simdjson/benchmark/statisticalmodel.cpp

204 lines
5.6 KiB
C++

#include <iostream>
#include <unistd.h>
#include "simdjson/jsonioutil.h"
#include "simdjson/jsonparser.h"
#ifdef __linux__
#include "linux-perf-events.h"
#endif
using namespace std;
size_t count_nonasciibytes(const u8 *input, size_t length) {
size_t count = 0;
for (size_t i = 0; i < length; i++) {
count += input[i] >> 7;
}
return count;
}
size_t count_backslash(const u8 *input, size_t length) {
size_t count = 0;
for (size_t i = 0; i < length; i++) {
count += (input[i] == '\\') ? 1 : 0;
}
return count;
}
struct stat_s {
size_t integer_count;
size_t float_count;
size_t string_count;
size_t backslash_count;
size_t nonasciibyte_count;
size_t object_count;
size_t array_count;
size_t null_count;
size_t true_count;
size_t false_count;
size_t byte_count;
size_t structural_indexes_count;
bool valid;
};
typedef struct stat_s stat_t;
stat_t simdjson_computestats(const std::string_view &p) {
stat_t answer;
ParsedJson pj = build_parsed_json(p);
answer.valid = pj.isValid();
if (!answer.valid) {
return answer;
}
answer.backslash_count = count_backslash((const u8 *)p.data(), p.size());
answer.nonasciibyte_count =
count_nonasciibytes((const u8 *)p.data(), p.size());
answer.byte_count = p.size();
answer.integer_count = 0;
answer.float_count = 0;
answer.object_count = 0;
answer.array_count = 0;
answer.null_count = 0;
answer.true_count = 0;
answer.false_count = 0;
answer.string_count = 0;
answer.structural_indexes_count = pj.n_structural_indexes;
size_t tapeidx = 0;
u64 tape_val = pj.tape[tapeidx++];
u8 type = (tape_val >> 56);
size_t howmany = 0;
assert(type == 'r');
howmany = tape_val & JSONVALUEMASK;
for (; tapeidx < howmany; tapeidx++) {
tape_val = pj.tape[tapeidx];
// u64 payload = tape_val & JSONVALUEMASK;
type = (tape_val >> 56);
switch (type) {
case 'l': // we have a long int
answer.integer_count++;
tapeidx++; // skipping the integer
break;
case 'd': // we have a double
answer.float_count++;
tapeidx++; // skipping the double
break;
case 'n': // we have a null
answer.null_count++;
break;
case 't': // we have a true
answer.true_count++;
break;
case 'f': // we have a false
answer.false_count++;
break;
case '{': // we have an object
answer.object_count++;
break;
case '}': // we end an object
break;
case '[': // we start an array
answer.array_count++;
break;
case ']': // we end an array
break;
case '"': // we have a string
answer.string_count++;
break;
default:
break; // ignore
}
}
return answer;
}
int main(int argc, char *argv[]) {
int c;
while ((c = getopt(argc, argv, "")) != -1)
switch (c) {
default:
abort();
}
if (optind >= argc) {
cerr << "Reads json, prints stats. " << endl;
cerr << "Usage: " << argv[0] << " <jsonfile>" << endl;
exit(1);
}
const char *filename = argv[optind];
if (optind + 1 < argc) {
std::cerr << "warning: ignoring everything after " << argv[optind + 1]
<< std::endl;
}
std::string_view p;
try {
p = get_corpus(filename);
} catch (const std::exception &e) { // caught by reference to base
std::cerr << "Could not load the file " << filename << std::endl;
return EXIT_FAILURE;
}
stat_t s = simdjson_computestats(p);
if (!s.valid) {
std::cerr << "not a valid JSON" << std::endl;
return EXIT_FAILURE;
}
printf("# integer_count float_count string_count backslash_count "
"nonasciibyte_count object_count array_count null_count true_count "
"false_count byte_count structural_indexes_count ");
#ifdef __linux__
printf(
" stage1_instruction_count stage1_cycle_count stage2_instruction_count "
"stage2_cycle_count stage3_instruction_count stage3_cycle_count ");
#else
printf("(you are not under linux, so perf counters are disaabled)");
#endif
printf("\n");
printf("%zu %zu %zu %zu %zu %zu %zu %zu %zu %zu %zu %zu", s.integer_count,
s.float_count, s.string_count, s.backslash_count, s.nonasciibyte_count,
s.object_count, s.array_count, s.null_count, s.true_count,
s.false_count, s.byte_count, s.structural_indexes_count);
#ifdef __linux__
ParsedJson pj;
bool allocok = pj.allocateCapacity(p.size());
if (!allocok) {
std::cerr << "failed to allocate memory" << std::endl;
return EXIT_FAILURE;
}
const u32 iterations = p.size() < 1 * 1000 * 1000 ? 1000 : 50;
vector<int> evts;
evts.push_back(PERF_COUNT_HW_CPU_CYCLES);
evts.push_back(PERF_COUNT_HW_INSTRUCTIONS);
LinuxEvents<PERF_TYPE_HARDWARE> unified(evts);
unsigned long cy1 = 0, cy2 = 0, cy3 = 0;
unsigned long cl1 = 0, cl2 = 0, cl3 = 0;
vector<u64> results;
results.resize(evts.size());
for (u32 i = 0; i < iterations; i++) {
unified.start();
bool isok = find_structural_bits(p.data(), p.size(), pj);
unified.end(results);
cy1 += results[0];
cl1 += results[1];
unified.start();
isok = isok && flatten_indexes(p.size(), pj);
unified.end(results);
cy2 += results[0];
cl2 += results[1];
isok = isok && unified_machine(p.data(), p.size(), pj);
unified.end(results);
cy3 += results[0];
cl3 += results[1];
if(!isok) {
std::cerr << "failure?" << std::endl;
}
}
printf("%f %f %f %f %f %f", cy1 * 1.0 / iterations, cl1 * 1.0 / iterations,
cy2 * 1.0 / iterations, cl2 * 1.0 / iterations, cy3 * 1.0 / iterations,
cl3 * 1.0 / iterations);
#endif // __linux__
printf("\n");
return EXIT_SUCCESS;
}