array_continue; \
|
|
case 'o': goto object_continue; \
|
|
case 'f': goto finish; \
|
|
} \
|
|
}
|
|
#endif // SIMDJSON_USE_COMPUTED_GOTO
|
|
|
|
struct unified_machine_addresses {
|
|
ret_address_t array_begin;
|
|
ret_address_t array_continue;
|
|
ret_address_t error;
|
|
ret_address_t finish;
|
|
ret_address_t object_begin;
|
|
ret_address_t object_continue;
|
|
};
|
|
|
|
#undef FAIL_IF
|
|
#define FAIL_IF(EXPR) { if (EXPR) { return addresses.error; } }
|
|
|
|
struct structural_parser : structural_iterator {
|
|
/** Lets you append to the tape */
|
|
tape_writer tape;
|
|
/** Next write location in the string buf for stage 2 parsing */
|
|
uint8_t *current_string_buf_loc;
|
|
/** Current depth (nested objects and arrays) */
|
|
uint32_t depth{0};
|
|
|
|
// For non-streaming, to pass an explicit 0 as next_structural, which enables optimizations
|
|
really_inline structural_parser(dom_parser_implementation &_parser, uint32_t start_structural_index)
|
|
: structural_iterator(_parser, start_structural_index),
|
|
tape{parser.doc->tape.get()},
|
|
current_string_buf_loc{parser.doc->string_buf.get()} {
|
|
}
|
|
|
|
WARN_UNUSED really_inline bool start_scope(ret_address_t continue_state) {
|
|
parser.containing_scope[depth].tape_index = next_tape_index();
|
|
parser.containing_scope[depth].count = 0;
|
|
tape.skip(); // We don't actually *write* the start element until the end.
|
|
parser.ret_address[depth] = continue_state;
|
|
depth++;
|
|
bool exceeded_max_depth = depth >= parser.max_depth();
|
|
if (exceeded_max_depth) { log_error("Exceeded max depth!"); }
|
|
return exceeded_max_depth;
|
|
}
|
|
|
|
WARN_UNUSED really_inline bool start_document(ret_address_t continue_state) {
|
|
log_start_value("document");
|
|
return start_scope(continue_state);
|
|
}
|
|
|
|
WARN_UNUSED really_inline bool start_object(ret_address_t continue_state) {
|
|
log_start_value("object");
|
|
return start_scope(continue_state);
|
|
}
|
|
|
|
WARN_UNUSED really_inline bool start_array(ret_address_t continue_state) {
|
|
log_start_value("array");
|
|
return start_scope(continue_state);
|
|
}
|
|
|
|
// this function is responsible for annotating the start of the scope
|
|
really_inline void end_scope(internal::tape_type start, internal::tape_type end) noexcept {
|
|
depth--;
|
|
// write our doc->tape location to the header scope
|
|
// The root scope gets written *at* the previous location.
|
|
tape.append(parser.containing_scope[depth].tape_index, end);
|
|
// count can overflow if it exceeds 24 bits... so we saturate
|
|
// the convention being that a cnt of 0xffffff or more is undetermined in value (>= 0xffffff).
|
|
const uint32_t start_tape_index = parser.containing_scope[depth].tape_index;
|
|
const uint32_t count = parser.containing_scope[depth].count;
|
|
const uint32_t cntsat = count > 0xFFFFFF ? 0xFFFFFF : count;
|
|
// This is a load and an OR. It would be possible to just write once at doc->tape[d.tape_index]
|
|
tape_writer::write(parser.doc->tape[start_tape_index], next_tape_index() | (uint64_t(cntsat) << 32), start);
|
|
}
|
|
|
|
really_inline uint32_t next_tape_index() {
|
|
return uint32_t(tape.next_tape_loc - parser.doc->tape.get());
|
|
}
|
|
|
|
really_inline void end_object() {
|
|
log_end_value("object");
|
|
end_scope(internal::tape_type::START_OBJECT, internal::tape_type::END_OBJECT);
|
|
}
|
|
really_inline void end_array() {
|
|
log_end_value("array");
|
|
end_scope(internal::tape_type::START_ARRAY, internal::tape_type::END_ARRAY);
|
|
}
|
|
really_inline void end_document() {
|
|
log_end_value("document");
|
|
end_scope(internal::tape_type::ROOT, internal::tape_type::ROOT);
|
|
}
|
|
|
|
// increment_count increments the count of keys in an object or values in an array.
|
|
// Note that if you are at the level of the values or elements, the count
|
|
// must be increment in the preceding depth (depth-1) where the array or
|
|
// the object resides.
|
|
really_inline void increment_count() {
|
|
parser.containing_scope[depth - 1].count++; // we have a key value pair in the object at parser.depth - 1
|
|
}
|
|
|
|
really_inline uint8_t *on_start_string() noexcept {
|
|
// we advance the point, accounting for the fact that we have a NULL termination
|
|
tape.append(current_string_buf_loc - parser.doc->string_buf.get(), internal::tape_type::STRING);
|
|
return current_string_buf_loc + sizeof(uint32_t);
|
|
}
|
|
|
|
really_inline void on_end_string(uint8_t *dst) noexcept {
|
|
uint32_t str_length = uint32_t(dst - (current_string_buf_loc + sizeof(uint32_t)));
|
|
// TODO check for overflow in case someone has a crazy string (>=4GB?)
|
|
// But only add the overflow check when the document itself exceeds 4GB
|
|
// Currently unneeded because we refuse to parse docs larger or equal to 4GB.
|
|
memcpy(current_string_buf_loc, &str_length, sizeof(uint32_t));
|
|
// NULL termination is still handy if you expect all your strings to
|
|
// be NULL terminated? It comes at a small cost
|
|
*dst = 0;
|
|
current_string_buf_loc = dst + 1;
|
|
}
|
|
|
|
WARN_UNUSED really_inline bool parse_string(bool key = false) {
|
|
log_value(key ? "key" : "string");
|
|
uint8_t *dst = on_start_string();
|
|
dst = stringparsing::parse_string(current(), dst);
|
|
if (dst == nullptr) {
|
|
log_error("Invalid escape in string");
|
|
return true;
|
|
}
|
|
on_end_string(dst);
|
|
return false;
|
|
}
|
|
|
|
WARN_UNUSED really_inline bool parse_number(const uint8_t *src, bool found_minus) {
|
|
log_value("number");
|
|
bool succeeded = numberparsing::parse_number(src, found_minus, tape);
|
|
if (!succeeded) { log_error("Invalid number"); }
|
|
return !succeeded;
|
|
}
|
|
WARN_UNUSED really_inline bool parse_number(bool found_minus) {
|
|
return parse_number(current(), found_minus);
|
|
}
|
|
|
|
WARN_UNUSED really_inline ret_address_t parse_value(const unified_machine_addresses &addresses, ret_address_t continue_state) {
|
|
switch (advance_char()) {
|
|
case '"':
|
|
FAIL_IF( parse_string() );
|
|
return continue_state;
|
|
case 't':
|
|
log_value("true");
|
|
FAIL_IF( !atomparsing::is_valid_true_atom(current()) );
|
|
tape.append(0, internal::tape_type::TRUE_VALUE);
|
|
return continue_state;
|
|
case 'f':
|
|
log_value("false");
|
|
FAIL_IF( !atomparsing::is_valid_false_atom(current()) );
|
|
tape.append(0, internal::tape_type::FALSE_VALUE);
|
|
return continue_state;
|
|
case 'n':
|
|
log_value("null");
|
|
FAIL_IF( !atomparsing::is_valid_null_atom(current()) );
|
|
tape.append(0, internal::tape_type::NULL_VALUE);
|
|
return continue_state;
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
FAIL_IF( parse_number(false) );
|
|
return continue_state;
|
|
case '-':
|
|
FAIL_IF( parse_number(true) );
|
|
return continue_state;
|
|
case '{':
|
|
FAIL_IF( start_object(continue_state) );
|
|
return addresses.object_begin;
|
|
case '[':
|
|
FAIL_IF( start_array(continue_state) );
|
|
return addresses.array_begin;
|
|
default:
|
|
log_error("Non-value found when value was expected!");
|
|
return addresses.error;
|
|
}
|
|
}
|
|
|
|
WARN_UNUSED really_inline error_code finish() {
|
|
end_document();
|
|
parser.next_structural_index = uint32_t(current_structural + 1 - &parser.structural_indexes[0]);
|
|
|
|
if (depth != 0) {
|
|
log_error("Unclosed objects or arrays!");
|
|
return parser.error = TAPE_ERROR;
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
WARN_UNUSED really_inline error_code error() {
|
|
/* We do not need the next line because this is done by parser.init_stage2(),
|
|
* pessimistically.
|
|
* parser.is_valid = false;
|
|
* At this point in the code, we have all the time in the world.
|
|
* Note that we know exactly where we are in the document so we could,
|
|
* without any overhead on the processing code, report a specific
|
|
* location.
|
|
* We could even trigger special code paths to assess what happened
|
|
* carefully,
|
|
* all without any added cost. */
|
|
if (depth >= parser.max_depth()) {
|
|
return parser.error = DEPTH_ERROR;
|
|
}
|
|
switch (current_char()) {
|
|
case '"':
|
|
return parser.error = STRING_ERROR;
|
|
case '0':
|
|
case '1':
|
|
case '2':
|
|
case '3':
|
|
case '4':
|
|
case '5':
|
|
case '6':
|
|
case '7':
|
|
case '8':
|
|
case '9':
|
|
case '-':
|
|
return parser.error = NUMBER_ERROR;
|
|
case 't':
|
|
return parser.error = T_ATOM_ERROR;
|
|
case 'n':
|
|
return parser.error = N_ATOM_ERROR;
|
|
case 'f':
|
|
return parser.error = F_ATOM_ERROR;
|
|
default:
|
|
return parser.error = TAPE_ERROR;
|
|
}
|
|
}
|
|
|
|
really_inline void init() {
|
|
log_start();
|
|
parser.error = UNINITIALIZED;
|
|
}
|
|
|
|
WARN_UNUSED really_inline error_code start(ret_address_t finish_state) {
|
|
// If there are no structurals left, return EMPTY
|
|
if (at_end(parser.n_structural_indexes)) {
|
|
return parser.error = EMPTY;
|
|
}
|
|
|
|
init();
|
|
// Push the root scope (there is always at least one scope)
|
|
if (start_document(finish_state)) {
|
|
return parser.error = DEPTH_ERROR;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
really_inline void log_value(const char *type) {
|
|
logger::log_line(*this, "", type, "");
|
|
}
|
|
|
|
static really_inline void log_start() {
|
|
logger::log_start();
|
|
}
|
|
|
|
really_inline void log_start_value(const char *type) {
|
|
logger::log_line(*this, "+", type, "");
|
|
if (logger::LOG_ENABLED) { logger::log_depth++; }
|
|
}
|
|
|
|
really_inline void log_end_value(const char *type) {
|
|
if (logger::LOG_ENABLED) { logger::log_depth--; }
|
|
logger::log_line(*this, "-", type, "");
|
|
}
|
|
|
|
really_inline void log_error(const char *error) {
|
|
logger::log_line(*this, "", "ERROR", error);
|
|
}
|
|
}; // struct structural_parser
|
|
|
|
// Redefine FAIL_IF to use goto since it'll be used inside the function now
|
|
#undef FAIL_IF
|
|
#define FAIL_IF(EXPR) { if (EXPR) { goto error; } }
|
|
|
|
template<bool STREAMING>
|
|
WARN_UNUSED static error_code parse_structurals(dom_parser_implementation &dom_parser, dom::document &doc) noexcept {
|
|
dom_parser.doc = &doc;
|
|
static constexpr stage2::unified_machine_addresses addresses = INIT_ADDRESSES();
|
|
stage2::structural_parser parser(dom_parser, STREAMING ? dom_parser.next_structural_index : 0);
|
|
error_code result = parser.start(addresses.finish);
|
|
if (result) { return result; }
|
|
|
|
//
|
|
// Read first value
|
|
//
|
|
switch (parser.current_char()) {
|
|
case '{':
|
|
FAIL_IF( parser.start_object(addresses.finish) );
|
|
goto object_begin;
|
|
case '[':
|
|
FAIL_IF( parser.start_array(addresses.finish) );
|
|
// Make sure the outer array is closed before continuing; otherwise, there are ways we could get
|
|
// into memory corruption. See https://github.com/simdjson/simdjson/issues/906
|
|
if (!STREAMING) {
|
|
if (parser.buf[dom_parser.structural_indexes[dom_parser.n_structural_indexes - 1]] != ']') {
|
|
goto error;
|
|
}
|
|
}
|
|
goto array_begin;
|
|
case '"':
|
|
FAIL_IF( parser.parse_string() );
|
|
goto finish;
|
|
case 't':
|
|
parser.log_value("true");
|
|
FAIL_IF( !atomparsing::is_valid_true_atom(parser.current(), parser.remaining_len()) );
|
|
parser.tape.append(0, internal::tape_type::TRUE_VALUE);
|
|
goto finish;
|
|
case 'f':
|
|
parser.log_value("false");
|
|
FAIL_IF( !atomparsing::is_valid_false_atom(parser.current(), parser.remaining_len()) );
|
|
parser.tape.append(0, internal::tape_type::FALSE_VALUE);
|
|
goto finish;
|
|
case 'n':
|
|
parser.log_value("null");
|
|
FAIL_IF( !atomparsing::is_valid_null_atom(parser.current(), parser.remaining_len()) );
|
|
parser.tape.append(0, internal::tape_type::NULL_VALUE);
|
|
goto finish;
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
FAIL_IF(
|
|
parser.with_space_terminated_copy([&](const uint8_t *copy, size_t idx) {
|
|
return parser.parse_number(©[idx], false);
|
|
})
|
|
);
|
|
goto finish;
|
|
case '-':
|
|
FAIL_IF(
|
|
parser.with_space_terminated_copy([&](const uint8_t *copy, size_t idx) {
|
|
return parser.parse_number(©[idx], true);
|
|
})
|
|
);
|
|
goto finish;
|
|
default:
|
|
parser.log_error("Document starts with a non-value character");
|
|
goto error;
|
|
}
|
|
|
|
//
|
|
// Object parser states
|
|
//
|
|
object_begin:
|
|
switch (parser.advance_char()) {
|
|
case '"': {
|
|
parser.increment_count();
|
|
FAIL_IF( parser.parse_string(true) );
|
|
goto object_key_state;
|
|
}
|
|
case '}':
|
|
parser.end_object();
|
|
goto scope_end;
|
|
default:
|
|
parser.log_error("Object does not start with a key");
|
|
goto error;
|
|
}
|
|
|
|
object_key_state:
|
|
if (parser.advance_char() != ':' ) { parser.log_error("Missing colon after key in object"); goto error; }
|
|
GOTO( parser.parse_value(addresses, addresses.object_continue) );
|
|
|
|
object_continue:
|
|
switch (parser.advance_char()) {
|
|
case ',':
|
|
parser.increment_count();
|
|
if (parser.advance_char() != '"' ) { parser.log_error("Key string missing at beginning of field in object"); goto error; }
|
|
FAIL_IF( parser.parse_string(true) );
|
|
goto object_key_state;
|
|
case '}':
|
|
parser.end_object();
|
|
goto scope_end;
|
|
default:
|
|
parser.log_error("No comma between object fields");
|
|
goto error;
|
|
}
|
|
|
|
scope_end:
|
|
CONTINUE( parser.parser.ret_address[parser.depth] );
|
|
|
|
//
|
|
// Array parser states
|
|
//
|
|
array_begin:
|
|
if (parser.peek_next_char() == ']') {
|
|
parser.advance_char();
|
|
parser.end_array();
|
|
goto scope_end;
|
|
}
|
|
parser.increment_count();
|
|
|
|
main_array_switch:
|
|
/* we call update char on all paths in, so we can peek at parser.c on the
|
|
* on paths that can accept a close square brace (post-, and at start) */
|
|
GOTO( parser.parse_value(addresses, addresses.array_continue) );
|
|
|
|
array_continue:
|
|
switch (parser.advance_char()) {
|
|
case ',':
|
|
parser.increment_count();
|
|
goto main_array_switch;
|
|
case ']':
|
|
parser.end_array();
|
|
goto scope_end;
|
|
default:
|
|
parser.log_error("Missing comma between array values");
|
|
goto error;
|
|
}
|
|
|
|
finish:
|
|
return parser.finish();
|
|
|
|
error:
|
|
return parser.error();
|
|
}
|
|
|
|
} // namespace {}
|
|
} // namespace stage2
|
|
|
|
/************
|
|
* The JSON is parsed to a tape, see the accompanying tape.md file
|
|
* for documentation.
|
|
***********/
|
|
WARN_UNUSED error_code dom_parser_implementation::stage2(dom::document &_doc) noexcept {
|
|
error_code result = stage2::parse_structurals<false>(*this, _doc);
|
|
if (result) { return result; }
|
|
|
|
// If we didn't make it to the end, it's an error
|
|
if ( next_structural_index != n_structural_indexes ) {
|
|
logger::log_string("More than one JSON value at the root of the document, or extra characters at the end of the JSON!");
|
|
return error = TAPE_ERROR;
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
/************
|
|
* The JSON is parsed to a tape, see the accompanying tape.md file
|
|
* for documentation.
|
|
***********/
|
|
WARN_UNUSED error_code dom_parser_implementation::stage2_next(dom::document &_doc) noexcept {
|
|
return stage2::parse_structurals<true>(*this, _doc);
|
|
}
|
|
/* end file src/generic/stage2/tape_writer.h */
|
|
|
|
WARN_UNUSED error_code dom_parser_implementation::parse(const uint8_t *_buf, size_t _len, dom::document &_doc) noexcept {
|
|
error_code err = stage1(_buf, _len, false);
|
|
if (err) { return err; }
|
|
return stage2(_doc);
|
|
}
|
|
|
|
} // namespace haswell
|
|
} // namespace simdjson
|
|
UNTARGET_REGION
|
|
/* end file src/generic/stage2/tape_writer.h */
|
|
#endif
|
|
#if SIMDJSON_IMPLEMENTATION_WESTMERE
|
|
/* begin file src/westmere/implementation.cpp */
|
|
/* westmere/implementation.h already included: #include "westmere/implementation.h" */
|
|
/* begin file src/westmere/dom_parser_implementation.h */
|
|
#ifndef SIMDJSON_WESTMERE_DOM_PARSER_IMPLEMENTATION_H
|
|
#define SIMDJSON_WESTMERE_DOM_PARSER_IMPLEMENTATION_H
|
|
|
|
/* isadetection.h already included: #include "isadetection.h" */
|
|
|
|
namespace simdjson {
|
|
namespace westmere {
|
|
|
|
/* begin file src/generic/dom_parser_implementation.h */
|
|
// expectation: sizeof(scope_descriptor) = 64/8.
|
|
struct scope_descriptor {
|
|
uint32_t tape_index; // where, on the tape, does the scope ([,{) begins
|
|
uint32_t count; // how many elements in the scope
|
|
}; // struct scope_descriptor
|
|
|
|
#ifdef SIMDJSON_USE_COMPUTED_GOTO
|
|
typedef void* ret_address_t;
|
|
#else
|
|
typedef char ret_address_t;
|
|
#endif
|
|
|
|
class dom_parser_implementation final : public internal::dom_parser_implementation {
|
|
public:
|
|
/** Tape location of each open { or [ */
|
|
std::unique_ptr<scope_descriptor[]> containing_scope{};
|
|
/** Return address of each open { or [ */
|
|
std::unique_ptr<ret_address_t[]> ret_address{};
|
|
/** Buffer passed to stage 1 */
|
|
const uint8_t *buf{};
|
|
/** Length passed to stage 1 */
|
|
size_t len{0};
|
|
/** Document passed to stage 2 */
|
|
dom::document *doc{};
|
|
/** Error code (TODO remove, this is not even used, we just set it so the g++ optimizer doesn't get confused) */
|
|
error_code error{UNINITIALIZED};
|
|
|
|
really_inline dom_parser_implementation();
|
|
dom_parser_implementation(const dom_parser_implementation &) = delete;
|
|
dom_parser_implementation & operator=(const dom_parser_implementation &) = delete;
|
|
|
|
WARN_UNUSED error_code parse(const uint8_t *buf, size_t len, dom::document &doc) noexcept final;
|
|
WARN_UNUSED error_code stage1(const uint8_t *buf, size_t len, bool partial) noexcept final;
|
|
WARN_UNUSED error_code check_for_unclosed_array() noexcept;
|
|
WARN_UNUSED error_code stage2(dom::document &doc) noexcept final;
|
|
WARN_UNUSED error_code stage2_next(dom::document &doc) noexcept final;
|
|
WARN_UNUSED error_code set_capacity(size_t capacity) noexcept final;
|
|
WARN_UNUSED error_code set_max_depth(size_t max_depth) noexcept final;
|
|
};
|
|
|
|
/* begin file src/generic/stage1/allocate.h */
|
|
namespace stage1 {
|
|
namespace allocate {
|
|
|
|
//
|
|
// Allocates stage 1 internal state and outputs in the parser
|
|
//
|
|
really_inline error_code set_capacity(internal::dom_parser_implementation &parser, size_t capacity) {
|
|
size_t max_structures = ROUNDUP_N(capacity, 64) + 2 + 7;
|
|
parser.structural_indexes.reset( new (std::nothrow) uint32_t[max_structures] );
|
|
if (!parser.structural_indexes) { return MEMALLOC; }
|
|
parser.structural_indexes[0] = 0;
|
|
parser.n_structural_indexes = 0;
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace allocate
|
|
} // namespace stage1
|
|
/* end file src/generic/stage1/allocate.h */
|
|
/* begin file src/generic/stage2/allocate.h */
|
|
namespace stage2 {
|
|
namespace allocate {
|
|
|
|
//
|
|
// Allocates stage 2 internal state and outputs in the parser
|
|
//
|
|
really_inline error_code set_max_depth(dom_parser_implementation &parser, size_t max_depth) {
|
|
parser.containing_scope.reset(new (std::nothrow) scope_descriptor[max_depth]);
|
|
parser.ret_address.reset(new (std::nothrow) ret_address_t[max_depth]);
|
|
|
|
if (!parser.ret_address || !parser.containing_scope) {
|
|
return MEMALLOC;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace allocate
|
|
} // namespace stage2
|
|
/* end file src/generic/stage2/allocate.h */
|
|
|
|
really_inline dom_parser_implementation::dom_parser_implementation() {}
|
|
|
|
// Leaving these here so they can be inlined if so desired
|
|
WARN_UNUSED error_code dom_parser_implementation::set_capacity(size_t capacity) noexcept {
|
|
error_code err = stage1::allocate::set_capacity(*this, capacity);
|
|
if (err) { _capacity = 0; return err; }
|
|
_capacity = capacity;
|
|
return SUCCESS;
|
|
}
|
|
|
|
WARN_UNUSED error_code dom_parser_implementation::set_max_depth(size_t max_depth) noexcept {
|
|
error_code err = stage2::allocate::set_max_depth(*this, max_depth);
|
|
if (err) { _max_depth = 0; return err; }
|
|
_max_depth = max_depth;
|
|
return SUCCESS;
|
|
}
|
|
/* end file src/generic/stage2/allocate.h */
|
|
|
|
} // namespace westmere
|
|
} // namespace simdjson
|
|
|
|
#endif // SIMDJSON_WESTMERE_DOM_PARSER_IMPLEMENTATION_H
|
|
/* end file src/generic/stage2/allocate.h */
|
|
|
|
TARGET_HASWELL
|
|
|
|
namespace simdjson {
|
|
namespace westmere {
|
|
|
|
WARN_UNUSED error_code implementation::create_dom_parser_implementation(
|
|
size_t capacity,
|
|
size_t max_depth,
|
|
std::unique_ptr<internal::dom_parser_implementation>& dst
|
|
) const noexcept {
|
|
dst.reset( new (std::nothrow) dom_parser_implementation() );
|
|
if (!dst) { return MEMALLOC; }
|
|
dst->set_capacity(capacity);
|
|
dst->set_max_depth(max_depth);
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace westmere
|
|
} // namespace simdjson
|
|
|
|
UNTARGET_REGION
|
|
/* end file src/generic/stage2/allocate.h */
|
|
/* begin file src/westmere/dom_parser_implementation.cpp */
|
|
/* westmere/implementation.h already included: #include "westmere/implementation.h" */
|
|
/* westmere/dom_parser_implementation.h already included: #include "westmere/dom_parser_implementation.h" */
|
|
|
|
//
|
|
// Stage 1
|
|
//
|
|
/* begin file src/westmere/bitmask.h */
|
|
#ifndef SIMDJSON_WESTMERE_BITMASK_H
|
|
#define SIMDJSON_WESTMERE_BITMASK_H
|
|
|
|
/* begin file src/westmere/intrinsics.h */
|
|
#ifndef SIMDJSON_WESTMERE_INTRINSICS_H
|
|
#define SIMDJSON_WESTMERE_INTRINSICS_H
|
|
|
|
#ifdef SIMDJSON_VISUAL_STUDIO
|
|
// under clang within visual studio, this will include <x86intrin.h>
|
|
#include <intrin.h> // visual studio or clang
|
|
#else
|
|
#include <x86intrin.h> // elsewhere
|
|
#endif // SIMDJSON_VISUAL_STUDIO
|
|
|
|
|
|
#ifdef SIMDJSON_CLANG_VISUAL_STUDIO
|
|
/**
|
|
* You are not supposed, normally, to include these
|
|
* headers directly. Instead you should either include intrin.h
|
|
* or x86intrin.h. However, when compiling with clang
|
|
* under Windows (i.e., when _MSC_VER is set), these headers
|
|
* only get included *if* the corresponding features are detected
|
|
* from macros:
|
|
*/
|
|
#include <smmintrin.h> // for _mm_alignr_epi8
|
|
#include <wmmintrin.h> // for _mm_clmulepi64_si128
|
|
#endif
|
|
|
|
|
|
|
|
#endif // SIMDJSON_WESTMERE_INTRINSICS_H
|
|
/* end file src/westmere/intrinsics.h */
|
|
|
|
TARGET_WESTMERE
|
|
namespace simdjson {
|
|
namespace westmere {
|
|
|
|
//
|
|
// Perform a "cumulative bitwise xor," flipping bits each time a 1 is encountered.
|
|
//
|
|
// For example, prefix_xor(00100100) == 00011100
|
|
//
|
|
really_inline uint64_t prefix_xor(const uint64_t bitmask) {
|
|
// There should be no such thing with a processing supporting avx2
|
|
// but not clmul.
|
|
__m128i all_ones = _mm_set1_epi8('\xFF');
|
|
__m128i result = _mm_clmulepi64_si128(_mm_set_epi64x(0ULL, bitmask), all_ones, 0);
|
|
return _mm_cvtsi128_si64(result);
|
|
}
|
|
|
|
} // namespace westmere
|
|
|
|
} // namespace simdjson
|
|
UNTARGET_REGION
|
|
|
|
#endif // SIMDJSON_WESTMERE_BITMASK_H
|
|
/* end file src/westmere/intrinsics.h */
|
|
/* begin file src/westmere/simd.h */
|
|
#ifndef SIMDJSON_WESTMERE_SIMD_H
|
|
#define SIMDJSON_WESTMERE_SIMD_H
|
|
|
|
/* simdprune_tables.h already included: #include "simdprune_tables.h" */
|
|
/* begin file src/westmere/bitmanipulation.h */
|
|
#ifndef SIMDJSON_WESTMERE_BITMANIPULATION_H
|
|
#define SIMDJSON_WESTMERE_BITMANIPULATION_H
|
|
|
|
/* westmere/intrinsics.h already included: #include "westmere/intrinsics.h" */
|
|
|
|
TARGET_WESTMERE
|
|
namespace simdjson {
|
|
namespace westmere {
|
|
|
|
// We sometimes call trailing_zero on inputs that are zero,
|
|
// but the algorithms do not end up using the returned value.
|
|
// Sadly, sanitizers are not smart enough to figure it out.
|
|
NO_SANITIZE_UNDEFINED
|
|
really_inline int trailing_zeroes(uint64_t input_num) {
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
unsigned long ret;
|
|
// Search the mask data from least significant bit (LSB)
|
|
// to the most significant bit (MSB) for a set bit (1).
|
|
_BitScanForward64(&ret, input_num);
|
|
return (int)ret;
|
|
#else // SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
return __builtin_ctzll(input_num);
|
|
#endif // SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
}
|
|
|
|
/* result might be undefined when input_num is zero */
|
|
really_inline uint64_t clear_lowest_bit(uint64_t input_num) {
|
|
return input_num & (input_num-1);
|
|
}
|
|
|
|
/* result might be undefined when input_num is zero */
|
|
really_inline int leading_zeroes(uint64_t input_num) {
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
unsigned long leading_zero = 0;
|
|
// Search the mask data from most significant bit (MSB)
|
|
// to least significant bit (LSB) for a set bit (1).
|
|
if (_BitScanReverse64(&leading_zero, input_num))
|
|
return (int)(63 - leading_zero);
|
|
else
|
|
return 64;
|
|
#else
|
|
return __builtin_clzll(input_num);
|
|
#endif// SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
}
|
|
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
really_inline unsigned __int64 count_ones(uint64_t input_num) {
|
|
// note: we do not support legacy 32-bit Windows
|
|
return __popcnt64(input_num);// Visual Studio wants two underscores
|
|
}
|
|
#else
|
|
really_inline long long int count_ones(uint64_t input_num) {
|
|
return _popcnt64(input_num);
|
|
}
|
|
#endif
|
|
|
|
really_inline bool add_overflow(uint64_t value1, uint64_t value2,
|
|
uint64_t *result) {
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
return _addcarry_u64(0, value1, value2,
|
|
reinterpret_cast<unsigned __int64 *>(result));
|
|
#else
|
|
return __builtin_uaddll_overflow(value1, value2,
|
|
(unsigned long long *)result);
|
|
#endif
|
|
}
|
|
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
#pragma intrinsic(_umul128)
|
|
#endif
|
|
really_inline bool mul_overflow(uint64_t value1, uint64_t value2,
|
|
uint64_t *result) {
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
uint64_t high;
|
|
*result = _umul128(value1, value2, &high);
|
|
return high;
|
|
#else
|
|
return __builtin_umulll_overflow(value1, value2,
|
|
(unsigned long long *)result);
|
|
#endif
|
|
}
|
|
|
|
} // namespace westmere
|
|
|
|
} // namespace simdjson
|
|
UNTARGET_REGION
|
|
|
|
#endif // SIMDJSON_WESTMERE_BITMANIPULATION_H
|
|
/* end file src/westmere/bitmanipulation.h */
|
|
/* westmere/intrinsics.h already included: #include "westmere/intrinsics.h" */
|
|
|
|
|
|
|
|
TARGET_WESTMERE
|
|
namespace simdjson {
|
|
namespace westmere {
|
|
namespace simd {
|
|
|
|
template<typename Child>
|
|
struct base {
|
|
__m128i value;
|
|
|
|
// Zero constructor
|
|
really_inline base() : value{__m128i()} {}
|
|
|
|
// Conversion from SIMD register
|
|
really_inline base(const __m128i _value) : value(_value) {}
|
|
|
|
// Conversion to SIMD register
|
|
really_inline operator const __m128i&() const { return this->value; }
|
|
really_inline operator __m128i&() { return this->value; }
|
|
|
|
// Bit operations
|
|
really_inline Child operator|(const Child other) const { return _mm_or_si128(*this, other); }
|
|
really_inline Child operator&(const Child other) const { return _mm_and_si128(*this, other); }
|
|
really_inline Child operator^(const Child other) const { return _mm_xor_si128(*this, other); }
|
|
really_inline Child bit_andnot(const Child other) const { return _mm_andnot_si128(other, *this); }
|
|
really_inline Child& operator|=(const Child other) { auto this_cast = (Child*)this; *this_cast = *this_cast | other; return *this_cast; }
|
|
really_inline Child& operator&=(const Child other) { auto this_cast = (Child*)this; *this_cast = *this_cast & other; return *this_cast; }
|
|
really_inline Child& operator^=(const Child other) { auto this_cast = (Child*)this; *this_cast = *this_cast ^ other; return *this_cast; }
|
|
};
|
|
|
|
// Forward-declared so they can be used by splat and friends.
|
|
template<typename T>
|
|
struct simd8;
|
|
|
|
template<typename T, typename Mask=simd8<bool>>
|
|
struct base8: base<simd8<T>> {
|
|
typedef uint16_t bitmask_t;
|
|
typedef uint32_t bitmask2_t;
|
|
|
|
really_inline base8() : base<simd8<T>>() {}
|
|
really_inline base8(const __m128i _value) : base<simd8<T>>(_value) {}
|
|
|
|
really_inline Mask operator==(const simd8<T> other) const { return _mm_cmpeq_epi8(*this, other); }
|
|
|
|
static const int SIZE = sizeof(base<simd8<T>>::value);
|
|
|
|
template<int N=1>
|
|
really_inline simd8<T> prev(const simd8<T> prev_chunk) const {
|
|
return _mm_alignr_epi8(*this, prev_chunk, 16 - N);
|
|
}
|
|
};
|
|
|
|
// SIMD byte mask type (returned by things like eq and gt)
|
|
template<>
|
|
struct simd8<bool>: base8<bool> {
|
|
static really_inline simd8<bool> splat(bool _value) { return _mm_set1_epi8(uint8_t(-(!!_value))); }
|
|
|
|
really_inline simd8<bool>() : base8() {}
|
|
really_inline simd8<bool>(const __m128i _value) : base8<bool>(_value) {}
|
|
// Splat constructor
|
|
really_inline simd8<bool>(bool _value) : base8<bool>(splat(_value)) {}
|
|
|
|
really_inline int to_bitmask() const { return _mm_movemask_epi8(*this); }
|
|
really_inline bool any() const { return !_mm_testz_si128(*this, *this); }
|
|
really_inline simd8<bool> operator~() const { return *this ^ true; }
|
|
};
|
|
|
|
template<typename T>
|
|
struct base8_numeric: base8<T> {
|
|
static really_inline simd8<T> splat(T _value) { return _mm_set1_epi8(_value); }
|
|
static really_inline simd8<T> zero() { return _mm_setzero_si128(); }
|
|
static really_inline simd8<T> load(const T values[16]) {
|
|
return _mm_loadu_si128(reinterpret_cast<const __m128i *>(values));
|
|
}
|
|
// Repeat 16 values as many times as necessary (usually for lookup tables)
|
|
static really_inline simd8<T> repeat_16(
|
|
T v0, T v1, T v2, T v3, T v4, T v5, T v6, T v7,
|
|
T v8, T v9, T v10, T v11, T v12, T v13, T v14, T v15
|
|
) {
|
|
return simd8<T>(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
);
|
|
}
|
|
|
|
really_inline base8_numeric() : base8<T>() {}
|
|
really_inline base8_numeric(const __m128i _value) : base8<T>(_value) {}
|
|
|
|
// Store to array
|
|
really_inline void store(T dst[16]) const { return _mm_storeu_si128(reinterpret_cast<__m128i *>(dst), *this); }
|
|
|
|
// Override to distinguish from bool version
|
|
really_inline simd8<T> operator~() const { return *this ^ 0xFFu; }
|
|
|
|
// Addition/subtraction are the same for signed and unsigned
|
|
really_inline simd8<T> operator+(const simd8<T> other) const { return _mm_add_epi8(*this, other); }
|
|
really_inline simd8<T> operator-(const simd8<T> other) const { return _mm_sub_epi8(*this, other); }
|
|
really_inline simd8<T>& operator+=(const simd8<T> other) { *this = *this + other; return *(simd8<T>*)this; }
|
|
really_inline simd8<T>& operator-=(const simd8<T> other) { *this = *this - other; return *(simd8<T>*)this; }
|
|
|
|
// Perform a lookup assuming the value is between 0 and 16 (undefined behavior for out of range values)
|
|
template<typename L>
|
|
really_inline simd8<L> lookup_16(simd8<L> lookup_table) const {
|
|
return _mm_shuffle_epi8(lookup_table, *this);
|
|
}
|
|
|
|
// Copies to 'output" all bytes corresponding to a 0 in the mask (interpreted as a bitset).
|
|
// Passing a 0 value for mask would be equivalent to writing out every byte to output.
|
|
// Only the first 16 - count_ones(mask) bytes of the result are significant but 16 bytes
|
|
// get written.
|
|
// Design consideration: it seems like a function with the
|
|
// signature simd8<L> compress(uint32_t mask) would be
|
|
// sensible, but the AVX ISA makes this kind of approach difficult.
|
|
template<typename L>
|
|
really_inline void compress(uint16_t mask, L * output) const {
|
|
// this particular implementation was inspired by work done by @animetosho
|
|
// we do it in two steps, first 8 bytes and then second 8 bytes
|
|
uint8_t mask1 = uint8_t(mask); // least significant 8 bits
|
|
uint8_t mask2 = uint8_t(mask >> 8); // most significant 8 bits
|
|
// next line just loads the 64-bit values thintable_epi8[mask1] and
|
|
// thintable_epi8[mask2] into a 128-bit register, using only
|
|
// two instructions on most compilers.
|
|
__m128i shufmask = _mm_set_epi64x(thintable_epi8[mask2], thintable_epi8[mask1]);
|
|
// we increment by 0x08 the second half of the mask
|
|
shufmask =
|
|
_mm_add_epi8(shufmask, _mm_set_epi32(0x08080808, 0x08080808, 0, 0));
|
|
// this is the version "nearly pruned"
|
|
__m128i pruned = _mm_shuffle_epi8(*this, shufmask);
|
|
// we still need to put the two halves together.
|
|
// we compute the popcount of the first half:
|
|
int pop1 = BitsSetTable256mul2[mask1];
|
|
// then load the corresponding mask, what it does is to write
|
|
// only the first pop1 bytes from the first 8 bytes, and then
|
|
// it fills in with the bytes from the second 8 bytes + some filling
|
|
// at the end.
|
|
__m128i compactmask =
|
|
_mm_loadu_si128((const __m128i *)(pshufb_combine_table + pop1 * 8));
|
|
__m128i answer = _mm_shuffle_epi8(pruned, compactmask);
|
|
_mm_storeu_si128(( __m128i *)(output), answer);
|
|
}
|
|
|
|
template<typename L>
|
|
really_inline simd8<L> lookup_16(
|
|
L replace0, L replace1, L replace2, L replace3,
|
|
L replace4, L replace5, L replace6, L replace7,
|
|
L replace8, L replace9, L replace10, L replace11,
|
|
L replace12, L replace13, L replace14, L replace15) const {
|
|
return lookup_16(simd8<L>::repeat_16(
|
|
replace0, replace1, replace2, replace3,
|
|
replace4, replace5, replace6, replace7,
|
|
replace8, replace9, replace10, replace11,
|
|
replace12, replace13, replace14, replace15
|
|
));
|
|
}
|
|
};
|
|
|
|
// Signed bytes
|
|
template<>
|
|
struct simd8<int8_t> : base8_numeric<int8_t> {
|
|
really_inline simd8() : base8_numeric<int8_t>() {}
|
|
really_inline simd8(const __m128i _value) : base8_numeric<int8_t>(_value) {}
|
|
// Splat constructor
|
|
really_inline simd8(int8_t _value) : simd8(splat(_value)) {}
|
|
// Array constructor
|
|
really_inline simd8(const int8_t* values) : simd8(load(values)) {}
|
|
// Member-by-member initialization
|
|
really_inline simd8(
|
|
int8_t v0, int8_t v1, int8_t v2, int8_t v3, int8_t v4, int8_t v5, int8_t v6, int8_t v7,
|
|
int8_t v8, int8_t v9, int8_t v10, int8_t v11, int8_t v12, int8_t v13, int8_t v14, int8_t v15
|
|
) : simd8(_mm_setr_epi8(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
)) {}
|
|
// Repeat 16 values as many times as necessary (usually for lookup tables)
|
|
really_inline static simd8<int8_t> repeat_16(
|
|
int8_t v0, int8_t v1, int8_t v2, int8_t v3, int8_t v4, int8_t v5, int8_t v6, int8_t v7,
|
|
int8_t v8, int8_t v9, int8_t v10, int8_t v11, int8_t v12, int8_t v13, int8_t v14, int8_t v15
|
|
) {
|
|
return simd8<int8_t>(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
);
|
|
}
|
|
|
|
// Order-sensitive comparisons
|
|
really_inline simd8<int8_t> max(const simd8<int8_t> other) const { return _mm_max_epi8(*this, other); }
|
|
really_inline simd8<int8_t> min(const simd8<int8_t> other) const { return _mm_min_epi8(*this, other); }
|
|
really_inline simd8<bool> operator>(const simd8<int8_t> other) const { return _mm_cmpgt_epi8(*this, other); }
|
|
really_inline simd8<bool> operator<(const simd8<int8_t> other) const { return _mm_cmpgt_epi8(other, *this); }
|
|
};
|
|
|
|
// Unsigned bytes
|
|
template<>
|
|
struct simd8<uint8_t>: base8_numeric<uint8_t> {
|
|
really_inline simd8() : base8_numeric<uint8_t>() {}
|
|
really_inline simd8(const __m128i _value) : base8_numeric<uint8_t>(_value) {}
|
|
// Splat constructor
|
|
really_inline simd8(uint8_t _value) : simd8(splat(_value)) {}
|
|
// Array constructor
|
|
really_inline simd8(const uint8_t* values) : simd8(load(values)) {}
|
|
// Member-by-member initialization
|
|
really_inline simd8(
|
|
uint8_t v0, uint8_t v1, uint8_t v2, uint8_t v3, uint8_t v4, uint8_t v5, uint8_t v6, uint8_t v7,
|
|
uint8_t v8, uint8_t v9, uint8_t v10, uint8_t v11, uint8_t v12, uint8_t v13, uint8_t v14, uint8_t v15
|
|
) : simd8(_mm_setr_epi8(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
)) {}
|
|
// Repeat 16 values as many times as necessary (usually for lookup tables)
|
|
really_inline static simd8<uint8_t> repeat_16(
|
|
uint8_t v0, uint8_t v1, uint8_t v2, uint8_t v3, uint8_t v4, uint8_t v5, uint8_t v6, uint8_t v7,
|
|
uint8_t v8, uint8_t v9, uint8_t v10, uint8_t v11, uint8_t v12, uint8_t v13, uint8_t v14, uint8_t v15
|
|
) {
|
|
return simd8<uint8_t>(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
);
|
|
}
|
|
|
|
// Saturated math
|
|
really_inline simd8<uint8_t> saturating_add(const simd8<uint8_t> other) const { return _mm_adds_epu8(*this, other); }
|
|
really_inline simd8<uint8_t> saturating_sub(const simd8<uint8_t> other) const { return _mm_subs_epu8(*this, other); }
|
|
|
|
// Order-specific operations
|
|
really_inline simd8<uint8_t> max(const simd8<uint8_t> other) const { return _mm_max_epu8(*this, other); }
|
|
really_inline simd8<uint8_t> min(const simd8<uint8_t> other) const { return _mm_min_epu8(*this, other); }
|
|
// Same as >, but only guarantees true is nonzero (< guarantees true = -1)
|
|
really_inline simd8<uint8_t> gt_bits(const simd8<uint8_t> other) const { return this->saturating_sub(other); }
|
|
// Same as <, but only guarantees true is nonzero (< guarantees true = -1)
|
|
really_inline simd8<uint8_t> lt_bits(const simd8<uint8_t> other) const { return other.saturating_sub(*this); }
|
|
really_inline simd8<bool> operator<=(const simd8<uint8_t> other) const { return other.max(*this) == other; }
|
|
really_inline simd8<bool> operator>=(const simd8<uint8_t> other) const { return other.min(*this) == other; }
|
|
really_inline simd8<bool> operator>(const simd8<uint8_t> other) const { return this->gt_bits(other).any_bits_set(); }
|
|
really_inline simd8<bool> operator<(const simd8<uint8_t> other) const { return this->gt_bits(other).any_bits_set(); }
|
|
|
|
// Bit-specific operations
|
|
really_inline simd8<bool> bits_not_set() const { return *this == uint8_t(0); }
|
|
really_inline simd8<bool> bits_not_set(simd8<uint8_t> bits) const { return (*this & bits).bits_not_set(); }
|
|
really_inline simd8<bool> any_bits_set() const { return ~this->bits_not_set(); }
|
|
really_inline simd8<bool> any_bits_set(simd8<uint8_t> bits) const { return ~this->bits_not_set(bits); }
|
|
really_inline bool bits_not_set_anywhere() const { return _mm_testz_si128(*this, *this); }
|
|
really_inline bool any_bits_set_anywhere() const { return !bits_not_set_anywhere(); }
|
|
really_inline bool bits_not_set_anywhere(simd8<uint8_t> bits) const { return _mm_testz_si128(*this, bits); }
|
|
really_inline bool any_bits_set_anywhere(simd8<uint8_t> bits) const { return !bits_not_set_anywhere(bits); }
|
|
template<int N>
|
|
really_inline simd8<uint8_t> shr() const { return simd8<uint8_t>(_mm_srli_epi16(*this, N)) & uint8_t(0xFFu >> N); }
|
|
template<int N>
|
|
really_inline simd8<uint8_t> shl() const { return simd8<uint8_t>(_mm_slli_epi16(*this, N)) & uint8_t(0xFFu << N); }
|
|
// Get one of the bits and make a bitmask out of it.
|
|
// e.g. value.get_bit<7>() gets the high bit
|
|
template<int N>
|
|
really_inline int get_bit() const { return _mm_movemask_epi8(_mm_slli_epi16(*this, 7-N)); }
|
|
};
|
|
|
|
template<typename T>
|
|
struct simd8x64 {
|
|
static const int NUM_CHUNKS = 64 / sizeof(simd8<T>);
|
|
const simd8<T> chunks[NUM_CHUNKS];
|
|
|
|
really_inline simd8x64() : chunks{simd8<T>(), simd8<T>(), simd8<T>(), simd8<T>()} {}
|
|
really_inline simd8x64(const simd8<T> chunk0, const simd8<T> chunk1, const simd8<T> chunk2, const simd8<T> chunk3) : chunks{chunk0, chunk1, chunk2, chunk3} {}
|
|
really_inline simd8x64(const T ptr[64]) : chunks{simd8<T>::load(ptr), simd8<T>::load(ptr+16), simd8<T>::load(ptr+32), simd8<T>::load(ptr+48)} {}
|
|
|
|
really_inline void store(T ptr[64]) const {
|
|
this->chunks[0].store(ptr+sizeof(simd8<T>)*0);
|
|
this->chunks[1].store(ptr+sizeof(simd8<T>)*1);
|
|
this->chunks[2].store(ptr+sizeof(simd8<T>)*2);
|
|
this->chunks[3].store(ptr+sizeof(simd8<T>)*3);
|
|
}
|
|
|
|
really_inline void compress(uint64_t mask, T * output) const {
|
|
this->chunks[0].compress(uint16_t(mask), output);
|
|
this->chunks[1].compress(uint16_t(mask >> 16), output + 16 - count_ones(mask & 0xFFFF));
|
|
this->chunks[2].compress(uint16_t(mask >> 32), output + 32 - count_ones(mask & 0xFFFFFFFF));
|
|
this->chunks[3].compress(uint16_t(mask >> 48), output + 48 - count_ones(mask & 0xFFFFFFFFFFFF));
|
|
}
|
|
|
|
template <typename F>
|
|
static really_inline void each_index(F const& each) {
|
|
each(0);
|
|
each(1);
|
|
each(2);
|
|
each(3);
|
|
}
|
|
|
|
template <typename F>
|
|
really_inline void each(F const& each_chunk) const
|
|
{
|
|
each_chunk(this->chunks[0]);
|
|
each_chunk(this->chunks[1]);
|
|
each_chunk(this->chunks[2]);
|
|
each_chunk(this->chunks[3]);
|
|
}
|
|
|
|
template <typename F, typename R=bool>
|
|
really_inline simd8x64<R> map(F const& map_chunk) const {
|
|
return simd8x64<R>(
|
|
map_chunk(this->chunks[0]),
|
|
map_chunk(this->chunks[1]),
|
|
map_chunk(this->chunks[2]),
|
|
map_chunk(this->chunks[3])
|
|
);
|
|
}
|
|
|
|
template <typename F, typename R=bool>
|
|
really_inline simd8x64<R> map(const simd8x64<uint8_t> b, F const& map_chunk) const {
|
|
return simd8x64<R>(
|
|
map_chunk(this->chunks[0], b.chunks[0]),
|
|
map_chunk(this->chunks[1], b.chunks[1]),
|
|
map_chunk(this->chunks[2], b.chunks[2]),
|
|
map_chunk(this->chunks[3], b.chunks[3])
|
|
);
|
|
}
|
|
|
|
template <typename F>
|
|
really_inline simd8<T> reduce(F const& reduce_pair) const {
|
|
return reduce_pair(
|
|
reduce_pair(this->chunks[0], this->chunks[1]),
|
|
reduce_pair(this->chunks[2], this->chunks[3])
|
|
);
|
|
}
|
|
|
|
really_inline uint64_t to_bitmask() const {
|
|
uint64_t r0 = uint32_t(this->chunks[0].to_bitmask());
|
|
uint64_t r1 = this->chunks[1].to_bitmask();
|
|
uint64_t r2 = this->chunks[2].to_bitmask();
|
|
uint64_t r3 = this->chunks[3].to_bitmask();
|
|
return r0 | (r1 << 16) | (r2 << 32) | (r3 << 48);
|
|
}
|
|
|
|
really_inline simd8x64<T> bit_or(const T m) const {
|
|
const simd8<T> mask = simd8<T>::splat(m);
|
|
return this->map( [&](simd8<T> a) { return a | mask; } );
|
|
}
|
|
|
|
really_inline uint64_t eq(const T m) const {
|
|
const simd8<T> mask = simd8<T>::splat(m);
|
|
return this->map( [&](simd8<T> a) { return a == mask; } ).to_bitmask();
|
|
}
|
|
|
|
really_inline uint64_t lteq(const T m) const {
|
|
const simd8<T> mask = simd8<T>::splat(m);
|
|
return this->map( [&](simd8<T> a) { return a <= mask; } ).to_bitmask();
|
|
}
|
|
}; // struct simd8x64<T>
|
|
|
|
} // namespace simd
|
|
|
|
} // namespace westmere
|
|
} // namespace simdjson
|
|
UNTARGET_REGION
|
|
|
|
#endif // SIMDJSON_WESTMERE_SIMD_INPUT_H
|
|
/* end file src/westmere/bitmanipulation.h */
|
|
/* westmere/bitmanipulation.h already included: #include "westmere/bitmanipulation.h" */
|
|
/* westmere/implementation.h already included: #include "westmere/implementation.h" */
|
|
|
|
TARGET_WESTMERE
|
|
namespace simdjson {
|
|
namespace westmere {
|
|
|
|
using namespace simd;
|
|
|
|
struct json_character_block {
|
|
static really_inline json_character_block classify(const simd::simd8x64<uint8_t> in);
|
|
|
|
really_inline uint64_t whitespace() const { return _whitespace; }
|
|
really_inline uint64_t op() const { return _op; }
|
|
really_inline uint64_t scalar() { return ~(op() | whitespace()); }
|
|
|
|
uint64_t _whitespace;
|
|
uint64_t _op;
|
|
};
|
|
|
|
really_inline json_character_block json_character_block::classify(const simd::simd8x64<uint8_t> in) {
|
|
// These lookups rely on the fact that anything < 127 will match the lower 4 bits, which is why
|
|
// we can't use the generic lookup_16.
|
|
auto whitespace_table = simd8<uint8_t>::repeat_16(' ', 100, 100, 100, 17, 100, 113, 2, 100, '\t', '\n', 112, 100, '\r', 100, 100);
|
|
auto op_table = simd8<uint8_t>::repeat_16(',', '}', 0, 0, 0xc0u, 0, 0, 0, 0, 0, 0, 0, 0, 0, ':', '{');
|
|
|
|
// We compute whitespace and op separately. If the code later only use one or the
|
|
// other, given the fact that all functions are aggressively inlined, we can
|
|
// hope that useless computations will be omitted. This is namely case when
|
|
// minifying (we only need whitespace).
|
|
|
|
uint64_t whitespace = in.map([&](simd8<uint8_t> _in) {
|
|
return _in == simd8<uint8_t>(_mm_shuffle_epi8(whitespace_table, _in));
|
|
}).to_bitmask();
|
|
|
|
uint64_t op = in.map([&](simd8<uint8_t> _in) {
|
|
// | 32 handles the fact that { } and [ ] are exactly 32 bytes apart
|
|
return (_in | 32) == simd8<uint8_t>(_mm_shuffle_epi8(op_table, _in-','));
|
|
}).to_bitmask();
|
|
return { whitespace, op };
|
|
}
|
|
|
|
really_inline bool is_ascii(simd8x64<uint8_t> input) {
|
|
simd8<uint8_t> bits = input.reduce([&](simd8<uint8_t> a,simd8<uint8_t> b) { return a|b; });
|
|
return !bits.any_bits_set_anywhere(0b10000000u);
|
|
}
|
|
|
|
really_inline simd8<bool> must_be_continuation(simd8<uint8_t> prev1, simd8<uint8_t> prev2, simd8<uint8_t> prev3) {
|
|
simd8<uint8_t> is_second_byte = prev1.saturating_sub(0b11000000u-1); // Only 11______ will be > 0
|
|
simd8<uint8_t> is_third_byte = prev2.saturating_sub(0b11100000u-1); // Only 111_____ will be > 0
|
|
simd8<uint8_t> is_fourth_byte = prev3.saturating_sub(0b11110000u-1); // Only 1111____ will be > 0
|
|
// Caller requires a bool (all 1's). All values resulting from the subtraction will be <= 64, so signed comparison is fine.
|
|
return simd8<int8_t>(is_second_byte | is_third_byte | is_fourth_byte) > int8_t(0);
|
|
}
|
|
|
|
really_inline simd8<bool> must_be_2_3_continuation(simd8<uint8_t> prev2, simd8<uint8_t> prev3) {
|
|
simd8<uint8_t> is_third_byte = prev2.saturating_sub(0b11100000u-1); // Only 111_____ will be > 0
|
|
simd8<uint8_t> is_fourth_byte = prev3.saturating_sub(0b11110000u-1); // Only 1111____ will be > 0
|
|
// Caller requires a bool (all 1's). All values resulting from the subtraction will be <= 64, so signed comparison is fine.
|
|
return simd8<int8_t>(is_third_byte | is_fourth_byte) > int8_t(0);
|
|
}
|
|
|
|
|
|
/* begin file src/generic/stage1/buf_block_reader.h */
|
|
// Walks through a buffer in block-sized increments, loading the last part with spaces
|
|
template<size_t STEP_SIZE>
|
|
struct buf_block_reader {
|
|
public:
|
|
really_inline buf_block_reader(const uint8_t *_buf, size_t _len);
|
|
really_inline size_t block_index();
|
|
really_inline bool has_full_block() const;
|
|
really_inline const uint8_t *full_block() const;
|
|
/**
|
|
* Get the last block, padded with spaces.
|
|
*
|
|
* There will always be a last block, with at least 1 byte, unless len == 0 (in which case this
|
|
* function fills the buffer with spaces and returns 0. In particular, if len == STEP_SIZE there
|
|
* will be 0 full_blocks and 1 remainder block with STEP_SIZE bytes and no spaces for padding.
|
|
*
|
|
* @return the number of effective characters in the last block.
|
|
*/
|
|
really_inline size_t get_remainder(uint8_t *dst) const;
|
|
really_inline void advance();
|
|
private:
|
|
const uint8_t *buf;
|
|
const size_t len;
|
|
const size_t lenminusstep;
|
|
size_t idx;
|
|
};
|
|
|
|
constexpr const int TITLE_SIZE = 12;
|
|
|
|
// Routines to print masks and text for debugging bitmask operations
|
|
UNUSED static char * format_input_text_64(const uint8_t *text) {
|
|
static char *buf = (char*)malloc(sizeof(simd8x64<uint8_t>) + 1);
|
|
for (size_t i=0; i<sizeof(simd8x64<uint8_t>); i++) {
|
|
buf[i] = int8_t(text[i]) < ' ' ? '_' : int8_t(text[i]);
|
|
}
|
|
buf[sizeof(simd8x64<uint8_t>)] = '\0';
|
|
return buf;
|
|
}
|
|
|
|
// Routines to print masks and text for debugging bitmask operations
|
|
UNUSED static char * format_input_text(const simd8x64<uint8_t> in) {
|
|
static char *buf = (char*)malloc(sizeof(simd8x64<uint8_t>) + 1);
|
|
in.store((uint8_t*)buf);
|
|
for (size_t i=0; i<sizeof(simd8x64<uint8_t>); i++) {
|
|
if (buf[i] < ' ') { buf[i] = '_'; }
|
|
}
|
|
buf[sizeof(simd8x64<uint8_t>)] = '\0';
|
|
return buf;
|
|
}
|
|
|
|
UNUSED static char * format_mask(uint64_t mask) {
|
|
static char *buf = (char*)malloc(64 + 1);
|
|
for (size_t i=0; i<64; i++) {
|
|
buf[i] = (mask & (size_t(1) << i)) ? 'X' : ' ';
|
|
}
|
|
buf[64] = '\0';
|
|
return buf;
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
really_inline buf_block_reader<STEP_SIZE>::buf_block_reader(const uint8_t *_buf, size_t _len) : buf{_buf}, len{_len}, lenminusstep{len < STEP_SIZE ? 0 : len - STEP_SIZE}, idx{0} {}
|
|
|
|
template<size_t STEP_SIZE>
|
|
really_inline size_t buf_block_reader<STEP_SIZE>::block_index() { return idx; }
|
|
|
|
template<size_t STEP_SIZE>
|
|
really_inline bool buf_block_reader<STEP_SIZE>::has_full_block() const {
|
|
return idx < lenminusstep;
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
really_inline const uint8_t *buf_block_reader<STEP_SIZE>::full_block() const {
|
|
return &buf[idx];
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
really_inline size_t buf_block_reader<STEP_SIZE>::get_remainder(uint8_t *dst) const {
|
|
memset(dst, 0x20, STEP_SIZE); // memset STEP_SIZE because it's more efficient to write out 8 or 16 bytes at once.
|
|
memcpy(dst, buf + idx, len - idx);
|
|
return len - idx;
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
really_inline void buf_block_reader<STEP_SIZE>::advance() {
|
|
idx += STEP_SIZE;
|
|
}
|
|
/* end file src/generic/stage1/buf_block_reader.h */
|
|
/* begin file src/generic/stage1/json_string_scanner.h */
|
|
namespace stage1 {
|
|
|
|
struct json_string_block {
|
|
// Escaped characters (characters following an escape() character)
|
|
really_inline uint64_t escaped() const { return _escaped; }
|
|
// Escape characters (backslashes that are not escaped--i.e. in \\, includes only the first \)
|
|
really_inline uint64_t escape() const { return _backslash & ~_escaped; }
|
|
// Real (non-backslashed) quotes
|
|
really_inline uint64_t quote() const { return _quote; }
|
|
// Start quotes of strings
|
|
really_inline uint64_t string_end() const { return _quote & _in_string; }
|
|
// End quotes of strings
|
|
really_inline uint64_t string_start() const { return _quote & ~_in_string; }
|
|
// Only characters inside the string (not including the quotes)
|
|
really_inline uint64_t string_content() const { return _in_string & ~_quote; }
|
|
// Return a mask of whether the given characters are inside a string (only works on non-quotes)
|
|
really_inline uint64_t non_quote_inside_string(uint64_t mask) const { return mask & _in_string; }
|
|
// Return a mask of whether the given characters are inside a string (only works on non-quotes)
|
|
really_inline uint64_t non_quote_outside_string(uint64_t mask) const { return mask & ~_in_string; }
|
|
// Tail of string (everything except the start quote)
|
|
really_inline uint64_t string_tail() const { return _in_string ^ _quote; }
|
|
|
|
// backslash characters
|
|
uint64_t _backslash;
|
|
// escaped characters (backslashed--does not include the hex characters after \u)
|
|
uint64_t _escaped;
|
|
// real quotes (non-backslashed ones)
|
|
uint64_t _quote;
|
|
// string characters (includes start quote but not end quote)
|
|
uint64_t _in_string;
|
|
};
|
|
|
|
// Scans blocks for string characters, storing the state necessary to do so
|
|
class json_string_scanner {
|
|
public:
|
|
really_inline json_string_block next(const simd::simd8x64<uint8_t> in);
|
|
really_inline error_code finish(bool streaming);
|
|
|
|
private:
|
|
// Intended to be defined by the implementation
|
|
really_inline uint64_t find_escaped(uint64_t escape);
|
|
really_inline uint64_t find_escaped_branchless(uint64_t escape);
|
|
|
|
// Whether the last iteration was still inside a string (all 1's = true, all 0's = false).
|
|
uint64_t prev_in_string = 0ULL;
|
|
// Whether the first character of the next iteration is escaped.
|
|
uint64_t prev_escaped = 0ULL;
|
|
};
|
|
|
|
//
|
|
// Finds escaped characters (characters following \).
|
|
//
|
|
// Handles runs of backslashes like \\\" and \\\\" correctly (yielding 0101 and 01010, respectively).
|
|
//
|
|
// Does this by:
|
|
// - Shift the escape mask to get potentially escaped characters (characters after backslashes).
|
|
// - Mask escaped sequences that start on *even* bits with 1010101010 (odd bits are escaped, even bits are not)
|
|
// - Mask escaped sequences that start on *odd* bits with 0101010101 (even bits are escaped, odd bits are not)
|
|
//
|
|
// To distinguish between escaped sequences starting on even/odd bits, it finds the start of all
|
|
// escape sequences, filters out the ones that start on even bits, and adds that to the mask of
|
|
// escape sequences. This causes the addition to clear out the sequences starting on odd bits (since
|
|
// the start bit causes a carry), and leaves even-bit sequences alone.
|
|
//
|
|
// Example:
|
|
//
|
|
// text | \\\ | \\\"\\\" \\\" \\"\\" |
|
|
// escape | xxx | xx xxx xxx xx xx | Removed overflow backslash; will | it into follows_escape
|
|
// odd_starts | x | x x x | escape & ~even_bits & ~follows_escape
|
|
// even_seq | c| cxxx c xx c | c = carry bit -- will be masked out later
|
|
// invert_mask | | cxxx c xx c| even_seq << 1
|
|
// follows_escape | xx | x xx xxx xxx xx xx | Includes overflow bit
|
|
// escaped | x | x x x x x x x x |
|
|
// desired | x | x x x x x x x x |
|
|
// text | \\\ | \\\"\\\" \\\" \\"\\" |
|
|
//
|
|
really_inline uint64_t json_string_scanner::find_escaped_branchless(uint64_t backslash) {
|
|
// If there was overflow, pretend the first character isn't a backslash
|
|
backslash &= ~prev_escaped;
|
|
uint64_t follows_escape = backslash << 1 | prev_escaped;
|
|
|
|
// Get sequences starting on even bits by clearing out the odd series using +
|
|
const uint64_t even_bits = 0x5555555555555555ULL;
|
|
uint64_t odd_sequence_starts = backslash & ~even_bits & ~follows_escape;
|
|
uint64_t sequences_starting_on_even_bits;
|
|
prev_escaped = add_overflow(odd_sequence_starts, backslash, &sequences_starting_on_even_bits);
|
|
uint64_t invert_mask = sequences_starting_on_even_bits << 1; // The mask we want to return is the *escaped* bits, not escapes.
|
|
|
|
// Mask every other backslashed character as an escaped character
|
|
// Flip the mask for sequences that start on even bits, to correct them
|
|
return (even_bits ^ invert_mask) & follows_escape;
|
|
}
|
|
|
|
//
|
|
// Return a mask of all string characters plus end quotes.
|
|
//
|
|
// prev_escaped is overflow saying whether the next character is escaped.
|
|
// prev_in_string is overflow saying whether we're still in a string.
|
|
//
|
|
// Backslash sequences outside of quotes will be detected in stage 2.
|
|
//
|
|
really_inline json_string_block json_string_scanner::next(const simd::simd8x64<uint8_t> in) {
|
|
const uint64_t backslash = in.eq('\\');
|
|
const uint64_t escaped = find_escaped(backslash);
|
|
const uint64_t quote = in.eq('"') & ~escaped;
|
|
|
|
//
|
|
// prefix_xor flips on bits inside the string (and flips off the end quote).
|
|
//
|
|
// Then we xor with prev_in_string: if we were in a string already, its effect is flipped
|
|
// (characters inside strings are outside, and characters outside strings are inside).
|
|
//
|
|
const uint64_t in_string = prefix_xor(quote) ^ prev_in_string;
|
|
|
|
//
|
|
// Check if we're still in a string at the end of the box so the next block will know
|
|
//
|
|
// right shift of a signed value expected to be well-defined and standard
|
|
// compliant as of C++20, John Regher from Utah U. says this is fine code
|
|
//
|
|
prev_in_string = uint64_t(static_cast<int64_t>(in_string) >> 63);
|
|
|
|
// Use ^ to turn the beginning quote off, and the end quote on.
|
|
return {
|
|
backslash,
|
|
escaped,
|
|
quote,
|
|
in_string
|
|
};
|
|
}
|
|
|
|
really_inline error_code json_string_scanner::finish(bool streaming) {
|
|
if (prev_in_string and (not streaming)) {
|
|
return UNCLOSED_STRING;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace stage1
|
|
/* end file src/generic/stage1/json_string_scanner.h */
|
|
/* begin file src/generic/stage1/json_scanner.h */
|
|
namespace stage1 {
|
|
|
|
/**
|
|
* A block of scanned json, with information on operators and scalars.
|
|
*/
|
|
struct json_block {
|
|
public:
|
|
/** The start of structurals */
|
|
really_inline uint64_t structural_start() { return potential_structural_start() & ~_string.string_tail(); }
|
|
/** All JSON whitespace (i.e. not in a string) */
|
|
really_inline uint64_t whitespace() { return non_quote_outside_string(_characters.whitespace()); }
|
|
|
|
// Helpers
|
|
|
|
/** Whether the given characters are inside a string (only works on non-quotes) */
|
|
really_inline uint64_t non_quote_inside_string(uint64_t mask) { return _string.non_quote_inside_string(mask); }
|
|
/** Whether the given characters are outside a string (only works on non-quotes) */
|
|
really_inline uint64_t non_quote_outside_string(uint64_t mask) { return _string.non_quote_outside_string(mask); }
|
|
|
|
// string and escape characters
|
|
json_string_block _string;
|
|
// whitespace, operators, scalars
|
|
json_character_block _characters;
|
|
// whether the previous character was a scalar
|
|
uint64_t _follows_potential_scalar;
|
|
private:
|
|
// Potential structurals (i.e. disregarding strings)
|
|
|
|
/** operators plus scalar starts like 123, true and "abc" */
|
|
really_inline uint64_t potential_structural_start() { return _characters.op() | potential_scalar_start(); }
|
|
/** the start of non-operator runs, like 123, true and "abc" */
|
|
really_inline uint64_t potential_scalar_start() { return _characters.scalar() & ~follows_potential_scalar(); }
|
|
/** whether the given character is immediately after a non-operator like 123, true or " */
|
|
really_inline uint64_t follows_potential_scalar() { return _follows_potential_scalar; }
|
|
};
|
|
|
|
/**
|
|
* Scans JSON for important bits: operators, strings, and scalars.
|
|
*
|
|
* The scanner starts by calculating two distinct things:
|
|
* - string characters (taking \" into account)
|
|
* - operators ([]{},:) and scalars (runs of non-operators like 123, true and "abc")
|
|
*
|
|
* To minimize data dependency (a key component of the scanner's speed), it finds these in parallel:
|
|
* in particular, the operator/scalar bit will find plenty of things that are actually part of
|
|
* strings. When we're done, json_block will fuse the two together by masking out tokens that are
|
|
* part of a string.
|
|
*/
|
|
class json_scanner {
|
|
public:
|
|
json_scanner() {}
|
|
really_inline json_block next(const simd::simd8x64<uint8_t> in);
|
|
really_inline error_code finish(bool streaming);
|
|
|
|
private:
|
|
// Whether the last character of the previous iteration is part of a scalar token
|
|
// (anything except whitespace or an operator).
|
|
uint64_t prev_scalar = 0ULL;
|
|
json_string_scanner string_scanner{};
|
|
};
|
|
|
|
|
|
//
|
|
// Check if the current character immediately follows a matching character.
|
|
//
|
|
// For example, this checks for quotes with backslashes in front of them:
|
|
//
|
|
// const uint64_t backslashed_quote = in.eq('"') & immediately_follows(in.eq('\'), prev_backslash);
|
|
//
|
|
really_inline uint64_t follows(const uint64_t match, uint64_t &overflow) {
|
|
const uint64_t result = match << 1 | overflow;
|
|
overflow = match >> 63;
|
|
return result;
|
|
}
|
|
|
|
//
|
|
// Check if the current character follows a matching character, with possible "filler" between.
|
|
// For example, this checks for empty curly braces, e.g.
|
|
//
|
|
// in.eq('}') & follows(in.eq('['), in.eq(' '), prev_empty_array) // { <whitespace>* }
|
|
//
|
|
really_inline uint64_t follows(const uint64_t match, const uint64_t filler, uint64_t &overflow) {
|
|
uint64_t follows_match = follows(match, overflow);
|
|
uint64_t result;
|
|
overflow |= uint64_t(add_overflow(follows_match, filler, &result));
|
|
return result;
|
|
}
|
|
|
|
really_inline json_block json_scanner::next(const simd::simd8x64<uint8_t> in) {
|
|
json_string_block strings = string_scanner.next(in);
|
|
json_character_block characters = json_character_block::classify(in);
|
|
uint64_t follows_scalar = follows(characters.scalar(), prev_scalar);
|
|
return {
|
|
strings,
|
|
characters,
|
|
follows_scalar
|
|
};
|
|
}
|
|
|
|
really_inline error_code json_scanner::finish(bool streaming) {
|
|
return string_scanner.finish(streaming);
|
|
}
|
|
|
|
} // namespace stage1
|
|
/* end file src/generic/stage1/json_scanner.h */
|
|
|
|
namespace stage1 {
|
|
really_inline uint64_t json_string_scanner::find_escaped(uint64_t backslash) {
|
|
if (!backslash) { uint64_t escaped = prev_escaped; prev_escaped = 0; return escaped; }
|
|
return find_escaped_branchless(backslash);
|
|
}
|
|
}
|
|
|
|
/* begin file src/generic/stage1/json_minifier.h */
|
|
// This file contains the common code every implementation uses in stage1
|
|
// It is intended to be included multiple times and compiled multiple times
|
|
// We assume the file in which it is included already includes
|
|
// "simdjson/stage1.h" (this simplifies amalgation)
|
|
|
|
namespace stage1 {
|
|
|
|
class json_minifier {
|
|
public:
|
|
template<size_t STEP_SIZE>
|
|
static error_code minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) noexcept;
|
|
|
|
private:
|
|
really_inline json_minifier(uint8_t *_dst)
|
|
: dst{_dst}
|
|
{}
|
|
template<size_t STEP_SIZE>
|
|
really_inline void step(const uint8_t *block_buf, buf_block_reader<STEP_SIZE> &reader) noexcept;
|
|
really_inline void next(simd::simd8x64<uint8_t> in, json_block block);
|
|
really_inline error_code finish(uint8_t *dst_start, size_t &dst_len);
|
|
json_scanner scanner{};
|
|
uint8_t *dst;
|
|
};
|
|
|
|
really_inline void json_minifier::next(simd::simd8x64<uint8_t> in, json_block block) {
|
|
uint64_t mask = block.whitespace();
|
|
in.compress(mask, dst);
|
|
dst += 64 - count_ones(mask);
|
|
}
|
|
|
|
really_inline error_code json_minifier::finish(uint8_t *dst_start, size_t &dst_len) {
|
|
*dst = '\0';
|
|
error_code error = scanner.finish(false);
|
|
if (error) { dst_len = 0; return error; }
|
|
dst_len = dst - dst_start;
|
|
return SUCCESS;
|
|
}
|
|
|
|
template<>
|
|
really_inline void json_minifier::step<128>(const uint8_t *block_buf, buf_block_reader<128> &reader) noexcept {
|
|
simd::simd8x64<uint8_t> in_1(block_buf);
|
|
simd::simd8x64<uint8_t> in_2(block_buf+64);
|
|
json_block block_1 = scanner.next(in_1);
|
|
json_block block_2 = scanner.next(in_2);
|
|
this->next(in_1, block_1);
|
|
this->next(in_2, block_2);
|
|
reader.advance();
|
|
}
|
|
|
|
template<>
|
|
really_inline void json_minifier::step<64>(const uint8_t *block_buf, buf_block_reader<64> &reader) noexcept {
|
|
simd::simd8x64<uint8_t> in_1(block_buf);
|
|
json_block block_1 = scanner.next(in_1);
|
|
this->next(block_buf, block_1);
|
|
reader.advance();
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
error_code json_minifier::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) noexcept {
|
|
buf_block_reader<STEP_SIZE> reader(buf, len);
|
|
json_minifier minifier(dst);
|
|
|
|
// Index the first n-1 blocks
|
|
while (reader.has_full_block()) {
|
|
minifier.step<STEP_SIZE>(reader.full_block(), reader);
|
|
}
|
|
|
|
// Index the last (remainder) block, padded with spaces
|
|
uint8_t block[STEP_SIZE];
|
|
if (likely(reader.get_remainder(block)) > 0) {
|
|
minifier.step<STEP_SIZE>(block, reader);
|
|
}
|
|
|
|
return minifier.finish(dst, dst_len);
|
|
}
|
|
|
|
} // namespace stage1
|
|
/* end file src/generic/stage1/json_minifier.h */
|
|
WARN_UNUSED error_code implementation::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept {
|
|
return westmere::stage1::json_minifier::minify<64>(buf, len, dst, dst_len);
|
|
}
|
|
|
|
/* begin file src/generic/stage1/find_next_document_index.h */
|
|
/**
|
|
* This algorithm is used to quickly identify the last structural position that
|
|
* makes up a complete document.
|
|
*
|
|
* It does this by going backwards and finding the last *document boundary* (a
|
|
* place where one value follows another without a comma between them). If the
|
|
* last document (the characters after the boundary) has an equal number of
|
|
* start and end brackets, it is considered complete.
|
|
*
|
|
* Simply put, we iterate over the structural characters, starting from
|
|
* the end. We consider that we found the end of a JSON document when the
|
|
* first element of the pair is NOT one of these characters: '{' '[' ';' ','
|
|
* and when the second element is NOT one of these characters: '}' '}' ';' ','.
|
|
*
|
|
* This simple comparison works most of the time, but it does not cover cases
|
|
* where the batch's structural indexes contain a perfect amount of documents.
|
|
* In such a case, we do not have access to the structural index which follows
|
|
* the last document, therefore, we do not have access to the second element in
|
|
* the pair, and that means we cannot identify the last document. To fix this
|
|
* issue, we keep a count of the open and closed curly/square braces we found
|
|
* while searching for the pair. When we find a pair AND the count of open and
|
|
* closed curly/square braces is the same, we know that we just passed a
|
|
* complete document, therefore the last json buffer location is the end of the
|
|
* batch.
|
|
*/
|
|
really_inline static uint32_t find_next_document_index(dom_parser_implementation &parser) {
|
|
// TODO don't count separately, just figure out depth
|
|
auto arr_cnt = 0;
|
|
auto obj_cnt = 0;
|
|
for (auto i = parser.n_structural_indexes - 1; i > 0; i--) {
|
|
auto idxb = parser.structural_indexes[i];
|
|
switch (parser.buf[idxb]) {
|
|
case ':':
|
|
case ',':
|
|
continue;
|
|
case '}':
|
|
obj_cnt--;
|
|
continue;
|
|
case ']':
|
|
arr_cnt--;
|
|
continue;
|
|
case '{':
|
|
obj_cnt++;
|
|
break;
|
|
case '[':
|
|
arr_cnt++;
|
|
break;
|
|
}
|
|
auto idxa = parser.structural_indexes[i - 1];
|
|
switch (parser.buf[idxa]) {
|
|
case '{':
|
|
case '[':
|
|
case ':':
|
|
case ',':
|
|
continue;
|
|
}
|
|
// Last document is complete, so the next document will appear after!
|
|
if (!arr_cnt && !obj_cnt) {
|
|
return parser.n_structural_indexes;
|
|
}
|
|
// Last document is incomplete; mark the document at i + 1 as the next one
|
|
return i;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Skip the last character if it is partial
|
|
really_inline static size_t trim_partial_utf8(const uint8_t *buf, size_t len) {
|
|
if (unlikely(len < 3)) {
|
|
switch (len) {
|
|
case 2:
|
|
if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left
|
|
if (buf[len-2] >= 0b11100000) { return len-2; } // 3- and 4-byte characters with only 2 bytes left
|
|
return len;
|
|
case 1:
|
|
if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left
|
|
return len;
|
|
case 0:
|
|
return len;
|
|
}
|
|
}
|
|
if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left
|
|
if (buf[len-2] >= 0b11100000) { return len-2; } // 3- and 4-byte characters with only 1 byte left
|
|
if (buf[len-3] >= 0b11110000) { return len-3; } // 4-byte characters with only 3 bytes left
|
|
return len;
|
|
}
|
|
/* end file src/generic/stage1/find_next_document_index.h */
|
|
/* begin file src/generic/stage1/utf8_lookup3_algorithm.h */
|
|
//
|
|
// Detect Unicode errors.
|
|
//
|
|
// UTF-8 is designed to allow multiple bytes and be compatible with ASCII. It's a fairly basic
|
|
// encoding that uses the first few bits on each byte to denote a "byte type", and all other bits
|
|
// are straight up concatenated into the final value. The first byte of a multibyte character is a
|
|
// "leading byte" and starts with N 1's, where N is the total number of bytes (110_____ = 2 byte
|
|
// lead). The remaining bytes of a multibyte character all start with 10. 1-byte characters just
|
|
// start with 0, because that's what ASCII looks like. Here's what each size looks like:
|
|
//
|
|
// - ASCII (7 bits): 0_______
|
|
// - 2 byte character (11 bits): 110_____ 10______
|
|
// - 3 byte character (17 bits): 1110____ 10______ 10______
|
|
// - 4 byte character (23 bits): 11110___ 10______ 10______ 10______
|
|
// - 5+ byte character (illegal): 11111___ <illegal>
|
|
//
|
|
// There are 5 classes of error that can happen in Unicode:
|
|
//
|
|
// - TOO_SHORT: when you have a multibyte character with too few bytes (i.e. missing continuation).
|
|
// We detect this by looking for new characters (lead bytes) inside the range of a multibyte
|
|
// character.
|
|
//
|
|
// e.g. 11000000 01100001 (2-byte character where second byte is ASCII)
|
|
//
|
|
// - TOO_LONG: when there are more bytes in your character than you need (i.e. extra continuation).
|
|
// We detect this by requiring that the next byte after your multibyte character be a new
|
|
// character--so a continuation after your character is wrong.
|
|
//
|
|
// e.g. 11011111 10111111 10111111 (2-byte character followed by *another* continuation byte)
|
|
//
|
|
// - TOO_LARGE: Unicode only goes up to U+10FFFF. These characters are too large.
|
|
//
|
|
// e.g. 11110111 10111111 10111111 10111111 (bigger than 10FFFF).
|
|
//
|
|
// - OVERLONG: multibyte characters with a bunch of leading zeroes, where you could have
|
|
// used fewer bytes to make the same character. Like encoding an ASCII character in 4 bytes is
|
|
// technically possible, but UTF-8 disallows it so that there is only one way to write an "a".
|
|
//
|
|
// e.g. 11000001 10100001 (2-byte encoding of "a", which only requires 1 byte: 01100001)
|
|
//
|
|
// - SURROGATE: Unicode U+D800-U+DFFF is a *surrogate* character, reserved for use in UCS-2 and
|
|
// WTF-8 encodings for characters with > 2 bytes. These are illegal in pure UTF-8.
|
|
//
|
|
// e.g. 11101101 10100000 10000000 (U+D800)
|
|
//
|
|
// - INVALID_5_BYTE: 5-byte, 6-byte, 7-byte and 8-byte characters are unsupported; Unicode does not
|
|
// support values with more than 23 bits (which a 4-byte character supports).
|
|
//
|
|
// e.g. 11111000 10100000 10000000 10000000 10000000 (U+800000)
|
|
//
|
|
// Legal utf-8 byte sequences per http://www.unicode.org/versions/Unicode6.0.0/ch03.pdf - page 94:
|
|
//
|
|
// Code Points 1st 2s 3s 4s
|
|
// U+0000..U+007F 00..7F
|
|
// U+0080..U+07FF C2..DF 80..BF
|
|
// U+0800..U+0FFF E0 A0..BF 80..BF
|
|
// U+1000..U+CFFF E1..EC 80..BF 80..BF
|
|
// U+D000..U+D7FF ED 80..9F 80..BF
|
|
// U+E000..U+FFFF EE..EF 80..BF 80..BF
|
|
// U+10000..U+3FFFF F0 90..BF 80..BF 80..BF
|
|
// U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF
|
|
// U+100000..U+10FFFF F4 80..8F 80..BF 80..BF
|
|
//
|
|
using namespace simd;
|
|
|
|
namespace utf8_validation {
|
|
// For a detailed description of the lookup2 algorithm, see the file HACKING.md under "UTF-8 validation (lookup2)".
|
|
|
|
//
|
|
// Find special case UTF-8 errors where the character is technically readable (has the right length)
|
|
// but the *value* is disallowed.
|
|
//
|
|
// This includes overlong encodings, surrogates and values too large for Unicode.
|
|
//
|
|
// It turns out the bad character ranges can all be detected by looking at the first 12 bits of the
|
|
// UTF-8 encoded character (i.e. all of byte 1, and the high 4 bits of byte 2). This algorithm does a
|
|
// 3 4-bit table lookups, identifying which errors that 4 bits could match, and then &'s them together.
|
|
// If all 3 lookups detect the same error, it's an error.
|
|
//
|
|
really_inline simd8<uint8_t> check_special_cases(const simd8<uint8_t> input, const simd8<uint8_t> prev1) {
|
|
//
|
|
// These are the errors we're going to match for bytes 1-2, by looking at the first three
|
|
// nibbles of the character: <high bits of byte 1>> & <low bits of byte 1> & <high bits of byte 2>
|
|
//
|
|
static const int OVERLONG_2 = 0x01; // 1100000_ 10______ (technically we match 10______ but we could match ________, they both yield errors either way)
|
|
static const int OVERLONG_3 = 0x02; // 11100000 100_____ ________
|
|
static const int OVERLONG_4 = 0x04; // 11110000 1000____ ________ ________
|
|
static const int SURROGATE = 0x08; // 11101101 [101_]____
|
|
static const int TOO_LARGE = 0x10; // 11110100 (1001|101_)____
|
|
static const int TOO_LARGE_2 = 0x20; // 1111(1___|011_|0101) 10______
|
|
|
|
// New with lookup3. We want to catch the case where an non-continuation
|
|
// follows a leading byte
|
|
static const int TOO_SHORT_2_3_4 = 0x40; // (110_|1110|1111) ____ (0___|110_|1111) ____
|
|
// We also want to catch a continuation that is preceded by an ASCII byte
|
|
static const int LONELY_CONTINUATION = 0x80; // 0___ ____ 01__ ____
|
|
|
|
// After processing the rest of byte 1 (the low bits), we're still not done--we have to check
|
|
// byte 2 to be sure which things are errors and which aren't.
|
|
// Since high_bits is byte 5, byte 2 is high_bits.prev<3>
|
|
static const int CARRY = OVERLONG_2 | TOO_LARGE_2;
|
|
const simd8<uint8_t> byte_2_high = input.shr<4>().lookup_16<uint8_t>(
|
|
// ASCII: ________ [0___]____
|
|
CARRY | TOO_SHORT_2_3_4, CARRY | TOO_SHORT_2_3_4,
|
|
CARRY | TOO_SHORT_2_3_4, CARRY | TOO_SHORT_2_3_4,
|
|
// ASCII: ________ [0___]____
|
|
CARRY | TOO_SHORT_2_3_4, CARRY | TOO_SHORT_2_3_4,
|
|
CARRY | TOO_SHORT_2_3_4, CARRY | TOO_SHORT_2_3_4,
|
|
// Continuations: ________ [10__]____
|
|
CARRY | OVERLONG_3 | OVERLONG_4 | LONELY_CONTINUATION, // ________ [1000]____
|
|
CARRY | OVERLONG_3 | TOO_LARGE | LONELY_CONTINUATION, // ________ [1001]____
|
|
CARRY | TOO_LARGE | SURROGATE | LONELY_CONTINUATION, // ________ [1010]____
|
|
CARRY | TOO_LARGE | SURROGATE | LONELY_CONTINUATION, // ________ [1011]____
|
|
// Multibyte Leads: ________ [11__]____
|
|
CARRY | TOO_SHORT_2_3_4, CARRY | TOO_SHORT_2_3_4, // 110_
|
|
CARRY | TOO_SHORT_2_3_4, CARRY | TOO_SHORT_2_3_4
|
|
);
|
|
const simd8<uint8_t> byte_1_high = prev1.shr<4>().lookup_16<uint8_t>(
|
|
// [0___]____ (ASCII)
|
|
LONELY_CONTINUATION, LONELY_CONTINUATION, LONELY_CONTINUATION, LONELY_CONTINUATION,
|
|
LONELY_CONTINUATION, LONELY_CONTINUATION, LONELY_CONTINUATION, LONELY_CONTINUATION,
|
|
// [10__]____ (continuation)
|
|
0, 0, 0, 0,
|
|
// [11__]____ (2+-byte leads)
|
|
OVERLONG_2 | TOO_SHORT_2_3_4, TOO_SHORT_2_3_4, // [110_]____ (2-byte lead)
|
|
OVERLONG_3 | SURROGATE | TOO_SHORT_2_3_4, // [1110]____ (3-byte lead)
|
|
OVERLONG_4 | TOO_LARGE | TOO_LARGE_2 | TOO_SHORT_2_3_4 // [1111]____ (4+-byte lead)
|
|
);
|
|
const simd8<uint8_t> byte_1_low = (prev1 & 0x0F).lookup_16<uint8_t>(
|
|
// ____[00__] ________
|
|
OVERLONG_2 | OVERLONG_3 | OVERLONG_4 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION, // ____[0000] ________
|
|
OVERLONG_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION, // ____[0001] ________
|
|
TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
// ____[01__] ________
|
|
TOO_LARGE | TOO_SHORT_2_3_4 | LONELY_CONTINUATION, // ____[0100] ________
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
// ____[10__] ________
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
// ____[11__] ________
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION,
|
|
TOO_LARGE_2 | SURROGATE | TOO_SHORT_2_3_4 | LONELY_CONTINUATION, // ____[1101] ________
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4| LONELY_CONTINUATION,
|
|
TOO_LARGE_2 | TOO_SHORT_2_3_4 | LONELY_CONTINUATION
|
|
);
|
|
return byte_1_high & byte_1_low & byte_2_high;
|
|
}
|
|
|
|
really_inline simd8<uint8_t> check_multibyte_lengths(simd8<uint8_t> input, simd8<uint8_t> prev_input,
|
|
simd8<uint8_t> prev1) {
|
|
simd8<uint8_t> prev2 = input.prev<2>(prev_input);
|
|
simd8<uint8_t> prev3 = input.prev<3>(prev_input);
|
|
// is_2_3_continuation uses one more instruction than lookup2
|
|
simd8<bool> is_2_3_continuation = (simd8<int8_t>(input).max(simd8<int8_t>(prev1))) < int8_t(-64);
|
|
// must_be_2_3_continuation has two fewer instructions than lookup 2
|
|
return simd8<uint8_t>(must_be_2_3_continuation(prev2, prev3) ^ is_2_3_continuation);
|
|
}
|
|
|
|
|
|
//
|
|
// Return nonzero if there are incomplete multibyte characters at the end of the block:
|
|
// e.g. if there is a 4-byte character, but it's 3 bytes from the end.
|
|
//
|
|
really_inline simd8<uint8_t> is_incomplete(simd8<uint8_t> input) {
|
|
// If the previous input's last 3 bytes match this, they're too short (they ended at EOF):
|
|
// ... 1111____ 111_____ 11______
|
|
static const uint8_t max_array[32] = {
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 0b11110000u-1, 0b11100000u-1, 0b11000000u-1
|
|
};
|
|
const simd8<uint8_t> max_value(&max_array[sizeof(max_array)-sizeof(simd8<uint8_t>)]);
|
|
return input.gt_bits(max_value);
|
|
}
|
|
|
|
struct utf8_checker {
|
|
// If this is nonzero, there has been a UTF-8 error.
|
|
simd8<uint8_t> error;
|
|
// The last input we received
|
|
simd8<uint8_t> prev_input_block;
|
|
// Whether the last input we received was incomplete (used for ASCII fast path)
|
|
simd8<uint8_t> prev_incomplete;
|
|
|
|
//
|
|
// Check whether the current bytes are valid UTF-8.
|
|
//
|
|
really_inline void check_utf8_bytes(const simd8<uint8_t> input, const simd8<uint8_t> prev_input) {
|
|
// Flip prev1...prev3 so we can easily determine if they are 2+, 3+ or 4+ lead bytes
|
|
// (2, 3, 4-byte leads become large positive numbers instead of small negative numbers)
|
|
simd8<uint8_t> prev1 = input.prev<1>(prev_input);
|
|
this->error |= check_special_cases(input, prev1);
|
|
this->error |= check_multibyte_lengths(input, prev_input, prev1);
|
|
}
|
|
|
|
// The only problem that can happen at EOF is that a multibyte character is too short.
|
|
really_inline void check_eof() {
|
|
// If the previous block had incomplete UTF-8 characters at the end, an ASCII block can't
|
|
// possibly finish them.
|
|
this->error |= this->prev_incomplete;
|
|
}
|
|
|
|
really_inline void check_next_input(simd8x64<uint8_t> input) {
|
|
if (likely(is_ascii(input))) {
|
|
// If the previous block had incomplete UTF-8 characters at the end, an ASCII block can't
|
|
// possibly finish them.
|
|
this->error |= this->prev_incomplete;
|
|
} else {
|
|
this->check_utf8_bytes(input.chunks[0], this->prev_input_block);
|
|
for (int i=1; i<simd8x64<uint8_t>::NUM_CHUNKS; i++) {
|
|
this->check_utf8_bytes(input.chunks[i], input.chunks[i-1]);
|
|
}
|
|
this->prev_incomplete = is_incomplete(input.chunks[simd8x64<uint8_t>::NUM_CHUNKS-1]);
|
|
this->prev_input_block = input.chunks[simd8x64<uint8_t>::NUM_CHUNKS-1];
|
|
}
|
|
}
|
|
|
|
really_inline error_code errors() {
|
|
return this->error.any_bits_set_anywhere() ? simdjson::UTF8_ERROR : simdjson::SUCCESS;
|
|
}
|
|
|
|
}; // struct utf8_checker
|
|
}
|
|
|
|
using utf8_validation::utf8_checker;
|
|
/* end file src/generic/stage1/utf8_lookup3_algorithm.h */
|
|
/* begin file src/generic/stage1/json_structural_indexer.h */
|
|
// This file contains the common code every implementation uses in stage1
|
|
// It is intended to be included multiple times and compiled multiple times
|
|
// We assume the file in which it is included already includes
|
|
// "simdjson/stage1.h" (this simplifies amalgation)
|
|
|
|
namespace stage1 {
|
|
|
|
class bit_indexer {
|
|
public:
|
|
uint32_t *tail;
|
|
|
|
really_inline bit_indexer(uint32_t *index_buf) : tail(index_buf) {}
|
|
|
|
// flatten out values in 'bits' assuming that they are are to have values of idx
|
|
// plus their position in the bitvector, and store these indexes at
|
|
// base_ptr[base] incrementing base as we go
|
|
// will potentially store extra values beyond end of valid bits, so base_ptr
|
|
// needs to be large enough to handle this
|
|
really_inline void write(uint32_t idx, uint64_t bits) {
|
|
// In some instances, the next branch is expensive because it is mispredicted.
|
|
// Unfortunately, in other cases,
|
|
// it helps tremendously.
|
|
if (bits == 0)
|
|
return;
|
|
int cnt = static_cast<int>(count_ones(bits));
|
|
|
|
// Do the first 8 all together
|
|
for (int i=0; i<8; i++) {
|
|
this->tail[i] = idx + trailing_zeroes(bits);
|
|
bits = clear_lowest_bit(bits);
|
|
}
|
|
|
|
// Do the next 8 all together (we hope in most cases it won't happen at all
|
|
// and the branch is easily predicted).
|
|
if (unlikely(cnt > 8)) {
|
|
for (int i=8; i<16; i++) {
|
|
this->tail[i] = idx + trailing_zeroes(bits);
|
|
bits = clear_lowest_bit(bits);
|
|
}
|
|
|
|
// Most files don't have 16+ structurals per block, so we take several basically guaranteed
|
|
// branch mispredictions here. 16+ structurals per block means either punctuation ({} [] , :)
|
|
// or the start of a value ("abc" true 123) every four characters.
|
|
if (unlikely(cnt > 16)) {
|
|
int i = 16;
|
|
do {
|
|
this->tail[i] = idx + trailing_zeroes(bits);
|
|
bits = clear_lowest_bit(bits);
|
|
i++;
|
|
} while (i < cnt);
|
|
}
|
|
}
|
|
|
|
this->tail += cnt;
|
|
}
|
|
};
|
|
|
|
class json_structural_indexer {
|
|
public:
|
|
/**
|
|
* Find the important bits of JSON in a 128-byte chunk, and add them to structural_indexes.
|
|
*
|
|
* @param partial Setting the partial parameter to true allows the find_structural_bits to
|
|
* tolerate unclosed strings. The caller should still ensure that the input is valid UTF-8. If
|
|
* you are processing substrings, you may want to call on a function like trimmed_length_safe_utf8.
|
|
*/
|
|
template<size_t STEP_SIZE>
|
|
static error_code index(const uint8_t *buf, size_t len, dom_parser_implementation &parser, bool partial) noexcept;
|
|
|
|
private:
|
|
really_inline json_structural_indexer(uint32_t *structural_indexes);
|
|
template<size_t STEP_SIZE>
|
|
really_inline void step(const uint8_t *block, buf_block_reader<STEP_SIZE> &reader) noexcept;
|
|
really_inline void next(simd::simd8x64<uint8_t> in, json_block block, size_t idx);
|
|
really_inline error_code finish(dom_parser_implementation &parser, size_t idx, size_t len, bool partial);
|
|
|
|
json_scanner scanner{};
|
|
utf8_checker checker{};
|
|
bit_indexer indexer;
|
|
uint64_t prev_structurals = 0;
|
|
uint64_t unescaped_chars_error = 0;
|
|
};
|
|
|
|
really_inline json_structural_indexer::json_structural_indexer(uint32_t *structural_indexes) : indexer{structural_indexes} {}
|
|
|
|
//
|
|
// PERF NOTES:
|
|
// We pipe 2 inputs through these stages:
|
|
// 1. Load JSON into registers. This takes a long time and is highly parallelizable, so we load
|
|
// 2 inputs' worth at once so that by the time step 2 is looking for them input, it's available.
|
|
// 2. Scan the JSON for critical data: strings, scalars and operators. This is the critical path.
|
|
// The output of step 1 depends entirely on this information. These functions don't quite use
|
|
// up enough CPU: the second half of the functions is highly serial, only using 1 execution core
|
|
// at a time. The second input's scans has some dependency on the first ones finishing it, but
|
|
// they can make a lot of progress before they need that information.
|
|
// 3. Step 1 doesn't use enough capacity, so we run some extra stuff while we're waiting for that
|
|
// to finish: utf-8 checks and generating the output from the last iteration.
|
|
//
|
|
// The reason we run 2 inputs at a time, is steps 2 and 3 are *still* not enough to soak up all
|
|
// available capacity with just one input. Running 2 at a time seems to give the CPU a good enough
|
|
// workout.
|
|
//
|
|
template<size_t STEP_SIZE>
|
|
error_code json_structural_indexer::index(const uint8_t *buf, size_t len, dom_parser_implementation &parser, bool partial) noexcept {
|
|
if (unlikely(len > parser.capacity())) { return CAPACITY; }
|
|
if (partial) { len = trim_partial_utf8(buf, len); }
|
|
|
|
buf_block_reader<STEP_SIZE> reader(buf, len);
|
|
json_structural_indexer indexer(parser.structural_indexes.get());
|
|
|
|
// Read all but the last block
|
|
while (reader.has_full_block()) {
|
|
indexer.step<STEP_SIZE>(reader.full_block(), reader);
|
|
}
|
|
|
|
// Take care of the last block (will always be there unless file is empty)
|
|
uint8_t block[STEP_SIZE];
|
|
if (unlikely(reader.get_remainder(block) == 0)) { return EMPTY; }
|
|
indexer.step<STEP_SIZE>(block, reader);
|
|
|
|
return indexer.finish(parser, reader.block_index(), len, partial);
|
|
}
|
|
|
|
template<>
|
|
really_inline void json_structural_indexer::step<128>(const uint8_t *block, buf_block_reader<128> &reader) noexcept {
|
|
simd::simd8x64<uint8_t> in_1(block);
|
|
simd::simd8x64<uint8_t> in_2(block+64);
|
|
json_block block_1 = scanner.next(in_1);
|
|
json_block block_2 = scanner.next(in_2);
|
|
this->next(in_1, block_1, reader.block_index());
|
|
this->next(in_2, block_2, reader.block_index()+64);
|
|
reader.advance();
|
|
}
|
|
|
|
template<>
|
|
really_inline void json_structural_indexer::step<64>(const uint8_t *block, buf_block_reader<64> &reader) noexcept {
|
|
simd::simd8x64<uint8_t> in_1(block);
|
|
json_block block_1 = scanner.next(in_1);
|
|
this->next(in_1, block_1, reader.block_index());
|
|
reader.advance();
|
|
}
|
|
|
|
really_inline void json_structural_indexer::next(simd::simd8x64<uint8_t> in, json_block block, size_t idx) {
|
|
uint64_t unescaped = in.lteq(0x1F);
|
|
checker.check_next_input(in);
|
|
indexer.write(uint32_t(idx-64), prev_structurals); // Output *last* iteration's structurals to the parser
|
|
prev_structurals = block.structural_start();
|
|
unescaped_chars_error |= block.non_quote_inside_string(unescaped);
|
|
}
|
|
|
|
really_inline error_code json_structural_indexer::finish(dom_parser_implementation &parser, size_t idx, size_t len, bool partial) {
|
|
// Write out the final iteration's structurals
|
|
indexer.write(uint32_t(idx-64), prev_structurals);
|
|
|
|
error_code error = scanner.finish(partial);
|
|
if (unlikely(error != SUCCESS)) { return error; }
|
|
|
|
if (unescaped_chars_error) {
|
|
return UNESCAPED_CHARS;
|
|
}
|
|
|
|
parser.n_structural_indexes = uint32_t(indexer.tail - parser.structural_indexes.get());
|
|
/***
|
|
* This is related to https://github.com/simdjson/simdjson/issues/906
|
|
* Basically, we want to make sure that if the parsing continues beyond the last (valid)
|
|
* structural character, it quickly stops.
|
|
* Only three structural characters can be repeated without triggering an error in JSON: [,] and }.
|
|
* We repeat the padding character (at 'len'). We don't know what it is, but if the parsing
|
|
* continues, then it must be [,] or }.
|
|
* Suppose it is ] or }. We backtrack to the first character, what could it be that would
|
|
* not trigger an error? It could be ] or } but no, because you can't start a document that way.
|
|
* It can't be a comma, a colon or any simple value. So the only way we could continue is
|
|
* if the repeated character is [. But if so, the document must start with [. But if the document
|
|
* starts with [, it should end with ]. If we enforce that rule, then we would get
|
|
* ][[ which is invalid.
|
|
**/
|
|
parser.structural_indexes[parser.n_structural_indexes] = uint32_t(len);
|
|
parser.structural_indexes[parser.n_structural_indexes + 1] = uint32_t(len);
|
|
parser.structural_indexes[parser.n_structural_indexes + 2] = 0;
|
|
parser.next_structural_index = 0;
|
|
// a valid JSON file cannot have zero structural indexes - we should have found something
|
|
if (unlikely(parser.n_structural_indexes == 0u)) {
|
|
return EMPTY;
|
|
}
|
|
if (unlikely(parser.structural_indexes[parser.n_structural_indexes - 1] > len)) {
|
|
return UNEXPECTED_ERROR;
|
|
}
|
|
if (partial) {
|
|
auto new_structural_indexes = find_next_document_index(parser);
|
|
if (new_structural_indexes == 0 && parser.n_structural_indexes > 0) {
|
|
return CAPACITY; // If the buffer is partial but the document is incomplete, it's too big to parse.
|
|
}
|
|
parser.n_structural_indexes = new_structural_indexes;
|
|
}
|
|
return checker.errors();
|
|
}
|
|
|
|
} // namespace stage1
|
|
/* end file src/generic/stage1/json_structural_indexer.h */
|
|
WARN_UNUSED error_code dom_parser_implementation::stage1(const uint8_t *_buf, size_t _len, bool streaming) noexcept {
|
|
this->buf = _buf;
|
|
this->len = _len;
|
|
return westmere::stage1::json_structural_indexer::index<64>(_buf, _len, *this, streaming);
|
|
}
|
|
/* begin file src/generic/stage1/utf8_validator.h */
|
|
namespace stage1 {
|
|
/**
|
|
* Validates that the string is actual UTF-8.
|
|
*/
|
|
template<class checker>
|
|
bool generic_validate_utf8(const uint8_t * input, size_t length) {
|
|
checker c{};
|
|
buf_block_reader<64> reader(input, length);
|
|
while (reader.has_full_block()) {
|
|
simd::simd8x64<uint8_t> in(reader.full_block());
|
|
c.check_next_input(in);
|
|
reader.advance();
|
|
}
|
|
uint8_t block[64]{};
|
|
reader.get_remainder(block);
|
|
simd::simd8x64<uint8_t> in(block);
|
|
c.check_next_input(in);
|
|
reader.advance();
|
|
return c.errors() == error_code::SUCCESS;
|
|
}
|
|
|
|
bool generic_validate_utf8(const char * input, size_t length) {
|
|
return generic_validate_utf8<utf8_checker>((const uint8_t *)input,length);
|
|
}
|
|
|
|
} // namespace stage1
|
|
/* end file src/generic/stage1/utf8_validator.h */
|
|
WARN_UNUSED bool implementation::validate_utf8(const char *buf, size_t len) const noexcept {
|
|
return simdjson::westmere::stage1::generic_validate_utf8(buf,len);
|
|
}
|
|
} // namespace westmere
|
|
} // namespace simdjson
|
|
UNTARGET_REGION
|
|
|
|
//
|
|
// Stage 2
|
|
//
|
|
/* begin file src/westmere/stringparsing.h */
|
|
#ifndef SIMDJSON_WESTMERE_STRINGPARSING_H
|
|
#define SIMDJSON_WESTMERE_STRINGPARSING_H
|
|
|
|
/* jsoncharutils.h already included: #include "jsoncharutils.h" */
|
|
/* westmere/simd.h already included: #include "westmere/simd.h" */
|
|
/* westmere/intrinsics.h already included: #include "westmere/intrinsics.h" */
|
|
/* westmere/bitmanipulation.h already included: #include "westmere/bitmanipulation.h" */
|
|
|
|
TARGET_WESTMERE
|
|
namespace simdjson {
|
|
namespace westmere {
|
|
|
|
using namespace simd;
|
|
|
|
// Holds backslashes and quotes locations.
|
|
struct backslash_and_quote {
|
|
public:
|
|
static constexpr uint32_t BYTES_PROCESSED = 32;
|
|
really_inline static backslash_and_quote copy_and_find(const uint8_t *src, uint8_t *dst);
|
|
|
|
really_inline bool has_quote_first() { return ((bs_bits - 1) & quote_bits) != 0; }
|
|
really_inline bool has_backslash() { return bs_bits != 0; }
|
|
really_inline int quote_index() { return trailing_zeroes(quote_bits); }
|
|
really_inline int backslash_index() { return trailing_zeroes(bs_bits); }
|
|
|
|
uint32_t bs_bits;
|
|
uint32_t quote_bits;
|
|
}; // struct backslash_and_quote
|
|
|
|
really_inline backslash_and_quote backslash_and_quote::copy_and_find(const uint8_t *src, uint8_t *dst) {
|
|
// this can read up to 31 bytes beyond the buffer size, but we require
|
|
// SIMDJSON_PADDING of padding
|
|
static_assert(SIMDJSON_PADDING >= (BYTES_PROCESSED - 1), "backslash and quote finder must process fewer than SIMDJSON_PADDING bytes");
|
|
simd8<uint8_t> v0(src);
|
|
simd8<uint8_t> v1(src + 16);
|
|
v0.store(dst);
|
|
v1.store(dst + 16);
|
|
uint64_t bs_and_quote = simd8x64<bool>(v0 == '\\', v1 == '\\', v0 == '"', v1 == '"').to_bitmask();
|
|
return {
|
|
uint32_t(bs_and_quote), // bs_bits
|
|
uint32_t(bs_and_quote >> 32) // quote_bits
|
|
};
|
|
}
|
|
|
|
/* begin file src/generic/stage2/stringparsing.h */
|
|
// This file contains the common code every implementation uses
|
|
// It is intended to be included multiple times and compiled multiple times
|
|
// We assume the file in which it is include already includes
|
|
// "stringparsing.h" (this simplifies amalgation)
|
|
|
|
namespace stage2 {
|
|
namespace stringparsing {
|
|
|
|
// begin copypasta
|
|
// These chars yield themselves: " \ /
|
|
// b -> backspace, f -> formfeed, n -> newline, r -> cr, t -> horizontal tab
|
|
// u not handled in this table as it's complex
|
|
static const uint8_t escape_map[256] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x0.
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0x22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x2f,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x4.
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x5c, 0, 0, 0, // 0x5.
|
|
0, 0, 0x08, 0, 0, 0, 0x0c, 0, 0, 0, 0, 0, 0, 0, 0x0a, 0, // 0x6.
|
|
0, 0, 0x0d, 0, 0x09, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x7.
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
};
|
|
|
|
// handle a unicode codepoint
|
|
// write appropriate values into dest
|
|
// src will advance 6 bytes or 12 bytes
|
|
// dest will advance a variable amount (return via pointer)
|
|
// return true if the unicode codepoint was valid
|
|
// We work in little-endian then swap at write time
|
|
WARN_UNUSED
|
|
really_inline bool handle_unicode_codepoint(const uint8_t **src_ptr,
|
|
uint8_t **dst_ptr) {
|
|
// hex_to_u32_nocheck fills high 16 bits of the return value with 1s if the
|
|
// conversion isn't valid; we defer the check for this to inside the
|
|
// multilingual plane check
|
|
uint32_t code_point = hex_to_u32_nocheck(*src_ptr + 2);
|
|
*src_ptr += 6;
|
|
// check for low surrogate for characters outside the Basic
|
|
// Multilingual Plane.
|
|
if (code_point >= 0xd800 && code_point < 0xdc00) {
|
|
if (((*src_ptr)[0] != '\\') || (*src_ptr)[1] != 'u') {
|
|
return false;
|
|
}
|
|
uint32_t code_point_2 = hex_to_u32_nocheck(*src_ptr + 2);
|
|
|
|
// if the first code point is invalid we will get here, as we will go past
|
|
// the check for being outside the Basic Multilingual plane. If we don't
|
|
// find a \u immediately afterwards we fail out anyhow, but if we do,
|
|
// this check catches both the case of the first code point being invalid
|
|
// or the second code point being invalid.
|
|
if ((code_point | code_point_2) >> 16) {
|
|
return false;
|
|
}
|
|
|
|
code_point =
|
|
(((code_point - 0xd800) << 10) | (code_point_2 - 0xdc00)) + 0x10000;
|
|
*src_ptr += 6;
|
|
}
|
|
size_t offset = codepoint_to_utf8(code_point, *dst_ptr);
|
|
*dst_ptr += offset;
|
|
return offset > 0;
|
|
}
|
|
|
|
WARN_UNUSED really_inline uint8_t *parse_string(const uint8_t *src, uint8_t *dst) {
|
|
src++;
|
|
while (1) {
|
|
// Copy the next n bytes, and find the backslash and quote in them.
|
|
auto bs_quote = backslash_and_quote::copy_and_find(src, dst);
|
|
// If the next thing is the end quote, copy and return
|
|
if (bs_quote.has_quote_first()) {
|
|
// we encountered quotes first. Move dst to point to quotes and exit
|
|
return dst + bs_quote.quote_index();
|
|
}
|
|
if (bs_quote.has_backslash()) {
|
|
/* find out where the backspace is */
|
|
auto bs_dist = bs_quote.backslash_index();
|
|
uint8_t escape_char = src[bs_dist + 1];
|
|
/* we encountered backslash first. Handle backslash */
|
|
if (escape_char == 'u') {
|
|
/* move src/dst up to the start; they will be further adjusted
|
|
within the unicode codepoint handling code. */
|
|
src += bs_dist;
|
|
dst += bs_dist;
|
|
if (!handle_unicode_codepoint(&src, &dst)) {
|
|
return nullptr;
|
|
}
|
|
} else {
|
|
/* simple 1:1 conversion. Will eat bs_dist+2 characters in input and
|
|
* write bs_dist+1 characters to output
|
|
* note this may reach beyond the part of the buffer we've actually
|
|
* seen. I think this is ok */
|
|
uint8_t escape_result = escape_map[escape_char];
|
|
if (escape_result == 0u) {
|
|
return nullptr; /* bogus escape value is an error */
|
|
}
|
|
dst[bs_dist] = escape_result;
|
|
src += bs_dist + 2;
|
|
dst += bs_dist + 1;
|
|
}
|
|
} else {
|
|
/* they are the same. Since they can't co-occur, it means we
|
|
* encountered neither. */
|
|
src += backslash_and_quote::BYTES_PROCESSED;
|
|
dst += backslash_and_quote::BYTES_PROCESSED;
|
|
}
|
|
}
|
|
/* can't be reached */
|
|
return nullptr;
|
|
}
|
|
|
|
} // namespace stringparsing
|
|
} // namespace stage2
|
|
/* end file src/generic/stage2/stringparsing.h */
|
|
|
|
} // namespace westmere
|
|
} // namespace simdjson
|
|
UNTARGET_REGION
|
|
|
|
#endif // SIMDJSON_WESTMERE_STRINGPARSING_H
|
|
/* end file src/generic/stage2/stringparsing.h */
|
|
/* begin file src/westmere/numberparsing.h */
|
|
#ifndef SIMDJSON_WESTMERE_NUMBERPARSING_H
|
|
#define SIMDJSON_WESTMERE_NUMBERPARSING_H
|
|
|
|
/* jsoncharutils.h already included: #include "jsoncharutils.h" */
|
|
/* westmere/intrinsics.h already included: #include "westmere/intrinsics.h" */
|
|
/* westmere/bitmanipulation.h already included: #include "westmere/bitmanipulation.h" */
|
|
#include <cmath>
|
|
#include <limits>
|
|
|
|
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
void found_invalid_number(const uint8_t *buf);
|
|
void found_integer(int64_t result, const uint8_t *buf);
|
|
void found_unsigned_integer(uint64_t result, const uint8_t *buf);
|
|
void found_float(double result, const uint8_t *buf);
|
|
#endif
|
|
|
|
|
|
TARGET_WESTMERE
|
|
namespace simdjson {
|
|
namespace westmere {
|
|
static inline uint32_t parse_eight_digits_unrolled(const char *chars) {
|
|
// this actually computes *16* values so we are being wasteful.
|
|
const __m128i ascii0 = _mm_set1_epi8('0');
|
|
const __m128i mul_1_10 =
|
|
_mm_setr_epi8(10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1);
|
|
const __m128i mul_1_100 = _mm_setr_epi16(100, 1, 100, 1, 100, 1, 100, 1);
|
|
const __m128i mul_1_10000 =
|
|
_mm_setr_epi16(10000, 1, 10000, 1, 10000, 1, 10000, 1);
|
|
const __m128i input = _mm_sub_epi8(
|
|
_mm_loadu_si128(reinterpret_cast<const __m128i *>(chars)), ascii0);
|
|
const __m128i t1 = _mm_maddubs_epi16(input, mul_1_10);
|
|
const __m128i t2 = _mm_madd_epi16(t1, mul_1_100);
|
|
const __m128i t3 = _mm_packus_epi32(t2, t2);
|
|
const __m128i t4 = _mm_madd_epi16(t3, mul_1_10000);
|
|
return _mm_cvtsi128_si32(
|
|
t4); // only captures the sum of the first 8 digits, drop the rest
|
|
}
|
|
|
|
#define SWAR_NUMBER_PARSING
|
|
|
|
/* begin file src/generic/stage2/numberparsing.h */
|
|
namespace stage2 {
|
|
namespace numberparsing {
|
|
|
|
// Attempts to compute i * 10^(power) exactly; and if "negative" is
|
|
// true, negate the result.
|
|
// This function will only work in some cases, when it does not work, success is
|
|
// set to false. This should work *most of the time* (like 99% of the time).
|
|
// We assume that power is in the [FASTFLOAT_SMALLEST_POWER,
|
|
// FASTFLOAT_LARGEST_POWER] interval: the caller is responsible for this check.
|
|
really_inline double compute_float_64(int64_t power, uint64_t i, bool negative,
|
|
bool *success) {
|
|
// we start with a fast path
|
|
// It was described in
|
|
// Clinger WD. How to read floating point numbers accurately.
|
|
// ACM SIGPLAN Notices. 1990
|
|
if (-22 <= power && power <= 22 && i <= 9007199254740991) {
|
|
// convert the integer into a double. This is lossless since
|
|
// 0 <= i <= 2^53 - 1.
|
|
double d = double(i);
|
|
//
|
|
// The general idea is as follows.
|
|
// If 0 <= s < 2^53 and if 10^0 <= p <= 10^22 then
|
|
// 1) Both s and p can be represented exactly as 64-bit floating-point
|
|
// values
|
|
// (binary64).
|
|
// 2) Because s and p can be represented exactly as floating-point values,
|
|
// then s * p
|
|
// and s / p will produce correctly rounded values.
|
|
//
|
|
if (power < 0) {
|
|
d = d / power_of_ten[-power];
|
|
} else {
|
|
d = d * power_of_ten[power];
|
|
}
|
|
if (negative) {
|
|
d = -d;
|
|
}
|
|
*success = true;
|
|
return d;
|
|
}
|
|
// When 22 < power && power < 22 + 16, we could
|
|
// hope for another, secondary fast path. It wa
|
|
// described by David M. Gay in "Correctly rounded
|
|
// binary-decimal and decimal-binary conversions." (1990)
|
|
// If you need to compute i * 10^(22 + x) for x < 16,
|
|
// first compute i * 10^x, if you know that result is exact
|
|
// (e.g., when i * 10^x < 2^53),
|
|
// then you can still proceed and do (i * 10^x) * 10^22.
|
|
// Is this worth your time?
|
|
// You need 22 < power *and* power < 22 + 16 *and* (i * 10^(x-22) < 2^53)
|
|
// for this second fast path to work.
|
|
// If you you have 22 < power *and* power < 22 + 16, and then you
|
|
// optimistically compute "i * 10^(x-22)", there is still a chance that you
|
|
// have wasted your time if i * 10^(x-22) >= 2^53. It makes the use cases of
|
|
// this optimization maybe less common than we would like. Source:
|
|
// http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/
|
|
// also used in RapidJSON: https://rapidjson.org/strtod_8h_source.html
|
|
|
|
// The fast path has now failed, so we are failing back on the slower path.
|
|
|
|
// In the slow path, we need to adjust i so that it is > 1<<63 which is always
|
|
// possible, except if i == 0, so we handle i == 0 separately.
|
|
if(i == 0) {
|
|
return 0.0;
|
|
}
|
|
|
|
// We are going to need to do some 64-bit arithmetic to get a more precise product.
|
|
// We use a table lookup approach.
|
|
components c =
|
|
power_of_ten_components[power - FASTFLOAT_SMALLEST_POWER];
|
|
// safe because
|
|
// power >= FASTFLOAT_SMALLEST_POWER
|
|
// and power <= FASTFLOAT_LARGEST_POWER
|
|
// we recover the mantissa of the power, it has a leading 1. It is always
|
|
// rounded down.
|
|
uint64_t factor_mantissa = c.mantissa;
|
|
|
|
// We want the most significant bit of i to be 1. Shift if needed.
|
|
int lz = leading_zeroes(i);
|
|
i <<= lz;
|
|
// We want the most significant 64 bits of the product. We know
|
|
// this will be non-zero because the most significant bit of i is
|
|
// 1.
|
|
value128 product = full_multiplication(i, factor_mantissa);
|
|
uint64_t lower = product.low;
|
|
uint64_t upper = product.high;
|
|
|
|
// We know that upper has at most one leading zero because
|
|
// both i and factor_mantissa have a leading one. This means
|
|
// that the result is at least as large as ((1<<63)*(1<<63))/(1<<64).
|
|
|
|
// As long as the first 9 bits of "upper" are not "1", then we
|
|
// know that we have an exact computed value for the leading
|
|
// 55 bits because any imprecision would play out as a +1, in
|
|
// the worst case.
|
|
if (unlikely((upper & 0x1FF) == 0x1FF) && (lower + i < lower)) {
|
|
uint64_t factor_mantissa_low =
|
|
mantissa_128[power - FASTFLOAT_SMALLEST_POWER];
|
|
// next, we compute the 64-bit x 128-bit multiplication, getting a 192-bit
|
|
// result (three 64-bit values)
|
|
product = full_multiplication(i, factor_mantissa_low);
|
|
uint64_t product_low = product.low;
|
|
uint64_t product_middle2 = product.high;
|
|
uint64_t product_middle1 = lower;
|
|
uint64_t product_high = upper;
|
|
uint64_t product_middle = product_middle1 + product_middle2;
|
|
if (product_middle < product_middle1) {
|
|
product_high++; // overflow carry
|
|
}
|
|
// We want to check whether mantissa *i + i would affect our result.
|
|
// This does happen, e.g. with 7.3177701707893310e+15.
|
|
if (((product_middle + 1 == 0) && ((product_high & 0x1FF) == 0x1FF) &&
|
|
(product_low + i < product_low))) { // let us be prudent and bail out.
|
|
*success = false;
|
|
return 0;
|
|
}
|
|
upper = product_high;
|
|
lower = product_middle;
|
|
}
|
|
// The final mantissa should be 53 bits with a leading 1.
|
|
// We shift it so that it occupies 54 bits with a leading 1.
|
|
///////
|
|
uint64_t upperbit = upper >> 63;
|
|
uint64_t mantissa = upper >> (upperbit + 9);
|
|
lz += int(1 ^ upperbit);
|
|
|
|
// Here we have mantissa < (1<<54).
|
|
|
|
// We have to round to even. The "to even" part
|
|
// is only a problem when we are right in between two floats
|
|
// which we guard against.
|
|
// If we have lots of trailing zeros, we may fall right between two
|
|
// floating-point values.
|
|
if (unlikely((lower == 0) && ((upper & 0x1FF) == 0) &&
|
|
((mantissa & 3) == 1))) {
|
|
// if mantissa & 1 == 1 we might need to round up.
|
|
//
|
|
// Scenarios:
|
|
// 1. We are not in the middle. Then we should round up.
|
|
//
|
|
// 2. We are right in the middle. Whether we round up depends
|
|
// on the last significant bit: if it is "one" then we round
|
|
// up (round to even) otherwise, we do not.
|
|
//
|
|
// So if the last significant bit is 1, we can safely round up.
|
|
// Hence we only need to bail out if (mantissa & 3) == 1.
|
|
// Otherwise we may need more accuracy or analysis to determine whether
|
|
// we are exactly between two floating-point numbers.
|
|
// It can be triggered with 1e23.
|
|
// Note: because the factor_mantissa and factor_mantissa_low are
|
|
// almost always rounded down (except for small positive powers),
|
|
// almost always should round up.
|
|
*success = false;
|
|
return 0;
|
|
}
|
|
|
|
mantissa += mantissa & 1;
|
|
mantissa >>= 1;
|
|
|
|
// Here we have mantissa < (1<<53), unless there was an overflow
|
|
if (mantissa >= (1ULL << 53)) {
|
|
//////////
|
|
// This will happen when parsing values such as 7.2057594037927933e+16
|
|
////////
|
|
mantissa = (1ULL << 52);
|
|
lz--; // undo previous addition
|
|
}
|
|
mantissa &= ~(1ULL << 52);
|
|
uint64_t real_exponent = c.exp - lz;
|
|
// we have to check that real_exponent is in range, otherwise we bail out
|
|
if (unlikely((real_exponent < 1) || (real_exponent > 2046))) {
|
|
*success = false;
|
|
return 0;
|
|
}
|
|
mantissa |= real_exponent << 52;
|
|
mantissa |= (((uint64_t)negative) << 63);
|
|
double d;
|
|
memcpy(&d, &mantissa, sizeof(d));
|
|
*success = true;
|
|
return d;
|
|
}
|
|
|
|
static bool parse_float_strtod(const char *ptr, double *outDouble) {
|
|
char *endptr;
|
|
*outDouble = strtod(ptr, &endptr);
|
|
// Some libraries will set errno = ERANGE when the value is subnormal,
|
|
// yet we may want to be able to parse subnormal values.
|
|
// However, we do not want to tolerate NAN or infinite values.
|
|
//
|
|
// Values like infinity or NaN are not allowed in the JSON specification.
|
|
// If you consume a large value and you map it to "infinity", you will no
|
|
// longer be able to serialize back a standard-compliant JSON. And there is
|
|
// no realistic application where you might need values so large than they
|
|
// can't fit in binary64. The maximal value is about 1.7976931348623157 x
|
|
// 10^308 It is an unimaginable large number. There will never be any piece of
|
|
// engineering involving as many as 10^308 parts. It is estimated that there
|
|
// are about 10^80 atoms in the universe. The estimate for the total number
|
|
// of electrons is similar. Using a double-precision floating-point value, we
|
|
// can represent easily the number of atoms in the universe. We could also
|
|
// represent the number of ways you can pick any three individual atoms at
|
|
// random in the universe. If you ever encounter a number much larger than
|
|
// 10^308, you know that you have a bug. RapidJSON will reject a document with
|
|
// a float that does not fit in binary64. JSON for Modern C++ (nlohmann/json)
|
|
// will flat out throw an exception.
|
|
//
|
|
if ((endptr == ptr) || (!std::isfinite(*outDouble))) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
really_inline bool is_integer(char c) {
|
|
return (c >= '0' && c <= '9');
|
|
// this gets compiled to (uint8_t)(c - '0') <= 9 on all decent compilers
|
|
}
|
|
|
|
|
|
// check quickly whether the next 8 chars are made of digits
|
|
// at a glance, it looks better than Mula's
|
|
// http://0x80.pl/articles/swar-digits-validate.html
|
|
really_inline bool is_made_of_eight_digits_fast(const char *chars) {
|
|
uint64_t val;
|
|
// this can read up to 7 bytes beyond the buffer size, but we require
|
|
// SIMDJSON_PADDING of padding
|
|
static_assert(7 <= SIMDJSON_PADDING, "SIMDJSON_PADDING must be bigger than 7");
|
|
memcpy(&val, chars, 8);
|
|
// a branchy method might be faster:
|
|
// return (( val & 0xF0F0F0F0F0F0F0F0 ) == 0x3030303030303030)
|
|
// && (( (val + 0x0606060606060606) & 0xF0F0F0F0F0F0F0F0 ) ==
|
|
// 0x3030303030303030);
|
|
return (((val & 0xF0F0F0F0F0F0F0F0) |
|
|
(((val + 0x0606060606060606) & 0xF0F0F0F0F0F0F0F0) >> 4)) ==
|
|
0x3333333333333333);
|
|
}
|
|
|
|
// called by parse_number when we know that the output is an integer,
|
|
// but where there might be some integer overflow.
|
|
// we want to catch overflows!
|
|
// Do not call this function directly as it skips some of the checks from
|
|
// parse_number
|
|
//
|
|
// This function will almost never be called!!!
|
|
//
|
|
template<typename W>
|
|
never_inline bool parse_large_integer(const uint8_t *const src,
|
|
W writer,
|
|
bool found_minus) {
|
|
const char *p = reinterpret_cast<const char *>(src);
|
|
|
|
bool negative = false;
|
|
if (found_minus) {
|
|
++p;
|
|
negative = true;
|
|
}
|
|
uint64_t i;
|
|
if (*p == '0') { // 0 cannot be followed by an integer
|
|
++p;
|
|
i = 0;
|
|
} else {
|
|
unsigned char digit = static_cast<unsigned char>(*p - '0');
|
|
i = digit;
|
|
p++;
|
|
// the is_made_of_eight_digits_fast routine is unlikely to help here because
|
|
// we rarely see large integer parts like 123456789
|
|
while (is_integer(*p)) {
|
|
digit = static_cast<unsigned char>(*p - '0');
|
|
if (mul_overflow(i, 10, &i)) {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false; // overflow
|
|
}
|
|
if (add_overflow(i, digit, &i)) {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false; // overflow
|
|
}
|
|
++p;
|
|
}
|
|
}
|
|
if (negative) {
|
|
if (i > 0x8000000000000000) {
|
|
// overflows!
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false; // overflow
|
|
} else if (i == 0x8000000000000000) {
|
|
// In two's complement, we cannot represent 0x8000000000000000
|
|
// as a positive signed integer, but the negative version is
|
|
// possible.
|
|
constexpr int64_t signed_answer = INT64_MIN;
|
|
writer.append_s64(signed_answer);
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_integer(signed_answer, src);
|
|
#endif
|
|
} else {
|
|
// we can negate safely
|
|
int64_t signed_answer = -static_cast<int64_t>(i);
|
|
writer.append_s64(signed_answer);
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_integer(signed_answer, src);
|
|
#endif
|
|
}
|
|
} else {
|
|
// we have a positive integer, the contract is that
|
|
// we try to represent it as a signed integer and only
|
|
// fallback on unsigned integers if absolutely necessary.
|
|
if (i < 0x8000000000000000) {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_integer(i, src);
|
|
#endif
|
|
writer.append_s64(i);
|
|
} else {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_unsigned_integer(i, src);
|
|
#endif
|
|
writer.append_u64(i);
|
|
}
|
|
}
|
|
return is_structural_or_whitespace(*p);
|
|
}
|
|
|
|
template<typename W>
|
|
bool slow_float_parsing(UNUSED const char * src, W writer) {
|
|
double d;
|
|
if (parse_float_strtod(src, &d)) {
|
|
writer.append_double(d);
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_float(d, (const uint8_t *)src);
|
|
#endif
|
|
return true;
|
|
}
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number((const uint8_t *)src);
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
// parse the number at src
|
|
// define JSON_TEST_NUMBERS for unit testing
|
|
//
|
|
// It is assumed that the number is followed by a structural ({,},],[) character
|
|
// or a white space character. If that is not the case (e.g., when the JSON
|
|
// document is made of a single number), then it is necessary to copy the
|
|
// content and append a space before calling this function.
|
|
//
|
|
// Our objective is accurate parsing (ULP of 0) at high speed.
|
|
template<typename W>
|
|
really_inline bool parse_number(UNUSED const uint8_t *const src,
|
|
UNUSED bool found_minus,
|
|
W &writer) {
|
|
#ifdef SIMDJSON_SKIPNUMBERPARSING // for performance analysis, it is sometimes
|
|
// useful to skip parsing
|
|
writer.append_s64(0); // always write zero
|
|
return true; // always succeeds
|
|
#else
|
|
const char *p = reinterpret_cast<const char *>(src);
|
|
bool negative = false;
|
|
if (found_minus) {
|
|
++p;
|
|
negative = true;
|
|
if (!is_integer(*p)) { // a negative sign must be followed by an integer
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
}
|
|
const char *const start_digits = p;
|
|
|
|
uint64_t i; // an unsigned int avoids signed overflows (which are bad)
|
|
if (*p == '0') { // 0 cannot be followed by an integer
|
|
++p;
|
|
if (is_integer(*p)) {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
i = 0;
|
|
} else {
|
|
if (!(is_integer(*p))) { // must start with an integer
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
unsigned char digit = static_cast<unsigned char>(*p - '0');
|
|
i = digit;
|
|
p++;
|
|
// the is_made_of_eight_digits_fast routine is unlikely to help here because
|
|
// we rarely see large integer parts like 123456789
|
|
while (is_integer(*p)) {
|
|
digit = static_cast<unsigned char>(*p - '0');
|
|
// a multiplication by 10 is cheaper than an arbitrary integer
|
|
// multiplication
|
|
i = 10 * i + digit; // might overflow, we will handle the overflow later
|
|
++p;
|
|
}
|
|
}
|
|
int64_t exponent = 0;
|
|
bool is_float = false;
|
|
if ('.' == *p) {
|
|
is_float = true; // At this point we know that we have a float
|
|
// we continue with the fiction that we have an integer. If the
|
|
// floating point number is representable as x * 10^z for some integer
|
|
// z that fits in 53 bits, then we will be able to convert back the
|
|
// the integer into a float in a lossless manner.
|
|
++p;
|
|
const char *const first_after_period = p;
|
|
if (is_integer(*p)) {
|
|
unsigned char digit = static_cast<unsigned char>(*p - '0');
|
|
++p;
|
|
i = i * 10 + digit; // might overflow + multiplication by 10 is likely
|
|
// cheaper than arbitrary mult.
|
|
// we will handle the overflow later
|
|
} else {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
#ifdef SWAR_NUMBER_PARSING
|
|
// this helps if we have lots of decimals!
|
|
// this turns out to be frequent enough.
|
|
if (is_made_of_eight_digits_fast(p)) {
|
|
i = i * 100000000 + parse_eight_digits_unrolled(p);
|
|
p += 8;
|
|
}
|
|
#endif
|
|
while (is_integer(*p)) {
|
|
unsigned char digit = static_cast<unsigned char>(*p - '0');
|
|
++p;
|
|
i = i * 10 + digit; // in rare cases, this will overflow, but that's ok
|
|
// because we have parse_highprecision_float later.
|
|
}
|
|
exponent = first_after_period - p;
|
|
}
|
|
int digit_count =
|
|
int(p - start_digits) - 1; // used later to guard against overflows
|
|
int64_t exp_number = 0; // exponential part
|
|
if (('e' == *p) || ('E' == *p)) {
|
|
is_float = true;
|
|
++p;
|
|
bool neg_exp = false;
|
|
if ('-' == *p) {
|
|
neg_exp = true;
|
|
++p;
|
|
} else if ('+' == *p) {
|
|
++p;
|
|
}
|
|
if (!is_integer(*p)) {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
unsigned char digit = static_cast<unsigned char>(*p - '0');
|
|
exp_number = digit;
|
|
p++;
|
|
if (is_integer(*p)) {
|
|
digit = static_cast<unsigned char>(*p - '0');
|
|
exp_number = 10 * exp_number + digit;
|
|
++p;
|
|
}
|
|
if (is_integer(*p)) {
|
|
digit = static_cast<unsigned char>(*p - '0');
|
|
exp_number = 10 * exp_number + digit;
|
|
++p;
|
|
}
|
|
while (is_integer(*p)) {
|
|
if (exp_number > 0x100000000) { // we need to check for overflows
|
|
// we refuse to parse this
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
digit = static_cast<unsigned char>(*p - '0');
|
|
exp_number = 10 * exp_number + digit;
|
|
++p;
|
|
}
|
|
exponent += (neg_exp ? -exp_number : exp_number);
|
|
}
|
|
if (is_float) {
|
|
// If we frequently had to deal with long strings of digits,
|
|
// we could extend our code by using a 128-bit integer instead
|
|
// of a 64-bit integer. However, this is uncommon in practice.
|
|
if (unlikely((digit_count >= 19))) { // this is uncommon
|
|
// It is possible that the integer had an overflow.
|
|
// We have to handle the case where we have 0.0000somenumber.
|
|
const char *start = start_digits;
|
|
while ((*start == '0') || (*start == '.')) {
|
|
start++;
|
|
}
|
|
// we over-decrement by one when there is a '.'
|
|
digit_count -= int(start - start_digits);
|
|
if (digit_count >= 19) {
|
|
// Ok, chances are good that we had an overflow!
|
|
// this is almost never going to get called!!!
|
|
// we start anew, going slowly!!!
|
|
// This will happen in the following examples:
|
|
// 10000000000000000000000000000000000000000000e+308
|
|
// 3.1415926535897932384626433832795028841971693993751
|
|
//
|
|
bool success = slow_float_parsing((const char *) src, writer);
|
|
// The number was already written, but we made a copy of the writer
|
|
// when we passed it to the parse_large_integer() function, so
|
|
writer.skip_double();
|
|
return success;
|
|
}
|
|
}
|
|
if (unlikely(exponent < FASTFLOAT_SMALLEST_POWER) ||
|
|
(exponent > FASTFLOAT_LARGEST_POWER)) { // this is uncommon!!!
|
|
// this is almost never going to get called!!!
|
|
// we start anew, going slowly!!!
|
|
bool success = slow_float_parsing((const char *) src, writer);
|
|
// The number was already written, but we made a copy of the writer when we passed it to the
|
|
// slow_float_parsing() function, so we have to skip those tape spots now that we've returned
|
|
writer.skip_double();
|
|
return success;
|
|
}
|
|
bool success = true;
|
|
double d = compute_float_64(exponent, i, negative, &success);
|
|
if (!success) {
|
|
// we are almost never going to get here.
|
|
success = parse_float_strtod((const char *)src, &d);
|
|
}
|
|
if (success) {
|
|
writer.append_double(d);
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_float(d, src);
|
|
#endif
|
|
return true;
|
|
} else {
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_invalid_number(src);
|
|
#endif
|
|
return false;
|
|
}
|
|
} else {
|
|
if (unlikely(digit_count >= 18)) { // this is uncommon!!!
|
|
// there is a good chance that we had an overflow, so we need
|
|
// need to recover: we parse the whole thing again.
|
|
bool success = parse_large_integer(src, writer, found_minus);
|
|
// The number was already written, but we made a copy of the writer
|
|
// when we passed it to the parse_large_integer() function, so
|
|
writer.skip_large_integer();
|
|
return success;
|
|
}
|
|
i = negative ? 0 - i : i;
|
|
writer.append_s64(i);
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
found_integer(i, src);
|
|
#endif
|
|
}
|
|
return is_structural_or_whitespace(*p);
|
|
#endif // SIMDJSON_SKIPNUMBERPARSING
|
|
}
|
|
|
|
} // namespace numberparsing
|
|
} // namespace stage2
|
|
/* end file src/generic/stage2/numberparsing.h */
|
|
|
|
} // namespace westmere
|
|
|
|
} // namespace simdjson
|
|
UNTARGET_REGION
|
|
|
|
#endif // SIMDJSON_WESTMERE_NUMBERPARSING_H
|
|
/* end file src/generic/stage2/numberparsing.h */
|
|
|
|
TARGET_WESTMERE
|
|
namespace simdjson {
|
|
namespace westmere {
|
|
|
|
/* begin file src/generic/stage2/logger.h */
|
|
// This is for an internal-only stage 2 specific logger.
|
|
// Set LOG_ENABLED = true to log what stage 2 is doing!
|
|
namespace logger {
|
|
static constexpr const char * DASHES = "----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------";
|
|
|
|
static constexpr const bool LOG_ENABLED = false;
|
|
static constexpr const int LOG_EVENT_LEN = 30;
|
|
static constexpr const int LOG_BUFFER_LEN = 20;
|
|
static constexpr const int LOG_DETAIL_LEN = 50;
|
|
static constexpr const int LOG_INDEX_LEN = 10;
|
|
|
|
static int log_depth; // Not threadsafe. Log only.
|
|
|
|
// Helper to turn unprintable or newline characters into spaces
|
|
static really_inline char printable_char(char c) {
|
|
if (c >= 0x20) {
|
|
return c;
|
|
} else {
|
|
return ' ';
|
|
}
|
|
}
|
|
|
|
// Print the header and set up log_start
|
|
static really_inline void log_start() {
|
|
if (LOG_ENABLED) {
|
|
log_depth = 0;
|
|
printf("\n");
|
|
printf("| %-*s | %-*s | %*s | %*s | %*s | %-*s | %-*s | %-*s |\n", LOG_EVENT_LEN, "Event", LOG_BUFFER_LEN, "Buffer", 4, "Curr", 4, "Next", 5, "Next#", 5, "Tape#", LOG_DETAIL_LEN, "Detail", LOG_INDEX_LEN, "index");
|
|
printf("|%.*s|%.*s|%.*s|%.*s|%.*s|%.*s|%.*s|%.*s|\n", LOG_EVENT_LEN+2, DASHES, LOG_BUFFER_LEN+2, DASHES, 4+2, DASHES, 4+2, DASHES, 5+2, DASHES, 5+2, DASHES, LOG_DETAIL_LEN+2, DASHES, LOG_INDEX_LEN+2, DASHES);
|
|
}
|
|
}
|
|
|
|
static really_inline void log_string(const char *message) {
|
|
if (LOG_ENABLED) {
|
|
printf("%s\n", message);
|
|
}
|
|
}
|
|
|
|
// Logs a single line of
|
|
template<typename S>
|
|
static really_inline void log_line(S &structurals, const char *title_prefix, const char *title, const char *detail) {
|
|
if (LOG_ENABLED) {
|
|
printf("| %*s%s%-*s ", log_depth*2, "", title_prefix, LOG_EVENT_LEN - log_depth*2 - int(strlen(title_prefix)), title);
|
|
{
|
|
// Print the next N characters in the buffer.
|
|
printf("| ");
|
|
// Otherwise, print the characters starting from the buffer position.
|
|
// Print spaces for unprintable or newline characters.
|
|
for (int i=0;i<LOG_BUFFER_LEN;i++) {
|
|
printf("%c", printable_char(structurals.current()[i]));
|
|
}
|
|
printf(" ");
|
|
}
|
|
printf("| %c ", printable_char(structurals.current_char()));
|
|
printf("| %c ", printable_char(structurals.peek_next_char()));
|
|
printf("| %5u ", structurals.parser.structural_indexes[*(structurals.current_structural+1)]);
|
|
printf("| %5u ", structurals.next_tape_index());
|
|
printf("| %-*s ", LOG_DETAIL_LEN, detail);
|
|
printf("| %*u ", LOG_INDEX_LEN, *structurals.current_structural);
|
|
printf("|\n");
|
|
}
|
|
}
|
|
} // namespace logger
|
|
|
|
/* end file src/generic/stage2/logger.h */
|
|
/* begin file src/generic/stage2/atomparsing.h */
|
|
namespace stage2 {
|
|
namespace atomparsing {
|
|
|
|
really_inline uint32_t string_to_uint32(const char* str) { return *reinterpret_cast<const uint32_t *>(str); }
|
|
|
|
WARN_UNUSED
|
|
really_inline uint32_t str4ncmp(const uint8_t *src, const char* atom) {
|
|
uint32_t srcval; // we want to avoid unaligned 64-bit loads (undefined in C/C++)
|
|
static_assert(sizeof(uint32_t) <= SIMDJSON_PADDING, "SIMDJSON_PADDING must be larger than 4 bytes");
|
|
std::memcpy(&srcval, src, sizeof(uint32_t));
|
|
return srcval ^ string_to_uint32(atom);
|
|
}
|
|
|
|
WARN_UNUSED
|
|
really_inline bool is_valid_true_atom(const uint8_t *src) {
|
|
return (str4ncmp(src, "true") | is_not_structural_or_whitespace(src[4])) == 0;
|
|
}
|
|
|
|
WARN_UNUSED
|
|
really_inline bool is_valid_true_atom(const uint8_t *src, size_t len) {
|
|
if (len > 4) { return is_valid_true_atom(src); }
|
|
else if (len == 4) { return !str4ncmp(src, "true"); }
|
|
else { return false; }
|
|
}
|
|
|
|
WARN_UNUSED
|
|
really_inline bool is_valid_false_atom(const uint8_t *src) {
|
|
return (str4ncmp(src+1, "alse") | is_not_structural_or_whitespace(src[5])) == 0;
|
|
}
|
|
|
|
WARN_UNUSED
|
|
really_inline bool is_valid_false_atom(const uint8_t *src, size_t len) {
|
|
if (len > 5) { return is_valid_false_atom(src); }
|
|
else if (len == 5) { return !str4ncmp(src+1, "alse"); }
|
|
else { return false; }
|
|
}
|
|
|
|
WARN_UNUSED
|
|
really_inline bool is_valid_null_atom(const uint8_t *src) {
|
|
return (str4ncmp(src, "null") | is_not_structural_or_whitespace(src[4])) == 0;
|
|
}
|
|
|
|
WARN_UNUSED
|
|
really_inline bool is_valid_null_atom(const uint8_t *src, size_t len) {
|
|
if (len > 4) { return is_valid_null_atom(src); }
|
|
else if (len == 4) { return !str4ncmp(src, "null"); }
|
|
else { return false; }
|
|
}
|
|
|
|
} // namespace atomparsing
|
|
} // namespace stage2
|
|
/* end file src/generic/stage2/atomparsing.h */
|
|
/* begin file src/generic/stage2/structural_iterator.h */
|
|
namespace stage2 {
|
|
|
|
class structural_iterator {
|
|
public:
|
|
const uint8_t* const buf;
|
|
uint32_t *current_structural;
|
|
dom_parser_implementation &parser;
|
|
|
|
// Start a structural
|
|
really_inline structural_iterator(dom_parser_implementation &_parser, size_t start_structural_index)
|
|
: buf{_parser.buf},
|
|
current_structural{&_parser.structural_indexes[start_structural_index]},
|
|
parser{_parser} {
|
|
}
|
|
// Get the buffer position of the current structural character
|
|
really_inline const uint8_t* current() {
|
|
return &buf[*current_structural];
|
|
}
|
|
// Get the current structural character
|
|
really_inline char current_char() {
|
|
return buf[*current_structural];
|
|
}
|
|
// Get the next structural character without advancing
|
|
really_inline char peek_next_char() {
|
|
return buf[*(current_structural+1)];
|
|
}
|
|
really_inline char advance_char() {
|
|
current_structural++;
|
|
return buf[*current_structural];
|
|
}
|
|
really_inline size_t remaining_len() {
|
|
return parser.len - *current_structural;
|
|
}
|
|
template<typename F>
|
|
really_inline bool with_space_terminated_copy(const F& f) {
|
|
/**
|
|
* We need to make a copy to make sure that the string is space terminated.
|
|
* This is not about padding the input, which should already padded up
|
|
* to len + SIMDJSON_PADDING. However, we have no control at this stage
|
|
* on how the padding was done. What if the input string was padded with nulls?
|
|
* It is quite common for an input string to have an extra null character (C string).
|
|
* We do not want to allow 9\0 (where \0 is the null character) inside a JSON
|
|
* document, but the string "9\0" by itself is fine. So we make a copy and
|
|
* pad the input with spaces when we know that there is just one input element.
|
|
* This copy is relatively expensive, but it will almost never be called in
|
|
* practice unless you are in the strange scenario where you have many JSON
|
|
* documents made of single atoms.
|
|
*/
|
|
char *copy = static_cast<char *>(malloc(parser.len + SIMDJSON_PADDING));
|
|
if (copy == nullptr) {
|
|
return true;
|
|
}
|
|
memcpy(copy, buf, parser.len);
|
|
memset(copy + parser.len, ' ', SIMDJSON_PADDING);
|
|
bool result = f(reinterpret_cast<const uint8_t*>(copy), *current_structural);
|
|
free(copy);
|
|
return result;
|
|
}
|
|
really_inline bool past_end(uint32_t n_structural_indexes) {
|
|
return current_structural >= &parser.structural_indexes[n_structural_indexes];
|
|
}
|
|
really_inline bool at_end(uint32_t n_structural_indexes) {
|
|
return current_structural == &parser.structural_indexes[n_structural_indexes];
|
|
}
|
|
really_inline bool at_beginning() {
|
|
return current_structural == parser.structural_indexes.get();
|
|
}
|
|
};
|
|
|
|
} // namespace stage2
|
|
/* end file src/generic/stage2/structural_iterator.h */
|
|
/* begin file src/generic/stage2/structural_parser.h */
|
|
// This file contains the common code every implementation uses for stage2
|
|
// It is intended to be included multiple times and compiled multiple times
|
|
// We assume the file in which it is include already includes
|
|
// "simdjson/stage2.h" (this simplifies amalgation)
|
|
|
|
namespace stage2 {
|
|
namespace { // Make everything here private
|
|
|
|
/* begin file src/generic/stage2/tape_writer.h */
|
|
struct tape_writer {
|
|
/** The next place to write to tape */
|
|
uint64_t *next_tape_loc;
|
|
|
|
/** Write a signed 64-bit value to tape. */
|
|
really_inline void append_s64(int64_t value) noexcept;
|
|
|
|
/** Write an unsigned 64-bit value to tape. */
|
|
really_inline void append_u64(uint64_t value) noexcept;
|
|
|
|
/** Write a double value to tape. */
|
|
really_inline void append_double(double value) noexcept;
|
|
|
|
/**
|
|
* Append a tape entry (an 8-bit type,and 56 bits worth of value).
|
|
*/
|
|
really_inline void append(uint64_t val, internal::tape_type t) noexcept;
|
|
|
|
/**
|
|
* Skip the current tape entry without writing.
|
|
*
|
|
* Used to skip the start of the container, since we'll come back later to fill it in when the
|
|
* container ends.
|
|
*/
|
|
really_inline void skip() noexcept;
|
|
|
|
/**
|
|
* Skip the number of tape entries necessary to write a large u64 or i64.
|
|
*/
|
|
really_inline void skip_large_integer() noexcept;
|
|
|
|
/**
|
|
* Skip the number of tape entries necessary to write a double.
|
|
*/
|
|
really_inline void skip_double() noexcept;
|
|
|
|
/**
|
|
* Write a value to a known location on tape.
|
|
*
|
|
* Used to go back and write out the start of a container after the container ends.
|
|
*/
|
|
really_inline static void write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept;
|
|
|
|
private:
|
|
/**
|
|
* Append both the tape entry, and a supplementary value following it. Used for types that need
|
|
* all 64 bits, such as double and uint64_t.
|
|
*/
|
|
template<typename T>
|
|
really_inline void append2(uint64_t val, T val2, internal::tape_type t) noexcept;
|
|
}; // struct number_writer
|
|
|
|
really_inline void tape_writer::append_s64(int64_t value) noexcept {
|
|
append2(0, value, internal::tape_type::INT64);
|
|
}
|
|
|
|
really_inline void tape_writer::append_u64(uint64_t value) noexcept {
|
|
append(0, internal::tape_type::UINT64);
|
|
*next_tape_loc = value;
|
|
next_tape_loc++;
|
|
}
|
|
|
|
/** Write a double value to tape. */
|
|
really_inline void tape_writer::append_double(double value) noexcept {
|
|
append2(0, value, internal::tape_type::DOUBLE);
|
|
}
|
|
|
|
really_inline void tape_writer::skip() noexcept {
|
|
next_tape_loc++;
|
|
}
|
|
|
|
really_inline void tape_writer::skip_large_integer() noexcept {
|
|
next_tape_loc += 2;
|
|
}
|
|
|
|
really_inline void tape_writer::skip_double() noexcept {
|
|
next_tape_loc += 2;
|
|
}
|
|
|
|
really_inline void tape_writer::append(uint64_t val, internal::tape_type t) noexcept {
|
|
*next_tape_loc = val | ((uint64_t(char(t))) << 56);
|
|
next_tape_loc++;
|
|
}
|
|
|
|
template<typename T>
|
|
really_inline void tape_writer::append2(uint64_t val, T val2, internal::tape_type t) noexcept {
|
|
append(val, t);
|
|
static_assert(sizeof(val2) == sizeof(*next_tape_loc), "Type is not 64 bits!");
|
|
memcpy(next_tape_loc, &val2, sizeof(val2));
|
|
next_tape_loc++;
|
|
}
|
|
|
|
really_inline void tape_writer::write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept {
|
|
tape_loc = val | ((uint64_t(char(t))) << 56);
|
|
}
|
|
/* end file src/generic/stage2/tape_writer.h */
|
|
|
|
#ifdef SIMDJSON_USE_COMPUTED_GOTO
|
|
#define INIT_ADDRESSES() { &&array_begin, &&array_continue, &&error, &&finish, &&object_begin, &&object_continue }
|
|
#define GOTO(address) { goto *(address); }
|
|
#define CONTINUE(address) { goto *(address); }
|
|
#else // SIMDJSON_USE_COMPUTED_GOTO
|
|
#define INIT_ADDRESSES() { '[', 'a', 'e', 'f', '{', 'o' };
|
|
#define GOTO(address) \
|
|
{ \
|
|
switch(address) { \
|
|
case '[': goto array_begin; \
|
|
case 'a': goto array_continue; \
|
|
case 'e': goto error; \
|
|
case 'f': goto finish; \
|
|
case '{': goto object_begin; \
|
|
case 'o': goto object_continue; \
|
|
} \
|
|
}
|
|
// For the more constrained end_xxx() situation
|
|
#define CONTINUE(address) \
|
|
{ \
|
|
switch(address) { \
|
|
case 'a': goto array_continue; \
|
|
case 'o': goto object_continue; \
|
|
case 'f': goto finish; \
|
|
} \
|
|
}
|
|
#endif // SIMDJSON_USE_COMPUTED_GOTO
|
|
|
|
struct unified_machine_addresses {
|
|
ret_address_t array_begin;
|
|
ret_address_t array_continue;
|
|
ret_address_t error;
|
|
ret_address_t finish;
|
|
ret_address_t object_begin;
|
|
ret_address_t object_continue;
|
|
};
|
|
|
|
#undef FAIL_IF
|
|
#define FAIL_IF(EXPR) { if (EXPR) { return addresses.error; } }
|
|
|
|
struct structural_parser : structural_iterator {
|
|
/** Lets you append to the tape */
|
|
tape_writer tape;
|
|
/** Next write location in the string buf for stage 2 parsing */
|
|
uint8_t *current_string_buf_loc;
|
|
/** Current depth (nested objects and arrays) */
|
|
uint32_t depth{0};
|
|
|
|
// For non-streaming, to pass an explicit 0 as next_structural, which enables optimizations
|
|
really_inline structural_parser(dom_parser_implementation &_parser, uint32_t start_structural_index)
|
|
: structural_iterator(_parser, start_structural_index),
|
|
tape{parser.doc->tape.get()},
|
|
current_string_buf_loc{parser.doc->string_buf.get()} {
|
|
}
|
|
|
|
WARN_UNUSED really_inline bool start_scope(ret_address_t continue_state) {
|
|
parser.containing_scope[depth].tape_index = next_tape_index();
|
|
parser.containing_scope[depth].count = 0;
|
|
tape.skip(); // We don't actually *write* the start element until the end.
|
|
parser.ret_address[depth] = continue_state;
|
|
depth++;
|
|
bool exceeded_max_depth = depth >= parser.max_depth();
|
|
if (exceeded_max_depth) { log_error("Exceeded max depth!"); }
|
|
return exceeded_max_depth;
|
|
}
|
|
|
|
WARN_UNUSED really_inline bool start_document(ret_address_t continue_state) {
|
|
log_start_value("document");
|
|
return start_scope(continue_state);
|
|
}
|
|
|
|
WARN_UNUSED really_inline bool start_object(ret_address_t continue_state) {
|
|
log_start_value("object");
|
|
return start_scope(continue_state);
|
|
}
|
|
|
|
WARN_UNUSED really_inline bool start_array(ret_address_t continue_state) {
|
|
log_start_value("array");
|
|
return start_scope(continue_state);
|
|
}
|
|
|
|
// this function is responsible for annotating the start of the scope
|
|
really_inline void end_scope(internal::tape_type start, internal::tape_type end) noexcept {
|
|
depth--;
|
|
// write our doc->tape location to the header scope
|
|
// The root scope gets written *at* the previous location.
|
|
tape.append(parser.containing_scope[depth].tape_index, end);
|
|
// count can overflow if it exceeds 24 bits... so we saturate
|
|
// the convention being that a cnt of 0xffffff or more is undetermined in value (>= 0xffffff).
|
|
const uint32_t start_tape_index = parser.containing_scope[depth].tape_index;
|
|
const uint32_t count = parser.containing_scope[depth].count;
|
|
const uint32_t cntsat = count > 0xFFFFFF ? 0xFFFFFF : count;
|
|
// This is a load and an OR. It would be possible to just write once at doc->tape[d.tape_index]
|
|
tape_writer::write(parser.doc->tape[start_tape_index], next_tape_index() | (uint64_t(cntsat) << 32), start);
|
|
}
|
|
|
|
really_inline uint32_t next_tape_index() {
|
|
return uint32_t(tape.next_tape_loc - parser.doc->tape.get());
|
|
}
|
|
|
|
really_inline void end_object() {
|
|
log_end_value("object");
|
|
end_scope(internal::tape_type::START_OBJECT, internal::tape_type::END_OBJECT);
|
|
}
|
|
really_inline void end_array() {
|
|
log_end_value("array");
|
|
end_scope(internal::tape_type::START_ARRAY, internal::tape_type::END_ARRAY);
|
|
}
|
|
really_inline void end_document() {
|
|
log_end_value("document");
|
|
end_scope(internal::tape_type::ROOT, internal::tape_type::ROOT);
|
|
}
|
|
|
|
// increment_count increments the count of keys in an object or values in an array.
|
|
// Note that if you are at the level of the values or elements, the count
|
|
// must be increment in the preceding depth (depth-1) where the array or
|
|
// the object resides.
|
|
really_inline void increment_count() {
|
|
parser.containing_scope[depth - 1].count++; // we have a key value pair in the object at parser.depth - 1
|
|
}
|
|
|
|
really_inline uint8_t *on_start_string() noexcept {
|
|
// we advance the point, accounting for the fact that we have a NULL termination
|
|
tape.append(current_string_buf_loc - parser.doc->string_buf.get(), internal::tape_type::STRING);
|
|
return current_string_buf_loc + sizeof(uint32_t);
|
|
}
|
|
|
|
really_inline void on_end_string(uint8_t *dst) noexcept {
|
|
uint32_t str_length = uint32_t(dst - (current_string_buf_loc + sizeof(uint32_t)));
|
|
// TODO check for overflow in case someone has a crazy string (>=4GB?)
|
|
// But only add the overflow check when the document itself exceeds 4GB
|
|
// Currently unneeded because we refuse to parse docs larger or equal to 4GB.
|
|
memcpy(current_string_buf_loc, &str_length, sizeof(uint32_t));
|
|
// NULL termination is still handy if you expect all your strings to
|
|
// be NULL terminated? It comes at a small cost
|
|
*dst = 0;
|
|
current_string_buf_loc = dst + 1;
|
|
}
|
|
|
|
WARN_UNUSED really_inline bool parse_string(bool key = false) {
|
|
log_value(key ? "key" : "string");
|
|
uint8_t *dst = on_start_string();
|
|
dst = stringparsing::parse_string(current(), dst);
|
|
if (dst == nullptr) {
|
|
log_error("Invalid escape in string");
|
|
return true;
|
|
}
|
|
on_end_string(dst);
|
|
return false;
|
|
}
|
|
|
|
WARN_UNUSED really_inline bool parse_number(const uint8_t *src, bool found_minus) {
|
|
log_value("number");
|
|
bool succeeded = numberparsing::parse_number(src, found_minus, tape);
|
|
if (!succeeded) { log_error("Invalid number"); }
|
|
return !succeeded;
|
|
}
|
|
WARN_UNUSED really_inline bool parse_number(bool found_minus) {
|
|
return parse_number(current(), found_minus);
|
|
}
|
|
|
|
WARN_UNUSED really_inline ret_address_t parse_value(const unified_machine_addresses &addresses, ret_address_t continue_state) {
|
|
switch (advance_char()) {
|
|
case '"':
|
|
FAIL_IF( parse_string() );
|
|
return continue_state;
|
|
case 't':
|
|
log_value("true");
|
|
FAIL_IF( !atomparsing::is_valid_true_atom(current()) );
|
|
tape.append(0, internal::tape_type::TRUE_VALUE);
|
|
return continue_state;
|
|
case 'f':
|
|
log_value("false");
|
|
FAIL_IF( !atomparsing::is_valid_false_atom(current()) );
|
|
tape.append(0, internal::tape_type::FALSE_VALUE);
|
|
return continue_state;
|
|
case 'n':
|
|
log_value("null");
|
|
FAIL_IF( !atomparsing::is_valid_null_atom(current()) );
|
|
tape.append(0, internal::tape_type::NULL_VALUE);
|
|
return continue_state;
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
FAIL_IF( parse_number(false) );
|
|
return continue_state;
|
|
case '-':
|
|
FAIL_IF( parse_number(true) );
|
|
return continue_state;
|
|
case '{':
|
|
FAIL_IF( start_object(continue_state) );
|
|
return addresses.object_begin;
|
|
case '[':
|
|
FAIL_IF( start_array(continue_state) );
|
|
return addresses.array_begin;
|
|
default:
|
|
log_error("Non-value found when value was expected!");
|
|
return addresses.error;
|
|
}
|
|
}
|
|
|
|
WARN_UNUSED really_inline error_code finish() {
|
|
end_document();
|
|
parser.next_structural_index = uint32_t(current_structural + 1 - &parser.structural_indexes[0]);
|
|
|
|
if (depth != 0) {
|
|
log_error("Unclosed objects or arrays!");
|
|
return parser.error = TAPE_ERROR;
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
WARN_UNUSED really_inline error_code error() {
|
|
/* We do not need the next line because this is done by parser.init_stage2(),
|
|
* pessimistically.
|
|
* parser.is_valid = false;
|
|
* At this point in the code, we have all the time in the world.
|
|
* Note that we know exactly where we are in the document so we could,
|
|
* without any overhead on the processing code, report a specific
|
|
* location.
|
|
* We could even trigger special code paths to assess what happened
|
|
* carefully,
|
|
* all without any added cost. */
|
|
if (depth >= parser.max_depth()) {
|
|
return parser.error = DEPTH_ERROR;
|
|
}
|
|
switch (current_char()) {
|
|
case '"':
|
|
return parser.error = STRING_ERROR;
|
|
case '0':
|
|
case '1':
|
|
case '2':
|
|
case '3':
|
|
case '4':
|
|
case '5':
|
|
case '6':
|
|
case '7':
|
|
case '8':
|
|
case '9':
|
|
case '-':
|
|
return parser.error = NUMBER_ERROR;
|
|
case 't':
|
|
return parser.error = T_ATOM_ERROR;
|
|
case 'n':
|
|
return parser.error = N_ATOM_ERROR;
|
|
case 'f':
|
|
return parser.error = F_ATOM_ERROR;
|
|
default:
|
|
return parser.error = TAPE_ERROR;
|
|
}
|
|
}
|
|
|
|
really_inline void init() {
|
|
log_start();
|
|
parser.error = UNINITIALIZED;
|
|
}
|
|
|
|
WARN_UNUSED really_inline error_code start(ret_address_t finish_state) {
|
|
// If there are no structurals left, return EMPTY
|
|
if (at_end(parser.n_structural_indexes)) {
|
|
return parser.error = EMPTY;
|
|
}
|
|
|
|
init();
|
|
// Push the root scope (there is always at least one scope)
|
|
if (start_document(finish_state)) {
|
|
return parser.error = DEPTH_ERROR;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
really_inline void log_value(const char *type) {
|
|
logger::log_line(*this, "", type, "");
|
|
}
|
|
|
|
static really_inline void log_start() {
|
|
logger::log_start();
|
|
}
|
|
|
|
really_inline void log_start_value(const char *type) {
|
|
logger::log_line(*this, "+", type, "");
|
|
if (logger::LOG_ENABLED) { logger::log_depth++; }
|
|
}
|
|
|
|
really_inline void log_end_value(const char *type) {
|
|
if (logger::LOG_ENABLED) { logger::log_depth--; }
|
|
logger::log_line(*this, "-", type, "");
|
|
}
|
|
|
|
really_inline void log_error(const char *error) {
|
|
logger::log_line(*this, "", "ERROR", error);
|
|
}
|
|
}; // struct structural_parser
|
|
|
|
// Redefine FAIL_IF to use goto since it'll be used inside the function now
|
|
#undef FAIL_IF
|
|
#define FAIL_IF(EXPR) { if (EXPR) { goto error; } }
|
|
|
|
template<bool STREAMING>
|
|
WARN_UNUSED static error_code parse_structurals(dom_parser_implementation &dom_parser, dom::document &doc) noexcept {
|
|
dom_parser.doc = &doc;
|
|
static constexpr stage2::unified_machine_addresses addresses = INIT_ADDRESSES();
|
|
stage2::structural_parser parser(dom_parser, STREAMING ? dom_parser.next_structural_index : 0);
|
|
error_code result = parser.start(addresses.finish);
|
|
if (result) { return result; }
|
|
|
|
//
|
|
// Read first value
|
|
//
|
|
switch (parser.current_char()) {
|
|
case '{':
|
|
FAIL_IF( parser.start_object(addresses.finish) );
|
|
goto object_begin;
|
|
case '[':
|
|
FAIL_IF( parser.start_array(addresses.finish) );
|
|
// Make sure the outer array is closed before continuing; otherwise, there are ways we could get
|
|
// into memory corruption. See https://github.com/simdjson/simdjson/issues/906
|
|
if (!STREAMING) {
|
|
if (parser.buf[dom_parser.structural_indexes[dom_parser.n_structural_indexes - 1]] != ']') {
|
|
goto error;
|
|
}
|
|
}
|
|
goto array_begin;
|
|
case '"':
|
|
FAIL_IF( parser.parse_string() );
|
|
goto finish;
|
|
case 't':
|
|
parser.log_value("true");
|
|
FAIL_IF( !atomparsing::is_valid_true_atom(parser.current(), parser.remaining_len()) );
|
|
parser.tape.append(0, internal::tape_type::TRUE_VALUE);
|
|
goto finish;
|
|
case 'f':
|
|
parser.log_value("false");
|
|
FAIL_IF( !atomparsing::is_valid_false_atom(parser.current(), parser.remaining_len()) );
|
|
parser.tape.append(0, internal::tape_type::FALSE_VALUE);
|
|
goto finish;
|
|
case 'n':
|
|
parser.log_value("null");
|
|
FAIL_IF( !atomparsing::is_valid_null_atom(parser.current(), parser.remaining_len()) );
|
|
parser.tape.append(0, internal::tape_type::NULL_VALUE);
|
|
goto finish;
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
FAIL_IF(
|
|
parser.with_space_terminated_copy([&](const uint8_t *copy, size_t idx) {
|
|
return parser.parse_number(©[idx], false);
|
|
})
|
|
);
|
|
goto finish;
|
|
case '-':
|
|
FAIL_IF(
|
|
parser.with_space_terminated_copy([&](const uint8_t *copy, size_t idx) {
|
|
return parser.parse_number(©[idx], true);
|
|
})
|
|
);
|
|
goto finish;
|
|
default:
|
|
parser.log_error("Document starts with a non-value character");
|
|
goto error;
|
|
}
|
|
|
|
//
|
|
// Object parser states
|
|
//
|
|
object_begin:
|
|
switch (parser.advance_char()) {
|
|
case '"': {
|
|
parser.increment_count();
|
|
FAIL_IF( parser.parse_string(true) );
|
|
goto object_key_state;
|
|
}
|
|
case '}':
|
|
parser.end_object();
|
|
goto scope_end;
|
|
default:
|
|
parser.log_error("Object does not start with a key");
|
|
goto error;
|
|
}
|
|
|
|
object_key_state:
|
|
if (parser.advance_char() != ':' ) { parser.log_error("Missing colon after key in object"); goto error; }
|
|
GOTO( parser.parse_value(addresses, addresses.object_continue) );
|
|
|
|
object_continue:
|
|
switch (parser.advance_char()) {
|
|
case ',':
|
|
parser.increment_count();
|
|
if (parser.advance_char() != '"' ) { parser.log_error("Key string missing at beginning of field in object"); goto error; }
|
|
FAIL_IF( parser.parse_string(true) );
|
|
goto object_key_state;
|
|
case '}':
|
|
parser.end_object();
|
|
goto scope_end;
|
|
default:
|
|
parser.log_error("No comma between object fields");
|
|
goto error;
|
|
}
|
|
|
|
scope_end:
|
|
CONTINUE( parser.parser.ret_address[parser.depth] );
|
|
|
|
//
|
|
// Array parser states
|
|
//
|
|
array_begin:
|
|
if (parser.peek_next_char() == ']') {
|
|
parser.advance_char();
|
|
parser.end_array();
|
|
goto scope_end;
|
|
}
|
|
parser.increment_count();
|
|
|
|
main_array_switch:
|
|
/* we call update char on all paths in, so we can peek at parser.c on the
|
|
* on paths that can accept a close square brace (post-, and at start) */
|
|
GOTO( parser.parse_value(addresses, addresses.array_continue) );
|
|
|
|
array_continue:
|
|
switch (parser.advance_char()) {
|
|
case ',':
|
|
parser.increment_count();
|
|
goto main_array_switch;
|
|
case ']':
|
|
parser.end_array();
|
|
goto scope_end;
|
|
default:
|
|
parser.log_error("Missing comma between array values");
|
|
goto error;
|
|
}
|
|
|
|
finish:
|
|
return parser.finish();
|
|
|
|
error:
|
|
return parser.error();
|
|
}
|
|
|
|
} // namespace {}
|
|
} // namespace stage2
|
|
|
|
/************
|
|
* The JSON is parsed to a tape, see the accompanying tape.md file
|
|
* for documentation.
|
|
***********/
|
|
WARN_UNUSED error_code dom_parser_implementation::stage2(dom::document &_doc) noexcept {
|
|
error_code result = stage2::parse_structurals<false>(*this, _doc);
|
|
if (result) { return result; }
|
|
|
|
// If we didn't make it to the end, it's an error
|
|
if ( next_structural_index != n_structural_indexes ) {
|
|
logger::log_string("More than one JSON value at the root of the document, or extra characters at the end of the JSON!");
|
|
return error = TAPE_ERROR;
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
/************
|
|
* The JSON is parsed to a tape, see the accompanying tape.md file
|
|
* for documentation.
|
|
***********/
|
|
WARN_UNUSED error_code dom_parser_implementation::stage2_next(dom::document &_doc) noexcept {
|
|
return stage2::parse_structurals<true>(*this, _doc);
|
|
}
|
|
/* end file src/generic/stage2/tape_writer.h */
|
|
|
|
WARN_UNUSED error_code dom_parser_implementation::parse(const uint8_t *_buf, size_t _len, dom::document &_doc) noexcept {
|
|
error_code err = stage1(_buf, _len, false);
|
|
if (err) { return err; }
|
|
return stage2(_doc);
|
|
}
|
|
|
|
} // namespace westmere
|
|
} // namespace simdjson
|
|
UNTARGET_REGION
|
|
/* end file src/generic/stage2/tape_writer.h */
|
|
#endif
|
|
|
|
SIMDJSON_POP_DISABLE_WARNINGS
|
|
/* end file src/generic/stage2/tape_writer.h */
|