15258 lines
628 KiB
C++
15258 lines
628 KiB
C++
/* auto-generated on Wed 2 Sep 2020 18:06:06 EDT. Do not edit! */
|
|
/* begin file src/simdjson.cpp */
|
|
#include "simdjson.h"
|
|
|
|
SIMDJSON_PUSH_DISABLE_WARNINGS
|
|
SIMDJSON_DISABLE_UNDESIRED_WARNINGS
|
|
|
|
/* begin file src/error.cpp */
|
|
|
|
namespace simdjson {
|
|
namespace internal {
|
|
|
|
SIMDJSON_DLLIMPORTEXPORT const error_code_info error_codes[] {
|
|
{ SUCCESS, "No error" },
|
|
{ CAPACITY, "This parser can't support a document that big" },
|
|
{ MEMALLOC, "Error allocating memory, we're most likely out of memory" },
|
|
{ TAPE_ERROR, "The JSON document has an improper structure: missing or superfluous commas, braces, missing keys, etc." },
|
|
{ DEPTH_ERROR, "The JSON document was too deep (too many nested objects and arrays)" },
|
|
{ STRING_ERROR, "Problem while parsing a string" },
|
|
{ T_ATOM_ERROR, "Problem while parsing an atom starting with the letter 't'" },
|
|
{ F_ATOM_ERROR, "Problem while parsing an atom starting with the letter 'f'" },
|
|
{ N_ATOM_ERROR, "Problem while parsing an atom starting with the letter 'n'" },
|
|
{ NUMBER_ERROR, "Problem while parsing a number" },
|
|
{ UTF8_ERROR, "The input is not valid UTF-8" },
|
|
{ UNINITIALIZED, "Uninitialized" },
|
|
{ EMPTY, "Empty: no JSON found" },
|
|
{ UNESCAPED_CHARS, "Within strings, some characters must be escaped, we found unescaped characters" },
|
|
{ UNCLOSED_STRING, "A string is opened, but never closed." },
|
|
{ UNSUPPORTED_ARCHITECTURE, "simdjson does not have an implementation supported by this CPU architecture (perhaps it's a non-SIMD CPU?)." },
|
|
{ INCORRECT_TYPE, "The JSON element does not have the requested type." },
|
|
{ NUMBER_OUT_OF_RANGE, "The JSON number is too large or too small to fit within the requested type." },
|
|
{ INDEX_OUT_OF_BOUNDS, "Attempted to access an element of a JSON array that is beyond its length." },
|
|
{ NO_SUCH_FIELD, "The JSON field referenced does not exist in this object." },
|
|
{ IO_ERROR, "Error reading the file." },
|
|
{ INVALID_JSON_POINTER, "Invalid JSON pointer syntax." },
|
|
{ INVALID_URI_FRAGMENT, "Invalid URI fragment syntax." },
|
|
{ UNEXPECTED_ERROR, "Unexpected error, consider reporting this problem as you may have found a bug in simdjson" }
|
|
}; // error_messages[]
|
|
|
|
} // namespace internal
|
|
} // namespace simdjson
|
|
/* end file src/error.cpp */
|
|
/* begin file src/implementation.cpp */
|
|
/* begin file src/isadetection.h */
|
|
/* From
|
|
https://github.com/endorno/pytorch/blob/master/torch/lib/TH/generic/simd/simd.h
|
|
Highly modified.
|
|
|
|
Copyright (c) 2016- Facebook, Inc (Adam Paszke)
|
|
Copyright (c) 2014- Facebook, Inc (Soumith Chintala)
|
|
Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
|
|
Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
|
|
Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
|
|
Copyright (c) 2011-2013 NYU (Clement Farabet)
|
|
Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou,
|
|
Iain Melvin, Jason Weston) Copyright (c) 2006 Idiap Research Institute
|
|
(Samy Bengio) Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert,
|
|
Samy Bengio, Johnny Mariethoz)
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories
|
|
America and IDIAP Research Institute nor the names of its contributors may be
|
|
used to endorse or promote products derived from this software without
|
|
specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef SIMDJSON_ISADETECTION_H
|
|
#define SIMDJSON_ISADETECTION_H
|
|
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#if defined(_MSC_VER)
|
|
#include <intrin.h>
|
|
#elif defined(HAVE_GCC_GET_CPUID) && defined(USE_GCC_GET_CPUID)
|
|
#include <cpuid.h>
|
|
#endif
|
|
|
|
namespace simdjson {
|
|
|
|
|
|
enum instruction_set {
|
|
DEFAULT = 0x0,
|
|
NEON = 0x1,
|
|
AVX2 = 0x4,
|
|
SSE42 = 0x8,
|
|
PCLMULQDQ = 0x10,
|
|
BMI1 = 0x20,
|
|
BMI2 = 0x40
|
|
};
|
|
|
|
#if defined(__arm__) || defined(__aarch64__) // incl. armel, armhf, arm64
|
|
|
|
#if defined(__ARM_NEON)
|
|
|
|
static inline uint32_t detect_supported_architectures() {
|
|
return instruction_set::NEON;
|
|
}
|
|
|
|
#else // ARM without NEON
|
|
|
|
static inline uint32_t detect_supported_architectures() {
|
|
return instruction_set::DEFAULT;
|
|
}
|
|
|
|
#endif
|
|
|
|
#elif defined(__x86_64__) || defined(_M_AMD64) // x64
|
|
|
|
|
|
namespace {
|
|
// Can be found on Intel ISA Reference for CPUID
|
|
constexpr uint32_t cpuid_avx2_bit = 1 << 5; ///< @private Bit 5 of EBX for EAX=0x7
|
|
constexpr uint32_t cpuid_bmi1_bit = 1 << 3; ///< @private bit 3 of EBX for EAX=0x7
|
|
constexpr uint32_t cpuid_bmi2_bit = 1 << 8; ///< @private bit 8 of EBX for EAX=0x7
|
|
constexpr uint32_t cpuid_sse42_bit = 1 << 20; ///< @private bit 20 of ECX for EAX=0x1
|
|
constexpr uint32_t cpuid_pclmulqdq_bit = 1 << 1; ///< @private bit 1 of ECX for EAX=0x1
|
|
}
|
|
|
|
|
|
|
|
static inline void cpuid(uint32_t *eax, uint32_t *ebx, uint32_t *ecx,
|
|
uint32_t *edx) {
|
|
#if defined(_MSC_VER)
|
|
int cpu_info[4];
|
|
__cpuid(cpu_info, *eax);
|
|
*eax = cpu_info[0];
|
|
*ebx = cpu_info[1];
|
|
*ecx = cpu_info[2];
|
|
*edx = cpu_info[3];
|
|
#elif defined(HAVE_GCC_GET_CPUID) && defined(USE_GCC_GET_CPUID)
|
|
uint32_t level = *eax;
|
|
__get_cpuid(level, eax, ebx, ecx, edx);
|
|
#else
|
|
uint32_t a = *eax, b, c = *ecx, d;
|
|
asm volatile("cpuid\n\t" : "+a"(a), "=b"(b), "+c"(c), "=d"(d));
|
|
*eax = a;
|
|
*ebx = b;
|
|
*ecx = c;
|
|
*edx = d;
|
|
#endif
|
|
}
|
|
|
|
static inline uint32_t detect_supported_architectures() {
|
|
uint32_t eax, ebx, ecx, edx;
|
|
uint32_t host_isa = 0x0;
|
|
|
|
// ECX for EAX=0x7
|
|
eax = 0x7;
|
|
ecx = 0x0;
|
|
cpuid(&eax, &ebx, &ecx, &edx);
|
|
if (ebx & cpuid_avx2_bit) {
|
|
host_isa |= instruction_set::AVX2;
|
|
}
|
|
if (ebx & cpuid_bmi1_bit) {
|
|
host_isa |= instruction_set::BMI1;
|
|
}
|
|
|
|
if (ebx & cpuid_bmi2_bit) {
|
|
host_isa |= instruction_set::BMI2;
|
|
}
|
|
|
|
// EBX for EAX=0x1
|
|
eax = 0x1;
|
|
cpuid(&eax, &ebx, &ecx, &edx);
|
|
|
|
if (ecx & cpuid_sse42_bit) {
|
|
host_isa |= instruction_set::SSE42;
|
|
}
|
|
|
|
if (ecx & cpuid_pclmulqdq_bit) {
|
|
host_isa |= instruction_set::PCLMULQDQ;
|
|
}
|
|
|
|
return host_isa;
|
|
}
|
|
#else // fallback
|
|
|
|
|
|
static inline uint32_t detect_supported_architectures() {
|
|
return instruction_set::DEFAULT;
|
|
}
|
|
|
|
|
|
#endif // end SIMD extension detection code
|
|
|
|
} // namespace simdjson
|
|
|
|
#endif // SIMDJSON_ISADETECTION_H
|
|
/* end file src/isadetection.h */
|
|
/* begin file src/simdprune_tables.h */
|
|
#ifndef SIMDJSON_SIMDPRUNE_TABLES_H
|
|
#define SIMDJSON_SIMDPRUNE_TABLES_H
|
|
|
|
|
|
#if SIMDJSON_IMPLEMENTATION_ARM64 || SIMDJSON_IMPLEMENTATION_HASWELL || SIMDJSON_IMPLEMENTATION_WESTMERE
|
|
|
|
#include <cstdint>
|
|
|
|
namespace simdjson { // table modified and copied from
|
|
// http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetTable
|
|
static const unsigned char BitsSetTable256mul2[256] = {
|
|
0, 2, 2, 4, 2, 4, 4, 6, 2, 4, 4, 6, 4, 6, 6, 8, 2, 4, 4,
|
|
6, 4, 6, 6, 8, 4, 6, 6, 8, 6, 8, 8, 10, 2, 4, 4, 6, 4, 6,
|
|
6, 8, 4, 6, 6, 8, 6, 8, 8, 10, 4, 6, 6, 8, 6, 8, 8, 10, 6,
|
|
8, 8, 10, 8, 10, 10, 12, 2, 4, 4, 6, 4, 6, 6, 8, 4, 6, 6, 8,
|
|
6, 8, 8, 10, 4, 6, 6, 8, 6, 8, 8, 10, 6, 8, 8, 10, 8, 10, 10,
|
|
12, 4, 6, 6, 8, 6, 8, 8, 10, 6, 8, 8, 10, 8, 10, 10, 12, 6, 8,
|
|
8, 10, 8, 10, 10, 12, 8, 10, 10, 12, 10, 12, 12, 14, 2, 4, 4, 6, 4,
|
|
6, 6, 8, 4, 6, 6, 8, 6, 8, 8, 10, 4, 6, 6, 8, 6, 8, 8, 10,
|
|
6, 8, 8, 10, 8, 10, 10, 12, 4, 6, 6, 8, 6, 8, 8, 10, 6, 8, 8,
|
|
10, 8, 10, 10, 12, 6, 8, 8, 10, 8, 10, 10, 12, 8, 10, 10, 12, 10, 12,
|
|
12, 14, 4, 6, 6, 8, 6, 8, 8, 10, 6, 8, 8, 10, 8, 10, 10, 12, 6,
|
|
8, 8, 10, 8, 10, 10, 12, 8, 10, 10, 12, 10, 12, 12, 14, 6, 8, 8, 10,
|
|
8, 10, 10, 12, 8, 10, 10, 12, 10, 12, 12, 14, 8, 10, 10, 12, 10, 12, 12,
|
|
14, 10, 12, 12, 14, 12, 14, 14, 16};
|
|
|
|
static const uint8_t pshufb_combine_table[272] = {
|
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
|
|
0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x08,
|
|
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x80, 0x00, 0x01, 0x02, 0x03,
|
|
0x04, 0x05, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x80, 0x80,
|
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,
|
|
0x0f, 0x80, 0x80, 0x80, 0x00, 0x01, 0x02, 0x03, 0x08, 0x09, 0x0a, 0x0b,
|
|
0x0c, 0x0d, 0x0e, 0x0f, 0x80, 0x80, 0x80, 0x80, 0x00, 0x01, 0x02, 0x08,
|
|
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x80, 0x80, 0x80, 0x80, 0x80,
|
|
0x00, 0x01, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x80, 0x80,
|
|
0x80, 0x80, 0x80, 0x80, 0x00, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,
|
|
0x0f, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x08, 0x09, 0x0a, 0x0b,
|
|
0x0c, 0x0d, 0x0e, 0x0f, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
|
};
|
|
|
|
// 256 * 8 bytes = 2kB, easily fits in cache.
|
|
static const uint64_t thintable_epi8[256] = {
|
|
0x0706050403020100, 0x0007060504030201, 0x0007060504030200,
|
|
0x0000070605040302, 0x0007060504030100, 0x0000070605040301,
|
|
0x0000070605040300, 0x0000000706050403, 0x0007060504020100,
|
|
0x0000070605040201, 0x0000070605040200, 0x0000000706050402,
|
|
0x0000070605040100, 0x0000000706050401, 0x0000000706050400,
|
|
0x0000000007060504, 0x0007060503020100, 0x0000070605030201,
|
|
0x0000070605030200, 0x0000000706050302, 0x0000070605030100,
|
|
0x0000000706050301, 0x0000000706050300, 0x0000000007060503,
|
|
0x0000070605020100, 0x0000000706050201, 0x0000000706050200,
|
|
0x0000000007060502, 0x0000000706050100, 0x0000000007060501,
|
|
0x0000000007060500, 0x0000000000070605, 0x0007060403020100,
|
|
0x0000070604030201, 0x0000070604030200, 0x0000000706040302,
|
|
0x0000070604030100, 0x0000000706040301, 0x0000000706040300,
|
|
0x0000000007060403, 0x0000070604020100, 0x0000000706040201,
|
|
0x0000000706040200, 0x0000000007060402, 0x0000000706040100,
|
|
0x0000000007060401, 0x0000000007060400, 0x0000000000070604,
|
|
0x0000070603020100, 0x0000000706030201, 0x0000000706030200,
|
|
0x0000000007060302, 0x0000000706030100, 0x0000000007060301,
|
|
0x0000000007060300, 0x0000000000070603, 0x0000000706020100,
|
|
0x0000000007060201, 0x0000000007060200, 0x0000000000070602,
|
|
0x0000000007060100, 0x0000000000070601, 0x0000000000070600,
|
|
0x0000000000000706, 0x0007050403020100, 0x0000070504030201,
|
|
0x0000070504030200, 0x0000000705040302, 0x0000070504030100,
|
|
0x0000000705040301, 0x0000000705040300, 0x0000000007050403,
|
|
0x0000070504020100, 0x0000000705040201, 0x0000000705040200,
|
|
0x0000000007050402, 0x0000000705040100, 0x0000000007050401,
|
|
0x0000000007050400, 0x0000000000070504, 0x0000070503020100,
|
|
0x0000000705030201, 0x0000000705030200, 0x0000000007050302,
|
|
0x0000000705030100, 0x0000000007050301, 0x0000000007050300,
|
|
0x0000000000070503, 0x0000000705020100, 0x0000000007050201,
|
|
0x0000000007050200, 0x0000000000070502, 0x0000000007050100,
|
|
0x0000000000070501, 0x0000000000070500, 0x0000000000000705,
|
|
0x0000070403020100, 0x0000000704030201, 0x0000000704030200,
|
|
0x0000000007040302, 0x0000000704030100, 0x0000000007040301,
|
|
0x0000000007040300, 0x0000000000070403, 0x0000000704020100,
|
|
0x0000000007040201, 0x0000000007040200, 0x0000000000070402,
|
|
0x0000000007040100, 0x0000000000070401, 0x0000000000070400,
|
|
0x0000000000000704, 0x0000000703020100, 0x0000000007030201,
|
|
0x0000000007030200, 0x0000000000070302, 0x0000000007030100,
|
|
0x0000000000070301, 0x0000000000070300, 0x0000000000000703,
|
|
0x0000000007020100, 0x0000000000070201, 0x0000000000070200,
|
|
0x0000000000000702, 0x0000000000070100, 0x0000000000000701,
|
|
0x0000000000000700, 0x0000000000000007, 0x0006050403020100,
|
|
0x0000060504030201, 0x0000060504030200, 0x0000000605040302,
|
|
0x0000060504030100, 0x0000000605040301, 0x0000000605040300,
|
|
0x0000000006050403, 0x0000060504020100, 0x0000000605040201,
|
|
0x0000000605040200, 0x0000000006050402, 0x0000000605040100,
|
|
0x0000000006050401, 0x0000000006050400, 0x0000000000060504,
|
|
0x0000060503020100, 0x0000000605030201, 0x0000000605030200,
|
|
0x0000000006050302, 0x0000000605030100, 0x0000000006050301,
|
|
0x0000000006050300, 0x0000000000060503, 0x0000000605020100,
|
|
0x0000000006050201, 0x0000000006050200, 0x0000000000060502,
|
|
0x0000000006050100, 0x0000000000060501, 0x0000000000060500,
|
|
0x0000000000000605, 0x0000060403020100, 0x0000000604030201,
|
|
0x0000000604030200, 0x0000000006040302, 0x0000000604030100,
|
|
0x0000000006040301, 0x0000000006040300, 0x0000000000060403,
|
|
0x0000000604020100, 0x0000000006040201, 0x0000000006040200,
|
|
0x0000000000060402, 0x0000000006040100, 0x0000000000060401,
|
|
0x0000000000060400, 0x0000000000000604, 0x0000000603020100,
|
|
0x0000000006030201, 0x0000000006030200, 0x0000000000060302,
|
|
0x0000000006030100, 0x0000000000060301, 0x0000000000060300,
|
|
0x0000000000000603, 0x0000000006020100, 0x0000000000060201,
|
|
0x0000000000060200, 0x0000000000000602, 0x0000000000060100,
|
|
0x0000000000000601, 0x0000000000000600, 0x0000000000000006,
|
|
0x0000050403020100, 0x0000000504030201, 0x0000000504030200,
|
|
0x0000000005040302, 0x0000000504030100, 0x0000000005040301,
|
|
0x0000000005040300, 0x0000000000050403, 0x0000000504020100,
|
|
0x0000000005040201, 0x0000000005040200, 0x0000000000050402,
|
|
0x0000000005040100, 0x0000000000050401, 0x0000000000050400,
|
|
0x0000000000000504, 0x0000000503020100, 0x0000000005030201,
|
|
0x0000000005030200, 0x0000000000050302, 0x0000000005030100,
|
|
0x0000000000050301, 0x0000000000050300, 0x0000000000000503,
|
|
0x0000000005020100, 0x0000000000050201, 0x0000000000050200,
|
|
0x0000000000000502, 0x0000000000050100, 0x0000000000000501,
|
|
0x0000000000000500, 0x0000000000000005, 0x0000000403020100,
|
|
0x0000000004030201, 0x0000000004030200, 0x0000000000040302,
|
|
0x0000000004030100, 0x0000000000040301, 0x0000000000040300,
|
|
0x0000000000000403, 0x0000000004020100, 0x0000000000040201,
|
|
0x0000000000040200, 0x0000000000000402, 0x0000000000040100,
|
|
0x0000000000000401, 0x0000000000000400, 0x0000000000000004,
|
|
0x0000000003020100, 0x0000000000030201, 0x0000000000030200,
|
|
0x0000000000000302, 0x0000000000030100, 0x0000000000000301,
|
|
0x0000000000000300, 0x0000000000000003, 0x0000000000020100,
|
|
0x0000000000000201, 0x0000000000000200, 0x0000000000000002,
|
|
0x0000000000000100, 0x0000000000000001, 0x0000000000000000,
|
|
0x0000000000000000,
|
|
}; //static uint64_t thintable_epi8[256]
|
|
|
|
} // namespace simdjson
|
|
|
|
|
|
#endif // SIMDJSON_IMPLEMENTATION_ARM64 || SIMDJSON_IMPLEMENTATION_HASWELL || SIMDJSON_IMPLEMENTATION_WESTMERE
|
|
#endif // SIMDJSON_SIMDPRUNE_TABLES_H
|
|
/* end file src/simdprune_tables.h */
|
|
|
|
#include <initializer_list>
|
|
|
|
#define SIMDJSON_TRY(EXPR) { auto _err = (EXPR); if (_err) { return _err; } }
|
|
|
|
// Static array of known implementations. We're hoping these get baked into the executable
|
|
// without requiring a static initializer.
|
|
|
|
#if SIMDJSON_IMPLEMENTATION_HASWELL
|
|
/* begin file src/haswell/implementation.h */
|
|
#ifndef SIMDJSON_HASWELL_IMPLEMENTATION_H
|
|
#define SIMDJSON_HASWELL_IMPLEMENTATION_H
|
|
|
|
/* isadetection.h already included: #include "isadetection.h" */
|
|
|
|
// The constructor may be executed on any host, so we take care not to use SIMDJSON_TARGET_REGION
|
|
namespace {
|
|
namespace haswell {
|
|
|
|
using namespace simdjson;
|
|
|
|
class implementation final : public simdjson::implementation {
|
|
public:
|
|
simdjson_really_inline implementation() : simdjson::implementation(
|
|
"haswell",
|
|
"Intel/AMD AVX2",
|
|
instruction_set::AVX2 | instruction_set::PCLMULQDQ | instruction_set::BMI1 | instruction_set::BMI2
|
|
) {}
|
|
SIMDJSON_WARN_UNUSED error_code create_dom_parser_implementation(
|
|
size_t capacity,
|
|
size_t max_length,
|
|
std::unique_ptr<internal::dom_parser_implementation>& dst
|
|
) const noexcept final;
|
|
SIMDJSON_WARN_UNUSED error_code minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept final;
|
|
SIMDJSON_WARN_UNUSED bool validate_utf8(const char *buf, size_t len) const noexcept final;
|
|
};
|
|
|
|
} // namespace haswell
|
|
} // unnamed namespace
|
|
|
|
#endif // SIMDJSON_HASWELL_IMPLEMENTATION_H
|
|
/* end file src/haswell/implementation.h */
|
|
namespace simdjson { namespace internal { const haswell::implementation haswell_singleton{}; } }
|
|
#endif // SIMDJSON_IMPLEMENTATION_HASWELL
|
|
|
|
#if SIMDJSON_IMPLEMENTATION_WESTMERE
|
|
/* begin file src/westmere/implementation.h */
|
|
#ifndef SIMDJSON_WESTMERE_IMPLEMENTATION_H
|
|
#define SIMDJSON_WESTMERE_IMPLEMENTATION_H
|
|
|
|
/* isadetection.h already included: #include "isadetection.h" */
|
|
|
|
// The constructor may be executed on any host, so we take care not to use SIMDJSON_TARGET_REGION
|
|
namespace {
|
|
namespace westmere {
|
|
|
|
using namespace simdjson;
|
|
using namespace simdjson::dom;
|
|
|
|
class implementation final : public simdjson::implementation {
|
|
public:
|
|
simdjson_really_inline implementation() : simdjson::implementation("westmere", "Intel/AMD SSE4.2", instruction_set::SSE42 | instruction_set::PCLMULQDQ) {}
|
|
SIMDJSON_WARN_UNUSED error_code create_dom_parser_implementation(
|
|
size_t capacity,
|
|
size_t max_length,
|
|
std::unique_ptr<internal::dom_parser_implementation>& dst
|
|
) const noexcept final;
|
|
SIMDJSON_WARN_UNUSED error_code minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept final;
|
|
SIMDJSON_WARN_UNUSED bool validate_utf8(const char *buf, size_t len) const noexcept final;
|
|
};
|
|
|
|
} // namespace westmere
|
|
} // unnamed namespace
|
|
|
|
#endif // SIMDJSON_WESTMERE_IMPLEMENTATION_H
|
|
/* end file src/westmere/implementation.h */
|
|
namespace simdjson { namespace internal { const westmere::implementation westmere_singleton{}; } }
|
|
#endif // SIMDJSON_IMPLEMENTATION_WESTMERE
|
|
|
|
#if SIMDJSON_IMPLEMENTATION_ARM64
|
|
/* begin file src/arm64/implementation.h */
|
|
#ifndef SIMDJSON_ARM64_IMPLEMENTATION_H
|
|
#define SIMDJSON_ARM64_IMPLEMENTATION_H
|
|
|
|
/* isadetection.h already included: #include "isadetection.h" */
|
|
|
|
namespace {
|
|
namespace arm64 {
|
|
|
|
using namespace simdjson;
|
|
using namespace simdjson::dom;
|
|
|
|
class implementation final : public simdjson::implementation {
|
|
public:
|
|
simdjson_really_inline implementation() : simdjson::implementation("arm64", "ARM NEON", instruction_set::NEON) {}
|
|
SIMDJSON_WARN_UNUSED error_code create_dom_parser_implementation(
|
|
size_t capacity,
|
|
size_t max_length,
|
|
std::unique_ptr<internal::dom_parser_implementation>& dst
|
|
) const noexcept final;
|
|
SIMDJSON_WARN_UNUSED error_code minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept final;
|
|
SIMDJSON_WARN_UNUSED bool validate_utf8(const char *buf, size_t len) const noexcept final;
|
|
};
|
|
|
|
} // namespace arm64
|
|
} // unnamed namespace
|
|
|
|
#endif // SIMDJSON_ARM64_IMPLEMENTATION_H
|
|
/* end file src/arm64/implementation.h */
|
|
namespace simdjson { namespace internal { const arm64::implementation arm64_singleton{}; } }
|
|
#endif // SIMDJSON_IMPLEMENTATION_ARM64
|
|
|
|
#if SIMDJSON_IMPLEMENTATION_FALLBACK
|
|
/* begin file src/fallback/implementation.h */
|
|
#ifndef SIMDJSON_FALLBACK_IMPLEMENTATION_H
|
|
#define SIMDJSON_FALLBACK_IMPLEMENTATION_H
|
|
|
|
/* isadetection.h already included: #include "isadetection.h" */
|
|
|
|
namespace {
|
|
namespace fallback {
|
|
|
|
using namespace simdjson;
|
|
using namespace simdjson::dom;
|
|
|
|
class implementation final : public simdjson::implementation {
|
|
public:
|
|
simdjson_really_inline implementation() : simdjson::implementation(
|
|
"fallback",
|
|
"Generic fallback implementation",
|
|
0
|
|
) {}
|
|
SIMDJSON_WARN_UNUSED error_code create_dom_parser_implementation(
|
|
size_t capacity,
|
|
size_t max_length,
|
|
std::unique_ptr<internal::dom_parser_implementation>& dst
|
|
) const noexcept final;
|
|
SIMDJSON_WARN_UNUSED error_code minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept final;
|
|
SIMDJSON_WARN_UNUSED bool validate_utf8(const char *buf, size_t len) const noexcept final;
|
|
};
|
|
|
|
} // namespace fallback
|
|
} // unnamed namespace
|
|
|
|
#endif // SIMDJSON_FALLBACK_IMPLEMENTATION_H
|
|
/* end file src/fallback/implementation.h */
|
|
namespace simdjson { namespace internal { const fallback::implementation fallback_singleton{}; } }
|
|
#endif // SIMDJSON_IMPLEMENTATION_FALLBACK
|
|
|
|
namespace simdjson {
|
|
namespace internal {
|
|
|
|
/**
|
|
* @private Detects best supported implementation on first use, and sets it
|
|
*/
|
|
class detect_best_supported_implementation_on_first_use final : public implementation {
|
|
public:
|
|
const std::string &name() const noexcept final { return set_best()->name(); }
|
|
const std::string &description() const noexcept final { return set_best()->description(); }
|
|
uint32_t required_instruction_sets() const noexcept final { return set_best()->required_instruction_sets(); }
|
|
SIMDJSON_WARN_UNUSED error_code create_dom_parser_implementation(
|
|
size_t capacity,
|
|
size_t max_length,
|
|
std::unique_ptr<internal::dom_parser_implementation>& dst
|
|
) const noexcept final {
|
|
return set_best()->create_dom_parser_implementation(capacity, max_length, dst);
|
|
}
|
|
SIMDJSON_WARN_UNUSED error_code minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept final {
|
|
return set_best()->minify(buf, len, dst, dst_len);
|
|
}
|
|
SIMDJSON_WARN_UNUSED bool validate_utf8(const char * buf, size_t len) const noexcept final override {
|
|
return set_best()->validate_utf8(buf, len);
|
|
}
|
|
simdjson_really_inline detect_best_supported_implementation_on_first_use() noexcept : implementation("best_supported_detector", "Detects the best supported implementation and sets it", 0) {}
|
|
private:
|
|
const implementation *set_best() const noexcept;
|
|
};
|
|
|
|
const detect_best_supported_implementation_on_first_use detect_best_supported_implementation_on_first_use_singleton;
|
|
|
|
const std::initializer_list<const implementation *> available_implementation_pointers {
|
|
#if SIMDJSON_IMPLEMENTATION_HASWELL
|
|
&haswell_singleton,
|
|
#endif
|
|
#if SIMDJSON_IMPLEMENTATION_WESTMERE
|
|
&westmere_singleton,
|
|
#endif
|
|
#if SIMDJSON_IMPLEMENTATION_ARM64
|
|
&arm64_singleton,
|
|
#endif
|
|
#if SIMDJSON_IMPLEMENTATION_FALLBACK
|
|
&fallback_singleton,
|
|
#endif
|
|
}; // available_implementation_pointers
|
|
|
|
// So we can return UNSUPPORTED_ARCHITECTURE from the parser when there is no support
|
|
class unsupported_implementation final : public implementation {
|
|
public:
|
|
SIMDJSON_WARN_UNUSED error_code create_dom_parser_implementation(
|
|
size_t,
|
|
size_t,
|
|
std::unique_ptr<internal::dom_parser_implementation>&
|
|
) const noexcept final {
|
|
return UNSUPPORTED_ARCHITECTURE;
|
|
}
|
|
SIMDJSON_WARN_UNUSED error_code minify(const uint8_t *, size_t, uint8_t *, size_t &) const noexcept final override {
|
|
return UNSUPPORTED_ARCHITECTURE;
|
|
}
|
|
SIMDJSON_WARN_UNUSED bool validate_utf8(const char *, size_t) const noexcept final override {
|
|
return false; // Just refuse to validate. Given that we have a fallback implementation
|
|
// it seems unlikely that unsupported_implementation will ever be used. If it is used,
|
|
// then it will flag all strings as invalid. The alternative is to return an error_code
|
|
// from which the user has to figure out whether the string is valid UTF-8... which seems
|
|
// like a lot of work just to handle the very unlikely case that we have an unsupported
|
|
// implementation. And, when it does happen (that we have an unsupported implementation),
|
|
// what are the chances that the programmer has a fallback? Given that *we* provide the
|
|
// fallback, it implies that the programmer would need a fallback for our fallback.
|
|
}
|
|
unsupported_implementation() : implementation("unsupported", "Unsupported CPU (no detected SIMD instructions)", 0) {}
|
|
};
|
|
|
|
const unsupported_implementation unsupported_singleton{};
|
|
|
|
size_t available_implementation_list::size() const noexcept {
|
|
return internal::available_implementation_pointers.size();
|
|
}
|
|
const implementation * const *available_implementation_list::begin() const noexcept {
|
|
return internal::available_implementation_pointers.begin();
|
|
}
|
|
const implementation * const *available_implementation_list::end() const noexcept {
|
|
return internal::available_implementation_pointers.end();
|
|
}
|
|
const implementation *available_implementation_list::detect_best_supported() const noexcept {
|
|
// They are prelisted in priority order, so we just go down the list
|
|
uint32_t supported_instruction_sets = detect_supported_architectures();
|
|
for (const implementation *impl : internal::available_implementation_pointers) {
|
|
uint32_t required_instruction_sets = impl->required_instruction_sets();
|
|
if ((supported_instruction_sets & required_instruction_sets) == required_instruction_sets) { return impl; }
|
|
}
|
|
return &unsupported_singleton; // this should never happen?
|
|
}
|
|
|
|
const implementation *detect_best_supported_implementation_on_first_use::set_best() const noexcept {
|
|
SIMDJSON_PUSH_DISABLE_WARNINGS
|
|
SIMDJSON_DISABLE_DEPRECATED_WARNING // Disable CRT_SECURE warning on MSVC: manually verified this is safe
|
|
char *force_implementation_name = getenv("SIMDJSON_FORCE_IMPLEMENTATION");
|
|
SIMDJSON_POP_DISABLE_WARNINGS
|
|
|
|
if (force_implementation_name) {
|
|
auto force_implementation = available_implementations[force_implementation_name];
|
|
if (force_implementation) {
|
|
return active_implementation = force_implementation;
|
|
} else {
|
|
// Note: abort() and stderr usage within the library is forbidden.
|
|
return active_implementation = &unsupported_singleton;
|
|
}
|
|
}
|
|
return active_implementation = available_implementations.detect_best_supported();
|
|
}
|
|
|
|
} // namespace internal
|
|
|
|
SIMDJSON_DLLIMPORTEXPORT const internal::available_implementation_list available_implementations{};
|
|
SIMDJSON_DLLIMPORTEXPORT internal::atomic_ptr<const implementation> active_implementation{&internal::detect_best_supported_implementation_on_first_use_singleton};
|
|
|
|
SIMDJSON_WARN_UNUSED error_code minify(const char *buf, size_t len, char *dst, size_t &dst_len) noexcept {
|
|
return active_implementation->minify((const uint8_t *)buf, len, (uint8_t *)dst, dst_len);
|
|
}
|
|
SIMDJSON_WARN_UNUSED bool validate_utf8(const char *buf, size_t len) noexcept {
|
|
return active_implementation->validate_utf8(buf, len);
|
|
}
|
|
|
|
|
|
} // namespace simdjson
|
|
/* end file src/fallback/implementation.h */
|
|
|
|
// Anything in the top level directory MUST be included outside of the #if statements
|
|
// below, or amalgamation will screw them up!
|
|
/* isadetection.h already included: #include "isadetection.h" */
|
|
/* begin file src/jsoncharutils_tables.h */
|
|
#ifndef SIMDJSON_JSONCHARUTILS_TABLES_H
|
|
#define SIMDJSON_JSONCHARUTILS_TABLES_H
|
|
|
|
|
|
#ifdef JSON_TEST_STRINGS
|
|
void found_string(const uint8_t *buf, const uint8_t *parsed_begin,
|
|
const uint8_t *parsed_end);
|
|
void found_bad_string(const uint8_t *buf);
|
|
#endif
|
|
|
|
namespace simdjson {
|
|
// structural chars here are
|
|
// they are { 0x7b } 0x7d : 0x3a [ 0x5b ] 0x5d , 0x2c (and NULL)
|
|
// we are also interested in the four whitespace characters
|
|
// space 0x20, linefeed 0x0a, horizontal tab 0x09 and carriage return 0x0d
|
|
|
|
const bool structural_or_whitespace_negated[256] = {
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
|
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1,
|
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
|
|
|
|
const bool structural_or_whitespace[256] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
|
|
const uint32_t digit_to_val32[886] = {
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0x0, 0x1, 0x2, 0x3, 0x4, 0x5,
|
|
0x6, 0x7, 0x8, 0x9, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xa,
|
|
0xb, 0xc, 0xd, 0xe, 0xf, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xa, 0xb, 0xc, 0xd, 0xe,
|
|
0xf, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0x0, 0x10, 0x20, 0x30, 0x40, 0x50,
|
|
0x60, 0x70, 0x80, 0x90, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xa0,
|
|
0xb0, 0xc0, 0xd0, 0xe0, 0xf0, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0,
|
|
0xf0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0x0, 0x100, 0x200, 0x300, 0x400, 0x500,
|
|
0x600, 0x700, 0x800, 0x900, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xa00,
|
|
0xb00, 0xc00, 0xd00, 0xe00, 0xf00, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xa00, 0xb00, 0xc00, 0xd00, 0xe00,
|
|
0xf00, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0x0, 0x1000, 0x2000, 0x3000, 0x4000, 0x5000,
|
|
0x6000, 0x7000, 0x8000, 0x9000, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xa000,
|
|
0xb000, 0xc000, 0xd000, 0xe000, 0xf000, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xa000, 0xb000, 0xc000, 0xd000, 0xe000,
|
|
0xf000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF};
|
|
////
|
|
// The following code is used in number parsing. It is not
|
|
// properly "char utils" stuff, but we move it here so that
|
|
// it does not get copied multiple times in the binaries (once
|
|
// per instruction set).
|
|
///
|
|
|
|
constexpr int FASTFLOAT_SMALLEST_POWER = -325;
|
|
constexpr int FASTFLOAT_LARGEST_POWER = 308;
|
|
|
|
struct value128 {
|
|
uint64_t low;
|
|
uint64_t high;
|
|
};
|
|
|
|
// Precomputed powers of ten from 10^0 to 10^22. These
|
|
// can be represented exactly using the double type.
|
|
static const double power_of_ten[] = {
|
|
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11,
|
|
1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22};
|
|
|
|
// The mantissas of powers of ten from -308 to 308, extended out to sixty four
|
|
// bits. The array contains the powers of ten approximated
|
|
// as a 64-bit mantissa. It goes from 10^FASTFLOAT_SMALLEST_POWER to
|
|
// 10^FASTFLOAT_LARGEST_POWER (inclusively).
|
|
// The mantissa is truncated, and
|
|
// never rounded up. Uses about 5KB.
|
|
static const uint64_t mantissa_64[] = {
|
|
0xa5ced43b7e3e9188, 0xcf42894a5dce35ea,
|
|
0x818995ce7aa0e1b2, 0xa1ebfb4219491a1f,
|
|
0xca66fa129f9b60a6, 0xfd00b897478238d0,
|
|
0x9e20735e8cb16382, 0xc5a890362fddbc62,
|
|
0xf712b443bbd52b7b, 0x9a6bb0aa55653b2d,
|
|
0xc1069cd4eabe89f8, 0xf148440a256e2c76,
|
|
0x96cd2a865764dbca, 0xbc807527ed3e12bc,
|
|
0xeba09271e88d976b, 0x93445b8731587ea3,
|
|
0xb8157268fdae9e4c, 0xe61acf033d1a45df,
|
|
0x8fd0c16206306bab, 0xb3c4f1ba87bc8696,
|
|
0xe0b62e2929aba83c, 0x8c71dcd9ba0b4925,
|
|
0xaf8e5410288e1b6f, 0xdb71e91432b1a24a,
|
|
0x892731ac9faf056e, 0xab70fe17c79ac6ca,
|
|
0xd64d3d9db981787d, 0x85f0468293f0eb4e,
|
|
0xa76c582338ed2621, 0xd1476e2c07286faa,
|
|
0x82cca4db847945ca, 0xa37fce126597973c,
|
|
0xcc5fc196fefd7d0c, 0xff77b1fcbebcdc4f,
|
|
0x9faacf3df73609b1, 0xc795830d75038c1d,
|
|
0xf97ae3d0d2446f25, 0x9becce62836ac577,
|
|
0xc2e801fb244576d5, 0xf3a20279ed56d48a,
|
|
0x9845418c345644d6, 0xbe5691ef416bd60c,
|
|
0xedec366b11c6cb8f, 0x94b3a202eb1c3f39,
|
|
0xb9e08a83a5e34f07, 0xe858ad248f5c22c9,
|
|
0x91376c36d99995be, 0xb58547448ffffb2d,
|
|
0xe2e69915b3fff9f9, 0x8dd01fad907ffc3b,
|
|
0xb1442798f49ffb4a, 0xdd95317f31c7fa1d,
|
|
0x8a7d3eef7f1cfc52, 0xad1c8eab5ee43b66,
|
|
0xd863b256369d4a40, 0x873e4f75e2224e68,
|
|
0xa90de3535aaae202, 0xd3515c2831559a83,
|
|
0x8412d9991ed58091, 0xa5178fff668ae0b6,
|
|
0xce5d73ff402d98e3, 0x80fa687f881c7f8e,
|
|
0xa139029f6a239f72, 0xc987434744ac874e,
|
|
0xfbe9141915d7a922, 0x9d71ac8fada6c9b5,
|
|
0xc4ce17b399107c22, 0xf6019da07f549b2b,
|
|
0x99c102844f94e0fb, 0xc0314325637a1939,
|
|
0xf03d93eebc589f88, 0x96267c7535b763b5,
|
|
0xbbb01b9283253ca2, 0xea9c227723ee8bcb,
|
|
0x92a1958a7675175f, 0xb749faed14125d36,
|
|
0xe51c79a85916f484, 0x8f31cc0937ae58d2,
|
|
0xb2fe3f0b8599ef07, 0xdfbdcece67006ac9,
|
|
0x8bd6a141006042bd, 0xaecc49914078536d,
|
|
0xda7f5bf590966848, 0x888f99797a5e012d,
|
|
0xaab37fd7d8f58178, 0xd5605fcdcf32e1d6,
|
|
0x855c3be0a17fcd26, 0xa6b34ad8c9dfc06f,
|
|
0xd0601d8efc57b08b, 0x823c12795db6ce57,
|
|
0xa2cb1717b52481ed, 0xcb7ddcdda26da268,
|
|
0xfe5d54150b090b02, 0x9efa548d26e5a6e1,
|
|
0xc6b8e9b0709f109a, 0xf867241c8cc6d4c0,
|
|
0x9b407691d7fc44f8, 0xc21094364dfb5636,
|
|
0xf294b943e17a2bc4, 0x979cf3ca6cec5b5a,
|
|
0xbd8430bd08277231, 0xece53cec4a314ebd,
|
|
0x940f4613ae5ed136, 0xb913179899f68584,
|
|
0xe757dd7ec07426e5, 0x9096ea6f3848984f,
|
|
0xb4bca50b065abe63, 0xe1ebce4dc7f16dfb,
|
|
0x8d3360f09cf6e4bd, 0xb080392cc4349dec,
|
|
0xdca04777f541c567, 0x89e42caaf9491b60,
|
|
0xac5d37d5b79b6239, 0xd77485cb25823ac7,
|
|
0x86a8d39ef77164bc, 0xa8530886b54dbdeb,
|
|
0xd267caa862a12d66, 0x8380dea93da4bc60,
|
|
0xa46116538d0deb78, 0xcd795be870516656,
|
|
0x806bd9714632dff6, 0xa086cfcd97bf97f3,
|
|
0xc8a883c0fdaf7df0, 0xfad2a4b13d1b5d6c,
|
|
0x9cc3a6eec6311a63, 0xc3f490aa77bd60fc,
|
|
0xf4f1b4d515acb93b, 0x991711052d8bf3c5,
|
|
0xbf5cd54678eef0b6, 0xef340a98172aace4,
|
|
0x9580869f0e7aac0e, 0xbae0a846d2195712,
|
|
0xe998d258869facd7, 0x91ff83775423cc06,
|
|
0xb67f6455292cbf08, 0xe41f3d6a7377eeca,
|
|
0x8e938662882af53e, 0xb23867fb2a35b28d,
|
|
0xdec681f9f4c31f31, 0x8b3c113c38f9f37e,
|
|
0xae0b158b4738705e, 0xd98ddaee19068c76,
|
|
0x87f8a8d4cfa417c9, 0xa9f6d30a038d1dbc,
|
|
0xd47487cc8470652b, 0x84c8d4dfd2c63f3b,
|
|
0xa5fb0a17c777cf09, 0xcf79cc9db955c2cc,
|
|
0x81ac1fe293d599bf, 0xa21727db38cb002f,
|
|
0xca9cf1d206fdc03b, 0xfd442e4688bd304a,
|
|
0x9e4a9cec15763e2e, 0xc5dd44271ad3cdba,
|
|
0xf7549530e188c128, 0x9a94dd3e8cf578b9,
|
|
0xc13a148e3032d6e7, 0xf18899b1bc3f8ca1,
|
|
0x96f5600f15a7b7e5, 0xbcb2b812db11a5de,
|
|
0xebdf661791d60f56, 0x936b9fcebb25c995,
|
|
0xb84687c269ef3bfb, 0xe65829b3046b0afa,
|
|
0x8ff71a0fe2c2e6dc, 0xb3f4e093db73a093,
|
|
0xe0f218b8d25088b8, 0x8c974f7383725573,
|
|
0xafbd2350644eeacf, 0xdbac6c247d62a583,
|
|
0x894bc396ce5da772, 0xab9eb47c81f5114f,
|
|
0xd686619ba27255a2, 0x8613fd0145877585,
|
|
0xa798fc4196e952e7, 0xd17f3b51fca3a7a0,
|
|
0x82ef85133de648c4, 0xa3ab66580d5fdaf5,
|
|
0xcc963fee10b7d1b3, 0xffbbcfe994e5c61f,
|
|
0x9fd561f1fd0f9bd3, 0xc7caba6e7c5382c8,
|
|
0xf9bd690a1b68637b, 0x9c1661a651213e2d,
|
|
0xc31bfa0fe5698db8, 0xf3e2f893dec3f126,
|
|
0x986ddb5c6b3a76b7, 0xbe89523386091465,
|
|
0xee2ba6c0678b597f, 0x94db483840b717ef,
|
|
0xba121a4650e4ddeb, 0xe896a0d7e51e1566,
|
|
0x915e2486ef32cd60, 0xb5b5ada8aaff80b8,
|
|
0xe3231912d5bf60e6, 0x8df5efabc5979c8f,
|
|
0xb1736b96b6fd83b3, 0xddd0467c64bce4a0,
|
|
0x8aa22c0dbef60ee4, 0xad4ab7112eb3929d,
|
|
0xd89d64d57a607744, 0x87625f056c7c4a8b,
|
|
0xa93af6c6c79b5d2d, 0xd389b47879823479,
|
|
0x843610cb4bf160cb, 0xa54394fe1eedb8fe,
|
|
0xce947a3da6a9273e, 0x811ccc668829b887,
|
|
0xa163ff802a3426a8, 0xc9bcff6034c13052,
|
|
0xfc2c3f3841f17c67, 0x9d9ba7832936edc0,
|
|
0xc5029163f384a931, 0xf64335bcf065d37d,
|
|
0x99ea0196163fa42e, 0xc06481fb9bcf8d39,
|
|
0xf07da27a82c37088, 0x964e858c91ba2655,
|
|
0xbbe226efb628afea, 0xeadab0aba3b2dbe5,
|
|
0x92c8ae6b464fc96f, 0xb77ada0617e3bbcb,
|
|
0xe55990879ddcaabd, 0x8f57fa54c2a9eab6,
|
|
0xb32df8e9f3546564, 0xdff9772470297ebd,
|
|
0x8bfbea76c619ef36, 0xaefae51477a06b03,
|
|
0xdab99e59958885c4, 0x88b402f7fd75539b,
|
|
0xaae103b5fcd2a881, 0xd59944a37c0752a2,
|
|
0x857fcae62d8493a5, 0xa6dfbd9fb8e5b88e,
|
|
0xd097ad07a71f26b2, 0x825ecc24c873782f,
|
|
0xa2f67f2dfa90563b, 0xcbb41ef979346bca,
|
|
0xfea126b7d78186bc, 0x9f24b832e6b0f436,
|
|
0xc6ede63fa05d3143, 0xf8a95fcf88747d94,
|
|
0x9b69dbe1b548ce7c, 0xc24452da229b021b,
|
|
0xf2d56790ab41c2a2, 0x97c560ba6b0919a5,
|
|
0xbdb6b8e905cb600f, 0xed246723473e3813,
|
|
0x9436c0760c86e30b, 0xb94470938fa89bce,
|
|
0xe7958cb87392c2c2, 0x90bd77f3483bb9b9,
|
|
0xb4ecd5f01a4aa828, 0xe2280b6c20dd5232,
|
|
0x8d590723948a535f, 0xb0af48ec79ace837,
|
|
0xdcdb1b2798182244, 0x8a08f0f8bf0f156b,
|
|
0xac8b2d36eed2dac5, 0xd7adf884aa879177,
|
|
0x86ccbb52ea94baea, 0xa87fea27a539e9a5,
|
|
0xd29fe4b18e88640e, 0x83a3eeeef9153e89,
|
|
0xa48ceaaab75a8e2b, 0xcdb02555653131b6,
|
|
0x808e17555f3ebf11, 0xa0b19d2ab70e6ed6,
|
|
0xc8de047564d20a8b, 0xfb158592be068d2e,
|
|
0x9ced737bb6c4183d, 0xc428d05aa4751e4c,
|
|
0xf53304714d9265df, 0x993fe2c6d07b7fab,
|
|
0xbf8fdb78849a5f96, 0xef73d256a5c0f77c,
|
|
0x95a8637627989aad, 0xbb127c53b17ec159,
|
|
0xe9d71b689dde71af, 0x9226712162ab070d,
|
|
0xb6b00d69bb55c8d1, 0xe45c10c42a2b3b05,
|
|
0x8eb98a7a9a5b04e3, 0xb267ed1940f1c61c,
|
|
0xdf01e85f912e37a3, 0x8b61313bbabce2c6,
|
|
0xae397d8aa96c1b77, 0xd9c7dced53c72255,
|
|
0x881cea14545c7575, 0xaa242499697392d2,
|
|
0xd4ad2dbfc3d07787, 0x84ec3c97da624ab4,
|
|
0xa6274bbdd0fadd61, 0xcfb11ead453994ba,
|
|
0x81ceb32c4b43fcf4, 0xa2425ff75e14fc31,
|
|
0xcad2f7f5359a3b3e, 0xfd87b5f28300ca0d,
|
|
0x9e74d1b791e07e48, 0xc612062576589dda,
|
|
0xf79687aed3eec551, 0x9abe14cd44753b52,
|
|
0xc16d9a0095928a27, 0xf1c90080baf72cb1,
|
|
0x971da05074da7bee, 0xbce5086492111aea,
|
|
0xec1e4a7db69561a5, 0x9392ee8e921d5d07,
|
|
0xb877aa3236a4b449, 0xe69594bec44de15b,
|
|
0x901d7cf73ab0acd9, 0xb424dc35095cd80f,
|
|
0xe12e13424bb40e13, 0x8cbccc096f5088cb,
|
|
0xafebff0bcb24aafe, 0xdbe6fecebdedd5be,
|
|
0x89705f4136b4a597, 0xabcc77118461cefc,
|
|
0xd6bf94d5e57a42bc, 0x8637bd05af6c69b5,
|
|
0xa7c5ac471b478423, 0xd1b71758e219652b,
|
|
0x83126e978d4fdf3b, 0xa3d70a3d70a3d70a,
|
|
0xcccccccccccccccc, 0x8000000000000000,
|
|
0xa000000000000000, 0xc800000000000000,
|
|
0xfa00000000000000, 0x9c40000000000000,
|
|
0xc350000000000000, 0xf424000000000000,
|
|
0x9896800000000000, 0xbebc200000000000,
|
|
0xee6b280000000000, 0x9502f90000000000,
|
|
0xba43b74000000000, 0xe8d4a51000000000,
|
|
0x9184e72a00000000, 0xb5e620f480000000,
|
|
0xe35fa931a0000000, 0x8e1bc9bf04000000,
|
|
0xb1a2bc2ec5000000, 0xde0b6b3a76400000,
|
|
0x8ac7230489e80000, 0xad78ebc5ac620000,
|
|
0xd8d726b7177a8000, 0x878678326eac9000,
|
|
0xa968163f0a57b400, 0xd3c21bcecceda100,
|
|
0x84595161401484a0, 0xa56fa5b99019a5c8,
|
|
0xcecb8f27f4200f3a, 0x813f3978f8940984,
|
|
0xa18f07d736b90be5, 0xc9f2c9cd04674ede,
|
|
0xfc6f7c4045812296, 0x9dc5ada82b70b59d,
|
|
0xc5371912364ce305, 0xf684df56c3e01bc6,
|
|
0x9a130b963a6c115c, 0xc097ce7bc90715b3,
|
|
0xf0bdc21abb48db20, 0x96769950b50d88f4,
|
|
0xbc143fa4e250eb31, 0xeb194f8e1ae525fd,
|
|
0x92efd1b8d0cf37be, 0xb7abc627050305ad,
|
|
0xe596b7b0c643c719, 0x8f7e32ce7bea5c6f,
|
|
0xb35dbf821ae4f38b, 0xe0352f62a19e306e,
|
|
0x8c213d9da502de45, 0xaf298d050e4395d6,
|
|
0xdaf3f04651d47b4c, 0x88d8762bf324cd0f,
|
|
0xab0e93b6efee0053, 0xd5d238a4abe98068,
|
|
0x85a36366eb71f041, 0xa70c3c40a64e6c51,
|
|
0xd0cf4b50cfe20765, 0x82818f1281ed449f,
|
|
0xa321f2d7226895c7, 0xcbea6f8ceb02bb39,
|
|
0xfee50b7025c36a08, 0x9f4f2726179a2245,
|
|
0xc722f0ef9d80aad6, 0xf8ebad2b84e0d58b,
|
|
0x9b934c3b330c8577, 0xc2781f49ffcfa6d5,
|
|
0xf316271c7fc3908a, 0x97edd871cfda3a56,
|
|
0xbde94e8e43d0c8ec, 0xed63a231d4c4fb27,
|
|
0x945e455f24fb1cf8, 0xb975d6b6ee39e436,
|
|
0xe7d34c64a9c85d44, 0x90e40fbeea1d3a4a,
|
|
0xb51d13aea4a488dd, 0xe264589a4dcdab14,
|
|
0x8d7eb76070a08aec, 0xb0de65388cc8ada8,
|
|
0xdd15fe86affad912, 0x8a2dbf142dfcc7ab,
|
|
0xacb92ed9397bf996, 0xd7e77a8f87daf7fb,
|
|
0x86f0ac99b4e8dafd, 0xa8acd7c0222311bc,
|
|
0xd2d80db02aabd62b, 0x83c7088e1aab65db,
|
|
0xa4b8cab1a1563f52, 0xcde6fd5e09abcf26,
|
|
0x80b05e5ac60b6178, 0xa0dc75f1778e39d6,
|
|
0xc913936dd571c84c, 0xfb5878494ace3a5f,
|
|
0x9d174b2dcec0e47b, 0xc45d1df942711d9a,
|
|
0xf5746577930d6500, 0x9968bf6abbe85f20,
|
|
0xbfc2ef456ae276e8, 0xefb3ab16c59b14a2,
|
|
0x95d04aee3b80ece5, 0xbb445da9ca61281f,
|
|
0xea1575143cf97226, 0x924d692ca61be758,
|
|
0xb6e0c377cfa2e12e, 0xe498f455c38b997a,
|
|
0x8edf98b59a373fec, 0xb2977ee300c50fe7,
|
|
0xdf3d5e9bc0f653e1, 0x8b865b215899f46c,
|
|
0xae67f1e9aec07187, 0xda01ee641a708de9,
|
|
0x884134fe908658b2, 0xaa51823e34a7eede,
|
|
0xd4e5e2cdc1d1ea96, 0x850fadc09923329e,
|
|
0xa6539930bf6bff45, 0xcfe87f7cef46ff16,
|
|
0x81f14fae158c5f6e, 0xa26da3999aef7749,
|
|
0xcb090c8001ab551c, 0xfdcb4fa002162a63,
|
|
0x9e9f11c4014dda7e, 0xc646d63501a1511d,
|
|
0xf7d88bc24209a565, 0x9ae757596946075f,
|
|
0xc1a12d2fc3978937, 0xf209787bb47d6b84,
|
|
0x9745eb4d50ce6332, 0xbd176620a501fbff,
|
|
0xec5d3fa8ce427aff, 0x93ba47c980e98cdf,
|
|
0xb8a8d9bbe123f017, 0xe6d3102ad96cec1d,
|
|
0x9043ea1ac7e41392, 0xb454e4a179dd1877,
|
|
0xe16a1dc9d8545e94, 0x8ce2529e2734bb1d,
|
|
0xb01ae745b101e9e4, 0xdc21a1171d42645d,
|
|
0x899504ae72497eba, 0xabfa45da0edbde69,
|
|
0xd6f8d7509292d603, 0x865b86925b9bc5c2,
|
|
0xa7f26836f282b732, 0xd1ef0244af2364ff,
|
|
0x8335616aed761f1f, 0xa402b9c5a8d3a6e7,
|
|
0xcd036837130890a1, 0x802221226be55a64,
|
|
0xa02aa96b06deb0fd, 0xc83553c5c8965d3d,
|
|
0xfa42a8b73abbf48c, 0x9c69a97284b578d7,
|
|
0xc38413cf25e2d70d, 0xf46518c2ef5b8cd1,
|
|
0x98bf2f79d5993802, 0xbeeefb584aff8603,
|
|
0xeeaaba2e5dbf6784, 0x952ab45cfa97a0b2,
|
|
0xba756174393d88df, 0xe912b9d1478ceb17,
|
|
0x91abb422ccb812ee, 0xb616a12b7fe617aa,
|
|
0xe39c49765fdf9d94, 0x8e41ade9fbebc27d,
|
|
0xb1d219647ae6b31c, 0xde469fbd99a05fe3,
|
|
0x8aec23d680043bee, 0xada72ccc20054ae9,
|
|
0xd910f7ff28069da4, 0x87aa9aff79042286,
|
|
0xa99541bf57452b28, 0xd3fa922f2d1675f2,
|
|
0x847c9b5d7c2e09b7, 0xa59bc234db398c25,
|
|
0xcf02b2c21207ef2e, 0x8161afb94b44f57d,
|
|
0xa1ba1ba79e1632dc, 0xca28a291859bbf93,
|
|
0xfcb2cb35e702af78, 0x9defbf01b061adab,
|
|
0xc56baec21c7a1916, 0xf6c69a72a3989f5b,
|
|
0x9a3c2087a63f6399, 0xc0cb28a98fcf3c7f,
|
|
0xf0fdf2d3f3c30b9f, 0x969eb7c47859e743,
|
|
0xbc4665b596706114, 0xeb57ff22fc0c7959,
|
|
0x9316ff75dd87cbd8, 0xb7dcbf5354e9bece,
|
|
0xe5d3ef282a242e81, 0x8fa475791a569d10,
|
|
0xb38d92d760ec4455, 0xe070f78d3927556a,
|
|
0x8c469ab843b89562, 0xaf58416654a6babb,
|
|
0xdb2e51bfe9d0696a, 0x88fcf317f22241e2,
|
|
0xab3c2fddeeaad25a, 0xd60b3bd56a5586f1,
|
|
0x85c7056562757456, 0xa738c6bebb12d16c,
|
|
0xd106f86e69d785c7, 0x82a45b450226b39c,
|
|
0xa34d721642b06084, 0xcc20ce9bd35c78a5,
|
|
0xff290242c83396ce, 0x9f79a169bd203e41,
|
|
0xc75809c42c684dd1, 0xf92e0c3537826145,
|
|
0x9bbcc7a142b17ccb, 0xc2abf989935ddbfe,
|
|
0xf356f7ebf83552fe, 0x98165af37b2153de,
|
|
0xbe1bf1b059e9a8d6, 0xeda2ee1c7064130c,
|
|
0x9485d4d1c63e8be7, 0xb9a74a0637ce2ee1,
|
|
0xe8111c87c5c1ba99, 0x910ab1d4db9914a0,
|
|
0xb54d5e4a127f59c8, 0xe2a0b5dc971f303a,
|
|
0x8da471a9de737e24, 0xb10d8e1456105dad,
|
|
0xdd50f1996b947518, 0x8a5296ffe33cc92f,
|
|
0xace73cbfdc0bfb7b, 0xd8210befd30efa5a,
|
|
0x8714a775e3e95c78, 0xa8d9d1535ce3b396,
|
|
0xd31045a8341ca07c, 0x83ea2b892091e44d,
|
|
0xa4e4b66b68b65d60, 0xce1de40642e3f4b9,
|
|
0x80d2ae83e9ce78f3, 0xa1075a24e4421730,
|
|
0xc94930ae1d529cfc, 0xfb9b7cd9a4a7443c,
|
|
0x9d412e0806e88aa5, 0xc491798a08a2ad4e,
|
|
0xf5b5d7ec8acb58a2, 0x9991a6f3d6bf1765,
|
|
0xbff610b0cc6edd3f, 0xeff394dcff8a948e,
|
|
0x95f83d0a1fb69cd9, 0xbb764c4ca7a4440f,
|
|
0xea53df5fd18d5513, 0x92746b9be2f8552c,
|
|
0xb7118682dbb66a77, 0xe4d5e82392a40515,
|
|
0x8f05b1163ba6832d, 0xb2c71d5bca9023f8,
|
|
0xdf78e4b2bd342cf6, 0x8bab8eefb6409c1a,
|
|
0xae9672aba3d0c320, 0xda3c0f568cc4f3e8,
|
|
0x8865899617fb1871, 0xaa7eebfb9df9de8d,
|
|
0xd51ea6fa85785631, 0x8533285c936b35de,
|
|
0xa67ff273b8460356, 0xd01fef10a657842c,
|
|
0x8213f56a67f6b29b, 0xa298f2c501f45f42,
|
|
0xcb3f2f7642717713, 0xfe0efb53d30dd4d7,
|
|
0x9ec95d1463e8a506, 0xc67bb4597ce2ce48,
|
|
0xf81aa16fdc1b81da, 0x9b10a4e5e9913128,
|
|
0xc1d4ce1f63f57d72, 0xf24a01a73cf2dccf,
|
|
0x976e41088617ca01, 0xbd49d14aa79dbc82,
|
|
0xec9c459d51852ba2, 0x93e1ab8252f33b45,
|
|
0xb8da1662e7b00a17, 0xe7109bfba19c0c9d,
|
|
0x906a617d450187e2, 0xb484f9dc9641e9da,
|
|
0xe1a63853bbd26451, 0x8d07e33455637eb2,
|
|
0xb049dc016abc5e5f, 0xdc5c5301c56b75f7,
|
|
0x89b9b3e11b6329ba, 0xac2820d9623bf429,
|
|
0xd732290fbacaf133, 0x867f59a9d4bed6c0,
|
|
0xa81f301449ee8c70, 0xd226fc195c6a2f8c,
|
|
0x83585d8fd9c25db7, 0xa42e74f3d032f525,
|
|
0xcd3a1230c43fb26f, 0x80444b5e7aa7cf85,
|
|
0xa0555e361951c366, 0xc86ab5c39fa63440,
|
|
0xfa856334878fc150, 0x9c935e00d4b9d8d2,
|
|
0xc3b8358109e84f07, 0xf4a642e14c6262c8,
|
|
0x98e7e9cccfbd7dbd, 0xbf21e44003acdd2c,
|
|
0xeeea5d5004981478, 0x95527a5202df0ccb,
|
|
0xbaa718e68396cffd, 0xe950df20247c83fd,
|
|
0x91d28b7416cdd27e, 0xb6472e511c81471d,
|
|
0xe3d8f9e563a198e5, 0x8e679c2f5e44ff8f};
|
|
// A complement to mantissa_64
|
|
// complete to a 128-bit mantissa.
|
|
// Uses about 5KB but is rarely accessed.
|
|
const uint64_t mantissa_128[] = {
|
|
0x419ea3bd35385e2d, 0x52064cac828675b9,
|
|
0x7343efebd1940993, 0x1014ebe6c5f90bf8,
|
|
0xd41a26e077774ef6, 0x8920b098955522b4,
|
|
0x55b46e5f5d5535b0, 0xeb2189f734aa831d,
|
|
0xa5e9ec7501d523e4, 0x47b233c92125366e,
|
|
0x999ec0bb696e840a, 0xc00670ea43ca250d,
|
|
0x380406926a5e5728, 0xc605083704f5ecf2,
|
|
0xf7864a44c633682e, 0x7ab3ee6afbe0211d,
|
|
0x5960ea05bad82964, 0x6fb92487298e33bd,
|
|
0xa5d3b6d479f8e056, 0x8f48a4899877186c,
|
|
0x331acdabfe94de87, 0x9ff0c08b7f1d0b14,
|
|
0x7ecf0ae5ee44dd9, 0xc9e82cd9f69d6150,
|
|
0xbe311c083a225cd2, 0x6dbd630a48aaf406,
|
|
0x92cbbccdad5b108, 0x25bbf56008c58ea5,
|
|
0xaf2af2b80af6f24e, 0x1af5af660db4aee1,
|
|
0x50d98d9fc890ed4d, 0xe50ff107bab528a0,
|
|
0x1e53ed49a96272c8, 0x25e8e89c13bb0f7a,
|
|
0x77b191618c54e9ac, 0xd59df5b9ef6a2417,
|
|
0x4b0573286b44ad1d, 0x4ee367f9430aec32,
|
|
0x229c41f793cda73f, 0x6b43527578c1110f,
|
|
0x830a13896b78aaa9, 0x23cc986bc656d553,
|
|
0x2cbfbe86b7ec8aa8, 0x7bf7d71432f3d6a9,
|
|
0xdaf5ccd93fb0cc53, 0xd1b3400f8f9cff68,
|
|
0x23100809b9c21fa1, 0xabd40a0c2832a78a,
|
|
0x16c90c8f323f516c, 0xae3da7d97f6792e3,
|
|
0x99cd11cfdf41779c, 0x40405643d711d583,
|
|
0x482835ea666b2572, 0xda3243650005eecf,
|
|
0x90bed43e40076a82, 0x5a7744a6e804a291,
|
|
0x711515d0a205cb36, 0xd5a5b44ca873e03,
|
|
0xe858790afe9486c2, 0x626e974dbe39a872,
|
|
0xfb0a3d212dc8128f, 0x7ce66634bc9d0b99,
|
|
0x1c1fffc1ebc44e80, 0xa327ffb266b56220,
|
|
0x4bf1ff9f0062baa8, 0x6f773fc3603db4a9,
|
|
0xcb550fb4384d21d3, 0x7e2a53a146606a48,
|
|
0x2eda7444cbfc426d, 0xfa911155fefb5308,
|
|
0x793555ab7eba27ca, 0x4bc1558b2f3458de,
|
|
0x9eb1aaedfb016f16, 0x465e15a979c1cadc,
|
|
0xbfacd89ec191ec9, 0xcef980ec671f667b,
|
|
0x82b7e12780e7401a, 0xd1b2ecb8b0908810,
|
|
0x861fa7e6dcb4aa15, 0x67a791e093e1d49a,
|
|
0xe0c8bb2c5c6d24e0, 0x58fae9f773886e18,
|
|
0xaf39a475506a899e, 0x6d8406c952429603,
|
|
0xc8e5087ba6d33b83, 0xfb1e4a9a90880a64,
|
|
0x5cf2eea09a55067f, 0xf42faa48c0ea481e,
|
|
0xf13b94daf124da26, 0x76c53d08d6b70858,
|
|
0x54768c4b0c64ca6e, 0xa9942f5dcf7dfd09,
|
|
0xd3f93b35435d7c4c, 0xc47bc5014a1a6daf,
|
|
0x359ab6419ca1091b, 0xc30163d203c94b62,
|
|
0x79e0de63425dcf1d, 0x985915fc12f542e4,
|
|
0x3e6f5b7b17b2939d, 0xa705992ceecf9c42,
|
|
0x50c6ff782a838353, 0xa4f8bf5635246428,
|
|
0x871b7795e136be99, 0x28e2557b59846e3f,
|
|
0x331aeada2fe589cf, 0x3ff0d2c85def7621,
|
|
0xfed077a756b53a9, 0xd3e8495912c62894,
|
|
0x64712dd7abbbd95c, 0xbd8d794d96aacfb3,
|
|
0xecf0d7a0fc5583a0, 0xf41686c49db57244,
|
|
0x311c2875c522ced5, 0x7d633293366b828b,
|
|
0xae5dff9c02033197, 0xd9f57f830283fdfc,
|
|
0xd072df63c324fd7b, 0x4247cb9e59f71e6d,
|
|
0x52d9be85f074e608, 0x67902e276c921f8b,
|
|
0xba1cd8a3db53b6, 0x80e8a40eccd228a4,
|
|
0x6122cd128006b2cd, 0x796b805720085f81,
|
|
0xcbe3303674053bb0, 0xbedbfc4411068a9c,
|
|
0xee92fb5515482d44, 0x751bdd152d4d1c4a,
|
|
0xd262d45a78a0635d, 0x86fb897116c87c34,
|
|
0xd45d35e6ae3d4da0, 0x8974836059cca109,
|
|
0x2bd1a438703fc94b, 0x7b6306a34627ddcf,
|
|
0x1a3bc84c17b1d542, 0x20caba5f1d9e4a93,
|
|
0x547eb47b7282ee9c, 0xe99e619a4f23aa43,
|
|
0x6405fa00e2ec94d4, 0xde83bc408dd3dd04,
|
|
0x9624ab50b148d445, 0x3badd624dd9b0957,
|
|
0xe54ca5d70a80e5d6, 0x5e9fcf4ccd211f4c,
|
|
0x7647c3200069671f, 0x29ecd9f40041e073,
|
|
0xf468107100525890, 0x7182148d4066eeb4,
|
|
0xc6f14cd848405530, 0xb8ada00e5a506a7c,
|
|
0xa6d90811f0e4851c, 0x908f4a166d1da663,
|
|
0x9a598e4e043287fe, 0x40eff1e1853f29fd,
|
|
0xd12bee59e68ef47c, 0x82bb74f8301958ce,
|
|
0xe36a52363c1faf01, 0xdc44e6c3cb279ac1,
|
|
0x29ab103a5ef8c0b9, 0x7415d448f6b6f0e7,
|
|
0x111b495b3464ad21, 0xcab10dd900beec34,
|
|
0x3d5d514f40eea742, 0xcb4a5a3112a5112,
|
|
0x47f0e785eaba72ab, 0x59ed216765690f56,
|
|
0x306869c13ec3532c, 0x1e414218c73a13fb,
|
|
0xe5d1929ef90898fa, 0xdf45f746b74abf39,
|
|
0x6b8bba8c328eb783, 0x66ea92f3f326564,
|
|
0xc80a537b0efefebd, 0xbd06742ce95f5f36,
|
|
0x2c48113823b73704, 0xf75a15862ca504c5,
|
|
0x9a984d73dbe722fb, 0xc13e60d0d2e0ebba,
|
|
0x318df905079926a8, 0xfdf17746497f7052,
|
|
0xfeb6ea8bedefa633, 0xfe64a52ee96b8fc0,
|
|
0x3dfdce7aa3c673b0, 0x6bea10ca65c084e,
|
|
0x486e494fcff30a62, 0x5a89dba3c3efccfa,
|
|
0xf89629465a75e01c, 0xf6bbb397f1135823,
|
|
0x746aa07ded582e2c, 0xa8c2a44eb4571cdc,
|
|
0x92f34d62616ce413, 0x77b020baf9c81d17,
|
|
0xace1474dc1d122e, 0xd819992132456ba,
|
|
0x10e1fff697ed6c69, 0xca8d3ffa1ef463c1,
|
|
0xbd308ff8a6b17cb2, 0xac7cb3f6d05ddbde,
|
|
0x6bcdf07a423aa96b, 0x86c16c98d2c953c6,
|
|
0xe871c7bf077ba8b7, 0x11471cd764ad4972,
|
|
0xd598e40d3dd89bcf, 0x4aff1d108d4ec2c3,
|
|
0xcedf722a585139ba, 0xc2974eb4ee658828,
|
|
0x733d226229feea32, 0x806357d5a3f525f,
|
|
0xca07c2dcb0cf26f7, 0xfc89b393dd02f0b5,
|
|
0xbbac2078d443ace2, 0xd54b944b84aa4c0d,
|
|
0xa9e795e65d4df11, 0x4d4617b5ff4a16d5,
|
|
0x504bced1bf8e4e45, 0xe45ec2862f71e1d6,
|
|
0x5d767327bb4e5a4c, 0x3a6a07f8d510f86f,
|
|
0x890489f70a55368b, 0x2b45ac74ccea842e,
|
|
0x3b0b8bc90012929d, 0x9ce6ebb40173744,
|
|
0xcc420a6a101d0515, 0x9fa946824a12232d,
|
|
0x47939822dc96abf9, 0x59787e2b93bc56f7,
|
|
0x57eb4edb3c55b65a, 0xede622920b6b23f1,
|
|
0xe95fab368e45eced, 0x11dbcb0218ebb414,
|
|
0xd652bdc29f26a119, 0x4be76d3346f0495f,
|
|
0x6f70a4400c562ddb, 0xcb4ccd500f6bb952,
|
|
0x7e2000a41346a7a7, 0x8ed400668c0c28c8,
|
|
0x728900802f0f32fa, 0x4f2b40a03ad2ffb9,
|
|
0xe2f610c84987bfa8, 0xdd9ca7d2df4d7c9,
|
|
0x91503d1c79720dbb, 0x75a44c6397ce912a,
|
|
0xc986afbe3ee11aba, 0xfbe85badce996168,
|
|
0xfae27299423fb9c3, 0xdccd879fc967d41a,
|
|
0x5400e987bbc1c920, 0x290123e9aab23b68,
|
|
0xf9a0b6720aaf6521, 0xf808e40e8d5b3e69,
|
|
0xb60b1d1230b20e04, 0xb1c6f22b5e6f48c2,
|
|
0x1e38aeb6360b1af3, 0x25c6da63c38de1b0,
|
|
0x579c487e5a38ad0e, 0x2d835a9df0c6d851,
|
|
0xf8e431456cf88e65, 0x1b8e9ecb641b58ff,
|
|
0xe272467e3d222f3f, 0x5b0ed81dcc6abb0f,
|
|
0x98e947129fc2b4e9, 0x3f2398d747b36224,
|
|
0x8eec7f0d19a03aad, 0x1953cf68300424ac,
|
|
0x5fa8c3423c052dd7, 0x3792f412cb06794d,
|
|
0xe2bbd88bbee40bd0, 0x5b6aceaeae9d0ec4,
|
|
0xf245825a5a445275, 0xeed6e2f0f0d56712,
|
|
0x55464dd69685606b, 0xaa97e14c3c26b886,
|
|
0xd53dd99f4b3066a8, 0xe546a8038efe4029,
|
|
0xde98520472bdd033, 0x963e66858f6d4440,
|
|
0xdde7001379a44aa8, 0x5560c018580d5d52,
|
|
0xaab8f01e6e10b4a6, 0xcab3961304ca70e8,
|
|
0x3d607b97c5fd0d22, 0x8cb89a7db77c506a,
|
|
0x77f3608e92adb242, 0x55f038b237591ed3,
|
|
0x6b6c46dec52f6688, 0x2323ac4b3b3da015,
|
|
0xabec975e0a0d081a, 0x96e7bd358c904a21,
|
|
0x7e50d64177da2e54, 0xdde50bd1d5d0b9e9,
|
|
0x955e4ec64b44e864, 0xbd5af13bef0b113e,
|
|
0xecb1ad8aeacdd58e, 0x67de18eda5814af2,
|
|
0x80eacf948770ced7, 0xa1258379a94d028d,
|
|
0x96ee45813a04330, 0x8bca9d6e188853fc,
|
|
0x775ea264cf55347d, 0x95364afe032a819d,
|
|
0x3a83ddbd83f52204, 0xc4926a9672793542,
|
|
0x75b7053c0f178293, 0x5324c68b12dd6338,
|
|
0xd3f6fc16ebca5e03, 0x88f4bb1ca6bcf584,
|
|
0x2b31e9e3d06c32e5, 0x3aff322e62439fcf,
|
|
0x9befeb9fad487c2, 0x4c2ebe687989a9b3,
|
|
0xf9d37014bf60a10, 0x538484c19ef38c94,
|
|
0x2865a5f206b06fb9, 0xf93f87b7442e45d3,
|
|
0xf78f69a51539d748, 0xb573440e5a884d1b,
|
|
0x31680a88f8953030, 0xfdc20d2b36ba7c3d,
|
|
0x3d32907604691b4c, 0xa63f9a49c2c1b10f,
|
|
0xfcf80dc33721d53, 0xd3c36113404ea4a8,
|
|
0x645a1cac083126e9, 0x3d70a3d70a3d70a3,
|
|
0xcccccccccccccccc, 0x0,
|
|
0x0, 0x0,
|
|
0x0, 0x0,
|
|
0x0, 0x0,
|
|
0x0, 0x0,
|
|
0x0, 0x0,
|
|
0x0, 0x0,
|
|
0x0, 0x0,
|
|
0x0, 0x0,
|
|
0x0, 0x0,
|
|
0x0, 0x0,
|
|
0x0, 0x0,
|
|
0x0, 0x0,
|
|
0x0, 0x0,
|
|
0x0, 0x4000000000000000,
|
|
0x5000000000000000, 0xa400000000000000,
|
|
0x4d00000000000000, 0xf020000000000000,
|
|
0x6c28000000000000, 0xc732000000000000,
|
|
0x3c7f400000000000, 0x4b9f100000000000,
|
|
0x1e86d40000000000, 0x1314448000000000,
|
|
0x17d955a000000000, 0x5dcfab0800000000,
|
|
0x5aa1cae500000000, 0xf14a3d9e40000000,
|
|
0x6d9ccd05d0000000, 0xe4820023a2000000,
|
|
0xdda2802c8a800000, 0xd50b2037ad200000,
|
|
0x4526f422cc340000, 0x9670b12b7f410000,
|
|
0x3c0cdd765f114000, 0xa5880a69fb6ac800,
|
|
0x8eea0d047a457a00, 0x72a4904598d6d880,
|
|
0x47a6da2b7f864750, 0x999090b65f67d924,
|
|
0xfff4b4e3f741cf6d, 0xbff8f10e7a8921a4,
|
|
0xaff72d52192b6a0d, 0x9bf4f8a69f764490,
|
|
0x2f236d04753d5b4, 0x1d762422c946590,
|
|
0x424d3ad2b7b97ef5, 0xd2e0898765a7deb2,
|
|
0x63cc55f49f88eb2f, 0x3cbf6b71c76b25fb,
|
|
0x8bef464e3945ef7a, 0x97758bf0e3cbb5ac,
|
|
0x3d52eeed1cbea317, 0x4ca7aaa863ee4bdd,
|
|
0x8fe8caa93e74ef6a, 0xb3e2fd538e122b44,
|
|
0x60dbbca87196b616, 0xbc8955e946fe31cd,
|
|
0x6babab6398bdbe41, 0xc696963c7eed2dd1,
|
|
0xfc1e1de5cf543ca2, 0x3b25a55f43294bcb,
|
|
0x49ef0eb713f39ebe, 0x6e3569326c784337,
|
|
0x49c2c37f07965404, 0xdc33745ec97be906,
|
|
0x69a028bb3ded71a3, 0xc40832ea0d68ce0c,
|
|
0xf50a3fa490c30190, 0x792667c6da79e0fa,
|
|
0x577001b891185938, 0xed4c0226b55e6f86,
|
|
0x544f8158315b05b4, 0x696361ae3db1c721,
|
|
0x3bc3a19cd1e38e9, 0x4ab48a04065c723,
|
|
0x62eb0d64283f9c76, 0x3ba5d0bd324f8394,
|
|
0xca8f44ec7ee36479, 0x7e998b13cf4e1ecb,
|
|
0x9e3fedd8c321a67e, 0xc5cfe94ef3ea101e,
|
|
0xbba1f1d158724a12, 0x2a8a6e45ae8edc97,
|
|
0xf52d09d71a3293bd, 0x593c2626705f9c56,
|
|
0x6f8b2fb00c77836c, 0xb6dfb9c0f956447,
|
|
0x4724bd4189bd5eac, 0x58edec91ec2cb657,
|
|
0x2f2967b66737e3ed, 0xbd79e0d20082ee74,
|
|
0xecd8590680a3aa11, 0xe80e6f4820cc9495,
|
|
0x3109058d147fdcdd, 0xbd4b46f0599fd415,
|
|
0x6c9e18ac7007c91a, 0x3e2cf6bc604ddb0,
|
|
0x84db8346b786151c, 0xe612641865679a63,
|
|
0x4fcb7e8f3f60c07e, 0xe3be5e330f38f09d,
|
|
0x5cadf5bfd3072cc5, 0x73d9732fc7c8f7f6,
|
|
0x2867e7fddcdd9afa, 0xb281e1fd541501b8,
|
|
0x1f225a7ca91a4226, 0x3375788de9b06958,
|
|
0x52d6b1641c83ae, 0xc0678c5dbd23a49a,
|
|
0xf840b7ba963646e0, 0xb650e5a93bc3d898,
|
|
0xa3e51f138ab4cebe, 0xc66f336c36b10137,
|
|
0xb80b0047445d4184, 0xa60dc059157491e5,
|
|
0x87c89837ad68db2f, 0x29babe4598c311fb,
|
|
0xf4296dd6fef3d67a, 0x1899e4a65f58660c,
|
|
0x5ec05dcff72e7f8f, 0x76707543f4fa1f73,
|
|
0x6a06494a791c53a8, 0x487db9d17636892,
|
|
0x45a9d2845d3c42b6, 0xb8a2392ba45a9b2,
|
|
0x8e6cac7768d7141e, 0x3207d795430cd926,
|
|
0x7f44e6bd49e807b8, 0x5f16206c9c6209a6,
|
|
0x36dba887c37a8c0f, 0xc2494954da2c9789,
|
|
0xf2db9baa10b7bd6c, 0x6f92829494e5acc7,
|
|
0xcb772339ba1f17f9, 0xff2a760414536efb,
|
|
0xfef5138519684aba, 0x7eb258665fc25d69,
|
|
0xef2f773ffbd97a61, 0xaafb550ffacfd8fa,
|
|
0x95ba2a53f983cf38, 0xdd945a747bf26183,
|
|
0x94f971119aeef9e4, 0x7a37cd5601aab85d,
|
|
0xac62e055c10ab33a, 0x577b986b314d6009,
|
|
0xed5a7e85fda0b80b, 0x14588f13be847307,
|
|
0x596eb2d8ae258fc8, 0x6fca5f8ed9aef3bb,
|
|
0x25de7bb9480d5854, 0xaf561aa79a10ae6a,
|
|
0x1b2ba1518094da04, 0x90fb44d2f05d0842,
|
|
0x353a1607ac744a53, 0x42889b8997915ce8,
|
|
0x69956135febada11, 0x43fab9837e699095,
|
|
0x94f967e45e03f4bb, 0x1d1be0eebac278f5,
|
|
0x6462d92a69731732, 0x7d7b8f7503cfdcfe,
|
|
0x5cda735244c3d43e, 0x3a0888136afa64a7,
|
|
0x88aaa1845b8fdd0, 0x8aad549e57273d45,
|
|
0x36ac54e2f678864b, 0x84576a1bb416a7dd,
|
|
0x656d44a2a11c51d5, 0x9f644ae5a4b1b325,
|
|
0x873d5d9f0dde1fee, 0xa90cb506d155a7ea,
|
|
0x9a7f12442d588f2, 0xc11ed6d538aeb2f,
|
|
0x8f1668c8a86da5fa, 0xf96e017d694487bc,
|
|
0x37c981dcc395a9ac, 0x85bbe253f47b1417,
|
|
0x93956d7478ccec8e, 0x387ac8d1970027b2,
|
|
0x6997b05fcc0319e, 0x441fece3bdf81f03,
|
|
0xd527e81cad7626c3, 0x8a71e223d8d3b074,
|
|
0xf6872d5667844e49, 0xb428f8ac016561db,
|
|
0xe13336d701beba52, 0xecc0024661173473,
|
|
0x27f002d7f95d0190, 0x31ec038df7b441f4,
|
|
0x7e67047175a15271, 0xf0062c6e984d386,
|
|
0x52c07b78a3e60868, 0xa7709a56ccdf8a82,
|
|
0x88a66076400bb691, 0x6acff893d00ea435,
|
|
0x583f6b8c4124d43, 0xc3727a337a8b704a,
|
|
0x744f18c0592e4c5c, 0x1162def06f79df73,
|
|
0x8addcb5645ac2ba8, 0x6d953e2bd7173692,
|
|
0xc8fa8db6ccdd0437, 0x1d9c9892400a22a2,
|
|
0x2503beb6d00cab4b, 0x2e44ae64840fd61d,
|
|
0x5ceaecfed289e5d2, 0x7425a83e872c5f47,
|
|
0xd12f124e28f77719, 0x82bd6b70d99aaa6f,
|
|
0x636cc64d1001550b, 0x3c47f7e05401aa4e,
|
|
0x65acfaec34810a71, 0x7f1839a741a14d0d,
|
|
0x1ede48111209a050, 0x934aed0aab460432,
|
|
0xf81da84d5617853f, 0x36251260ab9d668e,
|
|
0xc1d72b7c6b426019, 0xb24cf65b8612f81f,
|
|
0xdee033f26797b627, 0x169840ef017da3b1,
|
|
0x8e1f289560ee864e, 0xf1a6f2bab92a27e2,
|
|
0xae10af696774b1db, 0xacca6da1e0a8ef29,
|
|
0x17fd090a58d32af3, 0xddfc4b4cef07f5b0,
|
|
0x4abdaf101564f98e, 0x9d6d1ad41abe37f1,
|
|
0x84c86189216dc5ed, 0x32fd3cf5b4e49bb4,
|
|
0x3fbc8c33221dc2a1, 0xfabaf3feaa5334a,
|
|
0x29cb4d87f2a7400e, 0x743e20e9ef511012,
|
|
0x914da9246b255416, 0x1ad089b6c2f7548e,
|
|
0xa184ac2473b529b1, 0xc9e5d72d90a2741e,
|
|
0x7e2fa67c7a658892, 0xddbb901b98feeab7,
|
|
0x552a74227f3ea565, 0xd53a88958f87275f,
|
|
0x8a892abaf368f137, 0x2d2b7569b0432d85,
|
|
0x9c3b29620e29fc73, 0x8349f3ba91b47b8f,
|
|
0x241c70a936219a73, 0xed238cd383aa0110,
|
|
0xf4363804324a40aa, 0xb143c6053edcd0d5,
|
|
0xdd94b7868e94050a, 0xca7cf2b4191c8326,
|
|
0xfd1c2f611f63a3f0, 0xbc633b39673c8cec,
|
|
0xd5be0503e085d813, 0x4b2d8644d8a74e18,
|
|
0xddf8e7d60ed1219e, 0xcabb90e5c942b503,
|
|
0x3d6a751f3b936243, 0xcc512670a783ad4,
|
|
0x27fb2b80668b24c5, 0xb1f9f660802dedf6,
|
|
0x5e7873f8a0396973, 0xdb0b487b6423e1e8,
|
|
0x91ce1a9a3d2cda62, 0x7641a140cc7810fb,
|
|
0xa9e904c87fcb0a9d, 0x546345fa9fbdcd44,
|
|
0xa97c177947ad4095, 0x49ed8eabcccc485d,
|
|
0x5c68f256bfff5a74, 0x73832eec6fff3111,
|
|
0xc831fd53c5ff7eab, 0xba3e7ca8b77f5e55,
|
|
0x28ce1bd2e55f35eb, 0x7980d163cf5b81b3,
|
|
0xd7e105bcc332621f, 0x8dd9472bf3fefaa7,
|
|
0xb14f98f6f0feb951, 0x6ed1bf9a569f33d3,
|
|
0xa862f80ec4700c8, 0xcd27bb612758c0fa,
|
|
0x8038d51cb897789c, 0xe0470a63e6bd56c3,
|
|
0x1858ccfce06cac74, 0xf37801e0c43ebc8,
|
|
0xd30560258f54e6ba, 0x47c6b82ef32a2069,
|
|
0x4cdc331d57fa5441, 0xe0133fe4adf8e952,
|
|
0x58180fddd97723a6, 0x570f09eaa7ea7648,};
|
|
|
|
} // namespace simdjson
|
|
|
|
#endif // SIMDJSON_JSONCHARUTILS_TABLES_H
|
|
/* end file src/jsoncharutils_tables.h */
|
|
/* simdprune_tables.h already included: #include "simdprune_tables.h" */
|
|
|
|
#if SIMDJSON_IMPLEMENTATION_ARM64
|
|
/* begin file src/arm64/implementation.cpp */
|
|
/* begin file src/arm64/begin_implementation.h */
|
|
#define SIMDJSON_IMPLEMENTATION arm64
|
|
/* arm64/implementation.h already included: #include "arm64/implementation.h" */
|
|
/* begin file src/arm64/intrinsics.h */
|
|
#ifndef SIMDJSON_ARM64_INTRINSICS_H
|
|
#define SIMDJSON_ARM64_INTRINSICS_H
|
|
|
|
|
|
// This should be the correct header whether
|
|
// you use visual studio or other compilers.
|
|
#include <arm_neon.h>
|
|
|
|
#endif // SIMDJSON_ARM64_INTRINSICS_H
|
|
/* end file src/arm64/intrinsics.h */
|
|
/* begin file src/arm64/bitmanipulation.h */
|
|
#ifndef SIMDJSON_ARM64_BITMANIPULATION_H
|
|
#define SIMDJSON_ARM64_BITMANIPULATION_H
|
|
|
|
namespace {
|
|
namespace arm64 {
|
|
|
|
// We sometimes call trailing_zero on inputs that are zero,
|
|
// but the algorithms do not end up using the returned value.
|
|
// Sadly, sanitizers are not smart enough to figure it out.
|
|
NO_SANITIZE_UNDEFINED
|
|
simdjson_really_inline int trailing_zeroes(uint64_t input_num) {
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
unsigned long ret;
|
|
// Search the mask data from least significant bit (LSB)
|
|
// to the most significant bit (MSB) for a set bit (1).
|
|
_BitScanForward64(&ret, input_num);
|
|
return (int)ret;
|
|
#else // SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
return __builtin_ctzll(input_num);
|
|
#endif // SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
}
|
|
|
|
/* result might be undefined when input_num is zero */
|
|
simdjson_really_inline uint64_t clear_lowest_bit(uint64_t input_num) {
|
|
return input_num & (input_num-1);
|
|
}
|
|
|
|
/* result might be undefined when input_num is zero */
|
|
simdjson_really_inline int leading_zeroes(uint64_t input_num) {
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
unsigned long leading_zero = 0;
|
|
// Search the mask data from most significant bit (MSB)
|
|
// to least significant bit (LSB) for a set bit (1).
|
|
if (_BitScanReverse64(&leading_zero, input_num))
|
|
return (int)(63 - leading_zero);
|
|
else
|
|
return 64;
|
|
#else
|
|
return __builtin_clzll(input_num);
|
|
#endif// SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
}
|
|
|
|
/* result might be undefined when input_num is zero */
|
|
simdjson_really_inline int count_ones(uint64_t input_num) {
|
|
return vaddv_u8(vcnt_u8(vcreate_u8(input_num)));
|
|
}
|
|
|
|
simdjson_really_inline bool add_overflow(uint64_t value1, uint64_t value2, uint64_t *result) {
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
*result = value1 + value2;
|
|
return *result < value1;
|
|
#else
|
|
return __builtin_uaddll_overflow(value1, value2,
|
|
(unsigned long long *)result);
|
|
#endif
|
|
}
|
|
|
|
} // namespace arm64
|
|
} // unnamed namespace
|
|
|
|
#endif // SIMDJSON_ARM64_BITMANIPULATION_H
|
|
/* end file src/arm64/bitmanipulation.h */
|
|
/* begin file src/arm64/bitmask.h */
|
|
#ifndef SIMDJSON_ARM64_BITMASK_H
|
|
#define SIMDJSON_ARM64_BITMASK_H
|
|
|
|
namespace {
|
|
namespace arm64 {
|
|
|
|
//
|
|
// Perform a "cumulative bitwise xor," flipping bits each time a 1 is encountered.
|
|
//
|
|
// For example, prefix_xor(00100100) == 00011100
|
|
//
|
|
simdjson_really_inline uint64_t prefix_xor(uint64_t bitmask) {
|
|
/////////////
|
|
// We could do this with PMULL, but it is apparently slow.
|
|
//
|
|
//#ifdef __ARM_FEATURE_CRYPTO // some ARM processors lack this extension
|
|
//return vmull_p64(-1ULL, bitmask);
|
|
//#else
|
|
// Analysis by @sebpop:
|
|
// When diffing the assembly for src/stage1_find_marks.cpp I see that the eors are all spread out
|
|
// in between other vector code, so effectively the extra cycles of the sequence do not matter
|
|
// because the GPR units are idle otherwise and the critical path is on the FP side.
|
|
// Also the PMULL requires two extra fmovs: GPR->FP (3 cycles in N1, 5 cycles in A72 )
|
|
// and FP->GPR (2 cycles on N1 and 5 cycles on A72.)
|
|
///////////
|
|
bitmask ^= bitmask << 1;
|
|
bitmask ^= bitmask << 2;
|
|
bitmask ^= bitmask << 4;
|
|
bitmask ^= bitmask << 8;
|
|
bitmask ^= bitmask << 16;
|
|
bitmask ^= bitmask << 32;
|
|
return bitmask;
|
|
}
|
|
|
|
} // namespace arm64
|
|
} // namespace simdjson
|
|
SIMDJSON_UNTARGET_REGION
|
|
|
|
#endif
|
|
/* end file src/arm64/bitmask.h */
|
|
/* begin file src/arm64/simd.h */
|
|
#ifndef SIMDJSON_ARM64_SIMD_H
|
|
#define SIMDJSON_ARM64_SIMD_H
|
|
|
|
/* simdprune_tables.h already included: #include "simdprune_tables.h" */
|
|
/* arm64/bitmanipulation.h already included: #include "arm64/bitmanipulation.h" */
|
|
#include <type_traits>
|
|
|
|
|
|
namespace {
|
|
namespace arm64 {
|
|
namespace simd {
|
|
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
namespace {
|
|
// Start of private section with Visual Studio workaround
|
|
|
|
|
|
/**
|
|
* make_uint8x16_t initializes a SIMD register (uint8x16_t).
|
|
* This is needed because, incredibly, the syntax uint8x16_t x = {1,2,3...}
|
|
* is not recognized under Visual Studio! This is a workaround.
|
|
* Using a std::initializer_list<uint8_t> as a parameter resulted in
|
|
* inefficient code. With the current approach, if the parameters are
|
|
* compile-time constants,
|
|
* GNU GCC compiles it to ldr, the same as uint8x16_t x = {1,2,3...}.
|
|
* You should not use this function except for compile-time constants:
|
|
* it is not efficient.
|
|
*/
|
|
simdjson_really_inline uint8x16_t make_uint8x16_t(uint8_t x1, uint8_t x2, uint8_t x3, uint8_t x4,
|
|
uint8_t x5, uint8_t x6, uint8_t x7, uint8_t x8,
|
|
uint8_t x9, uint8_t x10, uint8_t x11, uint8_t x12,
|
|
uint8_t x13, uint8_t x14, uint8_t x15, uint8_t x16) {
|
|
// Doing a load like so end ups generating worse code.
|
|
// uint8_t array[16] = {x1, x2, x3, x4, x5, x6, x7, x8,
|
|
// x9, x10,x11,x12,x13,x14,x15,x16};
|
|
// return vld1q_u8(array);
|
|
uint8x16_t x{};
|
|
// incredibly, Visual Studio does not allow x[0] = x1
|
|
x = vsetq_lane_u8(x1, x, 0);
|
|
x = vsetq_lane_u8(x2, x, 1);
|
|
x = vsetq_lane_u8(x3, x, 2);
|
|
x = vsetq_lane_u8(x4, x, 3);
|
|
x = vsetq_lane_u8(x5, x, 4);
|
|
x = vsetq_lane_u8(x6, x, 5);
|
|
x = vsetq_lane_u8(x7, x, 6);
|
|
x = vsetq_lane_u8(x8, x, 7);
|
|
x = vsetq_lane_u8(x9, x, 8);
|
|
x = vsetq_lane_u8(x10, x, 9);
|
|
x = vsetq_lane_u8(x11, x, 10);
|
|
x = vsetq_lane_u8(x12, x, 11);
|
|
x = vsetq_lane_u8(x13, x, 12);
|
|
x = vsetq_lane_u8(x14, x, 13);
|
|
x = vsetq_lane_u8(x15, x, 14);
|
|
x = vsetq_lane_u8(x16, x, 15);
|
|
return x;
|
|
}
|
|
|
|
|
|
// We have to do the same work for make_int8x16_t
|
|
simdjson_really_inline int8x16_t make_int8x16_t(int8_t x1, int8_t x2, int8_t x3, int8_t x4,
|
|
int8_t x5, int8_t x6, int8_t x7, int8_t x8,
|
|
int8_t x9, int8_t x10, int8_t x11, int8_t x12,
|
|
int8_t x13, int8_t x14, int8_t x15, int8_t x16) {
|
|
// Doing a load like so end ups generating worse code.
|
|
// int8_t array[16] = {x1, x2, x3, x4, x5, x6, x7, x8,
|
|
// x9, x10,x11,x12,x13,x14,x15,x16};
|
|
// return vld1q_s8(array);
|
|
int8x16_t x{};
|
|
// incredibly, Visual Studio does not allow x[0] = x1
|
|
x = vsetq_lane_s8(x1, x, 0);
|
|
x = vsetq_lane_s8(x2, x, 1);
|
|
x = vsetq_lane_s8(x3, x, 2);
|
|
x = vsetq_lane_s8(x4, x, 3);
|
|
x = vsetq_lane_s8(x5, x, 4);
|
|
x = vsetq_lane_s8(x6, x, 5);
|
|
x = vsetq_lane_s8(x7, x, 6);
|
|
x = vsetq_lane_s8(x8, x, 7);
|
|
x = vsetq_lane_s8(x9, x, 8);
|
|
x = vsetq_lane_s8(x10, x, 9);
|
|
x = vsetq_lane_s8(x11, x, 10);
|
|
x = vsetq_lane_s8(x12, x, 11);
|
|
x = vsetq_lane_s8(x13, x, 12);
|
|
x = vsetq_lane_s8(x14, x, 13);
|
|
x = vsetq_lane_s8(x15, x, 14);
|
|
x = vsetq_lane_s8(x16, x, 15);
|
|
return x;
|
|
}
|
|
|
|
// End of private section with Visual Studio workaround
|
|
} // namespace
|
|
#endif // SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
|
|
|
|
template<typename T>
|
|
struct simd8;
|
|
|
|
//
|
|
// Base class of simd8<uint8_t> and simd8<bool>, both of which use uint8x16_t internally.
|
|
//
|
|
template<typename T, typename Mask=simd8<bool>>
|
|
struct base_u8 {
|
|
uint8x16_t value;
|
|
static const int SIZE = sizeof(value);
|
|
|
|
// Conversion from/to SIMD register
|
|
simdjson_really_inline base_u8(const uint8x16_t _value) : value(_value) {}
|
|
simdjson_really_inline operator const uint8x16_t&() const { return this->value; }
|
|
simdjson_really_inline operator uint8x16_t&() { return this->value; }
|
|
|
|
// Bit operations
|
|
simdjson_really_inline simd8<T> operator|(const simd8<T> other) const { return vorrq_u8(*this, other); }
|
|
simdjson_really_inline simd8<T> operator&(const simd8<T> other) const { return vandq_u8(*this, other); }
|
|
simdjson_really_inline simd8<T> operator^(const simd8<T> other) const { return veorq_u8(*this, other); }
|
|
simdjson_really_inline simd8<T> bit_andnot(const simd8<T> other) const { return vbicq_u8(*this, other); }
|
|
simdjson_really_inline simd8<T> operator~() const { return *this ^ 0xFFu; }
|
|
simdjson_really_inline simd8<T>& operator|=(const simd8<T> other) { auto this_cast = (simd8<T>*)this; *this_cast = *this_cast | other; return *this_cast; }
|
|
simdjson_really_inline simd8<T>& operator&=(const simd8<T> other) { auto this_cast = (simd8<T>*)this; *this_cast = *this_cast & other; return *this_cast; }
|
|
simdjson_really_inline simd8<T>& operator^=(const simd8<T> other) { auto this_cast = (simd8<T>*)this; *this_cast = *this_cast ^ other; return *this_cast; }
|
|
|
|
simdjson_really_inline Mask operator==(const simd8<T> other) const { return vceqq_u8(*this, other); }
|
|
|
|
template<int N=1>
|
|
simdjson_really_inline simd8<T> prev(const simd8<T> prev_chunk) const {
|
|
return vextq_u8(prev_chunk, *this, 16 - N);
|
|
}
|
|
};
|
|
|
|
// SIMD byte mask type (returned by things like eq and gt)
|
|
template<>
|
|
struct simd8<bool>: base_u8<bool> {
|
|
typedef uint16_t bitmask_t;
|
|
typedef uint32_t bitmask2_t;
|
|
|
|
static simdjson_really_inline simd8<bool> splat(bool _value) { return vmovq_n_u8(uint8_t(-(!!_value))); }
|
|
|
|
simdjson_really_inline simd8(const uint8x16_t _value) : base_u8<bool>(_value) {}
|
|
// False constructor
|
|
simdjson_really_inline simd8() : simd8(vdupq_n_u8(0)) {}
|
|
// Splat constructor
|
|
simdjson_really_inline simd8(bool _value) : simd8(splat(_value)) {}
|
|
|
|
// We return uint32_t instead of uint16_t because that seems to be more efficient for most
|
|
// purposes (cutting it down to uint16_t costs performance in some compilers).
|
|
simdjson_really_inline uint32_t to_bitmask() const {
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
const uint8x16_t bit_mask = make_uint8x16_t(0x01, 0x02, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80,
|
|
0x01, 0x02, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80);
|
|
#else
|
|
const uint8x16_t bit_mask = {0x01, 0x02, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80,
|
|
0x01, 0x02, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80};
|
|
#endif
|
|
auto minput = *this & bit_mask;
|
|
uint8x16_t tmp = vpaddq_u8(minput, minput);
|
|
tmp = vpaddq_u8(tmp, tmp);
|
|
tmp = vpaddq_u8(tmp, tmp);
|
|
return vgetq_lane_u16(vreinterpretq_u16_u8(tmp), 0);
|
|
}
|
|
simdjson_really_inline bool any() const { return vmaxvq_u8(*this) != 0; }
|
|
};
|
|
|
|
// Unsigned bytes
|
|
template<>
|
|
struct simd8<uint8_t>: base_u8<uint8_t> {
|
|
static simdjson_really_inline uint8x16_t splat(uint8_t _value) { return vmovq_n_u8(_value); }
|
|
static simdjson_really_inline uint8x16_t zero() { return vdupq_n_u8(0); }
|
|
static simdjson_really_inline uint8x16_t load(const uint8_t* values) { return vld1q_u8(values); }
|
|
|
|
simdjson_really_inline simd8(const uint8x16_t _value) : base_u8<uint8_t>(_value) {}
|
|
// Zero constructor
|
|
simdjson_really_inline simd8() : simd8(zero()) {}
|
|
// Array constructor
|
|
simdjson_really_inline simd8(const uint8_t values[16]) : simd8(load(values)) {}
|
|
// Splat constructor
|
|
simdjson_really_inline simd8(uint8_t _value) : simd8(splat(_value)) {}
|
|
// Member-by-member initialization
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
simdjson_really_inline simd8(
|
|
uint8_t v0, uint8_t v1, uint8_t v2, uint8_t v3, uint8_t v4, uint8_t v5, uint8_t v6, uint8_t v7,
|
|
uint8_t v8, uint8_t v9, uint8_t v10, uint8_t v11, uint8_t v12, uint8_t v13, uint8_t v14, uint8_t v15
|
|
) : simd8(make_uint8x16_t(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
)) {}
|
|
#else
|
|
simdjson_really_inline simd8(
|
|
uint8_t v0, uint8_t v1, uint8_t v2, uint8_t v3, uint8_t v4, uint8_t v5, uint8_t v6, uint8_t v7,
|
|
uint8_t v8, uint8_t v9, uint8_t v10, uint8_t v11, uint8_t v12, uint8_t v13, uint8_t v14, uint8_t v15
|
|
) : simd8(uint8x16_t{
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
}) {}
|
|
#endif
|
|
|
|
// Repeat 16 values as many times as necessary (usually for lookup tables)
|
|
simdjson_really_inline static simd8<uint8_t> repeat_16(
|
|
uint8_t v0, uint8_t v1, uint8_t v2, uint8_t v3, uint8_t v4, uint8_t v5, uint8_t v6, uint8_t v7,
|
|
uint8_t v8, uint8_t v9, uint8_t v10, uint8_t v11, uint8_t v12, uint8_t v13, uint8_t v14, uint8_t v15
|
|
) {
|
|
return simd8<uint8_t>(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
);
|
|
}
|
|
|
|
// Store to array
|
|
simdjson_really_inline void store(uint8_t dst[16]) const { return vst1q_u8(dst, *this); }
|
|
|
|
// Saturated math
|
|
simdjson_really_inline simd8<uint8_t> saturating_add(const simd8<uint8_t> other) const { return vqaddq_u8(*this, other); }
|
|
simdjson_really_inline simd8<uint8_t> saturating_sub(const simd8<uint8_t> other) const { return vqsubq_u8(*this, other); }
|
|
|
|
// Addition/subtraction are the same for signed and unsigned
|
|
simdjson_really_inline simd8<uint8_t> operator+(const simd8<uint8_t> other) const { return vaddq_u8(*this, other); }
|
|
simdjson_really_inline simd8<uint8_t> operator-(const simd8<uint8_t> other) const { return vsubq_u8(*this, other); }
|
|
simdjson_really_inline simd8<uint8_t>& operator+=(const simd8<uint8_t> other) { *this = *this + other; return *this; }
|
|
simdjson_really_inline simd8<uint8_t>& operator-=(const simd8<uint8_t> other) { *this = *this - other; return *this; }
|
|
|
|
// Order-specific operations
|
|
simdjson_really_inline uint8_t max() const { return vmaxvq_u8(*this); }
|
|
simdjson_really_inline uint8_t min() const { return vminvq_u8(*this); }
|
|
simdjson_really_inline simd8<uint8_t> max(const simd8<uint8_t> other) const { return vmaxq_u8(*this, other); }
|
|
simdjson_really_inline simd8<uint8_t> min(const simd8<uint8_t> other) const { return vminq_u8(*this, other); }
|
|
simdjson_really_inline simd8<bool> operator<=(const simd8<uint8_t> other) const { return vcleq_u8(*this, other); }
|
|
simdjson_really_inline simd8<bool> operator>=(const simd8<uint8_t> other) const { return vcgeq_u8(*this, other); }
|
|
simdjson_really_inline simd8<bool> operator<(const simd8<uint8_t> other) const { return vcltq_u8(*this, other); }
|
|
simdjson_really_inline simd8<bool> operator>(const simd8<uint8_t> other) const { return vcgtq_u8(*this, other); }
|
|
// Same as >, but instead of guaranteeing all 1's == true, false = 0 and true = nonzero. For ARM, returns all 1's.
|
|
simdjson_really_inline simd8<uint8_t> gt_bits(const simd8<uint8_t> other) const { return simd8<uint8_t>(*this > other); }
|
|
// Same as <, but instead of guaranteeing all 1's == true, false = 0 and true = nonzero. For ARM, returns all 1's.
|
|
simdjson_really_inline simd8<uint8_t> lt_bits(const simd8<uint8_t> other) const { return simd8<uint8_t>(*this < other); }
|
|
|
|
// Bit-specific operations
|
|
simdjson_really_inline simd8<bool> any_bits_set(simd8<uint8_t> bits) const { return vtstq_u8(*this, bits); }
|
|
simdjson_really_inline bool any_bits_set_anywhere() const { return this->max() != 0; }
|
|
simdjson_really_inline bool any_bits_set_anywhere(simd8<uint8_t> bits) const { return (*this & bits).any_bits_set_anywhere(); }
|
|
template<int N>
|
|
simdjson_really_inline simd8<uint8_t> shr() const { return vshrq_n_u8(*this, N); }
|
|
template<int N>
|
|
simdjson_really_inline simd8<uint8_t> shl() const { return vshlq_n_u8(*this, N); }
|
|
|
|
// Perform a lookup assuming the value is between 0 and 16 (undefined behavior for out of range values)
|
|
template<typename L>
|
|
simdjson_really_inline simd8<L> lookup_16(simd8<L> lookup_table) const {
|
|
return lookup_table.apply_lookup_16_to(*this);
|
|
}
|
|
|
|
|
|
// Copies to 'output" all bytes corresponding to a 0 in the mask (interpreted as a bitset).
|
|
// Passing a 0 value for mask would be equivalent to writing out every byte to output.
|
|
// Only the first 16 - count_ones(mask) bytes of the result are significant but 16 bytes
|
|
// get written.
|
|
// Design consideration: it seems like a function with the
|
|
// signature simd8<L> compress(uint16_t mask) would be
|
|
// sensible, but the AVX ISA makes this kind of approach difficult.
|
|
template<typename L>
|
|
simdjson_really_inline void compress(uint16_t mask, L * output) const {
|
|
// this particular implementation was inspired by work done by @animetosho
|
|
// we do it in two steps, first 8 bytes and then second 8 bytes
|
|
uint8_t mask1 = uint8_t(mask); // least significant 8 bits
|
|
uint8_t mask2 = uint8_t(mask >> 8); // most significant 8 bits
|
|
// next line just loads the 64-bit values thintable_epi8[mask1] and
|
|
// thintable_epi8[mask2] into a 128-bit register, using only
|
|
// two instructions on most compilers.
|
|
uint64x2_t shufmask64 = {thintable_epi8[mask1], thintable_epi8[mask2]};
|
|
uint8x16_t shufmask = vreinterpretq_u8_u64(shufmask64);
|
|
// we increment by 0x08 the second half of the mask
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
uint8x16_t inc = make_uint8x16_t(0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08);
|
|
#else
|
|
uint8x16_t inc = {0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08};
|
|
#endif
|
|
shufmask = vaddq_u8(shufmask, inc);
|
|
// this is the version "nearly pruned"
|
|
uint8x16_t pruned = vqtbl1q_u8(*this, shufmask);
|
|
// we still need to put the two halves together.
|
|
// we compute the popcount of the first half:
|
|
int pop1 = BitsSetTable256mul2[mask1];
|
|
// then load the corresponding mask, what it does is to write
|
|
// only the first pop1 bytes from the first 8 bytes, and then
|
|
// it fills in with the bytes from the second 8 bytes + some filling
|
|
// at the end.
|
|
uint8x16_t compactmask = vld1q_u8((const uint8_t *)(pshufb_combine_table + pop1 * 8));
|
|
uint8x16_t answer = vqtbl1q_u8(pruned, compactmask);
|
|
vst1q_u8((uint8_t*) output, answer);
|
|
}
|
|
|
|
template<typename L>
|
|
simdjson_really_inline simd8<L> lookup_16(
|
|
L replace0, L replace1, L replace2, L replace3,
|
|
L replace4, L replace5, L replace6, L replace7,
|
|
L replace8, L replace9, L replace10, L replace11,
|
|
L replace12, L replace13, L replace14, L replace15) const {
|
|
return lookup_16(simd8<L>::repeat_16(
|
|
replace0, replace1, replace2, replace3,
|
|
replace4, replace5, replace6, replace7,
|
|
replace8, replace9, replace10, replace11,
|
|
replace12, replace13, replace14, replace15
|
|
));
|
|
}
|
|
|
|
template<typename T>
|
|
simdjson_really_inline simd8<uint8_t> apply_lookup_16_to(const simd8<T> original) {
|
|
return vqtbl1q_u8(*this, simd8<uint8_t>(original));
|
|
}
|
|
};
|
|
|
|
// Signed bytes
|
|
template<>
|
|
struct simd8<int8_t> {
|
|
int8x16_t value;
|
|
|
|
static simdjson_really_inline simd8<int8_t> splat(int8_t _value) { return vmovq_n_s8(_value); }
|
|
static simdjson_really_inline simd8<int8_t> zero() { return vdupq_n_s8(0); }
|
|
static simdjson_really_inline simd8<int8_t> load(const int8_t values[16]) { return vld1q_s8(values); }
|
|
|
|
// Conversion from/to SIMD register
|
|
simdjson_really_inline simd8(const int8x16_t _value) : value{_value} {}
|
|
simdjson_really_inline operator const int8x16_t&() const { return this->value; }
|
|
simdjson_really_inline operator int8x16_t&() { return this->value; }
|
|
|
|
// Zero constructor
|
|
simdjson_really_inline simd8() : simd8(zero()) {}
|
|
// Splat constructor
|
|
simdjson_really_inline simd8(int8_t _value) : simd8(splat(_value)) {}
|
|
// Array constructor
|
|
simdjson_really_inline simd8(const int8_t* values) : simd8(load(values)) {}
|
|
// Member-by-member initialization
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
simdjson_really_inline simd8(
|
|
int8_t v0, int8_t v1, int8_t v2, int8_t v3, int8_t v4, int8_t v5, int8_t v6, int8_t v7,
|
|
int8_t v8, int8_t v9, int8_t v10, int8_t v11, int8_t v12, int8_t v13, int8_t v14, int8_t v15
|
|
) : simd8(make_int8x16_t(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
)) {}
|
|
#else
|
|
simdjson_really_inline simd8(
|
|
int8_t v0, int8_t v1, int8_t v2, int8_t v3, int8_t v4, int8_t v5, int8_t v6, int8_t v7,
|
|
int8_t v8, int8_t v9, int8_t v10, int8_t v11, int8_t v12, int8_t v13, int8_t v14, int8_t v15
|
|
) : simd8(int8x16_t{
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
}) {}
|
|
#endif
|
|
// Repeat 16 values as many times as necessary (usually for lookup tables)
|
|
simdjson_really_inline static simd8<int8_t> repeat_16(
|
|
int8_t v0, int8_t v1, int8_t v2, int8_t v3, int8_t v4, int8_t v5, int8_t v6, int8_t v7,
|
|
int8_t v8, int8_t v9, int8_t v10, int8_t v11, int8_t v12, int8_t v13, int8_t v14, int8_t v15
|
|
) {
|
|
return simd8<int8_t>(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
);
|
|
}
|
|
|
|
// Store to array
|
|
simdjson_really_inline void store(int8_t dst[16]) const { return vst1q_s8(dst, *this); }
|
|
|
|
// Explicit conversion to/from unsigned
|
|
//
|
|
// Under Visual Studio/ARM64 uint8x16_t and int8x16_t are apparently the same type.
|
|
// In theory, we could check this occurence with std::same_as and std::enabled_if but it is C++14
|
|
// and relatively ugly and hard to read.
|
|
#ifndef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
simdjson_really_inline explicit simd8(const uint8x16_t other): simd8(vreinterpretq_s8_u8(other)) {}
|
|
#endif
|
|
simdjson_really_inline explicit operator simd8<uint8_t>() const { return vreinterpretq_u8_s8(this->value); }
|
|
|
|
// Math
|
|
simdjson_really_inline simd8<int8_t> operator+(const simd8<int8_t> other) const { return vaddq_s8(*this, other); }
|
|
simdjson_really_inline simd8<int8_t> operator-(const simd8<int8_t> other) const { return vsubq_s8(*this, other); }
|
|
simdjson_really_inline simd8<int8_t>& operator+=(const simd8<int8_t> other) { *this = *this + other; return *this; }
|
|
simdjson_really_inline simd8<int8_t>& operator-=(const simd8<int8_t> other) { *this = *this - other; return *this; }
|
|
|
|
// Order-sensitive comparisons
|
|
simdjson_really_inline simd8<int8_t> max(const simd8<int8_t> other) const { return vmaxq_s8(*this, other); }
|
|
simdjson_really_inline simd8<int8_t> min(const simd8<int8_t> other) const { return vminq_s8(*this, other); }
|
|
simdjson_really_inline simd8<bool> operator>(const simd8<int8_t> other) const { return vcgtq_s8(*this, other); }
|
|
simdjson_really_inline simd8<bool> operator<(const simd8<int8_t> other) const { return vcltq_s8(*this, other); }
|
|
simdjson_really_inline simd8<bool> operator==(const simd8<int8_t> other) const { return vceqq_s8(*this, other); }
|
|
|
|
template<int N=1>
|
|
simdjson_really_inline simd8<int8_t> prev(const simd8<int8_t> prev_chunk) const {
|
|
return vextq_s8(prev_chunk, *this, 16 - N);
|
|
}
|
|
|
|
// Perform a lookup assuming no value is larger than 16
|
|
template<typename L>
|
|
simdjson_really_inline simd8<L> lookup_16(simd8<L> lookup_table) const {
|
|
return lookup_table.apply_lookup_16_to(*this);
|
|
}
|
|
template<typename L>
|
|
simdjson_really_inline simd8<L> lookup_16(
|
|
L replace0, L replace1, L replace2, L replace3,
|
|
L replace4, L replace5, L replace6, L replace7,
|
|
L replace8, L replace9, L replace10, L replace11,
|
|
L replace12, L replace13, L replace14, L replace15) const {
|
|
return lookup_16(simd8<L>::repeat_16(
|
|
replace0, replace1, replace2, replace3,
|
|
replace4, replace5, replace6, replace7,
|
|
replace8, replace9, replace10, replace11,
|
|
replace12, replace13, replace14, replace15
|
|
));
|
|
}
|
|
|
|
template<typename T>
|
|
simdjson_really_inline simd8<int8_t> apply_lookup_16_to(const simd8<T> original) {
|
|
return vqtbl1q_s8(*this, simd8<uint8_t>(original));
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
struct simd8x64 {
|
|
static constexpr int NUM_CHUNKS = 64 / sizeof(simd8<T>);
|
|
static_assert(NUM_CHUNKS == 4, "ARM kernel should use four registers per 64-byte block.");
|
|
const simd8<T> chunks[NUM_CHUNKS];
|
|
|
|
simd8x64(const simd8x64<T>& o) = delete; // no copy allowed
|
|
simd8x64<T>& operator=(const simd8<T> other) = delete; // no assignment allowed
|
|
simd8x64() = delete; // no default constructor allowed
|
|
|
|
simdjson_really_inline simd8x64(const simd8<T> chunk0, const simd8<T> chunk1, const simd8<T> chunk2, const simd8<T> chunk3) : chunks{chunk0, chunk1, chunk2, chunk3} {}
|
|
simdjson_really_inline simd8x64(const T ptr[64]) : chunks{simd8<T>::load(ptr), simd8<T>::load(ptr+16), simd8<T>::load(ptr+32), simd8<T>::load(ptr+48)} {}
|
|
|
|
simdjson_really_inline void store(T ptr[64]) const {
|
|
this->chunks[0].store(ptr+sizeof(simd8<T>)*0);
|
|
this->chunks[1].store(ptr+sizeof(simd8<T>)*1);
|
|
this->chunks[2].store(ptr+sizeof(simd8<T>)*2);
|
|
this->chunks[3].store(ptr+sizeof(simd8<T>)*3);
|
|
}
|
|
|
|
simdjson_really_inline simd8<T> reduce_or() const {
|
|
return (this->chunks[0] | this->chunks[1]) | (this->chunks[2] | this->chunks[3]);
|
|
}
|
|
|
|
|
|
simdjson_really_inline void compress(uint64_t mask, T * output) const {
|
|
this->chunks[0].compress(uint16_t(mask), output);
|
|
this->chunks[1].compress(uint16_t(mask >> 16), output + 16 - count_ones(mask & 0xFFFF));
|
|
this->chunks[2].compress(uint16_t(mask >> 32), output + 32 - count_ones(mask & 0xFFFFFFFF));
|
|
this->chunks[3].compress(uint16_t(mask >> 48), output + 48 - count_ones(mask & 0xFFFFFFFFFFFF));
|
|
}
|
|
|
|
simdjson_really_inline uint64_t to_bitmask() const {
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
const uint8x16_t bit_mask = make_uint8x16_t(
|
|
0x01, 0x02, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80,
|
|
0x01, 0x02, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80
|
|
);
|
|
#else
|
|
const uint8x16_t bit_mask = {
|
|
0x01, 0x02, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80,
|
|
0x01, 0x02, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80
|
|
};
|
|
#endif
|
|
// Add each of the elements next to each other, successively, to stuff each 8 byte mask into one.
|
|
uint8x16_t sum0 = vpaddq_u8(this->chunks[0] & bit_mask, this->chunks[1] & bit_mask);
|
|
uint8x16_t sum1 = vpaddq_u8(this->chunks[2] & bit_mask, this->chunks[3] & bit_mask);
|
|
sum0 = vpaddq_u8(sum0, sum1);
|
|
sum0 = vpaddq_u8(sum0, sum0);
|
|
return vgetq_lane_u64(vreinterpretq_u64_u8(sum0), 0);
|
|
}
|
|
|
|
simdjson_really_inline simd8x64<T> bit_or(const T m) const {
|
|
const simd8<T> mask = simd8<T>::splat(m);
|
|
return simd8x64<T>(
|
|
this->chunks[0] | mask,
|
|
this->chunks[1] | mask,
|
|
this->chunks[2] | mask,
|
|
this->chunks[3] | mask
|
|
);
|
|
}
|
|
|
|
simdjson_really_inline uint64_t eq(const T m) const {
|
|
const simd8<T> mask = simd8<T>::splat(m);
|
|
return simd8x64<bool>(
|
|
this->chunks[0] == mask,
|
|
this->chunks[1] == mask,
|
|
this->chunks[2] == mask,
|
|
this->chunks[3] == mask
|
|
).to_bitmask();
|
|
}
|
|
|
|
simdjson_really_inline uint64_t lteq(const T m) const {
|
|
const simd8<T> mask = simd8<T>::splat(m);
|
|
return simd8x64<bool>(
|
|
this->chunks[0] <= mask,
|
|
this->chunks[1] <= mask,
|
|
this->chunks[2] <= mask,
|
|
this->chunks[3] <= mask
|
|
).to_bitmask();
|
|
}
|
|
}; // struct simd8x64<T>
|
|
|
|
} // namespace simd
|
|
} // namespace arm64
|
|
} // unnamed namespace
|
|
|
|
#endif // SIMDJSON_ARM64_SIMD_H
|
|
/* end file src/arm64/simd.h */
|
|
/* end file src/arm64/simd.h */
|
|
/* begin file src/arm64/dom_parser_implementation.h */
|
|
#ifndef SIMDJSON_ARM64_DOM_PARSER_IMPLEMENTATION_H
|
|
#define SIMDJSON_ARM64_DOM_PARSER_IMPLEMENTATION_H
|
|
|
|
/* begin file src/generic/dom_parser_implementation.h */
|
|
/* isadetection.h already included: #include "isadetection.h" */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
// expectation: sizeof(open_container) = 64/8.
|
|
struct open_container {
|
|
uint32_t tape_index; // where, on the tape, does the scope ([,{) begins
|
|
uint32_t count; // how many elements in the scope
|
|
}; // struct open_container
|
|
|
|
static_assert(sizeof(open_container) == 64/8, "Open container must be 64 bits");
|
|
|
|
class dom_parser_implementation final : public internal::dom_parser_implementation {
|
|
public:
|
|
/** Tape location of each open { or [ */
|
|
std::unique_ptr<open_container[]> open_containers{};
|
|
/** Whether each open container is a [ or { */
|
|
std::unique_ptr<bool[]> is_array{};
|
|
/** Buffer passed to stage 1 */
|
|
const uint8_t *buf{};
|
|
/** Length passed to stage 1 */
|
|
size_t len{0};
|
|
/** Document passed to stage 2 */
|
|
dom::document *doc{};
|
|
|
|
simdjson_really_inline dom_parser_implementation();
|
|
dom_parser_implementation(const dom_parser_implementation &) = delete;
|
|
dom_parser_implementation & operator=(const dom_parser_implementation &) = delete;
|
|
|
|
SIMDJSON_WARN_UNUSED error_code parse(const uint8_t *buf, size_t len, dom::document &doc) noexcept final;
|
|
SIMDJSON_WARN_UNUSED error_code stage1(const uint8_t *buf, size_t len, bool partial) noexcept final;
|
|
SIMDJSON_WARN_UNUSED error_code check_for_unclosed_array() noexcept;
|
|
SIMDJSON_WARN_UNUSED error_code stage2(dom::document &doc) noexcept final;
|
|
SIMDJSON_WARN_UNUSED error_code stage2_next(dom::document &doc) noexcept final;
|
|
SIMDJSON_WARN_UNUSED error_code set_capacity(size_t capacity) noexcept final;
|
|
SIMDJSON_WARN_UNUSED error_code set_max_depth(size_t max_depth) noexcept final;
|
|
};
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
/* begin file src/generic/stage1/allocate.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage1 {
|
|
namespace allocate {
|
|
|
|
//
|
|
// Allocates stage 1 internal state and outputs in the parser
|
|
//
|
|
simdjson_really_inline error_code set_capacity(internal::dom_parser_implementation &parser, size_t capacity) {
|
|
size_t max_structures = SIMDJSON_ROUNDUP_N(capacity, 64) + 2 + 7;
|
|
parser.structural_indexes.reset( new (std::nothrow) uint32_t[max_structures] );
|
|
if (!parser.structural_indexes) { return MEMALLOC; }
|
|
parser.structural_indexes[0] = 0;
|
|
parser.n_structural_indexes = 0;
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace allocate
|
|
} // namespace stage1
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/allocate.h */
|
|
/* begin file src/generic/stage2/allocate.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
namespace allocate {
|
|
|
|
//
|
|
// Allocates stage 2 internal state and outputs in the parser
|
|
//
|
|
simdjson_really_inline error_code set_max_depth(dom_parser_implementation &parser, size_t max_depth) {
|
|
parser.open_containers.reset(new (std::nothrow) open_container[max_depth]);
|
|
parser.is_array.reset(new (std::nothrow) bool[max_depth]);
|
|
|
|
if (!parser.is_array || !parser.open_containers) {
|
|
return MEMALLOC;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace allocate
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/allocate.h */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
simdjson_really_inline dom_parser_implementation::dom_parser_implementation() {}
|
|
|
|
// Leaving these here so they can be inlined if so desired
|
|
SIMDJSON_WARN_UNUSED error_code dom_parser_implementation::set_capacity(size_t capacity) noexcept {
|
|
error_code err = stage1::allocate::set_capacity(*this, capacity);
|
|
if (err) { _capacity = 0; return err; }
|
|
_capacity = capacity;
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED error_code dom_parser_implementation::set_max_depth(size_t max_depth) noexcept {
|
|
error_code err = stage2::allocate::set_max_depth(*this, max_depth);
|
|
if (err) { _max_depth = 0; return err; }
|
|
_max_depth = max_depth;
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/allocate.h */
|
|
|
|
#endif // SIMDJSON_ARM64_DOM_PARSER_IMPLEMENTATION_H
|
|
/* end file src/generic/stage2/allocate.h */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
SIMDJSON_WARN_UNUSED error_code implementation::create_dom_parser_implementation(
|
|
size_t capacity,
|
|
size_t max_depth,
|
|
std::unique_ptr<internal::dom_parser_implementation>& dst
|
|
) const noexcept {
|
|
dst.reset( new (std::nothrow) dom_parser_implementation() );
|
|
if (!dst) { return MEMALLOC; }
|
|
dst->set_capacity(capacity);
|
|
dst->set_max_depth(max_depth);
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
/* begin file src/arm64/end_implementation.h */
|
|
#undef SIMDJSON_IMPLEMENTATION
|
|
/* end file src/arm64/end_implementation.h */
|
|
/* end file src/arm64/end_implementation.h */
|
|
/* begin file src/arm64/dom_parser_implementation.cpp */
|
|
/* begin file src/arm64/begin_implementation.h */
|
|
#define SIMDJSON_IMPLEMENTATION arm64
|
|
/* arm64/implementation.h already included: #include "arm64/implementation.h" */
|
|
/* arm64/intrinsics.h already included: #include "arm64/intrinsics.h" */
|
|
/* arm64/bitmanipulation.h already included: #include "arm64/bitmanipulation.h" */
|
|
/* arm64/bitmask.h already included: #include "arm64/bitmask.h" */
|
|
/* arm64/simd.h already included: #include "arm64/simd.h" */
|
|
/* end file src/arm64/begin_implementation.h */
|
|
/* arm64/dom_parser_implementation.h already included: #include "arm64/dom_parser_implementation.h" */
|
|
/* begin file src/generic/stage2/jsoncharutils.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
|
|
// return non-zero if not a structural or whitespace char
|
|
// zero otherwise
|
|
simdjson_really_inline uint32_t is_not_structural_or_whitespace(uint8_t c) {
|
|
return structural_or_whitespace_negated[c];
|
|
}
|
|
|
|
simdjson_really_inline uint32_t is_structural_or_whitespace(uint8_t c) {
|
|
return structural_or_whitespace[c];
|
|
}
|
|
|
|
// returns a value with the high 16 bits set if not valid
|
|
// otherwise returns the conversion of the 4 hex digits at src into the bottom
|
|
// 16 bits of the 32-bit return register
|
|
//
|
|
// see
|
|
// https://lemire.me/blog/2019/04/17/parsing-short-hexadecimal-strings-efficiently/
|
|
static inline uint32_t hex_to_u32_nocheck(
|
|
const uint8_t *src) { // strictly speaking, static inline is a C-ism
|
|
uint32_t v1 = digit_to_val32[630 + src[0]];
|
|
uint32_t v2 = digit_to_val32[420 + src[1]];
|
|
uint32_t v3 = digit_to_val32[210 + src[2]];
|
|
uint32_t v4 = digit_to_val32[0 + src[3]];
|
|
return v1 | v2 | v3 | v4;
|
|
}
|
|
|
|
// given a code point cp, writes to c
|
|
// the utf-8 code, outputting the length in
|
|
// bytes, if the length is zero, the code point
|
|
// is invalid
|
|
//
|
|
// This can possibly be made faster using pdep
|
|
// and clz and table lookups, but JSON documents
|
|
// have few escaped code points, and the following
|
|
// function looks cheap.
|
|
//
|
|
// Note: we assume that surrogates are treated separately
|
|
//
|
|
simdjson_really_inline size_t codepoint_to_utf8(uint32_t cp, uint8_t *c) {
|
|
if (cp <= 0x7F) {
|
|
c[0] = uint8_t(cp);
|
|
return 1; // ascii
|
|
}
|
|
if (cp <= 0x7FF) {
|
|
c[0] = uint8_t((cp >> 6) + 192);
|
|
c[1] = uint8_t((cp & 63) + 128);
|
|
return 2; // universal plane
|
|
// Surrogates are treated elsewhere...
|
|
//} //else if (0xd800 <= cp && cp <= 0xdfff) {
|
|
// return 0; // surrogates // could put assert here
|
|
} else if (cp <= 0xFFFF) {
|
|
c[0] = uint8_t((cp >> 12) + 224);
|
|
c[1] = uint8_t(((cp >> 6) & 63) + 128);
|
|
c[2] = uint8_t((cp & 63) + 128);
|
|
return 3;
|
|
} else if (cp <= 0x10FFFF) { // if you know you have a valid code point, this
|
|
// is not needed
|
|
c[0] = uint8_t((cp >> 18) + 240);
|
|
c[1] = uint8_t(((cp >> 12) & 63) + 128);
|
|
c[2] = uint8_t(((cp >> 6) & 63) + 128);
|
|
c[3] = uint8_t((cp & 63) + 128);
|
|
return 4;
|
|
}
|
|
// will return 0 when the code point was too large.
|
|
return 0; // bad r
|
|
}
|
|
|
|
#ifdef SIMDJSON_IS_32BITS // _umul128 for x86, arm
|
|
// this is a slow emulation routine for 32-bit
|
|
//
|
|
static simdjson_really_inline uint64_t __emulu(uint32_t x, uint32_t y) {
|
|
return x * (uint64_t)y;
|
|
}
|
|
static simdjson_really_inline uint64_t _umul128(uint64_t ab, uint64_t cd, uint64_t *hi) {
|
|
uint64_t ad = __emulu((uint32_t)(ab >> 32), (uint32_t)cd);
|
|
uint64_t bd = __emulu((uint32_t)ab, (uint32_t)cd);
|
|
uint64_t adbc = ad + __emulu((uint32_t)ab, (uint32_t)(cd >> 32));
|
|
uint64_t adbc_carry = !!(adbc < ad);
|
|
uint64_t lo = bd + (adbc << 32);
|
|
*hi = __emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) +
|
|
(adbc_carry << 32) + !!(lo < bd);
|
|
return lo;
|
|
}
|
|
#endif
|
|
|
|
simdjson_really_inline value128 full_multiplication(uint64_t value1, uint64_t value2) {
|
|
value128 answer;
|
|
#if defined(SIMDJSON_REGULAR_VISUAL_STUDIO) || defined(SIMDJSON_IS_32BITS)
|
|
#ifdef _M_ARM64
|
|
// ARM64 has native support for 64-bit multiplications, no need to emultate
|
|
answer.high = __umulh(value1, value2);
|
|
answer.low = value1 * value2;
|
|
#else
|
|
answer.low = _umul128(value1, value2, &answer.high); // _umul128 not available on ARM64
|
|
#endif // _M_ARM64
|
|
#else // defined(SIMDJSON_REGULAR_VISUAL_STUDIO) || defined(SIMDJSON_IS_32BITS)
|
|
__uint128_t r = ((__uint128_t)value1) * value2;
|
|
answer.low = uint64_t(r);
|
|
answer.high = uint64_t(r >> 64);
|
|
#endif
|
|
return answer;
|
|
}
|
|
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/jsoncharutils.h */
|
|
|
|
//
|
|
// Stage 1
|
|
//
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
using namespace simd;
|
|
|
|
struct json_character_block {
|
|
static simdjson_really_inline json_character_block classify(const simd::simd8x64<uint8_t>& in);
|
|
|
|
simdjson_really_inline uint64_t whitespace() const { return _whitespace; }
|
|
simdjson_really_inline uint64_t op() const { return _op; }
|
|
simdjson_really_inline uint64_t scalar() { return ~(op() | whitespace()); }
|
|
|
|
uint64_t _whitespace;
|
|
uint64_t _op;
|
|
};
|
|
|
|
simdjson_really_inline json_character_block json_character_block::classify(const simd::simd8x64<uint8_t>& in) {
|
|
// Functional programming causes trouble with Visual Studio.
|
|
// Keeping this version in comments since it is much nicer:
|
|
// auto v = in.map<uint8_t>([&](simd8<uint8_t> chunk) {
|
|
// auto nib_lo = chunk & 0xf;
|
|
// auto nib_hi = chunk.shr<4>();
|
|
// auto shuf_lo = nib_lo.lookup_16<uint8_t>(16, 0, 0, 0, 0, 0, 0, 0, 0, 8, 12, 1, 2, 9, 0, 0);
|
|
// auto shuf_hi = nib_hi.lookup_16<uint8_t>(8, 0, 18, 4, 0, 1, 0, 1, 0, 0, 0, 3, 2, 1, 0, 0);
|
|
// return shuf_lo & shuf_hi;
|
|
// });
|
|
const simd8<uint8_t> table1(16, 0, 0, 0, 0, 0, 0, 0, 0, 8, 12, 1, 2, 9, 0, 0);
|
|
const simd8<uint8_t> table2(8, 0, 18, 4, 0, 1, 0, 1, 0, 0, 0, 3, 2, 1, 0, 0);
|
|
|
|
simd8x64<uint8_t> v(
|
|
(in.chunks[0] & 0xf).lookup_16(table1) & (in.chunks[0].shr<4>()).lookup_16(table2),
|
|
(in.chunks[1] & 0xf).lookup_16(table1) & (in.chunks[1].shr<4>()).lookup_16(table2),
|
|
(in.chunks[2] & 0xf).lookup_16(table1) & (in.chunks[2].shr<4>()).lookup_16(table2),
|
|
(in.chunks[3] & 0xf).lookup_16(table1) & (in.chunks[3].shr<4>()).lookup_16(table2)
|
|
);
|
|
|
|
|
|
// We compute whitespace and op separately. If the code later only use one or the
|
|
// other, given the fact that all functions are aggressively inlined, we can
|
|
// hope that useless computations will be omitted. This is namely case when
|
|
// minifying (we only need whitespace). *However* if we only need spaces,
|
|
// it is likely that we will still compute 'v' above with two lookup_16: one
|
|
// could do it a bit cheaper. This is in contrast with the x64 implementations
|
|
// where we can, efficiently, do the white space and structural matching
|
|
// separately. One reason for this difference is that on ARM NEON, the table
|
|
// lookups either zero or leave unchanged the characters exceeding 0xF whereas
|
|
// on x64, the equivalent instruction (pshufb) automatically applies a mask,
|
|
// ignoring the 4 most significant bits. Thus the x64 implementation is
|
|
// optimized differently. This being said, if you use this code strictly
|
|
// just for minification (or just to identify the structural characters),
|
|
// there is a small untaken optimization opportunity here. We deliberately
|
|
// do not pick it up.
|
|
|
|
uint64_t op = simd8x64<bool>(
|
|
v.chunks[0].any_bits_set(0x7),
|
|
v.chunks[1].any_bits_set(0x7),
|
|
v.chunks[2].any_bits_set(0x7),
|
|
v.chunks[3].any_bits_set(0x7)
|
|
).to_bitmask();
|
|
|
|
uint64_t whitespace = simd8x64<bool>(
|
|
v.chunks[0].any_bits_set(0x18),
|
|
v.chunks[1].any_bits_set(0x18),
|
|
v.chunks[2].any_bits_set(0x18),
|
|
v.chunks[3].any_bits_set(0x18)
|
|
).to_bitmask();
|
|
|
|
return { whitespace, op };
|
|
}
|
|
|
|
simdjson_really_inline bool is_ascii(const simd8x64<uint8_t>& input) {
|
|
simd8<uint8_t> bits = input.reduce_or();
|
|
return bits.max() < 0b10000000u;
|
|
}
|
|
|
|
SIMDJSON_UNUSED simdjson_really_inline simd8<bool> must_be_continuation(const simd8<uint8_t> prev1, const simd8<uint8_t> prev2, const simd8<uint8_t> prev3) {
|
|
simd8<bool> is_second_byte = prev1 >= uint8_t(0b11000000u);
|
|
simd8<bool> is_third_byte = prev2 >= uint8_t(0b11100000u);
|
|
simd8<bool> is_fourth_byte = prev3 >= uint8_t(0b11110000u);
|
|
// Use ^ instead of | for is_*_byte, because ^ is commutative, and the caller is using ^ as well.
|
|
// This will work fine because we only have to report errors for cases with 0-1 lead bytes.
|
|
// Multiple lead bytes implies 2 overlapping multibyte characters, and if that happens, there is
|
|
// guaranteed to be at least *one* lead byte that is part of only 1 other multibyte character.
|
|
// The error will be detected there.
|
|
return is_second_byte ^ is_third_byte ^ is_fourth_byte;
|
|
}
|
|
|
|
simdjson_really_inline simd8<bool> must_be_2_3_continuation(const simd8<uint8_t> prev2, const simd8<uint8_t> prev3) {
|
|
simd8<bool> is_third_byte = prev2 >= uint8_t(0b11100000u);
|
|
simd8<bool> is_fourth_byte = prev3 >= uint8_t(0b11110000u);
|
|
return is_third_byte ^ is_fourth_byte;
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
/* begin file src/generic/stage1/utf8_lookup4_algorithm.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace utf8_validation {
|
|
|
|
using namespace simd;
|
|
|
|
simdjson_really_inline simd8<uint8_t> check_special_cases(const simd8<uint8_t> input, const simd8<uint8_t> prev1) {
|
|
// Bit 0 = Too Short (lead byte/ASCII followed by lead byte/ASCII)
|
|
// Bit 1 = Too Long (ASCII followed by continuation)
|
|
// Bit 2 = Overlong 3-byte
|
|
// Bit 4 = Surrogate
|
|
// Bit 5 = Overlong 2-byte
|
|
// Bit 7 = Two Continuations
|
|
constexpr const uint8_t TOO_SHORT = 1<<0; // 11______ 0_______
|
|
// 11______ 11______
|
|
constexpr const uint8_t TOO_LONG = 1<<1; // 0_______ 10______
|
|
constexpr const uint8_t OVERLONG_3 = 1<<2; // 11100000 100_____
|
|
constexpr const uint8_t SURROGATE = 1<<4; // 11101101 101_____
|
|
constexpr const uint8_t OVERLONG_2 = 1<<5; // 1100000_ 10______
|
|
constexpr const uint8_t TWO_CONTS = 1<<7; // 10______ 10______
|
|
constexpr const uint8_t TOO_LARGE = 1<<3; // 11110100 1001____
|
|
// 11110100 101_____
|
|
// 11110101 1001____
|
|
// 11110101 101_____
|
|
// 1111011_ 1001____
|
|
// 1111011_ 101_____
|
|
// 11111___ 1001____
|
|
// 11111___ 101_____
|
|
constexpr const uint8_t TOO_LARGE_1000 = 1<<6;
|
|
// 11110101 1000____
|
|
// 1111011_ 1000____
|
|
// 11111___ 1000____
|
|
constexpr const uint8_t OVERLONG_4 = 1<<6; // 11110000 1000____
|
|
|
|
const simd8<uint8_t> byte_1_high = prev1.shr<4>().lookup_16<uint8_t>(
|
|
// 0_______ ________ <ASCII in byte 1>
|
|
TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG,
|
|
TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG,
|
|
// 10______ ________ <continuation in byte 1>
|
|
TWO_CONTS, TWO_CONTS, TWO_CONTS, TWO_CONTS,
|
|
// 1100____ ________ <two byte lead in byte 1>
|
|
TOO_SHORT | OVERLONG_2,
|
|
// 1101____ ________ <two byte lead in byte 1>
|
|
TOO_SHORT,
|
|
// 1110____ ________ <three byte lead in byte 1>
|
|
TOO_SHORT | OVERLONG_3 | SURROGATE,
|
|
// 1111____ ________ <four+ byte lead in byte 1>
|
|
TOO_SHORT | TOO_LARGE | TOO_LARGE_1000 | OVERLONG_4
|
|
);
|
|
constexpr const uint8_t CARRY = TOO_SHORT | TOO_LONG | TWO_CONTS; // These all have ____ in byte 1 .
|
|
const simd8<uint8_t> byte_1_low = (prev1 & 0x0F).lookup_16<uint8_t>(
|
|
// ____0000 ________
|
|
CARRY | OVERLONG_3 | OVERLONG_2 | OVERLONG_4,
|
|
// ____0001 ________
|
|
CARRY | OVERLONG_2,
|
|
// ____001_ ________
|
|
CARRY,
|
|
CARRY,
|
|
|
|
// ____0100 ________
|
|
CARRY | TOO_LARGE,
|
|
// ____0101 ________
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
// ____011_ ________
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
|
|
// ____1___ ________
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
// ____1101 ________
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000 | SURROGATE,
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000
|
|
);
|
|
const simd8<uint8_t> byte_2_high = input.shr<4>().lookup_16<uint8_t>(
|
|
// ________ 0_______ <ASCII in byte 2>
|
|
TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT,
|
|
TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT,
|
|
|
|
// ________ 1000____
|
|
TOO_LONG | OVERLONG_2 | TWO_CONTS | OVERLONG_3 | TOO_LARGE_1000 | OVERLONG_4,
|
|
// ________ 1001____
|
|
TOO_LONG | OVERLONG_2 | TWO_CONTS | OVERLONG_3 | TOO_LARGE,
|
|
// ________ 101_____
|
|
TOO_LONG | OVERLONG_2 | TWO_CONTS | SURROGATE | TOO_LARGE,
|
|
TOO_LONG | OVERLONG_2 | TWO_CONTS | SURROGATE | TOO_LARGE,
|
|
|
|
// ________ 11______
|
|
TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT
|
|
);
|
|
return (byte_1_high & byte_1_low & byte_2_high);
|
|
}
|
|
simdjson_really_inline simd8<uint8_t> check_multibyte_lengths(const simd8<uint8_t> input,
|
|
const simd8<uint8_t> prev_input, const simd8<uint8_t> sc) {
|
|
simd8<uint8_t> prev2 = input.prev<2>(prev_input);
|
|
simd8<uint8_t> prev3 = input.prev<3>(prev_input);
|
|
simd8<uint8_t> must23 = simd8<uint8_t>(must_be_2_3_continuation(prev2, prev3));
|
|
simd8<uint8_t> must23_80 = must23 & uint8_t(0x80);
|
|
return must23_80 ^ sc;
|
|
}
|
|
|
|
//
|
|
// Return nonzero if there are incomplete multibyte characters at the end of the block:
|
|
// e.g. if there is a 4-byte character, but it's 3 bytes from the end.
|
|
//
|
|
simdjson_really_inline simd8<uint8_t> is_incomplete(const simd8<uint8_t> input) {
|
|
// If the previous input's last 3 bytes match this, they're too short (they ended at EOF):
|
|
// ... 1111____ 111_____ 11______
|
|
static const uint8_t max_array[32] = {
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 0b11110000u-1, 0b11100000u-1, 0b11000000u-1
|
|
};
|
|
const simd8<uint8_t> max_value(&max_array[sizeof(max_array)-sizeof(simd8<uint8_t>)]);
|
|
return input.gt_bits(max_value);
|
|
}
|
|
|
|
struct utf8_checker {
|
|
// If this is nonzero, there has been a UTF-8 error.
|
|
simd8<uint8_t> error;
|
|
// The last input we received
|
|
simd8<uint8_t> prev_input_block;
|
|
// Whether the last input we received was incomplete (used for ASCII fast path)
|
|
simd8<uint8_t> prev_incomplete;
|
|
|
|
//
|
|
// Check whether the current bytes are valid UTF-8.
|
|
//
|
|
simdjson_really_inline void check_utf8_bytes(const simd8<uint8_t> input, const simd8<uint8_t> prev_input) {
|
|
// Flip prev1...prev3 so we can easily determine if they are 2+, 3+ or 4+ lead bytes
|
|
// (2, 3, 4-byte leads become large positive numbers instead of small negative numbers)
|
|
simd8<uint8_t> prev1 = input.prev<1>(prev_input);
|
|
simd8<uint8_t> sc = check_special_cases(input, prev1);
|
|
this->error |= check_multibyte_lengths(input, prev_input, sc);
|
|
}
|
|
|
|
// The only problem that can happen at EOF is that a multibyte character is too short.
|
|
simdjson_really_inline void check_eof() {
|
|
// If the previous block had incomplete UTF-8 characters at the end, an ASCII block can't
|
|
// possibly finish them.
|
|
this->error |= this->prev_incomplete;
|
|
}
|
|
|
|
simdjson_really_inline void check_next_input(const simd8x64<uint8_t>& input) {
|
|
if(simdjson_likely(is_ascii(input))) {
|
|
this->error |= this->prev_incomplete;
|
|
} else {
|
|
// you might think that a for-loop would work, but under Visual Studio, it is not good enough.
|
|
static_assert((simd8x64<uint8_t>::NUM_CHUNKS == 2) || (simd8x64<uint8_t>::NUM_CHUNKS == 4),
|
|
"We support either two or four chunks per 64-byte block.");
|
|
if(simd8x64<uint8_t>::NUM_CHUNKS == 2) {
|
|
this->check_utf8_bytes(input.chunks[0], this->prev_input_block);
|
|
this->check_utf8_bytes(input.chunks[1], input.chunks[0]);
|
|
} else if(simd8x64<uint8_t>::NUM_CHUNKS == 4) {
|
|
this->check_utf8_bytes(input.chunks[0], this->prev_input_block);
|
|
this->check_utf8_bytes(input.chunks[1], input.chunks[0]);
|
|
this->check_utf8_bytes(input.chunks[2], input.chunks[1]);
|
|
this->check_utf8_bytes(input.chunks[3], input.chunks[2]);
|
|
}
|
|
this->prev_incomplete = is_incomplete(input.chunks[simd8x64<uint8_t>::NUM_CHUNKS-1]);
|
|
this->prev_input_block = input.chunks[simd8x64<uint8_t>::NUM_CHUNKS-1];
|
|
|
|
}
|
|
}
|
|
|
|
simdjson_really_inline error_code errors() {
|
|
return this->error.any_bits_set_anywhere() ? error_code::UTF8_ERROR : error_code::SUCCESS;
|
|
}
|
|
|
|
}; // struct utf8_checker
|
|
} // namespace utf8_validation
|
|
|
|
using utf8_validation::utf8_checker;
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/utf8_lookup4_algorithm.h */
|
|
/* begin file src/generic/stage1/json_structural_indexer.h */
|
|
// This file contains the common code every implementation uses in stage1
|
|
// It is intended to be included multiple times and compiled multiple times
|
|
// We assume the file in which it is included already includes
|
|
// "simdjson/stage1.h" (this simplifies amalgation)
|
|
|
|
/* begin file src/generic/stage1/buf_block_reader.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
// Walks through a buffer in block-sized increments, loading the last part with spaces
|
|
template<size_t STEP_SIZE>
|
|
struct buf_block_reader {
|
|
public:
|
|
simdjson_really_inline buf_block_reader(const uint8_t *_buf, size_t _len);
|
|
simdjson_really_inline size_t block_index();
|
|
simdjson_really_inline bool has_full_block() const;
|
|
simdjson_really_inline const uint8_t *full_block() const;
|
|
/**
|
|
* Get the last block, padded with spaces.
|
|
*
|
|
* There will always be a last block, with at least 1 byte, unless len == 0 (in which case this
|
|
* function fills the buffer with spaces and returns 0. In particular, if len == STEP_SIZE there
|
|
* will be 0 full_blocks and 1 remainder block with STEP_SIZE bytes and no spaces for padding.
|
|
*
|
|
* @return the number of effective characters in the last block.
|
|
*/
|
|
simdjson_really_inline size_t get_remainder(uint8_t *dst) const;
|
|
simdjson_really_inline void advance();
|
|
private:
|
|
const uint8_t *buf;
|
|
const size_t len;
|
|
const size_t lenminusstep;
|
|
size_t idx;
|
|
};
|
|
|
|
// Routines to print masks and text for debugging bitmask operations
|
|
SIMDJSON_UNUSED static char * format_input_text_64(const uint8_t *text) {
|
|
static char *buf = (char*)malloc(sizeof(simd8x64<uint8_t>) + 1);
|
|
for (size_t i=0; i<sizeof(simd8x64<uint8_t>); i++) {
|
|
buf[i] = int8_t(text[i]) < ' ' ? '_' : int8_t(text[i]);
|
|
}
|
|
buf[sizeof(simd8x64<uint8_t>)] = '\0';
|
|
return buf;
|
|
}
|
|
|
|
// Routines to print masks and text for debugging bitmask operations
|
|
SIMDJSON_UNUSED static char * format_input_text(const simd8x64<uint8_t>& in) {
|
|
static char *buf = (char*)malloc(sizeof(simd8x64<uint8_t>) + 1);
|
|
in.store((uint8_t*)buf);
|
|
for (size_t i=0; i<sizeof(simd8x64<uint8_t>); i++) {
|
|
if (buf[i] < ' ') { buf[i] = '_'; }
|
|
}
|
|
buf[sizeof(simd8x64<uint8_t>)] = '\0';
|
|
return buf;
|
|
}
|
|
|
|
SIMDJSON_UNUSED static char * format_mask(uint64_t mask) {
|
|
static char *buf = (char*)malloc(64 + 1);
|
|
for (size_t i=0; i<64; i++) {
|
|
buf[i] = (mask & (size_t(1) << i)) ? 'X' : ' ';
|
|
}
|
|
buf[64] = '\0';
|
|
return buf;
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
simdjson_really_inline buf_block_reader<STEP_SIZE>::buf_block_reader(const uint8_t *_buf, size_t _len) : buf{_buf}, len{_len}, lenminusstep{len < STEP_SIZE ? 0 : len - STEP_SIZE}, idx{0} {}
|
|
|
|
template<size_t STEP_SIZE>
|
|
simdjson_really_inline size_t buf_block_reader<STEP_SIZE>::block_index() { return idx; }
|
|
|
|
template<size_t STEP_SIZE>
|
|
simdjson_really_inline bool buf_block_reader<STEP_SIZE>::has_full_block() const {
|
|
return idx < lenminusstep;
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
simdjson_really_inline const uint8_t *buf_block_reader<STEP_SIZE>::full_block() const {
|
|
return &buf[idx];
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
simdjson_really_inline size_t buf_block_reader<STEP_SIZE>::get_remainder(uint8_t *dst) const {
|
|
memset(dst, 0x20, STEP_SIZE); // memset STEP_SIZE because it's more efficient to write out 8 or 16 bytes at once.
|
|
memcpy(dst, buf + idx, len - idx);
|
|
return len - idx;
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
simdjson_really_inline void buf_block_reader<STEP_SIZE>::advance() {
|
|
idx += STEP_SIZE;
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/buf_block_reader.h */
|
|
/* begin file src/generic/stage1/json_string_scanner.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage1 {
|
|
|
|
struct json_string_block {
|
|
// Escaped characters (characters following an escape() character)
|
|
simdjson_really_inline uint64_t escaped() const { return _escaped; }
|
|
// Escape characters (backslashes that are not escaped--i.e. in \\, includes only the first \)
|
|
simdjson_really_inline uint64_t escape() const { return _backslash & ~_escaped; }
|
|
// Real (non-backslashed) quotes
|
|
simdjson_really_inline uint64_t quote() const { return _quote; }
|
|
// Start quotes of strings
|
|
simdjson_really_inline uint64_t string_start() const { return _quote & _in_string; }
|
|
// End quotes of strings
|
|
simdjson_really_inline uint64_t string_end() const { return _quote & ~_in_string; }
|
|
// Only characters inside the string (not including the quotes)
|
|
simdjson_really_inline uint64_t string_content() const { return _in_string & ~_quote; }
|
|
// Return a mask of whether the given characters are inside a string (only works on non-quotes)
|
|
simdjson_really_inline uint64_t non_quote_inside_string(uint64_t mask) const { return mask & _in_string; }
|
|
// Return a mask of whether the given characters are inside a string (only works on non-quotes)
|
|
simdjson_really_inline uint64_t non_quote_outside_string(uint64_t mask) const { return mask & ~_in_string; }
|
|
// Tail of string (everything except the start quote)
|
|
simdjson_really_inline uint64_t string_tail() const { return _in_string ^ _quote; }
|
|
|
|
// backslash characters
|
|
uint64_t _backslash;
|
|
// escaped characters (backslashed--does not include the hex characters after \u)
|
|
uint64_t _escaped;
|
|
// real quotes (non-backslashed ones)
|
|
uint64_t _quote;
|
|
// string characters (includes start quote but not end quote)
|
|
uint64_t _in_string;
|
|
};
|
|
|
|
// Scans blocks for string characters, storing the state necessary to do so
|
|
class json_string_scanner {
|
|
public:
|
|
simdjson_really_inline json_string_block next(const simd::simd8x64<uint8_t>& in);
|
|
simdjson_really_inline error_code finish(bool streaming);
|
|
|
|
private:
|
|
// Intended to be defined by the implementation
|
|
simdjson_really_inline uint64_t find_escaped(uint64_t escape);
|
|
simdjson_really_inline uint64_t find_escaped_branchless(uint64_t escape);
|
|
|
|
// Whether the last iteration was still inside a string (all 1's = true, all 0's = false).
|
|
uint64_t prev_in_string = 0ULL;
|
|
// Whether the first character of the next iteration is escaped.
|
|
uint64_t prev_escaped = 0ULL;
|
|
};
|
|
|
|
//
|
|
// Finds escaped characters (characters following \).
|
|
//
|
|
// Handles runs of backslashes like \\\" and \\\\" correctly (yielding 0101 and 01010, respectively).
|
|
//
|
|
// Does this by:
|
|
// - Shift the escape mask to get potentially escaped characters (characters after backslashes).
|
|
// - Mask escaped sequences that start on *even* bits with 1010101010 (odd bits are escaped, even bits are not)
|
|
// - Mask escaped sequences that start on *odd* bits with 0101010101 (even bits are escaped, odd bits are not)
|
|
//
|
|
// To distinguish between escaped sequences starting on even/odd bits, it finds the start of all
|
|
// escape sequences, filters out the ones that start on even bits, and adds that to the mask of
|
|
// escape sequences. This causes the addition to clear out the sequences starting on odd bits (since
|
|
// the start bit causes a carry), and leaves even-bit sequences alone.
|
|
//
|
|
// Example:
|
|
//
|
|
// text | \\\ | \\\"\\\" \\\" \\"\\" |
|
|
// escape | xxx | xx xxx xxx xx xx | Removed overflow backslash; will | it into follows_escape
|
|
// odd_starts | x | x x x | escape & ~even_bits & ~follows_escape
|
|
// even_seq | c| cxxx c xx c | c = carry bit -- will be masked out later
|
|
// invert_mask | | cxxx c xx c| even_seq << 1
|
|
// follows_escape | xx | x xx xxx xxx xx xx | Includes overflow bit
|
|
// escaped | x | x x x x x x x x |
|
|
// desired | x | x x x x x x x x |
|
|
// text | \\\ | \\\"\\\" \\\" \\"\\" |
|
|
//
|
|
simdjson_really_inline uint64_t json_string_scanner::find_escaped_branchless(uint64_t backslash) {
|
|
// If there was overflow, pretend the first character isn't a backslash
|
|
backslash &= ~prev_escaped;
|
|
uint64_t follows_escape = backslash << 1 | prev_escaped;
|
|
|
|
// Get sequences starting on even bits by clearing out the odd series using +
|
|
const uint64_t even_bits = 0x5555555555555555ULL;
|
|
uint64_t odd_sequence_starts = backslash & ~even_bits & ~follows_escape;
|
|
uint64_t sequences_starting_on_even_bits;
|
|
prev_escaped = add_overflow(odd_sequence_starts, backslash, &sequences_starting_on_even_bits);
|
|
uint64_t invert_mask = sequences_starting_on_even_bits << 1; // The mask we want to return is the *escaped* bits, not escapes.
|
|
|
|
// Mask every other backslashed character as an escaped character
|
|
// Flip the mask for sequences that start on even bits, to correct them
|
|
return (even_bits ^ invert_mask) & follows_escape;
|
|
}
|
|
|
|
//
|
|
// Return a mask of all string characters plus end quotes.
|
|
//
|
|
// prev_escaped is overflow saying whether the next character is escaped.
|
|
// prev_in_string is overflow saying whether we're still in a string.
|
|
//
|
|
// Backslash sequences outside of quotes will be detected in stage 2.
|
|
//
|
|
simdjson_really_inline json_string_block json_string_scanner::next(const simd::simd8x64<uint8_t>& in) {
|
|
const uint64_t backslash = in.eq('\\');
|
|
const uint64_t escaped = find_escaped(backslash);
|
|
const uint64_t quote = in.eq('"') & ~escaped;
|
|
|
|
//
|
|
// prefix_xor flips on bits inside the string (and flips off the end quote).
|
|
//
|
|
// Then we xor with prev_in_string: if we were in a string already, its effect is flipped
|
|
// (characters inside strings are outside, and characters outside strings are inside).
|
|
//
|
|
const uint64_t in_string = prefix_xor(quote) ^ prev_in_string;
|
|
|
|
//
|
|
// Check if we're still in a string at the end of the box so the next block will know
|
|
//
|
|
// right shift of a signed value expected to be well-defined and standard
|
|
// compliant as of C++20, John Regher from Utah U. says this is fine code
|
|
//
|
|
prev_in_string = uint64_t(static_cast<int64_t>(in_string) >> 63);
|
|
|
|
// Use ^ to turn the beginning quote off, and the end quote on.
|
|
return {
|
|
backslash,
|
|
escaped,
|
|
quote,
|
|
in_string
|
|
};
|
|
}
|
|
|
|
simdjson_really_inline error_code json_string_scanner::finish(bool streaming) {
|
|
if (prev_in_string and (not streaming)) {
|
|
return UNCLOSED_STRING;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace stage1
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/json_string_scanner.h */
|
|
/* begin file src/generic/stage1/json_scanner.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage1 {
|
|
|
|
/**
|
|
* A block of scanned json, with information on operators and scalars.
|
|
*
|
|
* We seek to identify pseudo-structural characters. Anything that is inside
|
|
* a string must be omitted (hence & ~_string.string_tail()).
|
|
* Otherwise, pseudo-structural characters come in two forms.
|
|
* 1. We have the structural characters ([,],{,},:, comma). The
|
|
* term 'structural character' is from the JSON RFC.
|
|
* 2. We have the 'scalar pseudo-structural characters'.
|
|
* Scalars are quotes, and any character except structural characters and white space.
|
|
*
|
|
* To identify the scalar pseudo-structural characters, we must look at what comes
|
|
* before them: it must be a space, a quote or a structural characters.
|
|
* Starting with simdjson v0.3, we identify them by
|
|
* negation: we identify everything that is followed by a non-quote scalar,
|
|
* and we negate that. Whatever remains must be a 'scalar pseudo-structural character'.
|
|
*/
|
|
struct json_block {
|
|
public:
|
|
/**
|
|
* The start of structurals.
|
|
* In simdjson prior to v0.3, these were called the pseudo-structural characters.
|
|
**/
|
|
simdjson_really_inline uint64_t structural_start() { return potential_structural_start() & ~_string.string_tail(); }
|
|
/** All JSON whitespace (i.e. not in a string) */
|
|
simdjson_really_inline uint64_t whitespace() { return non_quote_outside_string(_characters.whitespace()); }
|
|
|
|
// Helpers
|
|
|
|
/** Whether the given characters are inside a string (only works on non-quotes) */
|
|
simdjson_really_inline uint64_t non_quote_inside_string(uint64_t mask) { return _string.non_quote_inside_string(mask); }
|
|
/** Whether the given characters are outside a string (only works on non-quotes) */
|
|
simdjson_really_inline uint64_t non_quote_outside_string(uint64_t mask) { return _string.non_quote_outside_string(mask); }
|
|
|
|
// string and escape characters
|
|
json_string_block _string;
|
|
// whitespace, structural characters ('operators'), scalars
|
|
json_character_block _characters;
|
|
// whether the previous character was a scalar
|
|
uint64_t _follows_potential_nonquote_scalar;
|
|
private:
|
|
// Potential structurals (i.e. disregarding strings)
|
|
|
|
/**
|
|
* structural elements ([,],{,},:, comma) plus scalar starts like 123, true and "abc".
|
|
* They may reside inside a string.
|
|
**/
|
|
simdjson_really_inline uint64_t potential_structural_start() { return _characters.op() | potential_scalar_start(); }
|
|
/**
|
|
* The start of non-operator runs, like 123, true and "abc".
|
|
* It main reside inside a string.
|
|
**/
|
|
simdjson_really_inline uint64_t potential_scalar_start() {
|
|
// The term "scalar" refers to anything except structural characters and white space
|
|
// (so letters, numbers, quotes).
|
|
// Whenever it is preceded by something that is not a structural element ({,},[,],:, ") nor a white-space
|
|
// then we know that it is irrelevant structurally.
|
|
return _characters.scalar() & ~follows_potential_scalar();
|
|
}
|
|
/**
|
|
* Whether the given character is immediately after a non-operator like 123, true.
|
|
* The characters following a quote are not included.
|
|
*/
|
|
simdjson_really_inline uint64_t follows_potential_scalar() {
|
|
// _follows_potential_nonquote_scalar: is defined as marking any character that follows a character
|
|
// that is not a structural element ({,},[,],:, comma) nor a quote (") and that is not a
|
|
// white space.
|
|
// It is understood that within quoted region, anything at all could be marked (irrelevant).
|
|
return _follows_potential_nonquote_scalar;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Scans JSON for important bits: structural characters or 'operators', strings, and scalars.
|
|
*
|
|
* The scanner starts by calculating two distinct things:
|
|
* - string characters (taking \" into account)
|
|
* - structural characters or 'operators' ([]{},:, comma)
|
|
* and scalars (runs of non-operators like 123, true and "abc")
|
|
*
|
|
* To minimize data dependency (a key component of the scanner's speed), it finds these in parallel:
|
|
* in particular, the operator/scalar bit will find plenty of things that are actually part of
|
|
* strings. When we're done, json_block will fuse the two together by masking out tokens that are
|
|
* part of a string.
|
|
*/
|
|
class json_scanner {
|
|
public:
|
|
json_scanner() {}
|
|
simdjson_really_inline json_block next(const simd::simd8x64<uint8_t>& in);
|
|
simdjson_really_inline error_code finish(bool streaming);
|
|
|
|
private:
|
|
// Whether the last character of the previous iteration is part of a scalar token
|
|
// (anything except whitespace or a structural character/'operator').
|
|
uint64_t prev_scalar = 0ULL;
|
|
json_string_scanner string_scanner{};
|
|
};
|
|
|
|
|
|
//
|
|
// Check if the current character immediately follows a matching character.
|
|
//
|
|
// For example, this checks for quotes with backslashes in front of them:
|
|
//
|
|
// const uint64_t backslashed_quote = in.eq('"') & immediately_follows(in.eq('\'), prev_backslash);
|
|
//
|
|
simdjson_really_inline uint64_t follows(const uint64_t match, uint64_t &overflow) {
|
|
const uint64_t result = match << 1 | overflow;
|
|
overflow = match >> 63;
|
|
return result;
|
|
}
|
|
|
|
simdjson_really_inline json_block json_scanner::next(const simd::simd8x64<uint8_t>& in) {
|
|
json_string_block strings = string_scanner.next(in);
|
|
// identifies the white-space and the structurat characters
|
|
json_character_block characters = json_character_block::classify(in);
|
|
// The term "scalar" refers to anything except structural characters and white space
|
|
// (so letters, numbers, quotes).
|
|
// We want follows_scalar to mark anything that follows a non-quote scalar (so letters and numbers).
|
|
//
|
|
// A terminal quote should either be followed by a structural character (comma, brace, bracket, colon)
|
|
// or nothing. However, we still want ' "a string"true ' to mark the 't' of 'true' as a potential
|
|
// pseudo-structural character just like we would if we had ' "a string" true '; otherwise we
|
|
// may need to add an extra check when parsing strings.
|
|
//
|
|
// Performance: there are many ways to skin this cat.
|
|
const uint64_t nonquote_scalar = characters.scalar() & ~strings.quote();
|
|
uint64_t follows_nonquote_scalar = follows(nonquote_scalar, prev_scalar);
|
|
return {
|
|
strings,
|
|
characters,
|
|
follows_nonquote_scalar
|
|
};
|
|
}
|
|
|
|
simdjson_really_inline error_code json_scanner::finish(bool streaming) {
|
|
return string_scanner.finish(streaming);
|
|
}
|
|
|
|
} // namespace stage1
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/json_scanner.h */
|
|
/* begin file src/generic/stage1/json_minifier.h */
|
|
// This file contains the common code every implementation uses in stage1
|
|
// It is intended to be included multiple times and compiled multiple times
|
|
// We assume the file in which it is included already includes
|
|
// "simdjson/stage1.h" (this simplifies amalgation)
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage1 {
|
|
|
|
class json_minifier {
|
|
public:
|
|
template<size_t STEP_SIZE>
|
|
static error_code minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) noexcept;
|
|
|
|
private:
|
|
simdjson_really_inline json_minifier(uint8_t *_dst)
|
|
: dst{_dst}
|
|
{}
|
|
template<size_t STEP_SIZE>
|
|
simdjson_really_inline void step(const uint8_t *block_buf, buf_block_reader<STEP_SIZE> &reader) noexcept;
|
|
simdjson_really_inline void next(const simd::simd8x64<uint8_t>& in, json_block block);
|
|
simdjson_really_inline error_code finish(uint8_t *dst_start, size_t &dst_len);
|
|
json_scanner scanner{};
|
|
uint8_t *dst;
|
|
};
|
|
|
|
simdjson_really_inline void json_minifier::next(const simd::simd8x64<uint8_t>& in, json_block block) {
|
|
uint64_t mask = block.whitespace();
|
|
in.compress(mask, dst);
|
|
dst += 64 - count_ones(mask);
|
|
}
|
|
|
|
simdjson_really_inline error_code json_minifier::finish(uint8_t *dst_start, size_t &dst_len) {
|
|
*dst = '\0';
|
|
error_code error = scanner.finish(false);
|
|
if (error) { dst_len = 0; return error; }
|
|
dst_len = dst - dst_start;
|
|
return SUCCESS;
|
|
}
|
|
|
|
template<>
|
|
simdjson_really_inline void json_minifier::step<128>(const uint8_t *block_buf, buf_block_reader<128> &reader) noexcept {
|
|
simd::simd8x64<uint8_t> in_1(block_buf);
|
|
simd::simd8x64<uint8_t> in_2(block_buf+64);
|
|
json_block block_1 = scanner.next(in_1);
|
|
json_block block_2 = scanner.next(in_2);
|
|
this->next(in_1, block_1);
|
|
this->next(in_2, block_2);
|
|
reader.advance();
|
|
}
|
|
|
|
template<>
|
|
simdjson_really_inline void json_minifier::step<64>(const uint8_t *block_buf, buf_block_reader<64> &reader) noexcept {
|
|
simd::simd8x64<uint8_t> in_1(block_buf);
|
|
json_block block_1 = scanner.next(in_1);
|
|
this->next(block_buf, block_1);
|
|
reader.advance();
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
error_code json_minifier::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) noexcept {
|
|
buf_block_reader<STEP_SIZE> reader(buf, len);
|
|
json_minifier minifier(dst);
|
|
|
|
// Index the first n-1 blocks
|
|
while (reader.has_full_block()) {
|
|
minifier.step<STEP_SIZE>(reader.full_block(), reader);
|
|
}
|
|
|
|
// Index the last (remainder) block, padded with spaces
|
|
uint8_t block[STEP_SIZE];
|
|
if (simdjson_likely(reader.get_remainder(block)) > 0) {
|
|
minifier.step<STEP_SIZE>(block, reader);
|
|
}
|
|
|
|
return minifier.finish(dst, dst_len);
|
|
}
|
|
|
|
} // namespace stage1
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/json_minifier.h */
|
|
/* begin file src/generic/stage1/find_next_document_index.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
/**
|
|
* This algorithm is used to quickly identify the last structural position that
|
|
* makes up a complete document.
|
|
*
|
|
* It does this by going backwards and finding the last *document boundary* (a
|
|
* place where one value follows another without a comma between them). If the
|
|
* last document (the characters after the boundary) has an equal number of
|
|
* start and end brackets, it is considered complete.
|
|
*
|
|
* Simply put, we iterate over the structural characters, starting from
|
|
* the end. We consider that we found the end of a JSON document when the
|
|
* first element of the pair is NOT one of these characters: '{' '[' ';' ','
|
|
* and when the second element is NOT one of these characters: '}' '}' ';' ','.
|
|
*
|
|
* This simple comparison works most of the time, but it does not cover cases
|
|
* where the batch's structural indexes contain a perfect amount of documents.
|
|
* In such a case, we do not have access to the structural index which follows
|
|
* the last document, therefore, we do not have access to the second element in
|
|
* the pair, and that means we cannot identify the last document. To fix this
|
|
* issue, we keep a count of the open and closed curly/square braces we found
|
|
* while searching for the pair. When we find a pair AND the count of open and
|
|
* closed curly/square braces is the same, we know that we just passed a
|
|
* complete document, therefore the last json buffer location is the end of the
|
|
* batch.
|
|
*/
|
|
simdjson_really_inline uint32_t find_next_document_index(dom_parser_implementation &parser) {
|
|
// TODO don't count separately, just figure out depth
|
|
auto arr_cnt = 0;
|
|
auto obj_cnt = 0;
|
|
for (auto i = parser.n_structural_indexes - 1; i > 0; i--) {
|
|
auto idxb = parser.structural_indexes[i];
|
|
switch (parser.buf[idxb]) {
|
|
case ':':
|
|
case ',':
|
|
continue;
|
|
case '}':
|
|
obj_cnt--;
|
|
continue;
|
|
case ']':
|
|
arr_cnt--;
|
|
continue;
|
|
case '{':
|
|
obj_cnt++;
|
|
break;
|
|
case '[':
|
|
arr_cnt++;
|
|
break;
|
|
}
|
|
auto idxa = parser.structural_indexes[i - 1];
|
|
switch (parser.buf[idxa]) {
|
|
case '{':
|
|
case '[':
|
|
case ':':
|
|
case ',':
|
|
continue;
|
|
}
|
|
// Last document is complete, so the next document will appear after!
|
|
if (!arr_cnt && !obj_cnt) {
|
|
return parser.n_structural_indexes;
|
|
}
|
|
// Last document is incomplete; mark the document at i + 1 as the next one
|
|
return i;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/find_next_document_index.h */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage1 {
|
|
|
|
class bit_indexer {
|
|
public:
|
|
uint32_t *tail;
|
|
|
|
simdjson_really_inline bit_indexer(uint32_t *index_buf) : tail(index_buf) {}
|
|
|
|
// flatten out values in 'bits' assuming that they are are to have values of idx
|
|
// plus their position in the bitvector, and store these indexes at
|
|
// base_ptr[base] incrementing base as we go
|
|
// will potentially store extra values beyond end of valid bits, so base_ptr
|
|
// needs to be large enough to handle this
|
|
simdjson_really_inline void write(uint32_t idx, uint64_t bits) {
|
|
// In some instances, the next branch is expensive because it is mispredicted.
|
|
// Unfortunately, in other cases,
|
|
// it helps tremendously.
|
|
if (bits == 0)
|
|
return;
|
|
int cnt = static_cast<int>(count_ones(bits));
|
|
|
|
// Do the first 8 all together
|
|
for (int i=0; i<8; i++) {
|
|
this->tail[i] = idx + trailing_zeroes(bits);
|
|
bits = clear_lowest_bit(bits);
|
|
}
|
|
|
|
// Do the next 8 all together (we hope in most cases it won't happen at all
|
|
// and the branch is easily predicted).
|
|
if (simdjson_unlikely(cnt > 8)) {
|
|
for (int i=8; i<16; i++) {
|
|
this->tail[i] = idx + trailing_zeroes(bits);
|
|
bits = clear_lowest_bit(bits);
|
|
}
|
|
|
|
// Most files don't have 16+ structurals per block, so we take several basically guaranteed
|
|
// branch mispredictions here. 16+ structurals per block means either punctuation ({} [] , :)
|
|
// or the start of a value ("abc" true 123) every four characters.
|
|
if (simdjson_unlikely(cnt > 16)) {
|
|
int i = 16;
|
|
do {
|
|
this->tail[i] = idx + trailing_zeroes(bits);
|
|
bits = clear_lowest_bit(bits);
|
|
i++;
|
|
} while (i < cnt);
|
|
}
|
|
}
|
|
|
|
this->tail += cnt;
|
|
}
|
|
};
|
|
|
|
class json_structural_indexer {
|
|
public:
|
|
/**
|
|
* Find the important bits of JSON in a 128-byte chunk, and add them to structural_indexes.
|
|
*
|
|
* @param partial Setting the partial parameter to true allows the find_structural_bits to
|
|
* tolerate unclosed strings. The caller should still ensure that the input is valid UTF-8. If
|
|
* you are processing substrings, you may want to call on a function like trimmed_length_safe_utf8.
|
|
*/
|
|
template<size_t STEP_SIZE>
|
|
static error_code index(const uint8_t *buf, size_t len, dom_parser_implementation &parser, bool partial) noexcept;
|
|
|
|
private:
|
|
simdjson_really_inline json_structural_indexer(uint32_t *structural_indexes);
|
|
template<size_t STEP_SIZE>
|
|
simdjson_really_inline void step(const uint8_t *block, buf_block_reader<STEP_SIZE> &reader) noexcept;
|
|
simdjson_really_inline void next(const simd::simd8x64<uint8_t>& in, json_block block, size_t idx);
|
|
simdjson_really_inline error_code finish(dom_parser_implementation &parser, size_t idx, size_t len, bool partial);
|
|
|
|
json_scanner scanner{};
|
|
utf8_checker checker{};
|
|
bit_indexer indexer;
|
|
uint64_t prev_structurals = 0;
|
|
uint64_t unescaped_chars_error = 0;
|
|
};
|
|
|
|
simdjson_really_inline json_structural_indexer::json_structural_indexer(uint32_t *structural_indexes) : indexer{structural_indexes} {}
|
|
|
|
// Skip the last character if it is partial
|
|
simdjson_really_inline size_t trim_partial_utf8(const uint8_t *buf, size_t len) {
|
|
if (simdjson_unlikely(len < 3)) {
|
|
switch (len) {
|
|
case 2:
|
|
if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left
|
|
if (buf[len-2] >= 0b11100000) { return len-2; } // 3- and 4-byte characters with only 2 bytes left
|
|
return len;
|
|
case 1:
|
|
if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left
|
|
return len;
|
|
case 0:
|
|
return len;
|
|
}
|
|
}
|
|
if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left
|
|
if (buf[len-2] >= 0b11100000) { return len-2; } // 3- and 4-byte characters with only 1 byte left
|
|
if (buf[len-3] >= 0b11110000) { return len-3; } // 4-byte characters with only 3 bytes left
|
|
return len;
|
|
}
|
|
|
|
//
|
|
// PERF NOTES:
|
|
// We pipe 2 inputs through these stages:
|
|
// 1. Load JSON into registers. This takes a long time and is highly parallelizable, so we load
|
|
// 2 inputs' worth at once so that by the time step 2 is looking for them input, it's available.
|
|
// 2. Scan the JSON for critical data: strings, scalars and operators. This is the critical path.
|
|
// The output of step 1 depends entirely on this information. These functions don't quite use
|
|
// up enough CPU: the second half of the functions is highly serial, only using 1 execution core
|
|
// at a time. The second input's scans has some dependency on the first ones finishing it, but
|
|
// they can make a lot of progress before they need that information.
|
|
// 3. Step 1 doesn't use enough capacity, so we run some extra stuff while we're waiting for that
|
|
// to finish: utf-8 checks and generating the output from the last iteration.
|
|
//
|
|
// The reason we run 2 inputs at a time, is steps 2 and 3 are *still* not enough to soak up all
|
|
// available capacity with just one input. Running 2 at a time seems to give the CPU a good enough
|
|
// workout.
|
|
//
|
|
template<size_t STEP_SIZE>
|
|
error_code json_structural_indexer::index(const uint8_t *buf, size_t len, dom_parser_implementation &parser, bool partial) noexcept {
|
|
if (simdjson_unlikely(len > parser.capacity())) { return CAPACITY; }
|
|
if (partial) { len = trim_partial_utf8(buf, len); }
|
|
|
|
buf_block_reader<STEP_SIZE> reader(buf, len);
|
|
json_structural_indexer indexer(parser.structural_indexes.get());
|
|
|
|
// Read all but the last block
|
|
while (reader.has_full_block()) {
|
|
indexer.step<STEP_SIZE>(reader.full_block(), reader);
|
|
}
|
|
|
|
// Take care of the last block (will always be there unless file is empty)
|
|
uint8_t block[STEP_SIZE];
|
|
if (simdjson_unlikely(reader.get_remainder(block) == 0)) { return EMPTY; }
|
|
indexer.step<STEP_SIZE>(block, reader);
|
|
|
|
return indexer.finish(parser, reader.block_index(), len, partial);
|
|
}
|
|
|
|
template<>
|
|
simdjson_really_inline void json_structural_indexer::step<128>(const uint8_t *block, buf_block_reader<128> &reader) noexcept {
|
|
simd::simd8x64<uint8_t> in_1(block);
|
|
simd::simd8x64<uint8_t> in_2(block+64);
|
|
json_block block_1 = scanner.next(in_1);
|
|
json_block block_2 = scanner.next(in_2);
|
|
this->next(in_1, block_1, reader.block_index());
|
|
this->next(in_2, block_2, reader.block_index()+64);
|
|
reader.advance();
|
|
}
|
|
|
|
template<>
|
|
simdjson_really_inline void json_structural_indexer::step<64>(const uint8_t *block, buf_block_reader<64> &reader) noexcept {
|
|
simd::simd8x64<uint8_t> in_1(block);
|
|
json_block block_1 = scanner.next(in_1);
|
|
this->next(in_1, block_1, reader.block_index());
|
|
reader.advance();
|
|
}
|
|
|
|
simdjson_really_inline void json_structural_indexer::next(const simd::simd8x64<uint8_t>& in, json_block block, size_t idx) {
|
|
uint64_t unescaped = in.lteq(0x1F);
|
|
checker.check_next_input(in);
|
|
indexer.write(uint32_t(idx-64), prev_structurals); // Output *last* iteration's structurals to the parser
|
|
prev_structurals = block.structural_start();
|
|
unescaped_chars_error |= block.non_quote_inside_string(unescaped);
|
|
}
|
|
|
|
simdjson_really_inline error_code json_structural_indexer::finish(dom_parser_implementation &parser, size_t idx, size_t len, bool partial) {
|
|
// Write out the final iteration's structurals
|
|
indexer.write(uint32_t(idx-64), prev_structurals);
|
|
|
|
error_code error = scanner.finish(partial);
|
|
if (simdjson_unlikely(error != SUCCESS)) { return error; }
|
|
|
|
if (unescaped_chars_error) {
|
|
return UNESCAPED_CHARS;
|
|
}
|
|
|
|
parser.n_structural_indexes = uint32_t(indexer.tail - parser.structural_indexes.get());
|
|
/***
|
|
* This is related to https://github.com/simdjson/simdjson/issues/906
|
|
* Basically, we want to make sure that if the parsing continues beyond the last (valid)
|
|
* structural character, it quickly stops.
|
|
* Only three structural characters can be repeated without triggering an error in JSON: [,] and }.
|
|
* We repeat the padding character (at 'len'). We don't know what it is, but if the parsing
|
|
* continues, then it must be [,] or }.
|
|
* Suppose it is ] or }. We backtrack to the first character, what could it be that would
|
|
* not trigger an error? It could be ] or } but no, because you can't start a document that way.
|
|
* It can't be a comma, a colon or any simple value. So the only way we could continue is
|
|
* if the repeated character is [. But if so, the document must start with [. But if the document
|
|
* starts with [, it should end with ]. If we enforce that rule, then we would get
|
|
* ][[ which is invalid.
|
|
**/
|
|
parser.structural_indexes[parser.n_structural_indexes] = uint32_t(len);
|
|
parser.structural_indexes[parser.n_structural_indexes + 1] = uint32_t(len);
|
|
parser.structural_indexes[parser.n_structural_indexes + 2] = 0;
|
|
parser.next_structural_index = 0;
|
|
// a valid JSON file cannot have zero structural indexes - we should have found something
|
|
if (simdjson_unlikely(parser.n_structural_indexes == 0u)) {
|
|
return EMPTY;
|
|
}
|
|
if (simdjson_unlikely(parser.structural_indexes[parser.n_structural_indexes - 1] > len)) {
|
|
return UNEXPECTED_ERROR;
|
|
}
|
|
if (partial) {
|
|
auto new_structural_indexes = find_next_document_index(parser);
|
|
if (new_structural_indexes == 0 && parser.n_structural_indexes > 0) {
|
|
return CAPACITY; // If the buffer is partial but the document is incomplete, it's too big to parse.
|
|
}
|
|
parser.n_structural_indexes = new_structural_indexes;
|
|
}
|
|
return checker.errors();
|
|
}
|
|
|
|
} // namespace stage1
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/find_next_document_index.h */
|
|
/* begin file src/generic/stage1/utf8_validator.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage1 {
|
|
|
|
/**
|
|
* Validates that the string is actual UTF-8.
|
|
*/
|
|
template<class checker>
|
|
bool generic_validate_utf8(const uint8_t * input, size_t length) {
|
|
checker c{};
|
|
buf_block_reader<64> reader(input, length);
|
|
while (reader.has_full_block()) {
|
|
simd::simd8x64<uint8_t> in(reader.full_block());
|
|
c.check_next_input(in);
|
|
reader.advance();
|
|
}
|
|
uint8_t block[64]{};
|
|
reader.get_remainder(block);
|
|
simd::simd8x64<uint8_t> in(block);
|
|
c.check_next_input(in);
|
|
reader.advance();
|
|
return c.errors() == error_code::SUCCESS;
|
|
}
|
|
|
|
bool generic_validate_utf8(const char * input, size_t length) {
|
|
return generic_validate_utf8<utf8_checker>((const uint8_t *)input,length);
|
|
}
|
|
|
|
} // namespace stage1
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/utf8_validator.h */
|
|
|
|
//
|
|
// Stage 2
|
|
//
|
|
|
|
/* begin file src/arm64/stringparsing.h */
|
|
#ifndef SIMDJSON_ARM64_STRINGPARSING_H
|
|
#define SIMDJSON_ARM64_STRINGPARSING_H
|
|
|
|
/* arm64/simd.h already included: #include "arm64/simd.h" */
|
|
/* arm64/bitmanipulation.h already included: #include "arm64/bitmanipulation.h" */
|
|
|
|
namespace {
|
|
namespace arm64 {
|
|
|
|
using namespace simd;
|
|
|
|
// Holds backslashes and quotes locations.
|
|
struct backslash_and_quote {
|
|
public:
|
|
static constexpr uint32_t BYTES_PROCESSED = 32;
|
|
simdjson_really_inline static backslash_and_quote copy_and_find(const uint8_t *src, uint8_t *dst);
|
|
|
|
simdjson_really_inline bool has_quote_first() { return ((bs_bits - 1) & quote_bits) != 0; }
|
|
simdjson_really_inline bool has_backslash() { return bs_bits != 0; }
|
|
simdjson_really_inline int quote_index() { return trailing_zeroes(quote_bits); }
|
|
simdjson_really_inline int backslash_index() { return trailing_zeroes(bs_bits); }
|
|
|
|
uint32_t bs_bits;
|
|
uint32_t quote_bits;
|
|
}; // struct backslash_and_quote
|
|
|
|
simdjson_really_inline backslash_and_quote backslash_and_quote::copy_and_find(const uint8_t *src, uint8_t *dst) {
|
|
// this can read up to 31 bytes beyond the buffer size, but we require
|
|
// SIMDJSON_PADDING of padding
|
|
static_assert(SIMDJSON_PADDING >= (BYTES_PROCESSED - 1), "backslash and quote finder must process fewer than SIMDJSON_PADDING bytes");
|
|
simd8<uint8_t> v0(src);
|
|
simd8<uint8_t> v1(src + sizeof(v0));
|
|
v0.store(dst);
|
|
v1.store(dst + sizeof(v0));
|
|
|
|
// Getting a 64-bit bitmask is much cheaper than multiple 16-bit bitmasks on ARM; therefore, we
|
|
// smash them together into a 64-byte mask and get the bitmask from there.
|
|
uint64_t bs_and_quote = simd8x64<bool>(v0 == '\\', v1 == '\\', v0 == '"', v1 == '"').to_bitmask();
|
|
return {
|
|
uint32_t(bs_and_quote), // bs_bits
|
|
uint32_t(bs_and_quote >> 32) // quote_bits
|
|
};
|
|
}
|
|
|
|
} // namespace arm64
|
|
} // unnamed namespace
|
|
|
|
/* begin file src/generic/stage2/stringparsing.h */
|
|
// This file contains the common code every implementation uses
|
|
// It is intended to be included multiple times and compiled multiple times
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
namespace stringparsing {
|
|
|
|
// begin copypasta
|
|
// These chars yield themselves: " \ /
|
|
// b -> backspace, f -> formfeed, n -> newline, r -> cr, t -> horizontal tab
|
|
// u not handled in this table as it's complex
|
|
static const uint8_t escape_map[256] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x0.
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0x22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x2f,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x4.
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x5c, 0, 0, 0, // 0x5.
|
|
0, 0, 0x08, 0, 0, 0, 0x0c, 0, 0, 0, 0, 0, 0, 0, 0x0a, 0, // 0x6.
|
|
0, 0, 0x0d, 0, 0x09, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x7.
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
};
|
|
|
|
// handle a unicode codepoint
|
|
// write appropriate values into dest
|
|
// src will advance 6 bytes or 12 bytes
|
|
// dest will advance a variable amount (return via pointer)
|
|
// return true if the unicode codepoint was valid
|
|
// We work in little-endian then swap at write time
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool handle_unicode_codepoint(const uint8_t **src_ptr,
|
|
uint8_t **dst_ptr) {
|
|
// hex_to_u32_nocheck fills high 16 bits of the return value with 1s if the
|
|
// conversion isn't valid; we defer the check for this to inside the
|
|
// multilingual plane check
|
|
uint32_t code_point = hex_to_u32_nocheck(*src_ptr + 2);
|
|
*src_ptr += 6;
|
|
// check for low surrogate for characters outside the Basic
|
|
// Multilingual Plane.
|
|
if (code_point >= 0xd800 && code_point < 0xdc00) {
|
|
if (((*src_ptr)[0] != '\\') || (*src_ptr)[1] != 'u') {
|
|
return false;
|
|
}
|
|
uint32_t code_point_2 = hex_to_u32_nocheck(*src_ptr + 2);
|
|
|
|
// if the first code point is invalid we will get here, as we will go past
|
|
// the check for being outside the Basic Multilingual plane. If we don't
|
|
// find a \u immediately afterwards we fail out anyhow, but if we do,
|
|
// this check catches both the case of the first code point being invalid
|
|
// or the second code point being invalid.
|
|
if ((code_point | code_point_2) >> 16) {
|
|
return false;
|
|
}
|
|
|
|
code_point =
|
|
(((code_point - 0xd800) << 10) | (code_point_2 - 0xdc00)) + 0x10000;
|
|
*src_ptr += 6;
|
|
}
|
|
size_t offset = codepoint_to_utf8(code_point, *dst_ptr);
|
|
*dst_ptr += offset;
|
|
return offset > 0;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline uint8_t *parse_string(const uint8_t *src, uint8_t *dst) {
|
|
src++;
|
|
while (1) {
|
|
// Copy the next n bytes, and find the backslash and quote in them.
|
|
auto bs_quote = backslash_and_quote::copy_and_find(src, dst);
|
|
// If the next thing is the end quote, copy and return
|
|
if (bs_quote.has_quote_first()) {
|
|
// we encountered quotes first. Move dst to point to quotes and exit
|
|
return dst + bs_quote.quote_index();
|
|
}
|
|
if (bs_quote.has_backslash()) {
|
|
/* find out where the backspace is */
|
|
auto bs_dist = bs_quote.backslash_index();
|
|
uint8_t escape_char = src[bs_dist + 1];
|
|
/* we encountered backslash first. Handle backslash */
|
|
if (escape_char == 'u') {
|
|
/* move src/dst up to the start; they will be further adjusted
|
|
within the unicode codepoint handling code. */
|
|
src += bs_dist;
|
|
dst += bs_dist;
|
|
if (!handle_unicode_codepoint(&src, &dst)) {
|
|
return nullptr;
|
|
}
|
|
} else {
|
|
/* simple 1:1 conversion. Will eat bs_dist+2 characters in input and
|
|
* write bs_dist+1 characters to output
|
|
* note this may reach beyond the part of the buffer we've actually
|
|
* seen. I think this is ok */
|
|
uint8_t escape_result = escape_map[escape_char];
|
|
if (escape_result == 0u) {
|
|
return nullptr; /* bogus escape value is an error */
|
|
}
|
|
dst[bs_dist] = escape_result;
|
|
src += bs_dist + 2;
|
|
dst += bs_dist + 1;
|
|
}
|
|
} else {
|
|
/* they are the same. Since they can't co-occur, it means we
|
|
* encountered neither. */
|
|
src += backslash_and_quote::BYTES_PROCESSED;
|
|
dst += backslash_and_quote::BYTES_PROCESSED;
|
|
}
|
|
}
|
|
/* can't be reached */
|
|
return nullptr;
|
|
}
|
|
|
|
SIMDJSON_UNUSED SIMDJSON_WARN_UNUSED simdjson_really_inline error_code parse_string_to_buffer(const uint8_t *src, uint8_t *¤t_string_buf_loc, std::string_view &s) {
|
|
if (src[0] != '"') { return STRING_ERROR; }
|
|
auto end = stringparsing::parse_string(src, current_string_buf_loc);
|
|
if (!end) { return STRING_ERROR; }
|
|
s = std::string_view((const char *)current_string_buf_loc, end-current_string_buf_loc);
|
|
current_string_buf_loc = end;
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace stringparsing
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/stringparsing.h */
|
|
|
|
#endif // SIMDJSON_ARM64_STRINGPARSING_H
|
|
/* end file src/generic/stage2/stringparsing.h */
|
|
/* begin file src/arm64/numberparsing.h */
|
|
#ifndef SIMDJSON_ARM64_NUMBERPARSING_H
|
|
#define SIMDJSON_ARM64_NUMBERPARSING_H
|
|
|
|
namespace {
|
|
namespace arm64 {
|
|
|
|
// we don't have SSE, so let us use a scalar function
|
|
// credit: https://johnnylee-sde.github.io/Fast-numeric-string-to-int/
|
|
static simdjson_really_inline uint32_t parse_eight_digits_unrolled(const uint8_t *chars) {
|
|
uint64_t val;
|
|
memcpy(&val, chars, sizeof(uint64_t));
|
|
val = (val & 0x0F0F0F0F0F0F0F0F) * 2561 >> 8;
|
|
val = (val & 0x00FF00FF00FF00FF) * 6553601 >> 16;
|
|
return uint32_t((val & 0x0000FFFF0000FFFF) * 42949672960001 >> 32);
|
|
}
|
|
|
|
} // namespace arm64
|
|
} // unnamed namespace
|
|
|
|
#define SWAR_NUMBER_PARSING
|
|
|
|
/* begin file src/generic/stage2/numberparsing.h */
|
|
#include <cmath>
|
|
#include <limits>
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
namespace numberparsing {
|
|
|
|
#ifdef JSON_TEST_NUMBERS
|
|
#define INVALID_NUMBER(SRC) (found_invalid_number((SRC)), NUMBER_ERROR)
|
|
#define WRITE_INTEGER(VALUE, SRC, WRITER) (found_integer((VALUE), (SRC)), (WRITER).append_s64((VALUE)))
|
|
#define WRITE_UNSIGNED(VALUE, SRC, WRITER) (found_unsigned_integer((VALUE), (SRC)), (WRITER).append_u64((VALUE)))
|
|
#define WRITE_DOUBLE(VALUE, SRC, WRITER) (found_float((VALUE), (SRC)), (WRITER).append_double((VALUE)))
|
|
#else
|
|
#define INVALID_NUMBER(SRC) (NUMBER_ERROR)
|
|
#define WRITE_INTEGER(VALUE, SRC, WRITER) (WRITER).append_s64((VALUE))
|
|
#define WRITE_UNSIGNED(VALUE, SRC, WRITER) (WRITER).append_u64((VALUE))
|
|
#define WRITE_DOUBLE(VALUE, SRC, WRITER) (WRITER).append_double((VALUE))
|
|
#endif
|
|
|
|
// Attempts to compute i * 10^(power) exactly; and if "negative" is
|
|
// true, negate the result.
|
|
// This function will only work in some cases, when it does not work, success is
|
|
// set to false. This should work *most of the time* (like 99% of the time).
|
|
// We assume that power is in the [FASTFLOAT_SMALLEST_POWER,
|
|
// FASTFLOAT_LARGEST_POWER] interval: the caller is responsible for this check.
|
|
simdjson_really_inline bool compute_float_64(int64_t power, uint64_t i, bool negative, double &d) {
|
|
// we start with a fast path
|
|
// It was described in
|
|
// Clinger WD. How to read floating point numbers accurately.
|
|
// ACM SIGPLAN Notices. 1990
|
|
#ifndef FLT_EVAL_METHOD
|
|
#error "FLT_EVAL_METHOD should be defined, please include cfloat."
|
|
#endif
|
|
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
|
|
// We cannot be certain that x/y is rounded to nearest.
|
|
if (0 <= power && power <= 22 && i <= 9007199254740991) {
|
|
#else
|
|
if (-22 <= power && power <= 22 && i <= 9007199254740991) {
|
|
#endif
|
|
// convert the integer into a double. This is lossless since
|
|
// 0 <= i <= 2^53 - 1.
|
|
d = double(i);
|
|
//
|
|
// The general idea is as follows.
|
|
// If 0 <= s < 2^53 and if 10^0 <= p <= 10^22 then
|
|
// 1) Both s and p can be represented exactly as 64-bit floating-point
|
|
// values
|
|
// (binary64).
|
|
// 2) Because s and p can be represented exactly as floating-point values,
|
|
// then s * p
|
|
// and s / p will produce correctly rounded values.
|
|
//
|
|
if (power < 0) {
|
|
d = d / power_of_ten[-power];
|
|
} else {
|
|
d = d * power_of_ten[power];
|
|
}
|
|
if (negative) {
|
|
d = -d;
|
|
}
|
|
return true;
|
|
}
|
|
// When 22 < power && power < 22 + 16, we could
|
|
// hope for another, secondary fast path. It wa
|
|
// described by David M. Gay in "Correctly rounded
|
|
// binary-decimal and decimal-binary conversions." (1990)
|
|
// If you need to compute i * 10^(22 + x) for x < 16,
|
|
// first compute i * 10^x, if you know that result is exact
|
|
// (e.g., when i * 10^x < 2^53),
|
|
// then you can still proceed and do (i * 10^x) * 10^22.
|
|
// Is this worth your time?
|
|
// You need 22 < power *and* power < 22 + 16 *and* (i * 10^(x-22) < 2^53)
|
|
// for this second fast path to work.
|
|
// If you you have 22 < power *and* power < 22 + 16, and then you
|
|
// optimistically compute "i * 10^(x-22)", there is still a chance that you
|
|
// have wasted your time if i * 10^(x-22) >= 2^53. It makes the use cases of
|
|
// this optimization maybe less common than we would like. Source:
|
|
// http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/
|
|
// also used in RapidJSON: https://rapidjson.org/strtod_8h_source.html
|
|
|
|
// The fast path has now failed, so we are failing back on the slower path.
|
|
|
|
// In the slow path, we need to adjust i so that it is > 1<<63 which is always
|
|
// possible, except if i == 0, so we handle i == 0 separately.
|
|
if(i == 0) {
|
|
d = 0.0;
|
|
return true;
|
|
}
|
|
|
|
// We are going to need to do some 64-bit arithmetic to get a more precise product.
|
|
// We use a table lookup approach.
|
|
// It is safe because
|
|
// power >= FASTFLOAT_SMALLEST_POWER
|
|
// and power <= FASTFLOAT_LARGEST_POWER
|
|
// We recover the mantissa of the power, it has a leading 1. It is always
|
|
// rounded down.
|
|
uint64_t factor_mantissa = mantissa_64[power - FASTFLOAT_SMALLEST_POWER];
|
|
|
|
// The exponent is 1024 + 63 + power
|
|
// + floor(log(5**power)/log(2)).
|
|
// The 1024 comes from the ieee64 standard.
|
|
// The 63 comes from the fact that we use a 64-bit word.
|
|
//
|
|
// Computing floor(log(5**power)/log(2)) could be
|
|
// slow. Instead we use a fast function.
|
|
//
|
|
// For power in (-400,350), we have that
|
|
// (((152170 + 65536) * power ) >> 16);
|
|
// is equal to
|
|
// floor(log(5**power)/log(2)) + power
|
|
//
|
|
// The 65536 is (1<<16) and corresponds to
|
|
// (65536 * power) >> 16 ---> power
|
|
//
|
|
// ((152170 * power ) >> 16) is equal to
|
|
// floor(log(5**power)/log(2))
|
|
//
|
|
// Note that this is not magic: 152170/(1<<16) is
|
|
// approximatively equal to log(5)/log(2).
|
|
// The 1<<16 value is a power of two; we could use a
|
|
// larger power of 2 if we wanted to.
|
|
//
|
|
int64_t exponent = (((152170 + 65536) * power) >> 16) + 1024 + 63;
|
|
|
|
|
|
// We want the most significant bit of i to be 1. Shift if needed.
|
|
int lz = leading_zeroes(i);
|
|
i <<= lz;
|
|
// We want the most significant 64 bits of the product. We know
|
|
// this will be non-zero because the most significant bit of i is
|
|
// 1.
|
|
value128 product = full_multiplication(i, factor_mantissa);
|
|
uint64_t lower = product.low;
|
|
uint64_t upper = product.high;
|
|
|
|
// We know that upper has at most one leading zero because
|
|
// both i and factor_mantissa have a leading one. This means
|
|
// that the result is at least as large as ((1<<63)*(1<<63))/(1<<64).
|
|
|
|
// As long as the first 9 bits of "upper" are not "1", then we
|
|
// know that we have an exact computed value for the leading
|
|
// 55 bits because any imprecision would play out as a +1, in
|
|
// the worst case.
|
|
if (simdjson_unlikely((upper & 0x1FF) == 0x1FF) && (lower + i < lower)) {
|
|
uint64_t factor_mantissa_low =
|
|
mantissa_128[power - FASTFLOAT_SMALLEST_POWER];
|
|
// next, we compute the 64-bit x 128-bit multiplication, getting a 192-bit
|
|
// result (three 64-bit values)
|
|
product = full_multiplication(i, factor_mantissa_low);
|
|
uint64_t product_low = product.low;
|
|
uint64_t product_middle2 = product.high;
|
|
uint64_t product_middle1 = lower;
|
|
uint64_t product_high = upper;
|
|
uint64_t product_middle = product_middle1 + product_middle2;
|
|
if (product_middle < product_middle1) {
|
|
product_high++; // overflow carry
|
|
}
|
|
// We want to check whether mantissa *i + i would affect our result.
|
|
// This does happen, e.g. with 7.3177701707893310e+15.
|
|
if (((product_middle + 1 == 0) && ((product_high & 0x1FF) == 0x1FF) &&
|
|
(product_low + i < product_low))) { // let us be prudent and bail out.
|
|
return false;
|
|
}
|
|
upper = product_high;
|
|
lower = product_middle;
|
|
}
|
|
// The final mantissa should be 53 bits with a leading 1.
|
|
// We shift it so that it occupies 54 bits with a leading 1.
|
|
///////
|
|
uint64_t upperbit = upper >> 63;
|
|
uint64_t mantissa = upper >> (upperbit + 9);
|
|
lz += int(1 ^ upperbit);
|
|
|
|
// Here we have mantissa < (1<<54).
|
|
|
|
// We have to round to even. The "to even" part
|
|
// is only a problem when we are right in between two floats
|
|
// which we guard against.
|
|
// If we have lots of trailing zeros, we may fall right between two
|
|
// floating-point values.
|
|
if (simdjson_unlikely((lower == 0) && ((upper & 0x1FF) == 0) &&
|
|
((mantissa & 3) == 1))) {
|
|
// if mantissa & 1 == 1 we might need to round up.
|
|
//
|
|
// Scenarios:
|
|
// 1. We are not in the middle. Then we should round up.
|
|
//
|
|
// 2. We are right in the middle. Whether we round up depends
|
|
// on the last significant bit: if it is "one" then we round
|
|
// up (round to even) otherwise, we do not.
|
|
//
|
|
// So if the last significant bit is 1, we can safely round up.
|
|
// Hence we only need to bail out if (mantissa & 3) == 1.
|
|
// Otherwise we may need more accuracy or analysis to determine whether
|
|
// we are exactly between two floating-point numbers.
|
|
// It can be triggered with 1e23.
|
|
// Note: because the factor_mantissa and factor_mantissa_low are
|
|
// almost always rounded down (except for small positive powers),
|
|
// almost always should round up.
|
|
return false;
|
|
}
|
|
|
|
mantissa += mantissa & 1;
|
|
mantissa >>= 1;
|
|
|
|
// Here we have mantissa < (1<<53), unless there was an overflow
|
|
if (mantissa >= (1ULL << 53)) {
|
|
//////////
|
|
// This will happen when parsing values such as 7.2057594037927933e+16
|
|
////////
|
|
mantissa = (1ULL << 52);
|
|
lz--; // undo previous addition
|
|
}
|
|
mantissa &= ~(1ULL << 52);
|
|
uint64_t real_exponent = exponent - lz;
|
|
// we have to check that real_exponent is in range, otherwise we bail out
|
|
if (simdjson_unlikely((real_exponent < 1) || (real_exponent > 2046))) {
|
|
return false;
|
|
}
|
|
mantissa |= real_exponent << 52;
|
|
mantissa |= (((uint64_t)negative) << 63);
|
|
memcpy(&d, &mantissa, sizeof(d));
|
|
return true;
|
|
}
|
|
|
|
static bool parse_float_strtod(const uint8_t *ptr, double *outDouble) {
|
|
char *endptr;
|
|
*outDouble = strtod((const char *)ptr, &endptr);
|
|
// Some libraries will set errno = ERANGE when the value is subnormal,
|
|
// yet we may want to be able to parse subnormal values.
|
|
// However, we do not want to tolerate NAN or infinite values.
|
|
//
|
|
// Values like infinity or NaN are not allowed in the JSON specification.
|
|
// If you consume a large value and you map it to "infinity", you will no
|
|
// longer be able to serialize back a standard-compliant JSON. And there is
|
|
// no realistic application where you might need values so large than they
|
|
// can't fit in binary64. The maximal value is about 1.7976931348623157 x
|
|
// 10^308 It is an unimaginable large number. There will never be any piece of
|
|
// engineering involving as many as 10^308 parts. It is estimated that there
|
|
// are about 10^80 atoms in the universe. The estimate for the total number
|
|
// of electrons is similar. Using a double-precision floating-point value, we
|
|
// can represent easily the number of atoms in the universe. We could also
|
|
// represent the number of ways you can pick any three individual atoms at
|
|
// random in the universe. If you ever encounter a number much larger than
|
|
// 10^308, you know that you have a bug. RapidJSON will reject a document with
|
|
// a float that does not fit in binary64. JSON for Modern C++ (nlohmann/json)
|
|
// will flat out throw an exception.
|
|
//
|
|
if ((endptr == (const char *)ptr) || (!std::isfinite(*outDouble))) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// check quickly whether the next 8 chars are made of digits
|
|
// at a glance, it looks better than Mula's
|
|
// http://0x80.pl/articles/swar-digits-validate.html
|
|
simdjson_really_inline bool is_made_of_eight_digits_fast(const uint8_t *chars) {
|
|
uint64_t val;
|
|
// this can read up to 7 bytes beyond the buffer size, but we require
|
|
// SIMDJSON_PADDING of padding
|
|
static_assert(7 <= SIMDJSON_PADDING, "SIMDJSON_PADDING must be bigger than 7");
|
|
memcpy(&val, chars, 8);
|
|
// a branchy method might be faster:
|
|
// return (( val & 0xF0F0F0F0F0F0F0F0 ) == 0x3030303030303030)
|
|
// && (( (val + 0x0606060606060606) & 0xF0F0F0F0F0F0F0F0 ) ==
|
|
// 0x3030303030303030);
|
|
return (((val & 0xF0F0F0F0F0F0F0F0) |
|
|
(((val + 0x0606060606060606) & 0xF0F0F0F0F0F0F0F0) >> 4)) ==
|
|
0x3333333333333333);
|
|
}
|
|
|
|
template<typename W>
|
|
error_code slow_float_parsing(SIMDJSON_UNUSED const uint8_t * src, W writer) {
|
|
double d;
|
|
if (parse_float_strtod(src, &d)) {
|
|
writer.append_double(d);
|
|
return SUCCESS;
|
|
}
|
|
return INVALID_NUMBER(src);
|
|
}
|
|
|
|
template<typename I>
|
|
NO_SANITIZE_UNDEFINED // We deliberately allow overflow here and check later
|
|
simdjson_really_inline bool parse_digit(const uint8_t c, I &i) {
|
|
const uint8_t digit = static_cast<uint8_t>(c - '0');
|
|
if (digit > 9) {
|
|
return false;
|
|
}
|
|
// PERF NOTE: multiplication by 10 is cheaper than arbitrary integer multiplication
|
|
i = 10 * i + digit; // might overflow, we will handle the overflow later
|
|
return true;
|
|
}
|
|
|
|
simdjson_really_inline error_code parse_decimal(SIMDJSON_UNUSED const uint8_t *const src, const uint8_t *&p, uint64_t &i, int64_t &exponent) {
|
|
// we continue with the fiction that we have an integer. If the
|
|
// floating point number is representable as x * 10^z for some integer
|
|
// z that fits in 53 bits, then we will be able to convert back the
|
|
// the integer into a float in a lossless manner.
|
|
const uint8_t *const first_after_period = p;
|
|
|
|
#ifdef SWAR_NUMBER_PARSING
|
|
// this helps if we have lots of decimals!
|
|
// this turns out to be frequent enough.
|
|
if (is_made_of_eight_digits_fast(p)) {
|
|
i = i * 100000000 + parse_eight_digits_unrolled(p);
|
|
p += 8;
|
|
}
|
|
#endif
|
|
// Unrolling the first digit makes a small difference on some implementations (e.g. westmere)
|
|
if (parse_digit(*p, i)) { ++p; }
|
|
while (parse_digit(*p, i)) { p++; }
|
|
exponent = first_after_period - p;
|
|
// Decimal without digits (123.) is illegal
|
|
if (exponent == 0) {
|
|
return INVALID_NUMBER(src);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
simdjson_really_inline error_code parse_exponent(SIMDJSON_UNUSED const uint8_t *const src, const uint8_t *&p, int64_t &exponent) {
|
|
// Exp Sign: -123.456e[-]78
|
|
bool neg_exp = ('-' == *p);
|
|
if (neg_exp || '+' == *p) { p++; } // Skip + as well
|
|
|
|
// Exponent: -123.456e-[78]
|
|
auto start_exp = p;
|
|
int64_t exp_number = 0;
|
|
while (parse_digit(*p, exp_number)) { ++p; }
|
|
// It is possible for parse_digit to overflow.
|
|
// In particular, it could overflow to INT64_MIN, and we cannot do - INT64_MIN.
|
|
// Thus we *must* check for possible overflow before we negate exp_number.
|
|
|
|
// Performance notes: it may seem like combining the two "simdjson_unlikely checks" below into
|
|
// a single simdjson_unlikely path would be faster. The reasoning is sound, but the compiler may
|
|
// not oblige and may, in fact, generate two distinct paths in any case. It might be
|
|
// possible to do uint64_t(p - start_exp - 1) >= 18 but it could end up trading off
|
|
// instructions for a simdjson_likely branch, an unconclusive gain.
|
|
|
|
// If there were no digits, it's an error.
|
|
if (simdjson_unlikely(p == start_exp)) {
|
|
return INVALID_NUMBER(src);
|
|
}
|
|
// We have a valid positive exponent in exp_number at this point, except that
|
|
// it may have overflowed.
|
|
|
|
// If there were more than 18 digits, we may have overflowed the integer. We have to do
|
|
// something!!!!
|
|
if (simdjson_unlikely(p > start_exp+18)) {
|
|
// Skip leading zeroes: 1e000000000000000000001 is technically valid and doesn't overflow
|
|
while (*start_exp == '0') { start_exp++; }
|
|
// 19 digits could overflow int64_t and is kind of absurd anyway. We don't
|
|
// support exponents smaller than -999,999,999,999,999,999 and bigger
|
|
// than 999,999,999,999,999,999.
|
|
// We can truncate.
|
|
// Note that 999999999999999999 is assuredly too large. The maximal ieee64 value before
|
|
// infinity is ~1.8e308. The smallest subnormal is ~5e-324. So, actually, we could
|
|
// truncate at 324.
|
|
// Note that there is no reason to fail per se at this point in time.
|
|
// E.g., 0e999999999999999999999 is a fine number.
|
|
if (p > start_exp+18) { exp_number = 999999999999999999; }
|
|
}
|
|
// At this point, we know that exp_number is a sane, positive, signed integer.
|
|
// It is <= 999,999,999,999,999,999. As long as 'exponent' is in
|
|
// [-8223372036854775808, 8223372036854775808], we won't overflow. Because 'exponent'
|
|
// is bounded in magnitude by the size of the JSON input, we are fine in this universe.
|
|
// To sum it up: the next line should never overflow.
|
|
exponent += (neg_exp ? -exp_number : exp_number);
|
|
return SUCCESS;
|
|
}
|
|
|
|
simdjson_really_inline int significant_digits(const uint8_t * start_digits, int digit_count) {
|
|
// It is possible that the integer had an overflow.
|
|
// We have to handle the case where we have 0.0000somenumber.
|
|
const uint8_t *start = start_digits;
|
|
while ((*start == '0') || (*start == '.')) {
|
|
start++;
|
|
}
|
|
// we over-decrement by one when there is a '.'
|
|
return digit_count - int(start - start_digits);
|
|
}
|
|
|
|
template<typename W>
|
|
simdjson_really_inline error_code write_float(const uint8_t *const src, bool negative, uint64_t i, const uint8_t * start_digits, int digit_count, int64_t exponent, W &writer) {
|
|
// If we frequently had to deal with long strings of digits,
|
|
// we could extend our code by using a 128-bit integer instead
|
|
// of a 64-bit integer. However, this is uncommon in practice.
|
|
// digit count is off by 1 because of the decimal (assuming there was one).
|
|
if (simdjson_unlikely(digit_count-1 >= 19 && significant_digits(start_digits, digit_count) >= 19)) {
|
|
// Ok, chances are good that we had an overflow!
|
|
// this is almost never going to get called!!!
|
|
// we start anew, going slowly!!!
|
|
// This will happen in the following examples:
|
|
// 10000000000000000000000000000000000000000000e+308
|
|
// 3.1415926535897932384626433832795028841971693993751
|
|
//
|
|
// NOTE: This makes a *copy* of the writer and passes it to slow_float_parsing. This happens
|
|
// because slow_float_parsing is a non-inlined function. If we passed our writer reference to
|
|
// it, it would force it to be stored in memory, preventing the compiler from picking it apart
|
|
// and putting into registers. i.e. if we pass it as reference, it gets slow.
|
|
// This is what forces the skip_double, as well.
|
|
error_code error = slow_float_parsing(src, writer);
|
|
writer.skip_double();
|
|
return error;
|
|
}
|
|
// NOTE: it's weird that the simdjson_unlikely() only wraps half the if, but it seems to get slower any other
|
|
// way we've tried: https://github.com/simdjson/simdjson/pull/990#discussion_r448497331
|
|
// To future reader: we'd love if someone found a better way, or at least could explain this result!
|
|
if (simdjson_unlikely(exponent < FASTFLOAT_SMALLEST_POWER) || (exponent > FASTFLOAT_LARGEST_POWER)) {
|
|
// this is almost never going to get called!!!
|
|
// we start anew, going slowly!!!
|
|
// NOTE: This makes a *copy* of the writer and passes it to slow_float_parsing. This happens
|
|
// because slow_float_parsing is a non-inlined function. If we passed our writer reference to
|
|
// it, it would force it to be stored in memory, preventing the compiler from picking it apart
|
|
// and putting into registers. i.e. if we pass it as reference, it gets slow.
|
|
// This is what forces the skip_double, as well.
|
|
error_code error = slow_float_parsing(src, writer);
|
|
writer.skip_double();
|
|
return error;
|
|
}
|
|
double d;
|
|
if (!compute_float_64(exponent, i, negative, d)) {
|
|
// we are almost never going to get here.
|
|
if (!parse_float_strtod(src, &d)) { return INVALID_NUMBER(src); }
|
|
}
|
|
WRITE_DOUBLE(d, src, writer);
|
|
return SUCCESS;
|
|
}
|
|
|
|
// for performance analysis, it is sometimes useful to skip parsing
|
|
#ifdef SIMDJSON_SKIPNUMBERPARSING
|
|
|
|
template<typename W>
|
|
simdjson_really_inline error_code parse_number(const uint8_t *const, W &writer) {
|
|
writer.append_s64(0); // always write zero
|
|
return SUCCESS; // always succeeds
|
|
}
|
|
|
|
#else
|
|
|
|
// parse the number at src
|
|
// define JSON_TEST_NUMBERS for unit testing
|
|
//
|
|
// It is assumed that the number is followed by a structural ({,},],[) character
|
|
// or a white space character. If that is not the case (e.g., when the JSON
|
|
// document is made of a single number), then it is necessary to copy the
|
|
// content and append a space before calling this function.
|
|
//
|
|
// Our objective is accurate parsing (ULP of 0) at high speed.
|
|
template<typename W>
|
|
simdjson_really_inline error_code parse_number(const uint8_t *const src, W &writer) {
|
|
|
|
//
|
|
// Check for minus sign
|
|
//
|
|
bool negative = (*src == '-');
|
|
const uint8_t *p = src + negative;
|
|
|
|
//
|
|
// Parse the integer part.
|
|
//
|
|
// PERF NOTE: we don't use is_made_of_eight_digits_fast because large integers like 123456789 are rare
|
|
const uint8_t *const start_digits = p;
|
|
uint64_t i = 0;
|
|
while (parse_digit(*p, i)) { p++; }
|
|
|
|
// If there were no digits, or if the integer starts with 0 and has more than one digit, it's an error.
|
|
int digit_count = int(p - start_digits);
|
|
if (digit_count == 0 || ('0' == *start_digits && digit_count > 1)) { return INVALID_NUMBER(src); }
|
|
|
|
//
|
|
// Handle floats if there is a . or e (or both)
|
|
//
|
|
int64_t exponent = 0;
|
|
bool is_float = false;
|
|
if ('.' == *p) {
|
|
is_float = true;
|
|
++p;
|
|
SIMDJSON_TRY( parse_decimal(src, p, i, exponent) );
|
|
digit_count = int(p - start_digits); // used later to guard against overflows
|
|
}
|
|
if (('e' == *p) || ('E' == *p)) {
|
|
is_float = true;
|
|
++p;
|
|
SIMDJSON_TRY( parse_exponent(src, p, exponent) );
|
|
}
|
|
if (is_float) {
|
|
const bool clean_end = is_structural_or_whitespace(*p);
|
|
SIMDJSON_TRY( write_float(src, negative, i, start_digits, digit_count, exponent, writer) );
|
|
if (!clean_end) { return INVALID_NUMBER(src); }
|
|
return SUCCESS;
|
|
}
|
|
|
|
// The longest negative 64-bit number is 19 digits.
|
|
// The longest positive 64-bit number is 20 digits.
|
|
// We do it this way so we don't trigger this branch unless we must.
|
|
int longest_digit_count = negative ? 19 : 20;
|
|
if (digit_count > longest_digit_count) { return INVALID_NUMBER(src); }
|
|
if (digit_count == longest_digit_count) {
|
|
if (negative) {
|
|
// Anything negative above INT64_MAX+1 is invalid
|
|
if (i > uint64_t(INT64_MAX)+1) { return INVALID_NUMBER(src); }
|
|
WRITE_INTEGER(~i+1, src, writer);
|
|
if (!is_structural_or_whitespace(*p)) { return INVALID_NUMBER(src); }
|
|
return SUCCESS;
|
|
// Positive overflow check:
|
|
// - A 20 digit number starting with 2-9 is overflow, because 18,446,744,073,709,551,615 is the
|
|
// biggest uint64_t.
|
|
// - A 20 digit number starting with 1 is overflow if it is less than INT64_MAX.
|
|
// If we got here, it's a 20 digit number starting with the digit "1".
|
|
// - If a 20 digit number starting with 1 overflowed (i*10+digit), the result will be smaller
|
|
// than 1,553,255,926,290,448,384.
|
|
// - That is smaller than the smallest possible 20-digit number the user could write:
|
|
// 10,000,000,000,000,000,000.
|
|
// - Therefore, if the number is positive and lower than that, it's overflow.
|
|
// - The value we are looking at is less than or equal to 9,223,372,036,854,775,808 (INT64_MAX).
|
|
//
|
|
} else if (src[0] != uint8_t('1') || i <= uint64_t(INT64_MAX)) { return INVALID_NUMBER(src); }
|
|
}
|
|
|
|
// Write unsigned if it doesn't fit in a signed integer.
|
|
if (i > uint64_t(INT64_MAX)) {
|
|
WRITE_UNSIGNED(i, src, writer);
|
|
} else {
|
|
WRITE_INTEGER(negative ? (~i+1) : i, src, writer);
|
|
}
|
|
if (!is_structural_or_whitespace(*p)) { return INVALID_NUMBER(src); }
|
|
return SUCCESS;
|
|
}
|
|
|
|
// SAX functions
|
|
namespace {
|
|
// Parse any number from 0 to 18,446,744,073,709,551,615
|
|
SIMDJSON_UNUSED simdjson_really_inline simdjson_result<uint64_t> parse_unsigned(const uint8_t * const src) noexcept {
|
|
const uint8_t *p = src;
|
|
|
|
//
|
|
// Parse the integer part.
|
|
//
|
|
// PERF NOTE: we don't use is_made_of_eight_digits_fast because large integers like 123456789 are rare
|
|
const uint8_t *const start_digits = p;
|
|
uint64_t i = 0;
|
|
while (parse_digit(*p, i)) { p++; }
|
|
|
|
// If there were no digits, or if the integer starts with 0 and has more than one digit, it's an error.
|
|
int digit_count = int(p - start_digits);
|
|
if (digit_count == 0 || ('0' == *start_digits && digit_count > 1)) { return NUMBER_ERROR; }
|
|
if (!is_structural_or_whitespace(*p)) { return NUMBER_ERROR; }
|
|
|
|
// The longest positive 64-bit number is 20 digits.
|
|
// We do it this way so we don't trigger this branch unless we must.
|
|
if (digit_count > 20) { return NUMBER_ERROR; }
|
|
if (digit_count == 20) {
|
|
// Positive overflow check:
|
|
// - A 20 digit number starting with 2-9 is overflow, because 18,446,744,073,709,551,615 is the
|
|
// biggest uint64_t.
|
|
// - A 20 digit number starting with 1 is overflow if it is less than INT64_MAX.
|
|
// If we got here, it's a 20 digit number starting with the digit "1".
|
|
// - If a 20 digit number starting with 1 overflowed (i*10+digit), the result will be smaller
|
|
// than 1,553,255,926,290,448,384.
|
|
// - That is smaller than the smallest possible 20-digit number the user could write:
|
|
// 10,000,000,000,000,000,000.
|
|
// - Therefore, if the number is positive and lower than that, it's overflow.
|
|
// - The value we are looking at is less than or equal to 9,223,372,036,854,775,808 (INT64_MAX).
|
|
//
|
|
if (src[0] != uint8_t('1') || i <= uint64_t(INT64_MAX)) { return NUMBER_ERROR; }
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
// Parse any number from 0 to 18,446,744,073,709,551,615
|
|
// Call this version of the method if you regularly expect 8- or 16-digit numbers.
|
|
SIMDJSON_UNUSED simdjson_really_inline simdjson_result<uint64_t> parse_large_unsigned(const uint8_t * const src) noexcept {
|
|
const uint8_t *p = src;
|
|
|
|
//
|
|
// Parse the integer part.
|
|
//
|
|
uint64_t i = 0;
|
|
if (is_made_of_eight_digits_fast(p)) {
|
|
i = i * 100000000 + parse_eight_digits_unrolled(p);
|
|
p += 8;
|
|
if (is_made_of_eight_digits_fast(p)) {
|
|
i = i * 100000000 + parse_eight_digits_unrolled(p);
|
|
p += 8;
|
|
if (parse_digit(*p, i)) { // digit 17
|
|
p++;
|
|
if (parse_digit(*p, i)) { // digit 18
|
|
p++;
|
|
if (parse_digit(*p, i)) { // digit 19
|
|
p++;
|
|
if (parse_digit(*p, i)) { // digit 20
|
|
p++;
|
|
if (parse_digit(*p, i)) { return NUMBER_ERROR; } // 21 digits is an error
|
|
// Positive overflow check:
|
|
// - A 20 digit number starting with 2-9 is overflow, because 18,446,744,073,709,551,615 is the
|
|
// biggest uint64_t.
|
|
// - A 20 digit number starting with 1 is overflow if it is less than INT64_MAX.
|
|
// If we got here, it's a 20 digit number starting with the digit "1".
|
|
// - If a 20 digit number starting with 1 overflowed (i*10+digit), the result will be smaller
|
|
// than 1,553,255,926,290,448,384.
|
|
// - That is smaller than the smallest possible 20-digit number the user could write:
|
|
// 10,000,000,000,000,000,000.
|
|
// - Therefore, if the number is positive and lower than that, it's overflow.
|
|
// - The value we are looking at is less than or equal to 9,223,372,036,854,775,808 (INT64_MAX).
|
|
//
|
|
if (src[0] != uint8_t('1') || i <= uint64_t(INT64_MAX)) { return NUMBER_ERROR; }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // 16 digits
|
|
} else { // 8 digits
|
|
// Less than 8 digits can't overflow, simpler logic here.
|
|
if (parse_digit(*p, i)) { p++; } else { return NUMBER_ERROR; }
|
|
while (parse_digit(*p, i)) { p++; }
|
|
}
|
|
|
|
if (!is_structural_or_whitespace(*p)) { return NUMBER_ERROR; }
|
|
// If there were no digits, or if the integer starts with 0 and has more than one digit, it's an error.
|
|
int digit_count = int(p - src);
|
|
if (digit_count == 0 || ('0' == *src && digit_count > 1)) { return NUMBER_ERROR; }
|
|
return i;
|
|
}
|
|
|
|
// Parse any number from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
|
|
SIMDJSON_UNUSED simdjson_really_inline simdjson_result<int64_t> parse_integer(const uint8_t *src) noexcept {
|
|
//
|
|
// Check for minus sign
|
|
//
|
|
bool negative = (*src == '-');
|
|
const uint8_t *p = src + negative;
|
|
|
|
//
|
|
// Parse the integer part.
|
|
//
|
|
// PERF NOTE: we don't use is_made_of_eight_digits_fast because large integers like 123456789 are rare
|
|
const uint8_t *const start_digits = p;
|
|
uint64_t i = 0;
|
|
while (parse_digit(*p, i)) { p++; }
|
|
|
|
// If there were no digits, or if the integer starts with 0 and has more than one digit, it's an error.
|
|
int digit_count = int(p - start_digits);
|
|
if (digit_count == 0 || ('0' == *start_digits && digit_count > 1)) { return NUMBER_ERROR; }
|
|
if (!is_structural_or_whitespace(*p)) { return NUMBER_ERROR; }
|
|
|
|
// The longest negative 64-bit number is 19 digits.
|
|
// The longest positive 64-bit number is 20 digits.
|
|
// We do it this way so we don't trigger this branch unless we must.
|
|
int longest_digit_count = negative ? 19 : 20;
|
|
if (digit_count > longest_digit_count) { return NUMBER_ERROR; }
|
|
if (digit_count == longest_digit_count) {
|
|
if(negative) {
|
|
// Anything negative above INT64_MAX+1 is invalid
|
|
if (i > uint64_t(INT64_MAX)+1) { return NUMBER_ERROR; }
|
|
return ~i+1;
|
|
|
|
// Positive overflow check:
|
|
// - A 20 digit number starting with 2-9 is overflow, because 18,446,744,073,709,551,615 is the
|
|
// biggest uint64_t.
|
|
// - A 20 digit number starting with 1 is overflow if it is less than INT64_MAX.
|
|
// If we got here, it's a 20 digit number starting with the digit "1".
|
|
// - If a 20 digit number starting with 1 overflowed (i*10+digit), the result will be smaller
|
|
// than 1,553,255,926,290,448,384.
|
|
// - That is smaller than the smallest possible 20-digit number the user could write:
|
|
// 10,000,000,000,000,000,000.
|
|
// - Therefore, if the number is positive and lower than that, it's overflow.
|
|
// - The value we are looking at is less than or equal to 9,223,372,036,854,775,808 (INT64_MAX).
|
|
//
|
|
} else if (src[0] != uint8_t('1') || i <= uint64_t(INT64_MAX)) { return NUMBER_ERROR; }
|
|
}
|
|
|
|
return negative ? (~i+1) : i;
|
|
}
|
|
|
|
SIMDJSON_UNUSED simdjson_really_inline simdjson_result<double> parse_double(const uint8_t * src) noexcept {
|
|
//
|
|
// Check for minus sign
|
|
//
|
|
bool negative = (*src == '-');
|
|
src += negative;
|
|
|
|
//
|
|
// Parse the integer part.
|
|
//
|
|
uint64_t i = 0;
|
|
const uint8_t *p = src;
|
|
p += parse_digit(*p, i);
|
|
bool leading_zero = (i == 0);
|
|
while (parse_digit(*p, i)) { p++; }
|
|
// no integer digits, or 0123 (zero must be solo)
|
|
if ( p == src || (leading_zero && p != src+1)) { return NUMBER_ERROR; }
|
|
|
|
//
|
|
// Parse the decimal part.
|
|
//
|
|
int64_t exponent = 0;
|
|
bool overflow;
|
|
if (simdjson_likely(*p == '.')) {
|
|
p++;
|
|
const uint8_t *start_decimal_digits = p;
|
|
if (!parse_digit(*p, i)) { return NUMBER_ERROR; } // no decimal digits
|
|
p++;
|
|
while (parse_digit(*p, i)) { p++; }
|
|
exponent = -(p - start_decimal_digits);
|
|
|
|
// Overflow check. 19 digits (minus the decimal) may be overflow.
|
|
overflow = p-src-1 >= 19;
|
|
if (simdjson_unlikely(overflow && leading_zero)) {
|
|
// Skip leading 0.00000 and see if it still overflows
|
|
const uint8_t *start_digits = src + 2;
|
|
while (*start_digits == '0') { start_digits++; }
|
|
overflow = start_digits-src >= 19;
|
|
}
|
|
} else {
|
|
overflow = p-src >= 19;
|
|
}
|
|
|
|
//
|
|
// Parse the exponent
|
|
//
|
|
if (*p == 'e' || *p == 'E') {
|
|
p++;
|
|
bool exp_neg = *p == '-';
|
|
p += exp_neg || *p == '+';
|
|
|
|
uint64_t exp = 0;
|
|
const uint8_t *start_exp_digits = p;
|
|
while (parse_digit(*p, exp)) { p++; }
|
|
// no exp digits, or 20+ exp digits
|
|
if (p-start_exp_digits == 0 || p-start_exp_digits > 19) { return NUMBER_ERROR; }
|
|
|
|
exponent += exp_neg ? 0-exp : exp;
|
|
overflow = overflow || exponent < FASTFLOAT_SMALLEST_POWER || exponent > FASTFLOAT_LARGEST_POWER;
|
|
}
|
|
|
|
//
|
|
// Assemble (or slow-parse) the float
|
|
//
|
|
double d;
|
|
if (simdjson_likely(!overflow)) {
|
|
if (compute_float_64(exponent, i, negative, d)) { return d; }
|
|
}
|
|
if (!parse_float_strtod(src-negative, &d)) {
|
|
return NUMBER_ERROR;
|
|
}
|
|
return d;
|
|
}
|
|
} //namespace {}
|
|
#endif // SIMDJSON_SKIPNUMBERPARSING
|
|
|
|
} // namespace numberparsing
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/numberparsing.h */
|
|
|
|
#endif // SIMDJSON_ARM64_NUMBERPARSING_H
|
|
/* end file src/generic/stage2/numberparsing.h */
|
|
/* begin file src/generic/stage2/tape_builder.h */
|
|
/* begin file src/generic/stage2/json_iterator.h */
|
|
/* begin file src/generic/stage2/logger.h */
|
|
// This is for an internal-only stage 2 specific logger.
|
|
// Set LOG_ENABLED = true to log what stage 2 is doing!
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace logger {
|
|
|
|
static constexpr const char * DASHES = "----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------";
|
|
|
|
static constexpr const bool LOG_ENABLED = false;
|
|
static constexpr const int LOG_EVENT_LEN = 20;
|
|
static constexpr const int LOG_BUFFER_LEN = 30;
|
|
static constexpr const int LOG_SMALL_BUFFER_LEN = 10;
|
|
static constexpr const int LOG_INDEX_LEN = 5;
|
|
|
|
static int log_depth; // Not threadsafe. Log only.
|
|
|
|
// Helper to turn unprintable or newline characters into spaces
|
|
static simdjson_really_inline char printable_char(char c) {
|
|
if (c >= 0x20) {
|
|
return c;
|
|
} else {
|
|
return ' ';
|
|
}
|
|
}
|
|
|
|
// Print the header and set up log_start
|
|
static simdjson_really_inline void log_start() {
|
|
if (LOG_ENABLED) {
|
|
log_depth = 0;
|
|
printf("\n");
|
|
printf("| %-*s | %-*s | %-*s | %-*s | Detail |\n", LOG_EVENT_LEN, "Event", LOG_BUFFER_LEN, "Buffer", LOG_SMALL_BUFFER_LEN, "Next", 5, "Next#");
|
|
printf("|%.*s|%.*s|%.*s|%.*s|--------|\n", LOG_EVENT_LEN+2, DASHES, LOG_BUFFER_LEN+2, DASHES, LOG_SMALL_BUFFER_LEN+2, DASHES, 5+2, DASHES);
|
|
}
|
|
}
|
|
|
|
// Logs a single line of
|
|
template<typename S>
|
|
static simdjson_really_inline void log_line(S &structurals, const char *title_prefix, const char *title, const char *detail) {
|
|
if (LOG_ENABLED) {
|
|
printf("| %*s%s%-*s ", log_depth*2, "", title_prefix, LOG_EVENT_LEN - log_depth*2 - int(strlen(title_prefix)), title);
|
|
auto current_index = structurals.at_beginning() ? nullptr : structurals.next_structural-1;
|
|
auto next_index = structurals.next_structural;
|
|
auto current = current_index ? &structurals.buf[*current_index] : (const uint8_t*)" ";
|
|
auto next = &structurals.buf[*next_index];
|
|
{
|
|
// Print the next N characters in the buffer.
|
|
printf("| ");
|
|
// Otherwise, print the characters starting from the buffer position.
|
|
// Print spaces for unprintable or newline characters.
|
|
for (int i=0;i<LOG_BUFFER_LEN;i++) {
|
|
printf("%c", printable_char(current[i]));
|
|
}
|
|
printf(" ");
|
|
// Print the next N characters in the buffer.
|
|
printf("| ");
|
|
// Otherwise, print the characters starting from the buffer position.
|
|
// Print spaces for unprintable or newline characters.
|
|
for (int i=0;i<LOG_SMALL_BUFFER_LEN;i++) {
|
|
printf("%c", printable_char(next[i]));
|
|
}
|
|
printf(" ");
|
|
}
|
|
if (current_index) {
|
|
printf("| %*u ", LOG_INDEX_LEN, *current_index);
|
|
} else {
|
|
printf("| %-*s ", LOG_INDEX_LEN, "");
|
|
}
|
|
// printf("| %*u ", LOG_INDEX_LEN, structurals.next_tape_index());
|
|
printf("| %-s ", detail);
|
|
printf("|\n");
|
|
}
|
|
}
|
|
|
|
} // namespace logger
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/logger.h */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
|
|
class json_iterator {
|
|
public:
|
|
const uint8_t* const buf;
|
|
uint32_t *next_structural;
|
|
dom_parser_implementation &dom_parser;
|
|
uint32_t depth{0};
|
|
|
|
/**
|
|
* Walk the JSON document.
|
|
*
|
|
* The visitor receives callbacks when values are encountered. All callbacks pass the iterator as
|
|
* the first parameter; some callbacks have other parameters as well:
|
|
*
|
|
* - visit_document_start() - at the beginning.
|
|
* - visit_document_end() - at the end (if things were successful).
|
|
*
|
|
* - visit_array_start() - at the start `[` of a non-empty array.
|
|
* - visit_array_end() - at the end `]` of a non-empty array.
|
|
* - visit_empty_array() - when an empty array is encountered.
|
|
*
|
|
* - visit_object_end() - at the start `]` of a non-empty object.
|
|
* - visit_object_start() - at the end `]` of a non-empty object.
|
|
* - visit_empty_object() - when an empty object is encountered.
|
|
* - visit_key(const uint8_t *key) - when a key in an object field is encountered. key is
|
|
* guaranteed to point at the first quote of the string (`"key"`).
|
|
* - visit_primitive(const uint8_t *value) - when a value is a string, number, boolean or null.
|
|
* - visit_root_primitive(iter, uint8_t *value) - when the top-level value is a string, number, boolean or null.
|
|
*
|
|
* - increment_count(iter) - each time a value is found in an array or object.
|
|
*/
|
|
template<bool STREAMING, typename V>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code walk_document(V &visitor) noexcept;
|
|
|
|
/**
|
|
* Create an iterator capable of walking a JSON document.
|
|
*
|
|
* The document must have already passed through stage 1.
|
|
*/
|
|
simdjson_really_inline json_iterator(dom_parser_implementation &_dom_parser, size_t start_structural_index);
|
|
|
|
/**
|
|
* Look at the next token.
|
|
*
|
|
* Tokens can be strings, numbers, booleans, null, or operators (`[{]},:`)).
|
|
*
|
|
* They may include invalid JSON as well (such as `1.2.3` or `ture`).
|
|
*/
|
|
simdjson_really_inline const uint8_t *peek() const noexcept;
|
|
/**
|
|
* Advance to the next token.
|
|
*
|
|
* Tokens can be strings, numbers, booleans, null, or operators (`[{]},:`)).
|
|
*
|
|
* They may include invalid JSON as well (such as `1.2.3` or `ture`).
|
|
*/
|
|
simdjson_really_inline const uint8_t *advance() noexcept;
|
|
/**
|
|
* Get the remaining length of the document, from the start of the current token.
|
|
*/
|
|
simdjson_really_inline size_t remaining_len() const noexcept;
|
|
/**
|
|
* Check if we are at the end of the document.
|
|
*
|
|
* If this is true, there are no more tokens.
|
|
*/
|
|
simdjson_really_inline bool at_eof() const noexcept;
|
|
/**
|
|
* Check if we are at the beginning of the document.
|
|
*/
|
|
simdjson_really_inline bool at_beginning() const noexcept;
|
|
simdjson_really_inline uint8_t last_structural() const noexcept;
|
|
|
|
/**
|
|
* Log that a value has been found.
|
|
*
|
|
* Set ENABLE_LOGGING=true in logger.h to see logging.
|
|
*/
|
|
simdjson_really_inline void log_value(const char *type) const noexcept;
|
|
/**
|
|
* Log the start of a multipart value.
|
|
*
|
|
* Set ENABLE_LOGGING=true in logger.h to see logging.
|
|
*/
|
|
simdjson_really_inline void log_start_value(const char *type) const noexcept;
|
|
/**
|
|
* Log the end of a multipart value.
|
|
*
|
|
* Set ENABLE_LOGGING=true in logger.h to see logging.
|
|
*/
|
|
simdjson_really_inline void log_end_value(const char *type) const noexcept;
|
|
/**
|
|
* Log an error.
|
|
*
|
|
* Set ENABLE_LOGGING=true in logger.h to see logging.
|
|
*/
|
|
simdjson_really_inline void log_error(const char *error) const noexcept;
|
|
|
|
template<typename V>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_primitive(V &visitor, const uint8_t *value) noexcept;
|
|
template<typename V>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_primitive(V &visitor, const uint8_t *value) noexcept;
|
|
};
|
|
|
|
template<bool STREAMING, typename V>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code json_iterator::walk_document(V &visitor) noexcept {
|
|
logger::log_start();
|
|
|
|
//
|
|
// Start the document
|
|
//
|
|
if (at_eof()) { return EMPTY; }
|
|
log_start_value("document");
|
|
SIMDJSON_TRY( visitor.visit_document_start(*this) );
|
|
|
|
//
|
|
// Read first value
|
|
//
|
|
{
|
|
auto value = advance();
|
|
|
|
// Make sure the outer hash or array is closed before continuing; otherwise, there are ways we
|
|
// could get into memory corruption. See https://github.com/simdjson/simdjson/issues/906
|
|
if (!STREAMING) {
|
|
switch (*value) {
|
|
case '{': if (last_structural() != '}') { return TAPE_ERROR; }; break;
|
|
case '[': if (last_structural() != ']') { return TAPE_ERROR; }; break;
|
|
}
|
|
}
|
|
|
|
switch (*value) {
|
|
case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin;
|
|
case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin;
|
|
default: SIMDJSON_TRY( visitor.visit_root_primitive(*this, value) ); break;
|
|
}
|
|
}
|
|
goto document_end;
|
|
|
|
//
|
|
// Object parser states
|
|
//
|
|
object_begin:
|
|
log_start_value("object");
|
|
depth++;
|
|
if (depth >= dom_parser.max_depth()) { log_error("Exceeded max depth!"); return DEPTH_ERROR; }
|
|
dom_parser.is_array[depth] = false;
|
|
SIMDJSON_TRY( visitor.visit_object_start(*this) );
|
|
|
|
{
|
|
auto key = advance();
|
|
if (*key != '"') { log_error("Object does not start with a key"); return TAPE_ERROR; }
|
|
SIMDJSON_TRY( visitor.increment_count(*this) );
|
|
SIMDJSON_TRY( visitor.visit_key(*this, key) );
|
|
}
|
|
|
|
object_field:
|
|
if (simdjson_unlikely( *advance() != ':' )) { log_error("Missing colon after key in object"); return TAPE_ERROR; }
|
|
{
|
|
auto value = advance();
|
|
switch (*value) {
|
|
case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin;
|
|
case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin;
|
|
default: SIMDJSON_TRY( visitor.visit_primitive(*this, value) ); break;
|
|
}
|
|
}
|
|
|
|
object_continue:
|
|
switch (*advance()) {
|
|
case ',':
|
|
SIMDJSON_TRY( visitor.increment_count(*this) );
|
|
{
|
|
auto key = advance();
|
|
if (simdjson_unlikely( *key != '"' )) { log_error("Key string missing at beginning of field in object"); return TAPE_ERROR; }
|
|
SIMDJSON_TRY( visitor.visit_key(*this, key) );
|
|
}
|
|
goto object_field;
|
|
case '}': log_end_value("object"); SIMDJSON_TRY( visitor.visit_object_end(*this) ); goto scope_end;
|
|
default: log_error("No comma between object fields"); return TAPE_ERROR;
|
|
}
|
|
|
|
scope_end:
|
|
depth--;
|
|
if (depth == 0) { goto document_end; }
|
|
if (dom_parser.is_array[depth]) { goto array_continue; }
|
|
goto object_continue;
|
|
|
|
//
|
|
// Array parser states
|
|
//
|
|
array_begin:
|
|
log_start_value("array");
|
|
depth++;
|
|
if (depth >= dom_parser.max_depth()) { log_error("Exceeded max depth!"); return DEPTH_ERROR; }
|
|
dom_parser.is_array[depth] = true;
|
|
SIMDJSON_TRY( visitor.visit_array_start(*this) );
|
|
SIMDJSON_TRY( visitor.increment_count(*this) );
|
|
|
|
array_value:
|
|
{
|
|
auto value = advance();
|
|
switch (*value) {
|
|
case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin;
|
|
case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin;
|
|
default: SIMDJSON_TRY( visitor.visit_primitive(*this, value) ); break;
|
|
}
|
|
}
|
|
|
|
array_continue:
|
|
switch (*advance()) {
|
|
case ',': SIMDJSON_TRY( visitor.increment_count(*this) ); goto array_value;
|
|
case ']': log_end_value("array"); SIMDJSON_TRY( visitor.visit_array_end(*this) ); goto scope_end;
|
|
default: log_error("Missing comma between array values"); return TAPE_ERROR;
|
|
}
|
|
|
|
document_end:
|
|
log_end_value("document");
|
|
SIMDJSON_TRY( visitor.visit_document_end(*this) );
|
|
|
|
dom_parser.next_structural_index = uint32_t(next_structural - &dom_parser.structural_indexes[0]);
|
|
|
|
// If we didn't make it to the end, it's an error
|
|
if ( !STREAMING && dom_parser.next_structural_index != dom_parser.n_structural_indexes ) {
|
|
log_error("More than one JSON value at the root of the document, or extra characters at the end of the JSON!");
|
|
return TAPE_ERROR;
|
|
}
|
|
|
|
return SUCCESS;
|
|
|
|
} // walk_document()
|
|
|
|
simdjson_really_inline json_iterator::json_iterator(dom_parser_implementation &_dom_parser, size_t start_structural_index)
|
|
: buf{_dom_parser.buf},
|
|
next_structural{&_dom_parser.structural_indexes[start_structural_index]},
|
|
dom_parser{_dom_parser} {
|
|
}
|
|
|
|
simdjson_really_inline const uint8_t *json_iterator::peek() const noexcept {
|
|
return &buf[*(next_structural)];
|
|
}
|
|
simdjson_really_inline const uint8_t *json_iterator::advance() noexcept {
|
|
return &buf[*(next_structural++)];
|
|
}
|
|
simdjson_really_inline size_t json_iterator::remaining_len() const noexcept {
|
|
return dom_parser.len - *(next_structural-1);
|
|
}
|
|
|
|
simdjson_really_inline bool json_iterator::at_eof() const noexcept {
|
|
return next_structural == &dom_parser.structural_indexes[dom_parser.n_structural_indexes];
|
|
}
|
|
simdjson_really_inline bool json_iterator::at_beginning() const noexcept {
|
|
return next_structural == dom_parser.structural_indexes.get();
|
|
}
|
|
simdjson_really_inline uint8_t json_iterator::last_structural() const noexcept {
|
|
return buf[dom_parser.structural_indexes[dom_parser.n_structural_indexes - 1]];
|
|
}
|
|
|
|
simdjson_really_inline void json_iterator::log_value(const char *type) const noexcept {
|
|
logger::log_line(*this, "", type, "");
|
|
}
|
|
|
|
simdjson_really_inline void json_iterator::log_start_value(const char *type) const noexcept {
|
|
logger::log_line(*this, "+", type, "");
|
|
if (logger::LOG_ENABLED) { logger::log_depth++; }
|
|
}
|
|
|
|
simdjson_really_inline void json_iterator::log_end_value(const char *type) const noexcept {
|
|
if (logger::LOG_ENABLED) { logger::log_depth--; }
|
|
logger::log_line(*this, "-", type, "");
|
|
}
|
|
|
|
simdjson_really_inline void json_iterator::log_error(const char *error) const noexcept {
|
|
logger::log_line(*this, "", "ERROR", error);
|
|
}
|
|
|
|
template<typename V>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code json_iterator::visit_root_primitive(V &visitor, const uint8_t *value) noexcept {
|
|
switch (*value) {
|
|
case '"': return visitor.visit_root_string(*this, value);
|
|
case 't': return visitor.visit_root_true_atom(*this, value);
|
|
case 'f': return visitor.visit_root_false_atom(*this, value);
|
|
case 'n': return visitor.visit_root_null_atom(*this, value);
|
|
case '-':
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
return visitor.visit_root_number(*this, value);
|
|
default:
|
|
log_error("Document starts with a non-value character");
|
|
return TAPE_ERROR;
|
|
}
|
|
}
|
|
template<typename V>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code json_iterator::visit_primitive(V &visitor, const uint8_t *value) noexcept {
|
|
switch (*value) {
|
|
case '"': return visitor.visit_string(*this, value);
|
|
case 't': return visitor.visit_true_atom(*this, value);
|
|
case 'f': return visitor.visit_false_atom(*this, value);
|
|
case 'n': return visitor.visit_null_atom(*this, value);
|
|
case '-':
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
return visitor.visit_number(*this, value);
|
|
default:
|
|
log_error("Non-value found when value was expected!");
|
|
return TAPE_ERROR;
|
|
}
|
|
}
|
|
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/logger.h */
|
|
/* begin file src/generic/stage2/tape_writer.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
|
|
struct tape_writer {
|
|
/** The next place to write to tape */
|
|
uint64_t *next_tape_loc;
|
|
|
|
/** Write a signed 64-bit value to tape. */
|
|
simdjson_really_inline void append_s64(int64_t value) noexcept;
|
|
|
|
/** Write an unsigned 64-bit value to tape. */
|
|
simdjson_really_inline void append_u64(uint64_t value) noexcept;
|
|
|
|
/** Write a double value to tape. */
|
|
simdjson_really_inline void append_double(double value) noexcept;
|
|
|
|
/**
|
|
* Append a tape entry (an 8-bit type,and 56 bits worth of value).
|
|
*/
|
|
simdjson_really_inline void append(uint64_t val, internal::tape_type t) noexcept;
|
|
|
|
/**
|
|
* Skip the current tape entry without writing.
|
|
*
|
|
* Used to skip the start of the container, since we'll come back later to fill it in when the
|
|
* container ends.
|
|
*/
|
|
simdjson_really_inline void skip() noexcept;
|
|
|
|
/**
|
|
* Skip the number of tape entries necessary to write a large u64 or i64.
|
|
*/
|
|
simdjson_really_inline void skip_large_integer() noexcept;
|
|
|
|
/**
|
|
* Skip the number of tape entries necessary to write a double.
|
|
*/
|
|
simdjson_really_inline void skip_double() noexcept;
|
|
|
|
/**
|
|
* Write a value to a known location on tape.
|
|
*
|
|
* Used to go back and write out the start of a container after the container ends.
|
|
*/
|
|
simdjson_really_inline static void write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept;
|
|
|
|
private:
|
|
/**
|
|
* Append both the tape entry, and a supplementary value following it. Used for types that need
|
|
* all 64 bits, such as double and uint64_t.
|
|
*/
|
|
template<typename T>
|
|
simdjson_really_inline void append2(uint64_t val, T val2, internal::tape_type t) noexcept;
|
|
}; // struct number_writer
|
|
|
|
simdjson_really_inline void tape_writer::append_s64(int64_t value) noexcept {
|
|
append2(0, value, internal::tape_type::INT64);
|
|
}
|
|
|
|
simdjson_really_inline void tape_writer::append_u64(uint64_t value) noexcept {
|
|
append(0, internal::tape_type::UINT64);
|
|
*next_tape_loc = value;
|
|
next_tape_loc++;
|
|
}
|
|
|
|
/** Write a double value to tape. */
|
|
simdjson_really_inline void tape_writer::append_double(double value) noexcept {
|
|
append2(0, value, internal::tape_type::DOUBLE);
|
|
}
|
|
|
|
simdjson_really_inline void tape_writer::skip() noexcept {
|
|
next_tape_loc++;
|
|
}
|
|
|
|
simdjson_really_inline void tape_writer::skip_large_integer() noexcept {
|
|
next_tape_loc += 2;
|
|
}
|
|
|
|
simdjson_really_inline void tape_writer::skip_double() noexcept {
|
|
next_tape_loc += 2;
|
|
}
|
|
|
|
simdjson_really_inline void tape_writer::append(uint64_t val, internal::tape_type t) noexcept {
|
|
*next_tape_loc = val | ((uint64_t(char(t))) << 56);
|
|
next_tape_loc++;
|
|
}
|
|
|
|
template<typename T>
|
|
simdjson_really_inline void tape_writer::append2(uint64_t val, T val2, internal::tape_type t) noexcept {
|
|
append(val, t);
|
|
static_assert(sizeof(val2) == sizeof(*next_tape_loc), "Type is not 64 bits!");
|
|
memcpy(next_tape_loc, &val2, sizeof(val2));
|
|
next_tape_loc++;
|
|
}
|
|
|
|
simdjson_really_inline void tape_writer::write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept {
|
|
tape_loc = val | ((uint64_t(char(t))) << 56);
|
|
}
|
|
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/tape_writer.h */
|
|
/* begin file src/generic/stage2/atomparsing.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
namespace atomparsing {
|
|
|
|
// The string_to_uint32 is exclusively used to map literal strings to 32-bit values.
|
|
// We use memcpy instead of a pointer cast to avoid undefined behaviors since we cannot
|
|
// be certain that the character pointer will be properly aligned.
|
|
// You might think that using memcpy makes this function expensive, but you'd be wrong.
|
|
// All decent optimizing compilers (GCC, clang, Visual Studio) will compile string_to_uint32("false");
|
|
// to the compile-time constant 1936482662.
|
|
simdjson_really_inline uint32_t string_to_uint32(const char* str) { uint32_t val; std::memcpy(&val, str, sizeof(uint32_t)); return val; }
|
|
|
|
|
|
// Again in str4ncmp we use a memcpy to avoid undefined behavior. The memcpy may appear expensive.
|
|
// Yet all decent optimizing compilers will compile memcpy to a single instruction, just about.
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline uint32_t str4ncmp(const uint8_t *src, const char* atom) {
|
|
uint32_t srcval; // we want to avoid unaligned 32-bit loads (undefined in C/C++)
|
|
static_assert(sizeof(uint32_t) <= SIMDJSON_PADDING, "SIMDJSON_PADDING must be larger than 4 bytes");
|
|
std::memcpy(&srcval, src, sizeof(uint32_t));
|
|
return srcval ^ string_to_uint32(atom);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool is_valid_true_atom(const uint8_t *src) {
|
|
return (str4ncmp(src, "true") | is_not_structural_or_whitespace(src[4])) == 0;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool is_valid_true_atom(const uint8_t *src, size_t len) {
|
|
if (len > 4) { return is_valid_true_atom(src); }
|
|
else if (len == 4) { return !str4ncmp(src, "true"); }
|
|
else { return false; }
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool is_valid_false_atom(const uint8_t *src) {
|
|
return (str4ncmp(src+1, "alse") | is_not_structural_or_whitespace(src[5])) == 0;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool is_valid_false_atom(const uint8_t *src, size_t len) {
|
|
if (len > 5) { return is_valid_false_atom(src); }
|
|
else if (len == 5) { return !str4ncmp(src+1, "alse"); }
|
|
else { return false; }
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool is_valid_null_atom(const uint8_t *src) {
|
|
return (str4ncmp(src, "null") | is_not_structural_or_whitespace(src[4])) == 0;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool is_valid_null_atom(const uint8_t *src, size_t len) {
|
|
if (len > 4) { return is_valid_null_atom(src); }
|
|
else if (len == 4) { return !str4ncmp(src, "null"); }
|
|
else { return false; }
|
|
}
|
|
|
|
} // namespace atomparsing
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/atomparsing.h */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
|
|
struct tape_builder {
|
|
template<bool STREAMING>
|
|
SIMDJSON_WARN_UNUSED static simdjson_really_inline error_code parse_document(
|
|
dom_parser_implementation &dom_parser,
|
|
dom::document &doc) noexcept;
|
|
|
|
/** Called when a non-empty document starts. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_document_start(json_iterator &iter) noexcept;
|
|
/** Called when a non-empty document ends without error. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_document_end(json_iterator &iter) noexcept;
|
|
|
|
/** Called when a non-empty array starts. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_array_start(json_iterator &iter) noexcept;
|
|
/** Called when a non-empty array ends. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_array_end(json_iterator &iter) noexcept;
|
|
/** Called when an empty array is found. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_empty_array(json_iterator &iter) noexcept;
|
|
|
|
/** Called when a non-empty object starts. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_object_start(json_iterator &iter) noexcept;
|
|
/**
|
|
* Called when a key in a field is encountered.
|
|
*
|
|
* primitive, visit_object_start, visit_empty_object, visit_array_start, or visit_empty_array
|
|
* will be called after this with the field value.
|
|
*/
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_key(json_iterator &iter, const uint8_t *key) noexcept;
|
|
/** Called when a non-empty object ends. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_object_end(json_iterator &iter) noexcept;
|
|
/** Called when an empty object is found. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_empty_object(json_iterator &iter) noexcept;
|
|
|
|
/**
|
|
* Called when a string, number, boolean or null is found.
|
|
*/
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_primitive(json_iterator &iter, const uint8_t *value) noexcept;
|
|
/**
|
|
* Called when a string, number, boolean or null is found at the top level of a document (i.e.
|
|
* when there is no array or object and the entire document is a single string, number, boolean or
|
|
* null.
|
|
*
|
|
* This is separate from primitive() because simdjson's normal primitive parsing routines assume
|
|
* there is at least one more token after the value, which is only true in an array or object.
|
|
*/
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_primitive(json_iterator &iter, const uint8_t *value) noexcept;
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_string(json_iterator &iter, const uint8_t *value, bool key = false) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_number(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_true_atom(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_false_atom(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_null_atom(json_iterator &iter, const uint8_t *value) noexcept;
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_string(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_number(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_true_atom(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_false_atom(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_null_atom(json_iterator &iter, const uint8_t *value) noexcept;
|
|
|
|
/** Called each time a new field or element in an array or object is found. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code increment_count(json_iterator &iter) noexcept;
|
|
|
|
/** Next location to write to tape */
|
|
tape_writer tape;
|
|
private:
|
|
/** Next write location in the string buf for stage 2 parsing */
|
|
uint8_t *current_string_buf_loc;
|
|
|
|
simdjson_really_inline tape_builder(dom::document &doc) noexcept;
|
|
|
|
simdjson_really_inline uint32_t next_tape_index(json_iterator &iter) const noexcept;
|
|
simdjson_really_inline void start_container(json_iterator &iter) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code end_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code empty_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept;
|
|
simdjson_really_inline uint8_t *on_start_string(json_iterator &iter) noexcept;
|
|
simdjson_really_inline void on_end_string(uint8_t *dst) noexcept;
|
|
}; // class tape_builder
|
|
|
|
template<bool STREAMING>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::parse_document(
|
|
dom_parser_implementation &dom_parser,
|
|
dom::document &doc) noexcept {
|
|
dom_parser.doc = &doc;
|
|
json_iterator iter(dom_parser, STREAMING ? dom_parser.next_structural_index : 0);
|
|
tape_builder builder(doc);
|
|
return iter.walk_document<STREAMING>(builder);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_root_primitive(json_iterator &iter, const uint8_t *value) noexcept {
|
|
return iter.visit_root_primitive(*this, value);
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_primitive(json_iterator &iter, const uint8_t *value) noexcept {
|
|
return iter.visit_primitive(*this, value);
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_empty_object(json_iterator &iter) noexcept {
|
|
return empty_container(iter, internal::tape_type::START_OBJECT, internal::tape_type::END_OBJECT);
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_empty_array(json_iterator &iter) noexcept {
|
|
return empty_container(iter, internal::tape_type::START_ARRAY, internal::tape_type::END_ARRAY);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_document_start(json_iterator &iter) noexcept {
|
|
start_container(iter);
|
|
return SUCCESS;
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_object_start(json_iterator &iter) noexcept {
|
|
start_container(iter);
|
|
return SUCCESS;
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_array_start(json_iterator &iter) noexcept {
|
|
start_container(iter);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_object_end(json_iterator &iter) noexcept {
|
|
return end_container(iter, internal::tape_type::START_OBJECT, internal::tape_type::END_OBJECT);
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_array_end(json_iterator &iter) noexcept {
|
|
return end_container(iter, internal::tape_type::START_ARRAY, internal::tape_type::END_ARRAY);
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_document_end(json_iterator &iter) noexcept {
|
|
constexpr uint32_t start_tape_index = 0;
|
|
tape.append(start_tape_index, internal::tape_type::ROOT);
|
|
tape_writer::write(iter.dom_parser.doc->tape[start_tape_index], next_tape_index(iter), internal::tape_type::ROOT);
|
|
return SUCCESS;
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_key(json_iterator &iter, const uint8_t *key) noexcept {
|
|
return visit_string(iter, key, true);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::increment_count(json_iterator &iter) noexcept {
|
|
iter.dom_parser.open_containers[iter.depth].count++; // we have a key value pair in the object at parser.dom_parser.depth - 1
|
|
return SUCCESS;
|
|
}
|
|
|
|
simdjson_really_inline tape_builder::tape_builder(dom::document &doc) noexcept : tape{doc.tape.get()}, current_string_buf_loc{doc.string_buf.get()} {}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_string(json_iterator &iter, const uint8_t *value, bool key) noexcept {
|
|
iter.log_value(key ? "key" : "string");
|
|
uint8_t *dst = on_start_string(iter);
|
|
dst = stringparsing::parse_string(value, dst);
|
|
if (dst == nullptr) {
|
|
iter.log_error("Invalid escape in string");
|
|
return STRING_ERROR;
|
|
}
|
|
on_end_string(dst);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_root_string(json_iterator &iter, const uint8_t *value) noexcept {
|
|
return visit_string(iter, value);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_number(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("number");
|
|
return numberparsing::parse_number(value, tape);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_root_number(json_iterator &iter, const uint8_t *value) noexcept {
|
|
//
|
|
// We need to make a copy to make sure that the string is space terminated.
|
|
// This is not about padding the input, which should already padded up
|
|
// to len + SIMDJSON_PADDING. However, we have no control at this stage
|
|
// on how the padding was done. What if the input string was padded with nulls?
|
|
// It is quite common for an input string to have an extra null character (C string).
|
|
// We do not want to allow 9\0 (where \0 is the null character) inside a JSON
|
|
// document, but the string "9\0" by itself is fine. So we make a copy and
|
|
// pad the input with spaces when we know that there is just one input element.
|
|
// This copy is relatively expensive, but it will almost never be called in
|
|
// practice unless you are in the strange scenario where you have many JSON
|
|
// documents made of single atoms.
|
|
//
|
|
uint8_t *copy = static_cast<uint8_t *>(malloc(iter.remaining_len() + SIMDJSON_PADDING));
|
|
if (copy == nullptr) { return MEMALLOC; }
|
|
memcpy(copy, value, iter.remaining_len());
|
|
memset(copy + iter.remaining_len(), ' ', SIMDJSON_PADDING);
|
|
error_code error = visit_number(iter, copy);
|
|
free(copy);
|
|
return error;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_true_atom(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("true");
|
|
if (!atomparsing::is_valid_true_atom(value)) { return T_ATOM_ERROR; }
|
|
tape.append(0, internal::tape_type::TRUE_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_root_true_atom(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("true");
|
|
if (!atomparsing::is_valid_true_atom(value, iter.remaining_len())) { return T_ATOM_ERROR; }
|
|
tape.append(0, internal::tape_type::TRUE_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_false_atom(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("false");
|
|
if (!atomparsing::is_valid_false_atom(value)) { return F_ATOM_ERROR; }
|
|
tape.append(0, internal::tape_type::FALSE_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_root_false_atom(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("false");
|
|
if (!atomparsing::is_valid_false_atom(value, iter.remaining_len())) { return F_ATOM_ERROR; }
|
|
tape.append(0, internal::tape_type::FALSE_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_null_atom(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("null");
|
|
if (!atomparsing::is_valid_null_atom(value)) { return N_ATOM_ERROR; }
|
|
tape.append(0, internal::tape_type::NULL_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_root_null_atom(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("null");
|
|
if (!atomparsing::is_valid_null_atom(value, iter.remaining_len())) { return N_ATOM_ERROR; }
|
|
tape.append(0, internal::tape_type::NULL_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
// private:
|
|
|
|
simdjson_really_inline uint32_t tape_builder::next_tape_index(json_iterator &iter) const noexcept {
|
|
return uint32_t(tape.next_tape_loc - iter.dom_parser.doc->tape.get());
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::empty_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept {
|
|
auto start_index = next_tape_index(iter);
|
|
tape.append(start_index+2, start);
|
|
tape.append(start_index, end);
|
|
return SUCCESS;
|
|
}
|
|
|
|
simdjson_really_inline void tape_builder::start_container(json_iterator &iter) noexcept {
|
|
iter.dom_parser.open_containers[iter.depth].tape_index = next_tape_index(iter);
|
|
iter.dom_parser.open_containers[iter.depth].count = 0;
|
|
tape.skip(); // We don't actually *write* the start element until the end.
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::end_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept {
|
|
// Write the ending tape element, pointing at the start location
|
|
const uint32_t start_tape_index = iter.dom_parser.open_containers[iter.depth].tape_index;
|
|
tape.append(start_tape_index, end);
|
|
// Write the start tape element, pointing at the end location (and including count)
|
|
// count can overflow if it exceeds 24 bits... so we saturate
|
|
// the convention being that a cnt of 0xffffff or more is undetermined in value (>= 0xffffff).
|
|
const uint32_t count = iter.dom_parser.open_containers[iter.depth].count;
|
|
const uint32_t cntsat = count > 0xFFFFFF ? 0xFFFFFF : count;
|
|
tape_writer::write(iter.dom_parser.doc->tape[start_tape_index], next_tape_index(iter) | (uint64_t(cntsat) << 32), start);
|
|
return SUCCESS;
|
|
}
|
|
|
|
simdjson_really_inline uint8_t *tape_builder::on_start_string(json_iterator &iter) noexcept {
|
|
// we advance the point, accounting for the fact that we have a NULL termination
|
|
tape.append(current_string_buf_loc - iter.dom_parser.doc->string_buf.get(), internal::tape_type::STRING);
|
|
return current_string_buf_loc + sizeof(uint32_t);
|
|
}
|
|
|
|
simdjson_really_inline void tape_builder::on_end_string(uint8_t *dst) noexcept {
|
|
uint32_t str_length = uint32_t(dst - (current_string_buf_loc + sizeof(uint32_t)));
|
|
// TODO check for overflow in case someone has a crazy string (>=4GB?)
|
|
// But only add the overflow check when the document itself exceeds 4GB
|
|
// Currently unneeded because we refuse to parse docs larger or equal to 4GB.
|
|
memcpy(current_string_buf_loc, &str_length, sizeof(uint32_t));
|
|
// NULL termination is still handy if you expect all your strings to
|
|
// be NULL terminated? It comes at a small cost
|
|
*dst = 0;
|
|
current_string_buf_loc = dst + 1;
|
|
}
|
|
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/atomparsing.h */
|
|
|
|
//
|
|
// Implementation-specific overrides
|
|
//
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage1 {
|
|
|
|
simdjson_really_inline uint64_t json_string_scanner::find_escaped(uint64_t backslash) {
|
|
// On ARM, we don't short-circuit this if there are no backslashes, because the branch gives us no
|
|
// benefit and therefore makes things worse.
|
|
// if (!backslash) { uint64_t escaped = prev_escaped; prev_escaped = 0; return escaped; }
|
|
return find_escaped_branchless(backslash);
|
|
}
|
|
|
|
} // namespace stage1
|
|
|
|
SIMDJSON_WARN_UNUSED error_code implementation::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept {
|
|
return arm64::stage1::json_minifier::minify<64>(buf, len, dst, dst_len);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED error_code dom_parser_implementation::stage1(const uint8_t *_buf, size_t _len, bool streaming) noexcept {
|
|
this->buf = _buf;
|
|
this->len = _len;
|
|
return arm64::stage1::json_structural_indexer::index<64>(buf, len, *this, streaming);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED bool implementation::validate_utf8(const char *buf, size_t len) const noexcept {
|
|
return arm64::stage1::generic_validate_utf8(buf,len);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED error_code dom_parser_implementation::stage2(dom::document &_doc) noexcept {
|
|
return stage2::tape_builder::parse_document<false>(*this, _doc);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED error_code dom_parser_implementation::stage2_next(dom::document &_doc) noexcept {
|
|
return stage2::tape_builder::parse_document<true>(*this, _doc);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED error_code dom_parser_implementation::parse(const uint8_t *_buf, size_t _len, dom::document &_doc) noexcept {
|
|
auto error = stage1(_buf, _len, false);
|
|
if (error) { return error; }
|
|
return stage2(_doc);
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
/* begin file src/arm64/end_implementation.h */
|
|
#undef SIMDJSON_IMPLEMENTATION
|
|
/* end file src/arm64/end_implementation.h */
|
|
/* end file src/arm64/end_implementation.h */
|
|
#endif
|
|
#if SIMDJSON_IMPLEMENTATION_FALLBACK
|
|
/* begin file src/fallback/implementation.cpp */
|
|
/* begin file src/fallback/begin_implementation.h */
|
|
#define SIMDJSON_IMPLEMENTATION fallback
|
|
/* fallback/implementation.h already included: #include "fallback/implementation.h" */
|
|
/* begin file src/fallback/bitmanipulation.h */
|
|
#ifndef SIMDJSON_FALLBACK_BITMANIPULATION_H
|
|
#define SIMDJSON_FALLBACK_BITMANIPULATION_H
|
|
|
|
#include <limits>
|
|
|
|
namespace {
|
|
namespace fallback {
|
|
|
|
#if defined(_MSC_VER) && !defined(_M_ARM64) && !defined(_M_X64)
|
|
static inline unsigned char _BitScanForward64(unsigned long* ret, uint64_t x) {
|
|
unsigned long x0 = (unsigned long)x, top, bottom;
|
|
_BitScanForward(&top, (unsigned long)(x >> 32));
|
|
_BitScanForward(&bottom, x0);
|
|
*ret = x0 ? bottom : 32 + top;
|
|
return x != 0;
|
|
}
|
|
static unsigned char _BitScanReverse64(unsigned long* ret, uint64_t x) {
|
|
unsigned long x1 = (unsigned long)(x >> 32), top, bottom;
|
|
_BitScanReverse(&top, x1);
|
|
_BitScanReverse(&bottom, (unsigned long)x);
|
|
*ret = x1 ? top + 32 : bottom;
|
|
return x != 0;
|
|
}
|
|
#endif
|
|
|
|
/* result might be undefined when input_num is zero */
|
|
simdjson_really_inline int leading_zeroes(uint64_t input_num) {
|
|
#ifdef _MSC_VER
|
|
unsigned long leading_zero = 0;
|
|
// Search the mask data from most significant bit (MSB)
|
|
// to least significant bit (LSB) for a set bit (1).
|
|
if (_BitScanReverse64(&leading_zero, input_num))
|
|
return (int)(63 - leading_zero);
|
|
else
|
|
return 64;
|
|
#else
|
|
return __builtin_clzll(input_num);
|
|
#endif// _MSC_VER
|
|
}
|
|
|
|
} // namespace fallback
|
|
} // unnamed namespace
|
|
|
|
#endif // SIMDJSON_FALLBACK_BITMANIPULATION_H
|
|
/* end file src/fallback/bitmanipulation.h */
|
|
/* end file src/fallback/bitmanipulation.h */
|
|
/* begin file src/fallback/dom_parser_implementation.h */
|
|
#ifndef SIMDJSON_FALLBACK_DOM_PARSER_IMPLEMENTATION_H
|
|
#define SIMDJSON_FALLBACK_DOM_PARSER_IMPLEMENTATION_H
|
|
|
|
/* begin file src/generic/dom_parser_implementation.h */
|
|
/* isadetection.h already included: #include "isadetection.h" */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
// expectation: sizeof(open_container) = 64/8.
|
|
struct open_container {
|
|
uint32_t tape_index; // where, on the tape, does the scope ([,{) begins
|
|
uint32_t count; // how many elements in the scope
|
|
}; // struct open_container
|
|
|
|
static_assert(sizeof(open_container) == 64/8, "Open container must be 64 bits");
|
|
|
|
class dom_parser_implementation final : public internal::dom_parser_implementation {
|
|
public:
|
|
/** Tape location of each open { or [ */
|
|
std::unique_ptr<open_container[]> open_containers{};
|
|
/** Whether each open container is a [ or { */
|
|
std::unique_ptr<bool[]> is_array{};
|
|
/** Buffer passed to stage 1 */
|
|
const uint8_t *buf{};
|
|
/** Length passed to stage 1 */
|
|
size_t len{0};
|
|
/** Document passed to stage 2 */
|
|
dom::document *doc{};
|
|
|
|
simdjson_really_inline dom_parser_implementation();
|
|
dom_parser_implementation(const dom_parser_implementation &) = delete;
|
|
dom_parser_implementation & operator=(const dom_parser_implementation &) = delete;
|
|
|
|
SIMDJSON_WARN_UNUSED error_code parse(const uint8_t *buf, size_t len, dom::document &doc) noexcept final;
|
|
SIMDJSON_WARN_UNUSED error_code stage1(const uint8_t *buf, size_t len, bool partial) noexcept final;
|
|
SIMDJSON_WARN_UNUSED error_code check_for_unclosed_array() noexcept;
|
|
SIMDJSON_WARN_UNUSED error_code stage2(dom::document &doc) noexcept final;
|
|
SIMDJSON_WARN_UNUSED error_code stage2_next(dom::document &doc) noexcept final;
|
|
SIMDJSON_WARN_UNUSED error_code set_capacity(size_t capacity) noexcept final;
|
|
SIMDJSON_WARN_UNUSED error_code set_max_depth(size_t max_depth) noexcept final;
|
|
};
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
/* begin file src/generic/stage1/allocate.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage1 {
|
|
namespace allocate {
|
|
|
|
//
|
|
// Allocates stage 1 internal state and outputs in the parser
|
|
//
|
|
simdjson_really_inline error_code set_capacity(internal::dom_parser_implementation &parser, size_t capacity) {
|
|
size_t max_structures = SIMDJSON_ROUNDUP_N(capacity, 64) + 2 + 7;
|
|
parser.structural_indexes.reset( new (std::nothrow) uint32_t[max_structures] );
|
|
if (!parser.structural_indexes) { return MEMALLOC; }
|
|
parser.structural_indexes[0] = 0;
|
|
parser.n_structural_indexes = 0;
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace allocate
|
|
} // namespace stage1
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/allocate.h */
|
|
/* begin file src/generic/stage2/allocate.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
namespace allocate {
|
|
|
|
//
|
|
// Allocates stage 2 internal state and outputs in the parser
|
|
//
|
|
simdjson_really_inline error_code set_max_depth(dom_parser_implementation &parser, size_t max_depth) {
|
|
parser.open_containers.reset(new (std::nothrow) open_container[max_depth]);
|
|
parser.is_array.reset(new (std::nothrow) bool[max_depth]);
|
|
|
|
if (!parser.is_array || !parser.open_containers) {
|
|
return MEMALLOC;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace allocate
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/allocate.h */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
simdjson_really_inline dom_parser_implementation::dom_parser_implementation() {}
|
|
|
|
// Leaving these here so they can be inlined if so desired
|
|
SIMDJSON_WARN_UNUSED error_code dom_parser_implementation::set_capacity(size_t capacity) noexcept {
|
|
error_code err = stage1::allocate::set_capacity(*this, capacity);
|
|
if (err) { _capacity = 0; return err; }
|
|
_capacity = capacity;
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED error_code dom_parser_implementation::set_max_depth(size_t max_depth) noexcept {
|
|
error_code err = stage2::allocate::set_max_depth(*this, max_depth);
|
|
if (err) { _max_depth = 0; return err; }
|
|
_max_depth = max_depth;
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/allocate.h */
|
|
|
|
#endif // SIMDJSON_FALLBACK_DOM_PARSER_IMPLEMENTATION_H
|
|
/* end file src/generic/stage2/allocate.h */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
SIMDJSON_WARN_UNUSED error_code implementation::create_dom_parser_implementation(
|
|
size_t capacity,
|
|
size_t max_depth,
|
|
std::unique_ptr<internal::dom_parser_implementation>& dst
|
|
) const noexcept {
|
|
dst.reset( new (std::nothrow) dom_parser_implementation() );
|
|
if (!dst) { return MEMALLOC; }
|
|
dst->set_capacity(capacity);
|
|
dst->set_max_depth(max_depth);
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
/* begin file src/fallback/end_implementation.h */
|
|
#undef SIMDJSON_IMPLEMENTATION
|
|
/* end file src/fallback/end_implementation.h */
|
|
/* end file src/fallback/end_implementation.h */
|
|
/* begin file src/fallback/dom_parser_implementation.cpp */
|
|
/* begin file src/fallback/begin_implementation.h */
|
|
#define SIMDJSON_IMPLEMENTATION fallback
|
|
/* fallback/implementation.h already included: #include "fallback/implementation.h" */
|
|
/* fallback/bitmanipulation.h already included: #include "fallback/bitmanipulation.h" */
|
|
/* end file src/fallback/begin_implementation.h */
|
|
/* fallback/dom_parser_implementation.h already included: #include "fallback/dom_parser_implementation.h" */
|
|
/* begin file src/generic/stage2/jsoncharutils.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
|
|
// return non-zero if not a structural or whitespace char
|
|
// zero otherwise
|
|
simdjson_really_inline uint32_t is_not_structural_or_whitespace(uint8_t c) {
|
|
return structural_or_whitespace_negated[c];
|
|
}
|
|
|
|
simdjson_really_inline uint32_t is_structural_or_whitespace(uint8_t c) {
|
|
return structural_or_whitespace[c];
|
|
}
|
|
|
|
// returns a value with the high 16 bits set if not valid
|
|
// otherwise returns the conversion of the 4 hex digits at src into the bottom
|
|
// 16 bits of the 32-bit return register
|
|
//
|
|
// see
|
|
// https://lemire.me/blog/2019/04/17/parsing-short-hexadecimal-strings-efficiently/
|
|
static inline uint32_t hex_to_u32_nocheck(
|
|
const uint8_t *src) { // strictly speaking, static inline is a C-ism
|
|
uint32_t v1 = digit_to_val32[630 + src[0]];
|
|
uint32_t v2 = digit_to_val32[420 + src[1]];
|
|
uint32_t v3 = digit_to_val32[210 + src[2]];
|
|
uint32_t v4 = digit_to_val32[0 + src[3]];
|
|
return v1 | v2 | v3 | v4;
|
|
}
|
|
|
|
// given a code point cp, writes to c
|
|
// the utf-8 code, outputting the length in
|
|
// bytes, if the length is zero, the code point
|
|
// is invalid
|
|
//
|
|
// This can possibly be made faster using pdep
|
|
// and clz and table lookups, but JSON documents
|
|
// have few escaped code points, and the following
|
|
// function looks cheap.
|
|
//
|
|
// Note: we assume that surrogates are treated separately
|
|
//
|
|
simdjson_really_inline size_t codepoint_to_utf8(uint32_t cp, uint8_t *c) {
|
|
if (cp <= 0x7F) {
|
|
c[0] = uint8_t(cp);
|
|
return 1; // ascii
|
|
}
|
|
if (cp <= 0x7FF) {
|
|
c[0] = uint8_t((cp >> 6) + 192);
|
|
c[1] = uint8_t((cp & 63) + 128);
|
|
return 2; // universal plane
|
|
// Surrogates are treated elsewhere...
|
|
//} //else if (0xd800 <= cp && cp <= 0xdfff) {
|
|
// return 0; // surrogates // could put assert here
|
|
} else if (cp <= 0xFFFF) {
|
|
c[0] = uint8_t((cp >> 12) + 224);
|
|
c[1] = uint8_t(((cp >> 6) & 63) + 128);
|
|
c[2] = uint8_t((cp & 63) + 128);
|
|
return 3;
|
|
} else if (cp <= 0x10FFFF) { // if you know you have a valid code point, this
|
|
// is not needed
|
|
c[0] = uint8_t((cp >> 18) + 240);
|
|
c[1] = uint8_t(((cp >> 12) & 63) + 128);
|
|
c[2] = uint8_t(((cp >> 6) & 63) + 128);
|
|
c[3] = uint8_t((cp & 63) + 128);
|
|
return 4;
|
|
}
|
|
// will return 0 when the code point was too large.
|
|
return 0; // bad r
|
|
}
|
|
|
|
#ifdef SIMDJSON_IS_32BITS // _umul128 for x86, arm
|
|
// this is a slow emulation routine for 32-bit
|
|
//
|
|
static simdjson_really_inline uint64_t __emulu(uint32_t x, uint32_t y) {
|
|
return x * (uint64_t)y;
|
|
}
|
|
static simdjson_really_inline uint64_t _umul128(uint64_t ab, uint64_t cd, uint64_t *hi) {
|
|
uint64_t ad = __emulu((uint32_t)(ab >> 32), (uint32_t)cd);
|
|
uint64_t bd = __emulu((uint32_t)ab, (uint32_t)cd);
|
|
uint64_t adbc = ad + __emulu((uint32_t)ab, (uint32_t)(cd >> 32));
|
|
uint64_t adbc_carry = !!(adbc < ad);
|
|
uint64_t lo = bd + (adbc << 32);
|
|
*hi = __emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) +
|
|
(adbc_carry << 32) + !!(lo < bd);
|
|
return lo;
|
|
}
|
|
#endif
|
|
|
|
simdjson_really_inline value128 full_multiplication(uint64_t value1, uint64_t value2) {
|
|
value128 answer;
|
|
#if defined(SIMDJSON_REGULAR_VISUAL_STUDIO) || defined(SIMDJSON_IS_32BITS)
|
|
#ifdef _M_ARM64
|
|
// ARM64 has native support for 64-bit multiplications, no need to emultate
|
|
answer.high = __umulh(value1, value2);
|
|
answer.low = value1 * value2;
|
|
#else
|
|
answer.low = _umul128(value1, value2, &answer.high); // _umul128 not available on ARM64
|
|
#endif // _M_ARM64
|
|
#else // defined(SIMDJSON_REGULAR_VISUAL_STUDIO) || defined(SIMDJSON_IS_32BITS)
|
|
__uint128_t r = ((__uint128_t)value1) * value2;
|
|
answer.low = uint64_t(r);
|
|
answer.high = uint64_t(r >> 64);
|
|
#endif
|
|
return answer;
|
|
}
|
|
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/jsoncharutils.h */
|
|
|
|
//
|
|
// Stage 1
|
|
//
|
|
/* begin file src/generic/stage1/find_next_document_index.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
/**
|
|
* This algorithm is used to quickly identify the last structural position that
|
|
* makes up a complete document.
|
|
*
|
|
* It does this by going backwards and finding the last *document boundary* (a
|
|
* place where one value follows another without a comma between them). If the
|
|
* last document (the characters after the boundary) has an equal number of
|
|
* start and end brackets, it is considered complete.
|
|
*
|
|
* Simply put, we iterate over the structural characters, starting from
|
|
* the end. We consider that we found the end of a JSON document when the
|
|
* first element of the pair is NOT one of these characters: '{' '[' ';' ','
|
|
* and when the second element is NOT one of these characters: '}' '}' ';' ','.
|
|
*
|
|
* This simple comparison works most of the time, but it does not cover cases
|
|
* where the batch's structural indexes contain a perfect amount of documents.
|
|
* In such a case, we do not have access to the structural index which follows
|
|
* the last document, therefore, we do not have access to the second element in
|
|
* the pair, and that means we cannot identify the last document. To fix this
|
|
* issue, we keep a count of the open and closed curly/square braces we found
|
|
* while searching for the pair. When we find a pair AND the count of open and
|
|
* closed curly/square braces is the same, we know that we just passed a
|
|
* complete document, therefore the last json buffer location is the end of the
|
|
* batch.
|
|
*/
|
|
simdjson_really_inline uint32_t find_next_document_index(dom_parser_implementation &parser) {
|
|
// TODO don't count separately, just figure out depth
|
|
auto arr_cnt = 0;
|
|
auto obj_cnt = 0;
|
|
for (auto i = parser.n_structural_indexes - 1; i > 0; i--) {
|
|
auto idxb = parser.structural_indexes[i];
|
|
switch (parser.buf[idxb]) {
|
|
case ':':
|
|
case ',':
|
|
continue;
|
|
case '}':
|
|
obj_cnt--;
|
|
continue;
|
|
case ']':
|
|
arr_cnt--;
|
|
continue;
|
|
case '{':
|
|
obj_cnt++;
|
|
break;
|
|
case '[':
|
|
arr_cnt++;
|
|
break;
|
|
}
|
|
auto idxa = parser.structural_indexes[i - 1];
|
|
switch (parser.buf[idxa]) {
|
|
case '{':
|
|
case '[':
|
|
case ':':
|
|
case ',':
|
|
continue;
|
|
}
|
|
// Last document is complete, so the next document will appear after!
|
|
if (!arr_cnt && !obj_cnt) {
|
|
return parser.n_structural_indexes;
|
|
}
|
|
// Last document is incomplete; mark the document at i + 1 as the next one
|
|
return i;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/find_next_document_index.h */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage1 {
|
|
|
|
class structural_scanner {
|
|
public:
|
|
|
|
simdjson_really_inline structural_scanner(dom_parser_implementation &_parser, bool _partial)
|
|
: buf{_parser.buf},
|
|
next_structural_index{_parser.structural_indexes.get()},
|
|
parser{_parser},
|
|
len{static_cast<uint32_t>(_parser.len)},
|
|
partial{_partial} {
|
|
}
|
|
|
|
simdjson_really_inline void add_structural() {
|
|
*next_structural_index = idx;
|
|
next_structural_index++;
|
|
}
|
|
|
|
simdjson_really_inline bool is_continuation(uint8_t c) {
|
|
return (c & 0b11000000) == 0b10000000;
|
|
}
|
|
|
|
simdjson_really_inline void validate_utf8_character() {
|
|
// Continuation
|
|
if (simdjson_unlikely((buf[idx] & 0b01000000) == 0)) {
|
|
// extra continuation
|
|
error = UTF8_ERROR;
|
|
idx++;
|
|
return;
|
|
}
|
|
|
|
// 2-byte
|
|
if ((buf[idx] & 0b00100000) == 0) {
|
|
// missing continuation
|
|
if (simdjson_unlikely(idx+1 > len || !is_continuation(buf[idx+1]))) {
|
|
if (idx+1 > len && partial) { idx = len; return; }
|
|
error = UTF8_ERROR;
|
|
idx++;
|
|
return;
|
|
}
|
|
// overlong: 1100000_ 10______
|
|
if (buf[idx] <= 0b11000001) { error = UTF8_ERROR; }
|
|
idx += 2;
|
|
return;
|
|
}
|
|
|
|
// 3-byte
|
|
if ((buf[idx] & 0b00010000) == 0) {
|
|
// missing continuation
|
|
if (simdjson_unlikely(idx+2 > len || !is_continuation(buf[idx+1]) || !is_continuation(buf[idx+2]))) {
|
|
if (idx+2 > len && partial) { idx = len; return; }
|
|
error = UTF8_ERROR;
|
|
idx++;
|
|
return;
|
|
}
|
|
// overlong: 11100000 100_____ ________
|
|
if (buf[idx] == 0b11100000 && buf[idx+1] <= 0b10011111) { error = UTF8_ERROR; }
|
|
// surrogates: U+D800-U+DFFF 11101101 101_____
|
|
if (buf[idx] == 0b11101101 && buf[idx+1] >= 0b10100000) { error = UTF8_ERROR; }
|
|
idx += 3;
|
|
return;
|
|
}
|
|
|
|
// 4-byte
|
|
// missing continuation
|
|
if (simdjson_unlikely(idx+3 > len || !is_continuation(buf[idx+1]) || !is_continuation(buf[idx+2]) || !is_continuation(buf[idx+3]))) {
|
|
if (idx+2 > len && partial) { idx = len; return; }
|
|
error = UTF8_ERROR;
|
|
idx++;
|
|
return;
|
|
}
|
|
// overlong: 11110000 1000____ ________ ________
|
|
if (buf[idx] == 0b11110000 && buf[idx+1] <= 0b10001111) { error = UTF8_ERROR; }
|
|
// too large: > U+10FFFF:
|
|
// 11110100 (1001|101_)____
|
|
// 1111(1___|011_|0101) 10______
|
|
// also includes 5, 6, 7 and 8 byte characters:
|
|
// 11111___
|
|
if (buf[idx] == 0b11110100 && buf[idx+1] >= 0b10010000) { error = UTF8_ERROR; }
|
|
if (buf[idx] >= 0b11110101) { error = UTF8_ERROR; }
|
|
idx += 4;
|
|
}
|
|
|
|
simdjson_really_inline void validate_string() {
|
|
idx++; // skip first quote
|
|
while (idx < len && buf[idx] != '"') {
|
|
if (buf[idx] == '\\') {
|
|
idx += 2;
|
|
} else if (simdjson_unlikely(buf[idx] & 0b10000000)) {
|
|
validate_utf8_character();
|
|
} else {
|
|
if (buf[idx] < 0x20) { error = UNESCAPED_CHARS; }
|
|
idx++;
|
|
}
|
|
}
|
|
if (idx >= len && !partial) { error = UNCLOSED_STRING; }
|
|
}
|
|
|
|
simdjson_really_inline bool is_whitespace_or_operator(uint8_t c) {
|
|
switch (c) {
|
|
case '{': case '}': case '[': case ']': case ',': case ':':
|
|
case ' ': case '\r': case '\n': case '\t':
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Parse the entire input in STEP_SIZE-byte chunks.
|
|
//
|
|
simdjson_really_inline error_code scan() {
|
|
for (;idx<len;idx++) {
|
|
switch (buf[idx]) {
|
|
// String
|
|
case '"':
|
|
add_structural();
|
|
validate_string();
|
|
break;
|
|
// Operator
|
|
case '{': case '}': case '[': case ']': case ',': case ':':
|
|
add_structural();
|
|
break;
|
|
// Whitespace
|
|
case ' ': case '\r': case '\n': case '\t':
|
|
break;
|
|
// Primitive or invalid character (invalid characters will be checked in stage 2)
|
|
default:
|
|
// Anything else, add the structural and go until we find the next one
|
|
add_structural();
|
|
while (idx+1<len && !is_whitespace_or_operator(buf[idx+1])) {
|
|
idx++;
|
|
};
|
|
break;
|
|
}
|
|
}
|
|
*next_structural_index = len;
|
|
// We pad beyond.
|
|
// https://github.com/simdjson/simdjson/issues/906
|
|
next_structural_index[1] = len;
|
|
next_structural_index[2] = 0;
|
|
parser.n_structural_indexes = uint32_t(next_structural_index - parser.structural_indexes.get());
|
|
parser.next_structural_index = 0;
|
|
|
|
if (simdjson_unlikely(parser.n_structural_indexes == 0)) {
|
|
return EMPTY;
|
|
}
|
|
|
|
if (partial) {
|
|
auto new_structural_indexes = find_next_document_index(parser);
|
|
if (new_structural_indexes == 0 && parser.n_structural_indexes > 0) {
|
|
return CAPACITY; // If the buffer is partial but the document is incomplete, it's too big to parse.
|
|
}
|
|
parser.n_structural_indexes = new_structural_indexes;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
private:
|
|
const uint8_t *buf;
|
|
uint32_t *next_structural_index;
|
|
dom_parser_implementation &parser;
|
|
uint32_t len;
|
|
uint32_t idx{0};
|
|
error_code error{SUCCESS};
|
|
bool partial;
|
|
}; // structural_scanner
|
|
|
|
} // namespace stage1
|
|
|
|
SIMDJSON_WARN_UNUSED error_code dom_parser_implementation::stage1(const uint8_t *_buf, size_t _len, bool partial) noexcept {
|
|
this->buf = _buf;
|
|
this->len = _len;
|
|
stage1::structural_scanner scanner(*this, partial);
|
|
return scanner.scan();
|
|
}
|
|
|
|
// big table for the minifier
|
|
static uint8_t jump_table[256 * 3] = {
|
|
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
|
|
1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1,
|
|
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
|
|
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0,
|
|
1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
|
|
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
|
|
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
|
|
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
|
|
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
|
|
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
|
|
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
|
|
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
|
|
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
|
|
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
|
|
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
|
|
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
|
|
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
|
|
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
|
|
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
|
|
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
|
|
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
|
|
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
|
|
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
|
|
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
|
|
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
|
|
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
|
|
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
|
|
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
|
|
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
|
|
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
|
|
};
|
|
|
|
SIMDJSON_WARN_UNUSED error_code implementation::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept {
|
|
size_t i = 0, pos = 0;
|
|
uint8_t quote = 0;
|
|
uint8_t nonescape = 1;
|
|
|
|
while (i < len) {
|
|
unsigned char c = buf[i];
|
|
uint8_t *meta = jump_table + 3 * c;
|
|
|
|
quote = quote ^ (meta[0] & nonescape);
|
|
dst[pos] = c;
|
|
pos += meta[2] | quote;
|
|
|
|
i += 1;
|
|
nonescape = uint8_t(~nonescape) | (meta[1]);
|
|
}
|
|
dst_len = pos; // we intentionally do not work with a reference
|
|
// for fear of aliasing
|
|
return SUCCESS;
|
|
}
|
|
|
|
// credit: based on code from Google Fuchsia (Apache Licensed)
|
|
SIMDJSON_WARN_UNUSED bool implementation::validate_utf8(const char *buf, size_t len) const noexcept {
|
|
const uint8_t *data = (const uint8_t *)buf;
|
|
uint64_t pos = 0;
|
|
uint64_t next_pos = 0;
|
|
uint32_t code_point = 0;
|
|
while (pos < len) {
|
|
// check of the next 8 bytes are ascii.
|
|
next_pos = pos + 16;
|
|
if (next_pos <= len) { // if it is safe to read 8 more bytes, check that they are ascii
|
|
uint64_t v1;
|
|
memcpy(&v1, data + pos, sizeof(uint64_t));
|
|
uint64_t v2;
|
|
memcpy(&v2, data + pos + sizeof(uint64_t), sizeof(uint64_t));
|
|
uint64_t v{v1 | v2};
|
|
if ((v & 0x8080808080808080) == 0) {
|
|
pos = next_pos;
|
|
continue;
|
|
}
|
|
}
|
|
unsigned char byte = data[pos];
|
|
if (byte < 0b10000000) {
|
|
pos++;
|
|
continue;
|
|
} else if ((byte & 0b11100000) == 0b11000000) {
|
|
next_pos = pos + 2;
|
|
if (next_pos > len) { return false; }
|
|
if ((data[pos + 1] & 0b11000000) != 0b10000000) { return false; }
|
|
// range check
|
|
code_point = (byte & 0b00011111) << 6 | (data[pos + 1] & 0b00111111);
|
|
if (code_point < 0x80 || 0x7ff < code_point) { return false; }
|
|
} else if ((byte & 0b11110000) == 0b11100000) {
|
|
next_pos = pos + 3;
|
|
if (next_pos > len) { return false; }
|
|
if ((data[pos + 1] & 0b11000000) != 0b10000000) { return false; }
|
|
if ((data[pos + 2] & 0b11000000) != 0b10000000) { return false; }
|
|
// range check
|
|
code_point = (byte & 0b00001111) << 12 |
|
|
(data[pos + 1] & 0b00111111) << 6 |
|
|
(data[pos + 2] & 0b00111111);
|
|
if (code_point < 0x800 || 0xffff < code_point ||
|
|
(0xd7ff < code_point && code_point < 0xe000)) {
|
|
return false;
|
|
}
|
|
} else if ((byte & 0b11111000) == 0b11110000) { // 0b11110000
|
|
next_pos = pos + 4;
|
|
if (next_pos > len) { return false; }
|
|
if ((data[pos + 1] & 0b11000000) != 0b10000000) { return false; }
|
|
if ((data[pos + 2] & 0b11000000) != 0b10000000) { return false; }
|
|
if ((data[pos + 3] & 0b11000000) != 0b10000000) { return false; }
|
|
// range check
|
|
code_point =
|
|
(byte & 0b00000111) << 18 | (data[pos + 1] & 0b00111111) << 12 |
|
|
(data[pos + 2] & 0b00111111) << 6 | (data[pos + 3] & 0b00111111);
|
|
if (code_point < 0xffff || 0x10ffff < code_point) { return false; }
|
|
} else {
|
|
// we may have a continuation
|
|
return false;
|
|
}
|
|
pos = next_pos;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
//
|
|
// Stage 2
|
|
//
|
|
/* begin file src/fallback/stringparsing.h */
|
|
#ifndef SIMDJSON_FALLBACK_STRINGPARSING_H
|
|
#define SIMDJSON_FALLBACK_STRINGPARSING_H
|
|
|
|
|
|
namespace {
|
|
namespace fallback {
|
|
|
|
// Holds backslashes and quotes locations.
|
|
struct backslash_and_quote {
|
|
public:
|
|
static constexpr uint32_t BYTES_PROCESSED = 1;
|
|
simdjson_really_inline static backslash_and_quote copy_and_find(const uint8_t *src, uint8_t *dst);
|
|
|
|
simdjson_really_inline bool has_quote_first() { return c == '"'; }
|
|
simdjson_really_inline bool has_backslash() { return c == '\\'; }
|
|
simdjson_really_inline int quote_index() { return c == '"' ? 0 : 1; }
|
|
simdjson_really_inline int backslash_index() { return c == '\\' ? 0 : 1; }
|
|
|
|
uint8_t c;
|
|
}; // struct backslash_and_quote
|
|
|
|
simdjson_really_inline backslash_and_quote backslash_and_quote::copy_and_find(const uint8_t *src, uint8_t *dst) {
|
|
// store to dest unconditionally - we can overwrite the bits we don't like later
|
|
dst[0] = src[0];
|
|
return { src[0] };
|
|
}
|
|
|
|
} // namespace fallback
|
|
} // unnamed namespace
|
|
|
|
/* begin file src/generic/stage2/stringparsing.h */
|
|
// This file contains the common code every implementation uses
|
|
// It is intended to be included multiple times and compiled multiple times
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
namespace stringparsing {
|
|
|
|
// begin copypasta
|
|
// These chars yield themselves: " \ /
|
|
// b -> backspace, f -> formfeed, n -> newline, r -> cr, t -> horizontal tab
|
|
// u not handled in this table as it's complex
|
|
static const uint8_t escape_map[256] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x0.
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0x22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x2f,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x4.
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x5c, 0, 0, 0, // 0x5.
|
|
0, 0, 0x08, 0, 0, 0, 0x0c, 0, 0, 0, 0, 0, 0, 0, 0x0a, 0, // 0x6.
|
|
0, 0, 0x0d, 0, 0x09, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x7.
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
};
|
|
|
|
// handle a unicode codepoint
|
|
// write appropriate values into dest
|
|
// src will advance 6 bytes or 12 bytes
|
|
// dest will advance a variable amount (return via pointer)
|
|
// return true if the unicode codepoint was valid
|
|
// We work in little-endian then swap at write time
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool handle_unicode_codepoint(const uint8_t **src_ptr,
|
|
uint8_t **dst_ptr) {
|
|
// hex_to_u32_nocheck fills high 16 bits of the return value with 1s if the
|
|
// conversion isn't valid; we defer the check for this to inside the
|
|
// multilingual plane check
|
|
uint32_t code_point = hex_to_u32_nocheck(*src_ptr + 2);
|
|
*src_ptr += 6;
|
|
// check for low surrogate for characters outside the Basic
|
|
// Multilingual Plane.
|
|
if (code_point >= 0xd800 && code_point < 0xdc00) {
|
|
if (((*src_ptr)[0] != '\\') || (*src_ptr)[1] != 'u') {
|
|
return false;
|
|
}
|
|
uint32_t code_point_2 = hex_to_u32_nocheck(*src_ptr + 2);
|
|
|
|
// if the first code point is invalid we will get here, as we will go past
|
|
// the check for being outside the Basic Multilingual plane. If we don't
|
|
// find a \u immediately afterwards we fail out anyhow, but if we do,
|
|
// this check catches both the case of the first code point being invalid
|
|
// or the second code point being invalid.
|
|
if ((code_point | code_point_2) >> 16) {
|
|
return false;
|
|
}
|
|
|
|
code_point =
|
|
(((code_point - 0xd800) << 10) | (code_point_2 - 0xdc00)) + 0x10000;
|
|
*src_ptr += 6;
|
|
}
|
|
size_t offset = codepoint_to_utf8(code_point, *dst_ptr);
|
|
*dst_ptr += offset;
|
|
return offset > 0;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline uint8_t *parse_string(const uint8_t *src, uint8_t *dst) {
|
|
src++;
|
|
while (1) {
|
|
// Copy the next n bytes, and find the backslash and quote in them.
|
|
auto bs_quote = backslash_and_quote::copy_and_find(src, dst);
|
|
// If the next thing is the end quote, copy and return
|
|
if (bs_quote.has_quote_first()) {
|
|
// we encountered quotes first. Move dst to point to quotes and exit
|
|
return dst + bs_quote.quote_index();
|
|
}
|
|
if (bs_quote.has_backslash()) {
|
|
/* find out where the backspace is */
|
|
auto bs_dist = bs_quote.backslash_index();
|
|
uint8_t escape_char = src[bs_dist + 1];
|
|
/* we encountered backslash first. Handle backslash */
|
|
if (escape_char == 'u') {
|
|
/* move src/dst up to the start; they will be further adjusted
|
|
within the unicode codepoint handling code. */
|
|
src += bs_dist;
|
|
dst += bs_dist;
|
|
if (!handle_unicode_codepoint(&src, &dst)) {
|
|
return nullptr;
|
|
}
|
|
} else {
|
|
/* simple 1:1 conversion. Will eat bs_dist+2 characters in input and
|
|
* write bs_dist+1 characters to output
|
|
* note this may reach beyond the part of the buffer we've actually
|
|
* seen. I think this is ok */
|
|
uint8_t escape_result = escape_map[escape_char];
|
|
if (escape_result == 0u) {
|
|
return nullptr; /* bogus escape value is an error */
|
|
}
|
|
dst[bs_dist] = escape_result;
|
|
src += bs_dist + 2;
|
|
dst += bs_dist + 1;
|
|
}
|
|
} else {
|
|
/* they are the same. Since they can't co-occur, it means we
|
|
* encountered neither. */
|
|
src += backslash_and_quote::BYTES_PROCESSED;
|
|
dst += backslash_and_quote::BYTES_PROCESSED;
|
|
}
|
|
}
|
|
/* can't be reached */
|
|
return nullptr;
|
|
}
|
|
|
|
SIMDJSON_UNUSED SIMDJSON_WARN_UNUSED simdjson_really_inline error_code parse_string_to_buffer(const uint8_t *src, uint8_t *¤t_string_buf_loc, std::string_view &s) {
|
|
if (src[0] != '"') { return STRING_ERROR; }
|
|
auto end = stringparsing::parse_string(src, current_string_buf_loc);
|
|
if (!end) { return STRING_ERROR; }
|
|
s = std::string_view((const char *)current_string_buf_loc, end-current_string_buf_loc);
|
|
current_string_buf_loc = end;
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace stringparsing
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/stringparsing.h */
|
|
|
|
#endif // SIMDJSON_FALLBACK_STRINGPARSING_H
|
|
/* end file src/generic/stage2/stringparsing.h */
|
|
/* begin file src/fallback/numberparsing.h */
|
|
#ifndef SIMDJSON_FALLBACK_NUMBERPARSING_H
|
|
#define SIMDJSON_FALLBACK_NUMBERPARSING_H
|
|
|
|
#ifdef JSON_TEST_NUMBERS // for unit testing
|
|
void found_invalid_number(const uint8_t *buf);
|
|
void found_integer(int64_t result, const uint8_t *buf);
|
|
void found_unsigned_integer(uint64_t result, const uint8_t *buf);
|
|
void found_float(double result, const uint8_t *buf);
|
|
#endif
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
static simdjson_really_inline uint32_t parse_eight_digits_unrolled(const char *chars) {
|
|
uint32_t result = 0;
|
|
for (int i=0;i<8;i++) {
|
|
result = result*10 + (chars[i] - '0');
|
|
}
|
|
return result;
|
|
}
|
|
static simdjson_really_inline uint32_t parse_eight_digits_unrolled(const uint8_t *chars) {
|
|
return parse_eight_digits_unrolled((const char *)chars);
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
#define SWAR_NUMBER_PARSING
|
|
/* begin file src/generic/stage2/numberparsing.h */
|
|
#include <cmath>
|
|
#include <limits>
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
namespace numberparsing {
|
|
|
|
#ifdef JSON_TEST_NUMBERS
|
|
#define INVALID_NUMBER(SRC) (found_invalid_number((SRC)), NUMBER_ERROR)
|
|
#define WRITE_INTEGER(VALUE, SRC, WRITER) (found_integer((VALUE), (SRC)), (WRITER).append_s64((VALUE)))
|
|
#define WRITE_UNSIGNED(VALUE, SRC, WRITER) (found_unsigned_integer((VALUE), (SRC)), (WRITER).append_u64((VALUE)))
|
|
#define WRITE_DOUBLE(VALUE, SRC, WRITER) (found_float((VALUE), (SRC)), (WRITER).append_double((VALUE)))
|
|
#else
|
|
#define INVALID_NUMBER(SRC) (NUMBER_ERROR)
|
|
#define WRITE_INTEGER(VALUE, SRC, WRITER) (WRITER).append_s64((VALUE))
|
|
#define WRITE_UNSIGNED(VALUE, SRC, WRITER) (WRITER).append_u64((VALUE))
|
|
#define WRITE_DOUBLE(VALUE, SRC, WRITER) (WRITER).append_double((VALUE))
|
|
#endif
|
|
|
|
// Attempts to compute i * 10^(power) exactly; and if "negative" is
|
|
// true, negate the result.
|
|
// This function will only work in some cases, when it does not work, success is
|
|
// set to false. This should work *most of the time* (like 99% of the time).
|
|
// We assume that power is in the [FASTFLOAT_SMALLEST_POWER,
|
|
// FASTFLOAT_LARGEST_POWER] interval: the caller is responsible for this check.
|
|
simdjson_really_inline bool compute_float_64(int64_t power, uint64_t i, bool negative, double &d) {
|
|
// we start with a fast path
|
|
// It was described in
|
|
// Clinger WD. How to read floating point numbers accurately.
|
|
// ACM SIGPLAN Notices. 1990
|
|
#ifndef FLT_EVAL_METHOD
|
|
#error "FLT_EVAL_METHOD should be defined, please include cfloat."
|
|
#endif
|
|
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
|
|
// We cannot be certain that x/y is rounded to nearest.
|
|
if (0 <= power && power <= 22 && i <= 9007199254740991) {
|
|
#else
|
|
if (-22 <= power && power <= 22 && i <= 9007199254740991) {
|
|
#endif
|
|
// convert the integer into a double. This is lossless since
|
|
// 0 <= i <= 2^53 - 1.
|
|
d = double(i);
|
|
//
|
|
// The general idea is as follows.
|
|
// If 0 <= s < 2^53 and if 10^0 <= p <= 10^22 then
|
|
// 1) Both s and p can be represented exactly as 64-bit floating-point
|
|
// values
|
|
// (binary64).
|
|
// 2) Because s and p can be represented exactly as floating-point values,
|
|
// then s * p
|
|
// and s / p will produce correctly rounded values.
|
|
//
|
|
if (power < 0) {
|
|
d = d / power_of_ten[-power];
|
|
} else {
|
|
d = d * power_of_ten[power];
|
|
}
|
|
if (negative) {
|
|
d = -d;
|
|
}
|
|
return true;
|
|
}
|
|
// When 22 < power && power < 22 + 16, we could
|
|
// hope for another, secondary fast path. It wa
|
|
// described by David M. Gay in "Correctly rounded
|
|
// binary-decimal and decimal-binary conversions." (1990)
|
|
// If you need to compute i * 10^(22 + x) for x < 16,
|
|
// first compute i * 10^x, if you know that result is exact
|
|
// (e.g., when i * 10^x < 2^53),
|
|
// then you can still proceed and do (i * 10^x) * 10^22.
|
|
// Is this worth your time?
|
|
// You need 22 < power *and* power < 22 + 16 *and* (i * 10^(x-22) < 2^53)
|
|
// for this second fast path to work.
|
|
// If you you have 22 < power *and* power < 22 + 16, and then you
|
|
// optimistically compute "i * 10^(x-22)", there is still a chance that you
|
|
// have wasted your time if i * 10^(x-22) >= 2^53. It makes the use cases of
|
|
// this optimization maybe less common than we would like. Source:
|
|
// http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/
|
|
// also used in RapidJSON: https://rapidjson.org/strtod_8h_source.html
|
|
|
|
// The fast path has now failed, so we are failing back on the slower path.
|
|
|
|
// In the slow path, we need to adjust i so that it is > 1<<63 which is always
|
|
// possible, except if i == 0, so we handle i == 0 separately.
|
|
if(i == 0) {
|
|
d = 0.0;
|
|
return true;
|
|
}
|
|
|
|
// We are going to need to do some 64-bit arithmetic to get a more precise product.
|
|
// We use a table lookup approach.
|
|
// It is safe because
|
|
// power >= FASTFLOAT_SMALLEST_POWER
|
|
// and power <= FASTFLOAT_LARGEST_POWER
|
|
// We recover the mantissa of the power, it has a leading 1. It is always
|
|
// rounded down.
|
|
uint64_t factor_mantissa = mantissa_64[power - FASTFLOAT_SMALLEST_POWER];
|
|
|
|
// The exponent is 1024 + 63 + power
|
|
// + floor(log(5**power)/log(2)).
|
|
// The 1024 comes from the ieee64 standard.
|
|
// The 63 comes from the fact that we use a 64-bit word.
|
|
//
|
|
// Computing floor(log(5**power)/log(2)) could be
|
|
// slow. Instead we use a fast function.
|
|
//
|
|
// For power in (-400,350), we have that
|
|
// (((152170 + 65536) * power ) >> 16);
|
|
// is equal to
|
|
// floor(log(5**power)/log(2)) + power
|
|
//
|
|
// The 65536 is (1<<16) and corresponds to
|
|
// (65536 * power) >> 16 ---> power
|
|
//
|
|
// ((152170 * power ) >> 16) is equal to
|
|
// floor(log(5**power)/log(2))
|
|
//
|
|
// Note that this is not magic: 152170/(1<<16) is
|
|
// approximatively equal to log(5)/log(2).
|
|
// The 1<<16 value is a power of two; we could use a
|
|
// larger power of 2 if we wanted to.
|
|
//
|
|
int64_t exponent = (((152170 + 65536) * power) >> 16) + 1024 + 63;
|
|
|
|
|
|
// We want the most significant bit of i to be 1. Shift if needed.
|
|
int lz = leading_zeroes(i);
|
|
i <<= lz;
|
|
// We want the most significant 64 bits of the product. We know
|
|
// this will be non-zero because the most significant bit of i is
|
|
// 1.
|
|
value128 product = full_multiplication(i, factor_mantissa);
|
|
uint64_t lower = product.low;
|
|
uint64_t upper = product.high;
|
|
|
|
// We know that upper has at most one leading zero because
|
|
// both i and factor_mantissa have a leading one. This means
|
|
// that the result is at least as large as ((1<<63)*(1<<63))/(1<<64).
|
|
|
|
// As long as the first 9 bits of "upper" are not "1", then we
|
|
// know that we have an exact computed value for the leading
|
|
// 55 bits because any imprecision would play out as a +1, in
|
|
// the worst case.
|
|
if (simdjson_unlikely((upper & 0x1FF) == 0x1FF) && (lower + i < lower)) {
|
|
uint64_t factor_mantissa_low =
|
|
mantissa_128[power - FASTFLOAT_SMALLEST_POWER];
|
|
// next, we compute the 64-bit x 128-bit multiplication, getting a 192-bit
|
|
// result (three 64-bit values)
|
|
product = full_multiplication(i, factor_mantissa_low);
|
|
uint64_t product_low = product.low;
|
|
uint64_t product_middle2 = product.high;
|
|
uint64_t product_middle1 = lower;
|
|
uint64_t product_high = upper;
|
|
uint64_t product_middle = product_middle1 + product_middle2;
|
|
if (product_middle < product_middle1) {
|
|
product_high++; // overflow carry
|
|
}
|
|
// We want to check whether mantissa *i + i would affect our result.
|
|
// This does happen, e.g. with 7.3177701707893310e+15.
|
|
if (((product_middle + 1 == 0) && ((product_high & 0x1FF) == 0x1FF) &&
|
|
(product_low + i < product_low))) { // let us be prudent and bail out.
|
|
return false;
|
|
}
|
|
upper = product_high;
|
|
lower = product_middle;
|
|
}
|
|
// The final mantissa should be 53 bits with a leading 1.
|
|
// We shift it so that it occupies 54 bits with a leading 1.
|
|
///////
|
|
uint64_t upperbit = upper >> 63;
|
|
uint64_t mantissa = upper >> (upperbit + 9);
|
|
lz += int(1 ^ upperbit);
|
|
|
|
// Here we have mantissa < (1<<54).
|
|
|
|
// We have to round to even. The "to even" part
|
|
// is only a problem when we are right in between two floats
|
|
// which we guard against.
|
|
// If we have lots of trailing zeros, we may fall right between two
|
|
// floating-point values.
|
|
if (simdjson_unlikely((lower == 0) && ((upper & 0x1FF) == 0) &&
|
|
((mantissa & 3) == 1))) {
|
|
// if mantissa & 1 == 1 we might need to round up.
|
|
//
|
|
// Scenarios:
|
|
// 1. We are not in the middle. Then we should round up.
|
|
//
|
|
// 2. We are right in the middle. Whether we round up depends
|
|
// on the last significant bit: if it is "one" then we round
|
|
// up (round to even) otherwise, we do not.
|
|
//
|
|
// So if the last significant bit is 1, we can safely round up.
|
|
// Hence we only need to bail out if (mantissa & 3) == 1.
|
|
// Otherwise we may need more accuracy or analysis to determine whether
|
|
// we are exactly between two floating-point numbers.
|
|
// It can be triggered with 1e23.
|
|
// Note: because the factor_mantissa and factor_mantissa_low are
|
|
// almost always rounded down (except for small positive powers),
|
|
// almost always should round up.
|
|
return false;
|
|
}
|
|
|
|
mantissa += mantissa & 1;
|
|
mantissa >>= 1;
|
|
|
|
// Here we have mantissa < (1<<53), unless there was an overflow
|
|
if (mantissa >= (1ULL << 53)) {
|
|
//////////
|
|
// This will happen when parsing values such as 7.2057594037927933e+16
|
|
////////
|
|
mantissa = (1ULL << 52);
|
|
lz--; // undo previous addition
|
|
}
|
|
mantissa &= ~(1ULL << 52);
|
|
uint64_t real_exponent = exponent - lz;
|
|
// we have to check that real_exponent is in range, otherwise we bail out
|
|
if (simdjson_unlikely((real_exponent < 1) || (real_exponent > 2046))) {
|
|
return false;
|
|
}
|
|
mantissa |= real_exponent << 52;
|
|
mantissa |= (((uint64_t)negative) << 63);
|
|
memcpy(&d, &mantissa, sizeof(d));
|
|
return true;
|
|
}
|
|
|
|
static bool parse_float_strtod(const uint8_t *ptr, double *outDouble) {
|
|
char *endptr;
|
|
*outDouble = strtod((const char *)ptr, &endptr);
|
|
// Some libraries will set errno = ERANGE when the value is subnormal,
|
|
// yet we may want to be able to parse subnormal values.
|
|
// However, we do not want to tolerate NAN or infinite values.
|
|
//
|
|
// Values like infinity or NaN are not allowed in the JSON specification.
|
|
// If you consume a large value and you map it to "infinity", you will no
|
|
// longer be able to serialize back a standard-compliant JSON. And there is
|
|
// no realistic application where you might need values so large than they
|
|
// can't fit in binary64. The maximal value is about 1.7976931348623157 x
|
|
// 10^308 It is an unimaginable large number. There will never be any piece of
|
|
// engineering involving as many as 10^308 parts. It is estimated that there
|
|
// are about 10^80 atoms in the universe. The estimate for the total number
|
|
// of electrons is similar. Using a double-precision floating-point value, we
|
|
// can represent easily the number of atoms in the universe. We could also
|
|
// represent the number of ways you can pick any three individual atoms at
|
|
// random in the universe. If you ever encounter a number much larger than
|
|
// 10^308, you know that you have a bug. RapidJSON will reject a document with
|
|
// a float that does not fit in binary64. JSON for Modern C++ (nlohmann/json)
|
|
// will flat out throw an exception.
|
|
//
|
|
if ((endptr == (const char *)ptr) || (!std::isfinite(*outDouble))) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// check quickly whether the next 8 chars are made of digits
|
|
// at a glance, it looks better than Mula's
|
|
// http://0x80.pl/articles/swar-digits-validate.html
|
|
simdjson_really_inline bool is_made_of_eight_digits_fast(const uint8_t *chars) {
|
|
uint64_t val;
|
|
// this can read up to 7 bytes beyond the buffer size, but we require
|
|
// SIMDJSON_PADDING of padding
|
|
static_assert(7 <= SIMDJSON_PADDING, "SIMDJSON_PADDING must be bigger than 7");
|
|
memcpy(&val, chars, 8);
|
|
// a branchy method might be faster:
|
|
// return (( val & 0xF0F0F0F0F0F0F0F0 ) == 0x3030303030303030)
|
|
// && (( (val + 0x0606060606060606) & 0xF0F0F0F0F0F0F0F0 ) ==
|
|
// 0x3030303030303030);
|
|
return (((val & 0xF0F0F0F0F0F0F0F0) |
|
|
(((val + 0x0606060606060606) & 0xF0F0F0F0F0F0F0F0) >> 4)) ==
|
|
0x3333333333333333);
|
|
}
|
|
|
|
template<typename W>
|
|
error_code slow_float_parsing(SIMDJSON_UNUSED const uint8_t * src, W writer) {
|
|
double d;
|
|
if (parse_float_strtod(src, &d)) {
|
|
writer.append_double(d);
|
|
return SUCCESS;
|
|
}
|
|
return INVALID_NUMBER(src);
|
|
}
|
|
|
|
template<typename I>
|
|
NO_SANITIZE_UNDEFINED // We deliberately allow overflow here and check later
|
|
simdjson_really_inline bool parse_digit(const uint8_t c, I &i) {
|
|
const uint8_t digit = static_cast<uint8_t>(c - '0');
|
|
if (digit > 9) {
|
|
return false;
|
|
}
|
|
// PERF NOTE: multiplication by 10 is cheaper than arbitrary integer multiplication
|
|
i = 10 * i + digit; // might overflow, we will handle the overflow later
|
|
return true;
|
|
}
|
|
|
|
simdjson_really_inline error_code parse_decimal(SIMDJSON_UNUSED const uint8_t *const src, const uint8_t *&p, uint64_t &i, int64_t &exponent) {
|
|
// we continue with the fiction that we have an integer. If the
|
|
// floating point number is representable as x * 10^z for some integer
|
|
// z that fits in 53 bits, then we will be able to convert back the
|
|
// the integer into a float in a lossless manner.
|
|
const uint8_t *const first_after_period = p;
|
|
|
|
#ifdef SWAR_NUMBER_PARSING
|
|
// this helps if we have lots of decimals!
|
|
// this turns out to be frequent enough.
|
|
if (is_made_of_eight_digits_fast(p)) {
|
|
i = i * 100000000 + parse_eight_digits_unrolled(p);
|
|
p += 8;
|
|
}
|
|
#endif
|
|
// Unrolling the first digit makes a small difference on some implementations (e.g. westmere)
|
|
if (parse_digit(*p, i)) { ++p; }
|
|
while (parse_digit(*p, i)) { p++; }
|
|
exponent = first_after_period - p;
|
|
// Decimal without digits (123.) is illegal
|
|
if (exponent == 0) {
|
|
return INVALID_NUMBER(src);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
simdjson_really_inline error_code parse_exponent(SIMDJSON_UNUSED const uint8_t *const src, const uint8_t *&p, int64_t &exponent) {
|
|
// Exp Sign: -123.456e[-]78
|
|
bool neg_exp = ('-' == *p);
|
|
if (neg_exp || '+' == *p) { p++; } // Skip + as well
|
|
|
|
// Exponent: -123.456e-[78]
|
|
auto start_exp = p;
|
|
int64_t exp_number = 0;
|
|
while (parse_digit(*p, exp_number)) { ++p; }
|
|
// It is possible for parse_digit to overflow.
|
|
// In particular, it could overflow to INT64_MIN, and we cannot do - INT64_MIN.
|
|
// Thus we *must* check for possible overflow before we negate exp_number.
|
|
|
|
// Performance notes: it may seem like combining the two "simdjson_unlikely checks" below into
|
|
// a single simdjson_unlikely path would be faster. The reasoning is sound, but the compiler may
|
|
// not oblige and may, in fact, generate two distinct paths in any case. It might be
|
|
// possible to do uint64_t(p - start_exp - 1) >= 18 but it could end up trading off
|
|
// instructions for a simdjson_likely branch, an unconclusive gain.
|
|
|
|
// If there were no digits, it's an error.
|
|
if (simdjson_unlikely(p == start_exp)) {
|
|
return INVALID_NUMBER(src);
|
|
}
|
|
// We have a valid positive exponent in exp_number at this point, except that
|
|
// it may have overflowed.
|
|
|
|
// If there were more than 18 digits, we may have overflowed the integer. We have to do
|
|
// something!!!!
|
|
if (simdjson_unlikely(p > start_exp+18)) {
|
|
// Skip leading zeroes: 1e000000000000000000001 is technically valid and doesn't overflow
|
|
while (*start_exp == '0') { start_exp++; }
|
|
// 19 digits could overflow int64_t and is kind of absurd anyway. We don't
|
|
// support exponents smaller than -999,999,999,999,999,999 and bigger
|
|
// than 999,999,999,999,999,999.
|
|
// We can truncate.
|
|
// Note that 999999999999999999 is assuredly too large. The maximal ieee64 value before
|
|
// infinity is ~1.8e308. The smallest subnormal is ~5e-324. So, actually, we could
|
|
// truncate at 324.
|
|
// Note that there is no reason to fail per se at this point in time.
|
|
// E.g., 0e999999999999999999999 is a fine number.
|
|
if (p > start_exp+18) { exp_number = 999999999999999999; }
|
|
}
|
|
// At this point, we know that exp_number is a sane, positive, signed integer.
|
|
// It is <= 999,999,999,999,999,999. As long as 'exponent' is in
|
|
// [-8223372036854775808, 8223372036854775808], we won't overflow. Because 'exponent'
|
|
// is bounded in magnitude by the size of the JSON input, we are fine in this universe.
|
|
// To sum it up: the next line should never overflow.
|
|
exponent += (neg_exp ? -exp_number : exp_number);
|
|
return SUCCESS;
|
|
}
|
|
|
|
simdjson_really_inline int significant_digits(const uint8_t * start_digits, int digit_count) {
|
|
// It is possible that the integer had an overflow.
|
|
// We have to handle the case where we have 0.0000somenumber.
|
|
const uint8_t *start = start_digits;
|
|
while ((*start == '0') || (*start == '.')) {
|
|
start++;
|
|
}
|
|
// we over-decrement by one when there is a '.'
|
|
return digit_count - int(start - start_digits);
|
|
}
|
|
|
|
template<typename W>
|
|
simdjson_really_inline error_code write_float(const uint8_t *const src, bool negative, uint64_t i, const uint8_t * start_digits, int digit_count, int64_t exponent, W &writer) {
|
|
// If we frequently had to deal with long strings of digits,
|
|
// we could extend our code by using a 128-bit integer instead
|
|
// of a 64-bit integer. However, this is uncommon in practice.
|
|
// digit count is off by 1 because of the decimal (assuming there was one).
|
|
if (simdjson_unlikely(digit_count-1 >= 19 && significant_digits(start_digits, digit_count) >= 19)) {
|
|
// Ok, chances are good that we had an overflow!
|
|
// this is almost never going to get called!!!
|
|
// we start anew, going slowly!!!
|
|
// This will happen in the following examples:
|
|
// 10000000000000000000000000000000000000000000e+308
|
|
// 3.1415926535897932384626433832795028841971693993751
|
|
//
|
|
// NOTE: This makes a *copy* of the writer and passes it to slow_float_parsing. This happens
|
|
// because slow_float_parsing is a non-inlined function. If we passed our writer reference to
|
|
// it, it would force it to be stored in memory, preventing the compiler from picking it apart
|
|
// and putting into registers. i.e. if we pass it as reference, it gets slow.
|
|
// This is what forces the skip_double, as well.
|
|
error_code error = slow_float_parsing(src, writer);
|
|
writer.skip_double();
|
|
return error;
|
|
}
|
|
// NOTE: it's weird that the simdjson_unlikely() only wraps half the if, but it seems to get slower any other
|
|
// way we've tried: https://github.com/simdjson/simdjson/pull/990#discussion_r448497331
|
|
// To future reader: we'd love if someone found a better way, or at least could explain this result!
|
|
if (simdjson_unlikely(exponent < FASTFLOAT_SMALLEST_POWER) || (exponent > FASTFLOAT_LARGEST_POWER)) {
|
|
// this is almost never going to get called!!!
|
|
// we start anew, going slowly!!!
|
|
// NOTE: This makes a *copy* of the writer and passes it to slow_float_parsing. This happens
|
|
// because slow_float_parsing is a non-inlined function. If we passed our writer reference to
|
|
// it, it would force it to be stored in memory, preventing the compiler from picking it apart
|
|
// and putting into registers. i.e. if we pass it as reference, it gets slow.
|
|
// This is what forces the skip_double, as well.
|
|
error_code error = slow_float_parsing(src, writer);
|
|
writer.skip_double();
|
|
return error;
|
|
}
|
|
double d;
|
|
if (!compute_float_64(exponent, i, negative, d)) {
|
|
// we are almost never going to get here.
|
|
if (!parse_float_strtod(src, &d)) { return INVALID_NUMBER(src); }
|
|
}
|
|
WRITE_DOUBLE(d, src, writer);
|
|
return SUCCESS;
|
|
}
|
|
|
|
// for performance analysis, it is sometimes useful to skip parsing
|
|
#ifdef SIMDJSON_SKIPNUMBERPARSING
|
|
|
|
template<typename W>
|
|
simdjson_really_inline error_code parse_number(const uint8_t *const, W &writer) {
|
|
writer.append_s64(0); // always write zero
|
|
return SUCCESS; // always succeeds
|
|
}
|
|
|
|
#else
|
|
|
|
// parse the number at src
|
|
// define JSON_TEST_NUMBERS for unit testing
|
|
//
|
|
// It is assumed that the number is followed by a structural ({,},],[) character
|
|
// or a white space character. If that is not the case (e.g., when the JSON
|
|
// document is made of a single number), then it is necessary to copy the
|
|
// content and append a space before calling this function.
|
|
//
|
|
// Our objective is accurate parsing (ULP of 0) at high speed.
|
|
template<typename W>
|
|
simdjson_really_inline error_code parse_number(const uint8_t *const src, W &writer) {
|
|
|
|
//
|
|
// Check for minus sign
|
|
//
|
|
bool negative = (*src == '-');
|
|
const uint8_t *p = src + negative;
|
|
|
|
//
|
|
// Parse the integer part.
|
|
//
|
|
// PERF NOTE: we don't use is_made_of_eight_digits_fast because large integers like 123456789 are rare
|
|
const uint8_t *const start_digits = p;
|
|
uint64_t i = 0;
|
|
while (parse_digit(*p, i)) { p++; }
|
|
|
|
// If there were no digits, or if the integer starts with 0 and has more than one digit, it's an error.
|
|
int digit_count = int(p - start_digits);
|
|
if (digit_count == 0 || ('0' == *start_digits && digit_count > 1)) { return INVALID_NUMBER(src); }
|
|
|
|
//
|
|
// Handle floats if there is a . or e (or both)
|
|
//
|
|
int64_t exponent = 0;
|
|
bool is_float = false;
|
|
if ('.' == *p) {
|
|
is_float = true;
|
|
++p;
|
|
SIMDJSON_TRY( parse_decimal(src, p, i, exponent) );
|
|
digit_count = int(p - start_digits); // used later to guard against overflows
|
|
}
|
|
if (('e' == *p) || ('E' == *p)) {
|
|
is_float = true;
|
|
++p;
|
|
SIMDJSON_TRY( parse_exponent(src, p, exponent) );
|
|
}
|
|
if (is_float) {
|
|
const bool clean_end = is_structural_or_whitespace(*p);
|
|
SIMDJSON_TRY( write_float(src, negative, i, start_digits, digit_count, exponent, writer) );
|
|
if (!clean_end) { return INVALID_NUMBER(src); }
|
|
return SUCCESS;
|
|
}
|
|
|
|
// The longest negative 64-bit number is 19 digits.
|
|
// The longest positive 64-bit number is 20 digits.
|
|
// We do it this way so we don't trigger this branch unless we must.
|
|
int longest_digit_count = negative ? 19 : 20;
|
|
if (digit_count > longest_digit_count) { return INVALID_NUMBER(src); }
|
|
if (digit_count == longest_digit_count) {
|
|
if (negative) {
|
|
// Anything negative above INT64_MAX+1 is invalid
|
|
if (i > uint64_t(INT64_MAX)+1) { return INVALID_NUMBER(src); }
|
|
WRITE_INTEGER(~i+1, src, writer);
|
|
if (!is_structural_or_whitespace(*p)) { return INVALID_NUMBER(src); }
|
|
return SUCCESS;
|
|
// Positive overflow check:
|
|
// - A 20 digit number starting with 2-9 is overflow, because 18,446,744,073,709,551,615 is the
|
|
// biggest uint64_t.
|
|
// - A 20 digit number starting with 1 is overflow if it is less than INT64_MAX.
|
|
// If we got here, it's a 20 digit number starting with the digit "1".
|
|
// - If a 20 digit number starting with 1 overflowed (i*10+digit), the result will be smaller
|
|
// than 1,553,255,926,290,448,384.
|
|
// - That is smaller than the smallest possible 20-digit number the user could write:
|
|
// 10,000,000,000,000,000,000.
|
|
// - Therefore, if the number is positive and lower than that, it's overflow.
|
|
// - The value we are looking at is less than or equal to 9,223,372,036,854,775,808 (INT64_MAX).
|
|
//
|
|
} else if (src[0] != uint8_t('1') || i <= uint64_t(INT64_MAX)) { return INVALID_NUMBER(src); }
|
|
}
|
|
|
|
// Write unsigned if it doesn't fit in a signed integer.
|
|
if (i > uint64_t(INT64_MAX)) {
|
|
WRITE_UNSIGNED(i, src, writer);
|
|
} else {
|
|
WRITE_INTEGER(negative ? (~i+1) : i, src, writer);
|
|
}
|
|
if (!is_structural_or_whitespace(*p)) { return INVALID_NUMBER(src); }
|
|
return SUCCESS;
|
|
}
|
|
|
|
// SAX functions
|
|
namespace {
|
|
// Parse any number from 0 to 18,446,744,073,709,551,615
|
|
SIMDJSON_UNUSED simdjson_really_inline simdjson_result<uint64_t> parse_unsigned(const uint8_t * const src) noexcept {
|
|
const uint8_t *p = src;
|
|
|
|
//
|
|
// Parse the integer part.
|
|
//
|
|
// PERF NOTE: we don't use is_made_of_eight_digits_fast because large integers like 123456789 are rare
|
|
const uint8_t *const start_digits = p;
|
|
uint64_t i = 0;
|
|
while (parse_digit(*p, i)) { p++; }
|
|
|
|
// If there were no digits, or if the integer starts with 0 and has more than one digit, it's an error.
|
|
int digit_count = int(p - start_digits);
|
|
if (digit_count == 0 || ('0' == *start_digits && digit_count > 1)) { return NUMBER_ERROR; }
|
|
if (!is_structural_or_whitespace(*p)) { return NUMBER_ERROR; }
|
|
|
|
// The longest positive 64-bit number is 20 digits.
|
|
// We do it this way so we don't trigger this branch unless we must.
|
|
if (digit_count > 20) { return NUMBER_ERROR; }
|
|
if (digit_count == 20) {
|
|
// Positive overflow check:
|
|
// - A 20 digit number starting with 2-9 is overflow, because 18,446,744,073,709,551,615 is the
|
|
// biggest uint64_t.
|
|
// - A 20 digit number starting with 1 is overflow if it is less than INT64_MAX.
|
|
// If we got here, it's a 20 digit number starting with the digit "1".
|
|
// - If a 20 digit number starting with 1 overflowed (i*10+digit), the result will be smaller
|
|
// than 1,553,255,926,290,448,384.
|
|
// - That is smaller than the smallest possible 20-digit number the user could write:
|
|
// 10,000,000,000,000,000,000.
|
|
// - Therefore, if the number is positive and lower than that, it's overflow.
|
|
// - The value we are looking at is less than or equal to 9,223,372,036,854,775,808 (INT64_MAX).
|
|
//
|
|
if (src[0] != uint8_t('1') || i <= uint64_t(INT64_MAX)) { return NUMBER_ERROR; }
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
// Parse any number from 0 to 18,446,744,073,709,551,615
|
|
// Call this version of the method if you regularly expect 8- or 16-digit numbers.
|
|
SIMDJSON_UNUSED simdjson_really_inline simdjson_result<uint64_t> parse_large_unsigned(const uint8_t * const src) noexcept {
|
|
const uint8_t *p = src;
|
|
|
|
//
|
|
// Parse the integer part.
|
|
//
|
|
uint64_t i = 0;
|
|
if (is_made_of_eight_digits_fast(p)) {
|
|
i = i * 100000000 + parse_eight_digits_unrolled(p);
|
|
p += 8;
|
|
if (is_made_of_eight_digits_fast(p)) {
|
|
i = i * 100000000 + parse_eight_digits_unrolled(p);
|
|
p += 8;
|
|
if (parse_digit(*p, i)) { // digit 17
|
|
p++;
|
|
if (parse_digit(*p, i)) { // digit 18
|
|
p++;
|
|
if (parse_digit(*p, i)) { // digit 19
|
|
p++;
|
|
if (parse_digit(*p, i)) { // digit 20
|
|
p++;
|
|
if (parse_digit(*p, i)) { return NUMBER_ERROR; } // 21 digits is an error
|
|
// Positive overflow check:
|
|
// - A 20 digit number starting with 2-9 is overflow, because 18,446,744,073,709,551,615 is the
|
|
// biggest uint64_t.
|
|
// - A 20 digit number starting with 1 is overflow if it is less than INT64_MAX.
|
|
// If we got here, it's a 20 digit number starting with the digit "1".
|
|
// - If a 20 digit number starting with 1 overflowed (i*10+digit), the result will be smaller
|
|
// than 1,553,255,926,290,448,384.
|
|
// - That is smaller than the smallest possible 20-digit number the user could write:
|
|
// 10,000,000,000,000,000,000.
|
|
// - Therefore, if the number is positive and lower than that, it's overflow.
|
|
// - The value we are looking at is less than or equal to 9,223,372,036,854,775,808 (INT64_MAX).
|
|
//
|
|
if (src[0] != uint8_t('1') || i <= uint64_t(INT64_MAX)) { return NUMBER_ERROR; }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // 16 digits
|
|
} else { // 8 digits
|
|
// Less than 8 digits can't overflow, simpler logic here.
|
|
if (parse_digit(*p, i)) { p++; } else { return NUMBER_ERROR; }
|
|
while (parse_digit(*p, i)) { p++; }
|
|
}
|
|
|
|
if (!is_structural_or_whitespace(*p)) { return NUMBER_ERROR; }
|
|
// If there were no digits, or if the integer starts with 0 and has more than one digit, it's an error.
|
|
int digit_count = int(p - src);
|
|
if (digit_count == 0 || ('0' == *src && digit_count > 1)) { return NUMBER_ERROR; }
|
|
return i;
|
|
}
|
|
|
|
// Parse any number from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
|
|
SIMDJSON_UNUSED simdjson_really_inline simdjson_result<int64_t> parse_integer(const uint8_t *src) noexcept {
|
|
//
|
|
// Check for minus sign
|
|
//
|
|
bool negative = (*src == '-');
|
|
const uint8_t *p = src + negative;
|
|
|
|
//
|
|
// Parse the integer part.
|
|
//
|
|
// PERF NOTE: we don't use is_made_of_eight_digits_fast because large integers like 123456789 are rare
|
|
const uint8_t *const start_digits = p;
|
|
uint64_t i = 0;
|
|
while (parse_digit(*p, i)) { p++; }
|
|
|
|
// If there were no digits, or if the integer starts with 0 and has more than one digit, it's an error.
|
|
int digit_count = int(p - start_digits);
|
|
if (digit_count == 0 || ('0' == *start_digits && digit_count > 1)) { return NUMBER_ERROR; }
|
|
if (!is_structural_or_whitespace(*p)) { return NUMBER_ERROR; }
|
|
|
|
// The longest negative 64-bit number is 19 digits.
|
|
// The longest positive 64-bit number is 20 digits.
|
|
// We do it this way so we don't trigger this branch unless we must.
|
|
int longest_digit_count = negative ? 19 : 20;
|
|
if (digit_count > longest_digit_count) { return NUMBER_ERROR; }
|
|
if (digit_count == longest_digit_count) {
|
|
if(negative) {
|
|
// Anything negative above INT64_MAX+1 is invalid
|
|
if (i > uint64_t(INT64_MAX)+1) { return NUMBER_ERROR; }
|
|
return ~i+1;
|
|
|
|
// Positive overflow check:
|
|
// - A 20 digit number starting with 2-9 is overflow, because 18,446,744,073,709,551,615 is the
|
|
// biggest uint64_t.
|
|
// - A 20 digit number starting with 1 is overflow if it is less than INT64_MAX.
|
|
// If we got here, it's a 20 digit number starting with the digit "1".
|
|
// - If a 20 digit number starting with 1 overflowed (i*10+digit), the result will be smaller
|
|
// than 1,553,255,926,290,448,384.
|
|
// - That is smaller than the smallest possible 20-digit number the user could write:
|
|
// 10,000,000,000,000,000,000.
|
|
// - Therefore, if the number is positive and lower than that, it's overflow.
|
|
// - The value we are looking at is less than or equal to 9,223,372,036,854,775,808 (INT64_MAX).
|
|
//
|
|
} else if (src[0] != uint8_t('1') || i <= uint64_t(INT64_MAX)) { return NUMBER_ERROR; }
|
|
}
|
|
|
|
return negative ? (~i+1) : i;
|
|
}
|
|
|
|
SIMDJSON_UNUSED simdjson_really_inline simdjson_result<double> parse_double(const uint8_t * src) noexcept {
|
|
//
|
|
// Check for minus sign
|
|
//
|
|
bool negative = (*src == '-');
|
|
src += negative;
|
|
|
|
//
|
|
// Parse the integer part.
|
|
//
|
|
uint64_t i = 0;
|
|
const uint8_t *p = src;
|
|
p += parse_digit(*p, i);
|
|
bool leading_zero = (i == 0);
|
|
while (parse_digit(*p, i)) { p++; }
|
|
// no integer digits, or 0123 (zero must be solo)
|
|
if ( p == src || (leading_zero && p != src+1)) { return NUMBER_ERROR; }
|
|
|
|
//
|
|
// Parse the decimal part.
|
|
//
|
|
int64_t exponent = 0;
|
|
bool overflow;
|
|
if (simdjson_likely(*p == '.')) {
|
|
p++;
|
|
const uint8_t *start_decimal_digits = p;
|
|
if (!parse_digit(*p, i)) { return NUMBER_ERROR; } // no decimal digits
|
|
p++;
|
|
while (parse_digit(*p, i)) { p++; }
|
|
exponent = -(p - start_decimal_digits);
|
|
|
|
// Overflow check. 19 digits (minus the decimal) may be overflow.
|
|
overflow = p-src-1 >= 19;
|
|
if (simdjson_unlikely(overflow && leading_zero)) {
|
|
// Skip leading 0.00000 and see if it still overflows
|
|
const uint8_t *start_digits = src + 2;
|
|
while (*start_digits == '0') { start_digits++; }
|
|
overflow = start_digits-src >= 19;
|
|
}
|
|
} else {
|
|
overflow = p-src >= 19;
|
|
}
|
|
|
|
//
|
|
// Parse the exponent
|
|
//
|
|
if (*p == 'e' || *p == 'E') {
|
|
p++;
|
|
bool exp_neg = *p == '-';
|
|
p += exp_neg || *p == '+';
|
|
|
|
uint64_t exp = 0;
|
|
const uint8_t *start_exp_digits = p;
|
|
while (parse_digit(*p, exp)) { p++; }
|
|
// no exp digits, or 20+ exp digits
|
|
if (p-start_exp_digits == 0 || p-start_exp_digits > 19) { return NUMBER_ERROR; }
|
|
|
|
exponent += exp_neg ? 0-exp : exp;
|
|
overflow = overflow || exponent < FASTFLOAT_SMALLEST_POWER || exponent > FASTFLOAT_LARGEST_POWER;
|
|
}
|
|
|
|
//
|
|
// Assemble (or slow-parse) the float
|
|
//
|
|
double d;
|
|
if (simdjson_likely(!overflow)) {
|
|
if (compute_float_64(exponent, i, negative, d)) { return d; }
|
|
}
|
|
if (!parse_float_strtod(src-negative, &d)) {
|
|
return NUMBER_ERROR;
|
|
}
|
|
return d;
|
|
}
|
|
} //namespace {}
|
|
#endif // SIMDJSON_SKIPNUMBERPARSING
|
|
|
|
} // namespace numberparsing
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/numberparsing.h */
|
|
|
|
#endif // SIMDJSON_FALLBACK_NUMBERPARSING_H
|
|
/* end file src/generic/stage2/numberparsing.h */
|
|
/* begin file src/generic/stage2/tape_builder.h */
|
|
/* begin file src/generic/stage2/json_iterator.h */
|
|
/* begin file src/generic/stage2/logger.h */
|
|
// This is for an internal-only stage 2 specific logger.
|
|
// Set LOG_ENABLED = true to log what stage 2 is doing!
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace logger {
|
|
|
|
static constexpr const char * DASHES = "----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------";
|
|
|
|
static constexpr const bool LOG_ENABLED = false;
|
|
static constexpr const int LOG_EVENT_LEN = 20;
|
|
static constexpr const int LOG_BUFFER_LEN = 30;
|
|
static constexpr const int LOG_SMALL_BUFFER_LEN = 10;
|
|
static constexpr const int LOG_INDEX_LEN = 5;
|
|
|
|
static int log_depth; // Not threadsafe. Log only.
|
|
|
|
// Helper to turn unprintable or newline characters into spaces
|
|
static simdjson_really_inline char printable_char(char c) {
|
|
if (c >= 0x20) {
|
|
return c;
|
|
} else {
|
|
return ' ';
|
|
}
|
|
}
|
|
|
|
// Print the header and set up log_start
|
|
static simdjson_really_inline void log_start() {
|
|
if (LOG_ENABLED) {
|
|
log_depth = 0;
|
|
printf("\n");
|
|
printf("| %-*s | %-*s | %-*s | %-*s | Detail |\n", LOG_EVENT_LEN, "Event", LOG_BUFFER_LEN, "Buffer", LOG_SMALL_BUFFER_LEN, "Next", 5, "Next#");
|
|
printf("|%.*s|%.*s|%.*s|%.*s|--------|\n", LOG_EVENT_LEN+2, DASHES, LOG_BUFFER_LEN+2, DASHES, LOG_SMALL_BUFFER_LEN+2, DASHES, 5+2, DASHES);
|
|
}
|
|
}
|
|
|
|
// Logs a single line of
|
|
template<typename S>
|
|
static simdjson_really_inline void log_line(S &structurals, const char *title_prefix, const char *title, const char *detail) {
|
|
if (LOG_ENABLED) {
|
|
printf("| %*s%s%-*s ", log_depth*2, "", title_prefix, LOG_EVENT_LEN - log_depth*2 - int(strlen(title_prefix)), title);
|
|
auto current_index = structurals.at_beginning() ? nullptr : structurals.next_structural-1;
|
|
auto next_index = structurals.next_structural;
|
|
auto current = current_index ? &structurals.buf[*current_index] : (const uint8_t*)" ";
|
|
auto next = &structurals.buf[*next_index];
|
|
{
|
|
// Print the next N characters in the buffer.
|
|
printf("| ");
|
|
// Otherwise, print the characters starting from the buffer position.
|
|
// Print spaces for unprintable or newline characters.
|
|
for (int i=0;i<LOG_BUFFER_LEN;i++) {
|
|
printf("%c", printable_char(current[i]));
|
|
}
|
|
printf(" ");
|
|
// Print the next N characters in the buffer.
|
|
printf("| ");
|
|
// Otherwise, print the characters starting from the buffer position.
|
|
// Print spaces for unprintable or newline characters.
|
|
for (int i=0;i<LOG_SMALL_BUFFER_LEN;i++) {
|
|
printf("%c", printable_char(next[i]));
|
|
}
|
|
printf(" ");
|
|
}
|
|
if (current_index) {
|
|
printf("| %*u ", LOG_INDEX_LEN, *current_index);
|
|
} else {
|
|
printf("| %-*s ", LOG_INDEX_LEN, "");
|
|
}
|
|
// printf("| %*u ", LOG_INDEX_LEN, structurals.next_tape_index());
|
|
printf("| %-s ", detail);
|
|
printf("|\n");
|
|
}
|
|
}
|
|
|
|
} // namespace logger
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/logger.h */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
|
|
class json_iterator {
|
|
public:
|
|
const uint8_t* const buf;
|
|
uint32_t *next_structural;
|
|
dom_parser_implementation &dom_parser;
|
|
uint32_t depth{0};
|
|
|
|
/**
|
|
* Walk the JSON document.
|
|
*
|
|
* The visitor receives callbacks when values are encountered. All callbacks pass the iterator as
|
|
* the first parameter; some callbacks have other parameters as well:
|
|
*
|
|
* - visit_document_start() - at the beginning.
|
|
* - visit_document_end() - at the end (if things were successful).
|
|
*
|
|
* - visit_array_start() - at the start `[` of a non-empty array.
|
|
* - visit_array_end() - at the end `]` of a non-empty array.
|
|
* - visit_empty_array() - when an empty array is encountered.
|
|
*
|
|
* - visit_object_end() - at the start `]` of a non-empty object.
|
|
* - visit_object_start() - at the end `]` of a non-empty object.
|
|
* - visit_empty_object() - when an empty object is encountered.
|
|
* - visit_key(const uint8_t *key) - when a key in an object field is encountered. key is
|
|
* guaranteed to point at the first quote of the string (`"key"`).
|
|
* - visit_primitive(const uint8_t *value) - when a value is a string, number, boolean or null.
|
|
* - visit_root_primitive(iter, uint8_t *value) - when the top-level value is a string, number, boolean or null.
|
|
*
|
|
* - increment_count(iter) - each time a value is found in an array or object.
|
|
*/
|
|
template<bool STREAMING, typename V>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code walk_document(V &visitor) noexcept;
|
|
|
|
/**
|
|
* Create an iterator capable of walking a JSON document.
|
|
*
|
|
* The document must have already passed through stage 1.
|
|
*/
|
|
simdjson_really_inline json_iterator(dom_parser_implementation &_dom_parser, size_t start_structural_index);
|
|
|
|
/**
|
|
* Look at the next token.
|
|
*
|
|
* Tokens can be strings, numbers, booleans, null, or operators (`[{]},:`)).
|
|
*
|
|
* They may include invalid JSON as well (such as `1.2.3` or `ture`).
|
|
*/
|
|
simdjson_really_inline const uint8_t *peek() const noexcept;
|
|
/**
|
|
* Advance to the next token.
|
|
*
|
|
* Tokens can be strings, numbers, booleans, null, or operators (`[{]},:`)).
|
|
*
|
|
* They may include invalid JSON as well (such as `1.2.3` or `ture`).
|
|
*/
|
|
simdjson_really_inline const uint8_t *advance() noexcept;
|
|
/**
|
|
* Get the remaining length of the document, from the start of the current token.
|
|
*/
|
|
simdjson_really_inline size_t remaining_len() const noexcept;
|
|
/**
|
|
* Check if we are at the end of the document.
|
|
*
|
|
* If this is true, there are no more tokens.
|
|
*/
|
|
simdjson_really_inline bool at_eof() const noexcept;
|
|
/**
|
|
* Check if we are at the beginning of the document.
|
|
*/
|
|
simdjson_really_inline bool at_beginning() const noexcept;
|
|
simdjson_really_inline uint8_t last_structural() const noexcept;
|
|
|
|
/**
|
|
* Log that a value has been found.
|
|
*
|
|
* Set ENABLE_LOGGING=true in logger.h to see logging.
|
|
*/
|
|
simdjson_really_inline void log_value(const char *type) const noexcept;
|
|
/**
|
|
* Log the start of a multipart value.
|
|
*
|
|
* Set ENABLE_LOGGING=true in logger.h to see logging.
|
|
*/
|
|
simdjson_really_inline void log_start_value(const char *type) const noexcept;
|
|
/**
|
|
* Log the end of a multipart value.
|
|
*
|
|
* Set ENABLE_LOGGING=true in logger.h to see logging.
|
|
*/
|
|
simdjson_really_inline void log_end_value(const char *type) const noexcept;
|
|
/**
|
|
* Log an error.
|
|
*
|
|
* Set ENABLE_LOGGING=true in logger.h to see logging.
|
|
*/
|
|
simdjson_really_inline void log_error(const char *error) const noexcept;
|
|
|
|
template<typename V>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_primitive(V &visitor, const uint8_t *value) noexcept;
|
|
template<typename V>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_primitive(V &visitor, const uint8_t *value) noexcept;
|
|
};
|
|
|
|
template<bool STREAMING, typename V>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code json_iterator::walk_document(V &visitor) noexcept {
|
|
logger::log_start();
|
|
|
|
//
|
|
// Start the document
|
|
//
|
|
if (at_eof()) { return EMPTY; }
|
|
log_start_value("document");
|
|
SIMDJSON_TRY( visitor.visit_document_start(*this) );
|
|
|
|
//
|
|
// Read first value
|
|
//
|
|
{
|
|
auto value = advance();
|
|
|
|
// Make sure the outer hash or array is closed before continuing; otherwise, there are ways we
|
|
// could get into memory corruption. See https://github.com/simdjson/simdjson/issues/906
|
|
if (!STREAMING) {
|
|
switch (*value) {
|
|
case '{': if (last_structural() != '}') { return TAPE_ERROR; }; break;
|
|
case '[': if (last_structural() != ']') { return TAPE_ERROR; }; break;
|
|
}
|
|
}
|
|
|
|
switch (*value) {
|
|
case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin;
|
|
case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin;
|
|
default: SIMDJSON_TRY( visitor.visit_root_primitive(*this, value) ); break;
|
|
}
|
|
}
|
|
goto document_end;
|
|
|
|
//
|
|
// Object parser states
|
|
//
|
|
object_begin:
|
|
log_start_value("object");
|
|
depth++;
|
|
if (depth >= dom_parser.max_depth()) { log_error("Exceeded max depth!"); return DEPTH_ERROR; }
|
|
dom_parser.is_array[depth] = false;
|
|
SIMDJSON_TRY( visitor.visit_object_start(*this) );
|
|
|
|
{
|
|
auto key = advance();
|
|
if (*key != '"') { log_error("Object does not start with a key"); return TAPE_ERROR; }
|
|
SIMDJSON_TRY( visitor.increment_count(*this) );
|
|
SIMDJSON_TRY( visitor.visit_key(*this, key) );
|
|
}
|
|
|
|
object_field:
|
|
if (simdjson_unlikely( *advance() != ':' )) { log_error("Missing colon after key in object"); return TAPE_ERROR; }
|
|
{
|
|
auto value = advance();
|
|
switch (*value) {
|
|
case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin;
|
|
case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin;
|
|
default: SIMDJSON_TRY( visitor.visit_primitive(*this, value) ); break;
|
|
}
|
|
}
|
|
|
|
object_continue:
|
|
switch (*advance()) {
|
|
case ',':
|
|
SIMDJSON_TRY( visitor.increment_count(*this) );
|
|
{
|
|
auto key = advance();
|
|
if (simdjson_unlikely( *key != '"' )) { log_error("Key string missing at beginning of field in object"); return TAPE_ERROR; }
|
|
SIMDJSON_TRY( visitor.visit_key(*this, key) );
|
|
}
|
|
goto object_field;
|
|
case '}': log_end_value("object"); SIMDJSON_TRY( visitor.visit_object_end(*this) ); goto scope_end;
|
|
default: log_error("No comma between object fields"); return TAPE_ERROR;
|
|
}
|
|
|
|
scope_end:
|
|
depth--;
|
|
if (depth == 0) { goto document_end; }
|
|
if (dom_parser.is_array[depth]) { goto array_continue; }
|
|
goto object_continue;
|
|
|
|
//
|
|
// Array parser states
|
|
//
|
|
array_begin:
|
|
log_start_value("array");
|
|
depth++;
|
|
if (depth >= dom_parser.max_depth()) { log_error("Exceeded max depth!"); return DEPTH_ERROR; }
|
|
dom_parser.is_array[depth] = true;
|
|
SIMDJSON_TRY( visitor.visit_array_start(*this) );
|
|
SIMDJSON_TRY( visitor.increment_count(*this) );
|
|
|
|
array_value:
|
|
{
|
|
auto value = advance();
|
|
switch (*value) {
|
|
case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin;
|
|
case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin;
|
|
default: SIMDJSON_TRY( visitor.visit_primitive(*this, value) ); break;
|
|
}
|
|
}
|
|
|
|
array_continue:
|
|
switch (*advance()) {
|
|
case ',': SIMDJSON_TRY( visitor.increment_count(*this) ); goto array_value;
|
|
case ']': log_end_value("array"); SIMDJSON_TRY( visitor.visit_array_end(*this) ); goto scope_end;
|
|
default: log_error("Missing comma between array values"); return TAPE_ERROR;
|
|
}
|
|
|
|
document_end:
|
|
log_end_value("document");
|
|
SIMDJSON_TRY( visitor.visit_document_end(*this) );
|
|
|
|
dom_parser.next_structural_index = uint32_t(next_structural - &dom_parser.structural_indexes[0]);
|
|
|
|
// If we didn't make it to the end, it's an error
|
|
if ( !STREAMING && dom_parser.next_structural_index != dom_parser.n_structural_indexes ) {
|
|
log_error("More than one JSON value at the root of the document, or extra characters at the end of the JSON!");
|
|
return TAPE_ERROR;
|
|
}
|
|
|
|
return SUCCESS;
|
|
|
|
} // walk_document()
|
|
|
|
simdjson_really_inline json_iterator::json_iterator(dom_parser_implementation &_dom_parser, size_t start_structural_index)
|
|
: buf{_dom_parser.buf},
|
|
next_structural{&_dom_parser.structural_indexes[start_structural_index]},
|
|
dom_parser{_dom_parser} {
|
|
}
|
|
|
|
simdjson_really_inline const uint8_t *json_iterator::peek() const noexcept {
|
|
return &buf[*(next_structural)];
|
|
}
|
|
simdjson_really_inline const uint8_t *json_iterator::advance() noexcept {
|
|
return &buf[*(next_structural++)];
|
|
}
|
|
simdjson_really_inline size_t json_iterator::remaining_len() const noexcept {
|
|
return dom_parser.len - *(next_structural-1);
|
|
}
|
|
|
|
simdjson_really_inline bool json_iterator::at_eof() const noexcept {
|
|
return next_structural == &dom_parser.structural_indexes[dom_parser.n_structural_indexes];
|
|
}
|
|
simdjson_really_inline bool json_iterator::at_beginning() const noexcept {
|
|
return next_structural == dom_parser.structural_indexes.get();
|
|
}
|
|
simdjson_really_inline uint8_t json_iterator::last_structural() const noexcept {
|
|
return buf[dom_parser.structural_indexes[dom_parser.n_structural_indexes - 1]];
|
|
}
|
|
|
|
simdjson_really_inline void json_iterator::log_value(const char *type) const noexcept {
|
|
logger::log_line(*this, "", type, "");
|
|
}
|
|
|
|
simdjson_really_inline void json_iterator::log_start_value(const char *type) const noexcept {
|
|
logger::log_line(*this, "+", type, "");
|
|
if (logger::LOG_ENABLED) { logger::log_depth++; }
|
|
}
|
|
|
|
simdjson_really_inline void json_iterator::log_end_value(const char *type) const noexcept {
|
|
if (logger::LOG_ENABLED) { logger::log_depth--; }
|
|
logger::log_line(*this, "-", type, "");
|
|
}
|
|
|
|
simdjson_really_inline void json_iterator::log_error(const char *error) const noexcept {
|
|
logger::log_line(*this, "", "ERROR", error);
|
|
}
|
|
|
|
template<typename V>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code json_iterator::visit_root_primitive(V &visitor, const uint8_t *value) noexcept {
|
|
switch (*value) {
|
|
case '"': return visitor.visit_root_string(*this, value);
|
|
case 't': return visitor.visit_root_true_atom(*this, value);
|
|
case 'f': return visitor.visit_root_false_atom(*this, value);
|
|
case 'n': return visitor.visit_root_null_atom(*this, value);
|
|
case '-':
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
return visitor.visit_root_number(*this, value);
|
|
default:
|
|
log_error("Document starts with a non-value character");
|
|
return TAPE_ERROR;
|
|
}
|
|
}
|
|
template<typename V>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code json_iterator::visit_primitive(V &visitor, const uint8_t *value) noexcept {
|
|
switch (*value) {
|
|
case '"': return visitor.visit_string(*this, value);
|
|
case 't': return visitor.visit_true_atom(*this, value);
|
|
case 'f': return visitor.visit_false_atom(*this, value);
|
|
case 'n': return visitor.visit_null_atom(*this, value);
|
|
case '-':
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
return visitor.visit_number(*this, value);
|
|
default:
|
|
log_error("Non-value found when value was expected!");
|
|
return TAPE_ERROR;
|
|
}
|
|
}
|
|
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/logger.h */
|
|
/* begin file src/generic/stage2/tape_writer.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
|
|
struct tape_writer {
|
|
/** The next place to write to tape */
|
|
uint64_t *next_tape_loc;
|
|
|
|
/** Write a signed 64-bit value to tape. */
|
|
simdjson_really_inline void append_s64(int64_t value) noexcept;
|
|
|
|
/** Write an unsigned 64-bit value to tape. */
|
|
simdjson_really_inline void append_u64(uint64_t value) noexcept;
|
|
|
|
/** Write a double value to tape. */
|
|
simdjson_really_inline void append_double(double value) noexcept;
|
|
|
|
/**
|
|
* Append a tape entry (an 8-bit type,and 56 bits worth of value).
|
|
*/
|
|
simdjson_really_inline void append(uint64_t val, internal::tape_type t) noexcept;
|
|
|
|
/**
|
|
* Skip the current tape entry without writing.
|
|
*
|
|
* Used to skip the start of the container, since we'll come back later to fill it in when the
|
|
* container ends.
|
|
*/
|
|
simdjson_really_inline void skip() noexcept;
|
|
|
|
/**
|
|
* Skip the number of tape entries necessary to write a large u64 or i64.
|
|
*/
|
|
simdjson_really_inline void skip_large_integer() noexcept;
|
|
|
|
/**
|
|
* Skip the number of tape entries necessary to write a double.
|
|
*/
|
|
simdjson_really_inline void skip_double() noexcept;
|
|
|
|
/**
|
|
* Write a value to a known location on tape.
|
|
*
|
|
* Used to go back and write out the start of a container after the container ends.
|
|
*/
|
|
simdjson_really_inline static void write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept;
|
|
|
|
private:
|
|
/**
|
|
* Append both the tape entry, and a supplementary value following it. Used for types that need
|
|
* all 64 bits, such as double and uint64_t.
|
|
*/
|
|
template<typename T>
|
|
simdjson_really_inline void append2(uint64_t val, T val2, internal::tape_type t) noexcept;
|
|
}; // struct number_writer
|
|
|
|
simdjson_really_inline void tape_writer::append_s64(int64_t value) noexcept {
|
|
append2(0, value, internal::tape_type::INT64);
|
|
}
|
|
|
|
simdjson_really_inline void tape_writer::append_u64(uint64_t value) noexcept {
|
|
append(0, internal::tape_type::UINT64);
|
|
*next_tape_loc = value;
|
|
next_tape_loc++;
|
|
}
|
|
|
|
/** Write a double value to tape. */
|
|
simdjson_really_inline void tape_writer::append_double(double value) noexcept {
|
|
append2(0, value, internal::tape_type::DOUBLE);
|
|
}
|
|
|
|
simdjson_really_inline void tape_writer::skip() noexcept {
|
|
next_tape_loc++;
|
|
}
|
|
|
|
simdjson_really_inline void tape_writer::skip_large_integer() noexcept {
|
|
next_tape_loc += 2;
|
|
}
|
|
|
|
simdjson_really_inline void tape_writer::skip_double() noexcept {
|
|
next_tape_loc += 2;
|
|
}
|
|
|
|
simdjson_really_inline void tape_writer::append(uint64_t val, internal::tape_type t) noexcept {
|
|
*next_tape_loc = val | ((uint64_t(char(t))) << 56);
|
|
next_tape_loc++;
|
|
}
|
|
|
|
template<typename T>
|
|
simdjson_really_inline void tape_writer::append2(uint64_t val, T val2, internal::tape_type t) noexcept {
|
|
append(val, t);
|
|
static_assert(sizeof(val2) == sizeof(*next_tape_loc), "Type is not 64 bits!");
|
|
memcpy(next_tape_loc, &val2, sizeof(val2));
|
|
next_tape_loc++;
|
|
}
|
|
|
|
simdjson_really_inline void tape_writer::write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept {
|
|
tape_loc = val | ((uint64_t(char(t))) << 56);
|
|
}
|
|
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/tape_writer.h */
|
|
/* begin file src/generic/stage2/atomparsing.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
namespace atomparsing {
|
|
|
|
// The string_to_uint32 is exclusively used to map literal strings to 32-bit values.
|
|
// We use memcpy instead of a pointer cast to avoid undefined behaviors since we cannot
|
|
// be certain that the character pointer will be properly aligned.
|
|
// You might think that using memcpy makes this function expensive, but you'd be wrong.
|
|
// All decent optimizing compilers (GCC, clang, Visual Studio) will compile string_to_uint32("false");
|
|
// to the compile-time constant 1936482662.
|
|
simdjson_really_inline uint32_t string_to_uint32(const char* str) { uint32_t val; std::memcpy(&val, str, sizeof(uint32_t)); return val; }
|
|
|
|
|
|
// Again in str4ncmp we use a memcpy to avoid undefined behavior. The memcpy may appear expensive.
|
|
// Yet all decent optimizing compilers will compile memcpy to a single instruction, just about.
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline uint32_t str4ncmp(const uint8_t *src, const char* atom) {
|
|
uint32_t srcval; // we want to avoid unaligned 32-bit loads (undefined in C/C++)
|
|
static_assert(sizeof(uint32_t) <= SIMDJSON_PADDING, "SIMDJSON_PADDING must be larger than 4 bytes");
|
|
std::memcpy(&srcval, src, sizeof(uint32_t));
|
|
return srcval ^ string_to_uint32(atom);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool is_valid_true_atom(const uint8_t *src) {
|
|
return (str4ncmp(src, "true") | is_not_structural_or_whitespace(src[4])) == 0;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool is_valid_true_atom(const uint8_t *src, size_t len) {
|
|
if (len > 4) { return is_valid_true_atom(src); }
|
|
else if (len == 4) { return !str4ncmp(src, "true"); }
|
|
else { return false; }
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool is_valid_false_atom(const uint8_t *src) {
|
|
return (str4ncmp(src+1, "alse") | is_not_structural_or_whitespace(src[5])) == 0;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool is_valid_false_atom(const uint8_t *src, size_t len) {
|
|
if (len > 5) { return is_valid_false_atom(src); }
|
|
else if (len == 5) { return !str4ncmp(src+1, "alse"); }
|
|
else { return false; }
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool is_valid_null_atom(const uint8_t *src) {
|
|
return (str4ncmp(src, "null") | is_not_structural_or_whitespace(src[4])) == 0;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool is_valid_null_atom(const uint8_t *src, size_t len) {
|
|
if (len > 4) { return is_valid_null_atom(src); }
|
|
else if (len == 4) { return !str4ncmp(src, "null"); }
|
|
else { return false; }
|
|
}
|
|
|
|
} // namespace atomparsing
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/atomparsing.h */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
|
|
struct tape_builder {
|
|
template<bool STREAMING>
|
|
SIMDJSON_WARN_UNUSED static simdjson_really_inline error_code parse_document(
|
|
dom_parser_implementation &dom_parser,
|
|
dom::document &doc) noexcept;
|
|
|
|
/** Called when a non-empty document starts. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_document_start(json_iterator &iter) noexcept;
|
|
/** Called when a non-empty document ends without error. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_document_end(json_iterator &iter) noexcept;
|
|
|
|
/** Called when a non-empty array starts. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_array_start(json_iterator &iter) noexcept;
|
|
/** Called when a non-empty array ends. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_array_end(json_iterator &iter) noexcept;
|
|
/** Called when an empty array is found. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_empty_array(json_iterator &iter) noexcept;
|
|
|
|
/** Called when a non-empty object starts. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_object_start(json_iterator &iter) noexcept;
|
|
/**
|
|
* Called when a key in a field is encountered.
|
|
*
|
|
* primitive, visit_object_start, visit_empty_object, visit_array_start, or visit_empty_array
|
|
* will be called after this with the field value.
|
|
*/
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_key(json_iterator &iter, const uint8_t *key) noexcept;
|
|
/** Called when a non-empty object ends. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_object_end(json_iterator &iter) noexcept;
|
|
/** Called when an empty object is found. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_empty_object(json_iterator &iter) noexcept;
|
|
|
|
/**
|
|
* Called when a string, number, boolean or null is found.
|
|
*/
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_primitive(json_iterator &iter, const uint8_t *value) noexcept;
|
|
/**
|
|
* Called when a string, number, boolean or null is found at the top level of a document (i.e.
|
|
* when there is no array or object and the entire document is a single string, number, boolean or
|
|
* null.
|
|
*
|
|
* This is separate from primitive() because simdjson's normal primitive parsing routines assume
|
|
* there is at least one more token after the value, which is only true in an array or object.
|
|
*/
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_primitive(json_iterator &iter, const uint8_t *value) noexcept;
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_string(json_iterator &iter, const uint8_t *value, bool key = false) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_number(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_true_atom(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_false_atom(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_null_atom(json_iterator &iter, const uint8_t *value) noexcept;
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_string(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_number(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_true_atom(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_false_atom(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_null_atom(json_iterator &iter, const uint8_t *value) noexcept;
|
|
|
|
/** Called each time a new field or element in an array or object is found. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code increment_count(json_iterator &iter) noexcept;
|
|
|
|
/** Next location to write to tape */
|
|
tape_writer tape;
|
|
private:
|
|
/** Next write location in the string buf for stage 2 parsing */
|
|
uint8_t *current_string_buf_loc;
|
|
|
|
simdjson_really_inline tape_builder(dom::document &doc) noexcept;
|
|
|
|
simdjson_really_inline uint32_t next_tape_index(json_iterator &iter) const noexcept;
|
|
simdjson_really_inline void start_container(json_iterator &iter) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code end_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code empty_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept;
|
|
simdjson_really_inline uint8_t *on_start_string(json_iterator &iter) noexcept;
|
|
simdjson_really_inline void on_end_string(uint8_t *dst) noexcept;
|
|
}; // class tape_builder
|
|
|
|
template<bool STREAMING>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::parse_document(
|
|
dom_parser_implementation &dom_parser,
|
|
dom::document &doc) noexcept {
|
|
dom_parser.doc = &doc;
|
|
json_iterator iter(dom_parser, STREAMING ? dom_parser.next_structural_index : 0);
|
|
tape_builder builder(doc);
|
|
return iter.walk_document<STREAMING>(builder);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_root_primitive(json_iterator &iter, const uint8_t *value) noexcept {
|
|
return iter.visit_root_primitive(*this, value);
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_primitive(json_iterator &iter, const uint8_t *value) noexcept {
|
|
return iter.visit_primitive(*this, value);
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_empty_object(json_iterator &iter) noexcept {
|
|
return empty_container(iter, internal::tape_type::START_OBJECT, internal::tape_type::END_OBJECT);
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_empty_array(json_iterator &iter) noexcept {
|
|
return empty_container(iter, internal::tape_type::START_ARRAY, internal::tape_type::END_ARRAY);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_document_start(json_iterator &iter) noexcept {
|
|
start_container(iter);
|
|
return SUCCESS;
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_object_start(json_iterator &iter) noexcept {
|
|
start_container(iter);
|
|
return SUCCESS;
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_array_start(json_iterator &iter) noexcept {
|
|
start_container(iter);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_object_end(json_iterator &iter) noexcept {
|
|
return end_container(iter, internal::tape_type::START_OBJECT, internal::tape_type::END_OBJECT);
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_array_end(json_iterator &iter) noexcept {
|
|
return end_container(iter, internal::tape_type::START_ARRAY, internal::tape_type::END_ARRAY);
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_document_end(json_iterator &iter) noexcept {
|
|
constexpr uint32_t start_tape_index = 0;
|
|
tape.append(start_tape_index, internal::tape_type::ROOT);
|
|
tape_writer::write(iter.dom_parser.doc->tape[start_tape_index], next_tape_index(iter), internal::tape_type::ROOT);
|
|
return SUCCESS;
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_key(json_iterator &iter, const uint8_t *key) noexcept {
|
|
return visit_string(iter, key, true);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::increment_count(json_iterator &iter) noexcept {
|
|
iter.dom_parser.open_containers[iter.depth].count++; // we have a key value pair in the object at parser.dom_parser.depth - 1
|
|
return SUCCESS;
|
|
}
|
|
|
|
simdjson_really_inline tape_builder::tape_builder(dom::document &doc) noexcept : tape{doc.tape.get()}, current_string_buf_loc{doc.string_buf.get()} {}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_string(json_iterator &iter, const uint8_t *value, bool key) noexcept {
|
|
iter.log_value(key ? "key" : "string");
|
|
uint8_t *dst = on_start_string(iter);
|
|
dst = stringparsing::parse_string(value, dst);
|
|
if (dst == nullptr) {
|
|
iter.log_error("Invalid escape in string");
|
|
return STRING_ERROR;
|
|
}
|
|
on_end_string(dst);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_root_string(json_iterator &iter, const uint8_t *value) noexcept {
|
|
return visit_string(iter, value);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_number(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("number");
|
|
return numberparsing::parse_number(value, tape);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_root_number(json_iterator &iter, const uint8_t *value) noexcept {
|
|
//
|
|
// We need to make a copy to make sure that the string is space terminated.
|
|
// This is not about padding the input, which should already padded up
|
|
// to len + SIMDJSON_PADDING. However, we have no control at this stage
|
|
// on how the padding was done. What if the input string was padded with nulls?
|
|
// It is quite common for an input string to have an extra null character (C string).
|
|
// We do not want to allow 9\0 (where \0 is the null character) inside a JSON
|
|
// document, but the string "9\0" by itself is fine. So we make a copy and
|
|
// pad the input with spaces when we know that there is just one input element.
|
|
// This copy is relatively expensive, but it will almost never be called in
|
|
// practice unless you are in the strange scenario where you have many JSON
|
|
// documents made of single atoms.
|
|
//
|
|
uint8_t *copy = static_cast<uint8_t *>(malloc(iter.remaining_len() + SIMDJSON_PADDING));
|
|
if (copy == nullptr) { return MEMALLOC; }
|
|
memcpy(copy, value, iter.remaining_len());
|
|
memset(copy + iter.remaining_len(), ' ', SIMDJSON_PADDING);
|
|
error_code error = visit_number(iter, copy);
|
|
free(copy);
|
|
return error;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_true_atom(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("true");
|
|
if (!atomparsing::is_valid_true_atom(value)) { return T_ATOM_ERROR; }
|
|
tape.append(0, internal::tape_type::TRUE_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_root_true_atom(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("true");
|
|
if (!atomparsing::is_valid_true_atom(value, iter.remaining_len())) { return T_ATOM_ERROR; }
|
|
tape.append(0, internal::tape_type::TRUE_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_false_atom(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("false");
|
|
if (!atomparsing::is_valid_false_atom(value)) { return F_ATOM_ERROR; }
|
|
tape.append(0, internal::tape_type::FALSE_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_root_false_atom(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("false");
|
|
if (!atomparsing::is_valid_false_atom(value, iter.remaining_len())) { return F_ATOM_ERROR; }
|
|
tape.append(0, internal::tape_type::FALSE_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_null_atom(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("null");
|
|
if (!atomparsing::is_valid_null_atom(value)) { return N_ATOM_ERROR; }
|
|
tape.append(0, internal::tape_type::NULL_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_root_null_atom(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("null");
|
|
if (!atomparsing::is_valid_null_atom(value, iter.remaining_len())) { return N_ATOM_ERROR; }
|
|
tape.append(0, internal::tape_type::NULL_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
// private:
|
|
|
|
simdjson_really_inline uint32_t tape_builder::next_tape_index(json_iterator &iter) const noexcept {
|
|
return uint32_t(tape.next_tape_loc - iter.dom_parser.doc->tape.get());
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::empty_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept {
|
|
auto start_index = next_tape_index(iter);
|
|
tape.append(start_index+2, start);
|
|
tape.append(start_index, end);
|
|
return SUCCESS;
|
|
}
|
|
|
|
simdjson_really_inline void tape_builder::start_container(json_iterator &iter) noexcept {
|
|
iter.dom_parser.open_containers[iter.depth].tape_index = next_tape_index(iter);
|
|
iter.dom_parser.open_containers[iter.depth].count = 0;
|
|
tape.skip(); // We don't actually *write* the start element until the end.
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::end_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept {
|
|
// Write the ending tape element, pointing at the start location
|
|
const uint32_t start_tape_index = iter.dom_parser.open_containers[iter.depth].tape_index;
|
|
tape.append(start_tape_index, end);
|
|
// Write the start tape element, pointing at the end location (and including count)
|
|
// count can overflow if it exceeds 24 bits... so we saturate
|
|
// the convention being that a cnt of 0xffffff or more is undetermined in value (>= 0xffffff).
|
|
const uint32_t count = iter.dom_parser.open_containers[iter.depth].count;
|
|
const uint32_t cntsat = count > 0xFFFFFF ? 0xFFFFFF : count;
|
|
tape_writer::write(iter.dom_parser.doc->tape[start_tape_index], next_tape_index(iter) | (uint64_t(cntsat) << 32), start);
|
|
return SUCCESS;
|
|
}
|
|
|
|
simdjson_really_inline uint8_t *tape_builder::on_start_string(json_iterator &iter) noexcept {
|
|
// we advance the point, accounting for the fact that we have a NULL termination
|
|
tape.append(current_string_buf_loc - iter.dom_parser.doc->string_buf.get(), internal::tape_type::STRING);
|
|
return current_string_buf_loc + sizeof(uint32_t);
|
|
}
|
|
|
|
simdjson_really_inline void tape_builder::on_end_string(uint8_t *dst) noexcept {
|
|
uint32_t str_length = uint32_t(dst - (current_string_buf_loc + sizeof(uint32_t)));
|
|
// TODO check for overflow in case someone has a crazy string (>=4GB?)
|
|
// But only add the overflow check when the document itself exceeds 4GB
|
|
// Currently unneeded because we refuse to parse docs larger or equal to 4GB.
|
|
memcpy(current_string_buf_loc, &str_length, sizeof(uint32_t));
|
|
// NULL termination is still handy if you expect all your strings to
|
|
// be NULL terminated? It comes at a small cost
|
|
*dst = 0;
|
|
current_string_buf_loc = dst + 1;
|
|
}
|
|
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/atomparsing.h */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
SIMDJSON_WARN_UNUSED error_code dom_parser_implementation::stage2(dom::document &_doc) noexcept {
|
|
return stage2::tape_builder::parse_document<false>(*this, _doc);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED error_code dom_parser_implementation::stage2_next(dom::document &_doc) noexcept {
|
|
return stage2::tape_builder::parse_document<true>(*this, _doc);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED error_code dom_parser_implementation::parse(const uint8_t *_buf, size_t _len, dom::document &_doc) noexcept {
|
|
auto error = stage1(_buf, _len, false);
|
|
if (error) { return error; }
|
|
return stage2(_doc);
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
/* begin file src/fallback/end_implementation.h */
|
|
#undef SIMDJSON_IMPLEMENTATION
|
|
/* end file src/fallback/end_implementation.h */
|
|
/* end file src/fallback/end_implementation.h */
|
|
#endif
|
|
#if SIMDJSON_IMPLEMENTATION_HASWELL
|
|
/* begin file src/haswell/implementation.cpp */
|
|
/* begin file src/haswell/begin_implementation.h */
|
|
#define SIMDJSON_IMPLEMENTATION haswell
|
|
#define SIMDJSON_TARGET_HASWELL SIMDJSON_TARGET_REGION("avx2,bmi,pclmul,lzcnt")
|
|
|
|
/* haswell/implementation.h already included: #include "haswell/implementation.h" */
|
|
/* begin file src/haswell/intrinsics.h */
|
|
#ifndef SIMDJSON_HASWELL_INTRINSICS_H
|
|
#define SIMDJSON_HASWELL_INTRINSICS_H
|
|
|
|
|
|
#ifdef SIMDJSON_VISUAL_STUDIO
|
|
// under clang within visual studio, this will include <x86intrin.h>
|
|
#include <intrin.h> // visual studio or clang
|
|
#else
|
|
#include <x86intrin.h> // elsewhere
|
|
#endif // SIMDJSON_VISUAL_STUDIO
|
|
|
|
#ifdef SIMDJSON_CLANG_VISUAL_STUDIO
|
|
/**
|
|
* You are not supposed, normally, to include these
|
|
* headers directly. Instead you should either include intrin.h
|
|
* or x86intrin.h. However, when compiling with clang
|
|
* under Windows (i.e., when _MSC_VER is set), these headers
|
|
* only get included *if* the corresponding features are detected
|
|
* from macros:
|
|
* e.g., if __AVX2__ is set... in turn, we normally set these
|
|
* macros by compiling against the corresponding architecture
|
|
* (e.g., arch:AVX2, -mavx2, etc.) which compiles the whole
|
|
* software with these advanced instructions. In simdjson, we
|
|
* want to compile the whole program for a generic target,
|
|
* and only target our specific kernels. As a workaround,
|
|
* we directly include the needed headers. These headers would
|
|
* normally guard against such usage, but we carefully included
|
|
* <x86intrin.h> (or <intrin.h>) before, so the headers
|
|
* are fooled.
|
|
*/
|
|
#include <bmiintrin.h> // for _blsr_u64
|
|
#include <lzcntintrin.h> // for __lzcnt64
|
|
#include <immintrin.h> // for most things (AVX2, AVX512, _popcnt64)
|
|
#include <smmintrin.h>
|
|
#include <tmmintrin.h>
|
|
#include <avxintrin.h>
|
|
#include <avx2intrin.h>
|
|
#include <wmmintrin.h> // for _mm_clmulepi64_si128
|
|
// unfortunately, we may not get _blsr_u64, but, thankfully, clang
|
|
// has it as a macro.
|
|
#ifndef _blsr_u64
|
|
// we roll our own
|
|
SIMDJSON_TARGET_HASWELL
|
|
static simdjson_really_inline uint64_t _blsr_u64(uint64_t n) {
|
|
return (n - 1) & n;
|
|
}
|
|
SIMDJSON_UNTARGET_REGION
|
|
#endif // _blsr_u64
|
|
#endif // SIMDJSON_CLANG_VISUAL_STUDIO
|
|
|
|
#endif // SIMDJSON_HASWELL_INTRINSICS_H
|
|
/* end file src/haswell/intrinsics.h */
|
|
|
|
SIMDJSON_TARGET_HASWELL
|
|
|
|
/* begin file src/haswell/bitmanipulation.h */
|
|
#ifndef SIMDJSON_HASWELL_BITMANIPULATION_H
|
|
#define SIMDJSON_HASWELL_BITMANIPULATION_H
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
// We sometimes call trailing_zero on inputs that are zero,
|
|
// but the algorithms do not end up using the returned value.
|
|
// Sadly, sanitizers are not smart enough to figure it out.
|
|
NO_SANITIZE_UNDEFINED
|
|
simdjson_really_inline int trailing_zeroes(uint64_t input_num) {
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
return (int)_tzcnt_u64(input_num);
|
|
#else // SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
////////
|
|
// You might expect the next line to be equivalent to
|
|
// return (int)_tzcnt_u64(input_num);
|
|
// but the generated code differs and might be less efficient?
|
|
////////
|
|
return __builtin_ctzll(input_num);
|
|
#endif // SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
}
|
|
|
|
/* result might be undefined when input_num is zero */
|
|
simdjson_really_inline uint64_t clear_lowest_bit(uint64_t input_num) {
|
|
return _blsr_u64(input_num);
|
|
}
|
|
|
|
/* result might be undefined when input_num is zero */
|
|
simdjson_really_inline int leading_zeroes(uint64_t input_num) {
|
|
return int(_lzcnt_u64(input_num));
|
|
}
|
|
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
simdjson_really_inline unsigned __int64 count_ones(uint64_t input_num) {
|
|
// note: we do not support legacy 32-bit Windows
|
|
return __popcnt64(input_num);// Visual Studio wants two underscores
|
|
}
|
|
#else
|
|
simdjson_really_inline long long int count_ones(uint64_t input_num) {
|
|
return _popcnt64(input_num);
|
|
}
|
|
#endif
|
|
|
|
simdjson_really_inline bool add_overflow(uint64_t value1, uint64_t value2,
|
|
uint64_t *result) {
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
return _addcarry_u64(0, value1, value2,
|
|
reinterpret_cast<unsigned __int64 *>(result));
|
|
#else
|
|
return __builtin_uaddll_overflow(value1, value2,
|
|
(unsigned long long *)result);
|
|
#endif
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
#endif // SIMDJSON_HASWELL_BITMANIPULATION_H
|
|
/* end file src/haswell/bitmanipulation.h */
|
|
/* begin file src/haswell/bitmask.h */
|
|
#ifndef SIMDJSON_HASWELL_BITMASK_H
|
|
#define SIMDJSON_HASWELL_BITMASK_H
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
//
|
|
// Perform a "cumulative bitwise xor," flipping bits each time a 1 is encountered.
|
|
//
|
|
// For example, prefix_xor(00100100) == 00011100
|
|
//
|
|
simdjson_really_inline uint64_t prefix_xor(const uint64_t bitmask) {
|
|
// There should be no such thing with a processor supporting avx2
|
|
// but not clmul.
|
|
__m128i all_ones = _mm_set1_epi8('\xFF');
|
|
__m128i result = _mm_clmulepi64_si128(_mm_set_epi64x(0ULL, bitmask), all_ones, 0);
|
|
return _mm_cvtsi128_si64(result);
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
#endif // SIMDJSON_HASWELL_BITMASK_H
|
|
/* end file src/haswell/bitmask.h */
|
|
/* begin file src/haswell/simd.h */
|
|
#ifndef SIMDJSON_HASWELL_SIMD_H
|
|
#define SIMDJSON_HASWELL_SIMD_H
|
|
|
|
/* simdprune_tables.h already included: #include "simdprune_tables.h" */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace simd {
|
|
|
|
// Forward-declared so they can be used by splat and friends.
|
|
template<typename Child>
|
|
struct base {
|
|
__m256i value;
|
|
|
|
// Zero constructor
|
|
simdjson_really_inline base() : value{__m256i()} {}
|
|
|
|
// Conversion from SIMD register
|
|
simdjson_really_inline base(const __m256i _value) : value(_value) {}
|
|
|
|
// Conversion to SIMD register
|
|
simdjson_really_inline operator const __m256i&() const { return this->value; }
|
|
simdjson_really_inline operator __m256i&() { return this->value; }
|
|
|
|
// Bit operations
|
|
simdjson_really_inline Child operator|(const Child other) const { return _mm256_or_si256(*this, other); }
|
|
simdjson_really_inline Child operator&(const Child other) const { return _mm256_and_si256(*this, other); }
|
|
simdjson_really_inline Child operator^(const Child other) const { return _mm256_xor_si256(*this, other); }
|
|
simdjson_really_inline Child bit_andnot(const Child other) const { return _mm256_andnot_si256(other, *this); }
|
|
simdjson_really_inline Child& operator|=(const Child other) { auto this_cast = (Child*)this; *this_cast = *this_cast | other; return *this_cast; }
|
|
simdjson_really_inline Child& operator&=(const Child other) { auto this_cast = (Child*)this; *this_cast = *this_cast & other; return *this_cast; }
|
|
simdjson_really_inline Child& operator^=(const Child other) { auto this_cast = (Child*)this; *this_cast = *this_cast ^ other; return *this_cast; }
|
|
};
|
|
|
|
// Forward-declared so they can be used by splat and friends.
|
|
template<typename T>
|
|
struct simd8;
|
|
|
|
template<typename T, typename Mask=simd8<bool>>
|
|
struct base8: base<simd8<T>> {
|
|
typedef uint32_t bitmask_t;
|
|
typedef uint64_t bitmask2_t;
|
|
|
|
simdjson_really_inline base8() : base<simd8<T>>() {}
|
|
simdjson_really_inline base8(const __m256i _value) : base<simd8<T>>(_value) {}
|
|
|
|
simdjson_really_inline Mask operator==(const simd8<T> other) const { return _mm256_cmpeq_epi8(*this, other); }
|
|
|
|
static const int SIZE = sizeof(base<T>::value);
|
|
|
|
template<int N=1>
|
|
simdjson_really_inline simd8<T> prev(const simd8<T> prev_chunk) const {
|
|
return _mm256_alignr_epi8(*this, _mm256_permute2x128_si256(prev_chunk, *this, 0x21), 16 - N);
|
|
}
|
|
};
|
|
|
|
// SIMD byte mask type (returned by things like eq and gt)
|
|
template<>
|
|
struct simd8<bool>: base8<bool> {
|
|
static simdjson_really_inline simd8<bool> splat(bool _value) { return _mm256_set1_epi8(uint8_t(-(!!_value))); }
|
|
|
|
simdjson_really_inline simd8<bool>() : base8() {}
|
|
simdjson_really_inline simd8<bool>(const __m256i _value) : base8<bool>(_value) {}
|
|
// Splat constructor
|
|
simdjson_really_inline simd8<bool>(bool _value) : base8<bool>(splat(_value)) {}
|
|
|
|
simdjson_really_inline int to_bitmask() const { return _mm256_movemask_epi8(*this); }
|
|
simdjson_really_inline bool any() const { return !_mm256_testz_si256(*this, *this); }
|
|
simdjson_really_inline simd8<bool> operator~() const { return *this ^ true; }
|
|
};
|
|
|
|
template<typename T>
|
|
struct base8_numeric: base8<T> {
|
|
static simdjson_really_inline simd8<T> splat(T _value) { return _mm256_set1_epi8(_value); }
|
|
static simdjson_really_inline simd8<T> zero() { return _mm256_setzero_si256(); }
|
|
static simdjson_really_inline simd8<T> load(const T values[32]) {
|
|
return _mm256_loadu_si256(reinterpret_cast<const __m256i *>(values));
|
|
}
|
|
// Repeat 16 values as many times as necessary (usually for lookup tables)
|
|
static simdjson_really_inline simd8<T> repeat_16(
|
|
T v0, T v1, T v2, T v3, T v4, T v5, T v6, T v7,
|
|
T v8, T v9, T v10, T v11, T v12, T v13, T v14, T v15
|
|
) {
|
|
return simd8<T>(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15,
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
);
|
|
}
|
|
|
|
simdjson_really_inline base8_numeric() : base8<T>() {}
|
|
simdjson_really_inline base8_numeric(const __m256i _value) : base8<T>(_value) {}
|
|
|
|
// Store to array
|
|
simdjson_really_inline void store(T dst[32]) const { return _mm256_storeu_si256(reinterpret_cast<__m256i *>(dst), *this); }
|
|
|
|
// Addition/subtraction are the same for signed and unsigned
|
|
simdjson_really_inline simd8<T> operator+(const simd8<T> other) const { return _mm256_add_epi8(*this, other); }
|
|
simdjson_really_inline simd8<T> operator-(const simd8<T> other) const { return _mm256_sub_epi8(*this, other); }
|
|
simdjson_really_inline simd8<T>& operator+=(const simd8<T> other) { *this = *this + other; return *(simd8<T>*)this; }
|
|
simdjson_really_inline simd8<T>& operator-=(const simd8<T> other) { *this = *this - other; return *(simd8<T>*)this; }
|
|
|
|
// Override to distinguish from bool version
|
|
simdjson_really_inline simd8<T> operator~() const { return *this ^ 0xFFu; }
|
|
|
|
// Perform a lookup assuming the value is between 0 and 16 (undefined behavior for out of range values)
|
|
template<typename L>
|
|
simdjson_really_inline simd8<L> lookup_16(simd8<L> lookup_table) const {
|
|
return _mm256_shuffle_epi8(lookup_table, *this);
|
|
}
|
|
|
|
// Copies to 'output" all bytes corresponding to a 0 in the mask (interpreted as a bitset).
|
|
// Passing a 0 value for mask would be equivalent to writing out every byte to output.
|
|
// Only the first 32 - count_ones(mask) bytes of the result are significant but 32 bytes
|
|
// get written.
|
|
// Design consideration: it seems like a function with the
|
|
// signature simd8<L> compress(uint32_t mask) would be
|
|
// sensible, but the AVX ISA makes this kind of approach difficult.
|
|
template<typename L>
|
|
simdjson_really_inline void compress(uint32_t mask, L * output) const {
|
|
// this particular implementation was inspired by work done by @animetosho
|
|
// we do it in four steps, first 8 bytes and then second 8 bytes...
|
|
uint8_t mask1 = uint8_t(mask); // least significant 8 bits
|
|
uint8_t mask2 = uint8_t(mask >> 8); // second least significant 8 bits
|
|
uint8_t mask3 = uint8_t(mask >> 16); // ...
|
|
uint8_t mask4 = uint8_t(mask >> 24); // ...
|
|
// next line just loads the 64-bit values thintable_epi8[mask1] and
|
|
// thintable_epi8[mask2] into a 128-bit register, using only
|
|
// two instructions on most compilers.
|
|
__m256i shufmask = _mm256_set_epi64x(thintable_epi8[mask4], thintable_epi8[mask3],
|
|
thintable_epi8[mask2], thintable_epi8[mask1]);
|
|
// we increment by 0x08 the second half of the mask and so forth
|
|
shufmask =
|
|
_mm256_add_epi8(shufmask, _mm256_set_epi32(0x18181818, 0x18181818,
|
|
0x10101010, 0x10101010, 0x08080808, 0x08080808, 0, 0));
|
|
// this is the version "nearly pruned"
|
|
__m256i pruned = _mm256_shuffle_epi8(*this, shufmask);
|
|
// we still need to put the pieces back together.
|
|
// we compute the popcount of the first words:
|
|
int pop1 = BitsSetTable256mul2[mask1];
|
|
int pop3 = BitsSetTable256mul2[mask3];
|
|
|
|
// then load the corresponding mask
|
|
// could be done with _mm256_loadu2_m128i but many standard libraries omit this intrinsic.
|
|
__m256i v256 = _mm256_castsi128_si256(
|
|
_mm_loadu_si128((const __m128i *)(pshufb_combine_table + pop1 * 8)));
|
|
__m256i compactmask = _mm256_insertf128_si256(v256,
|
|
_mm_loadu_si128((const __m128i *)(pshufb_combine_table + pop3 * 8)), 1);
|
|
__m256i almostthere = _mm256_shuffle_epi8(pruned, compactmask);
|
|
// We just need to write out the result.
|
|
// This is the tricky bit that is hard to do
|
|
// if we want to return a SIMD register, since there
|
|
// is no single-instruction approach to recombine
|
|
// the two 128-bit lanes with an offset.
|
|
__m128i v128;
|
|
v128 = _mm256_castsi256_si128(almostthere);
|
|
_mm_storeu_si128( (__m128i *)output, v128);
|
|
v128 = _mm256_extractf128_si256(almostthere, 1);
|
|
_mm_storeu_si128( (__m128i *)(output + 16 - count_ones(mask & 0xFFFF)), v128);
|
|
}
|
|
|
|
template<typename L>
|
|
simdjson_really_inline simd8<L> lookup_16(
|
|
L replace0, L replace1, L replace2, L replace3,
|
|
L replace4, L replace5, L replace6, L replace7,
|
|
L replace8, L replace9, L replace10, L replace11,
|
|
L replace12, L replace13, L replace14, L replace15) const {
|
|
return lookup_16(simd8<L>::repeat_16(
|
|
replace0, replace1, replace2, replace3,
|
|
replace4, replace5, replace6, replace7,
|
|
replace8, replace9, replace10, replace11,
|
|
replace12, replace13, replace14, replace15
|
|
));
|
|
}
|
|
};
|
|
|
|
// Signed bytes
|
|
template<>
|
|
struct simd8<int8_t> : base8_numeric<int8_t> {
|
|
simdjson_really_inline simd8() : base8_numeric<int8_t>() {}
|
|
simdjson_really_inline simd8(const __m256i _value) : base8_numeric<int8_t>(_value) {}
|
|
// Splat constructor
|
|
simdjson_really_inline simd8(int8_t _value) : simd8(splat(_value)) {}
|
|
// Array constructor
|
|
simdjson_really_inline simd8(const int8_t values[32]) : simd8(load(values)) {}
|
|
// Member-by-member initialization
|
|
simdjson_really_inline simd8(
|
|
int8_t v0, int8_t v1, int8_t v2, int8_t v3, int8_t v4, int8_t v5, int8_t v6, int8_t v7,
|
|
int8_t v8, int8_t v9, int8_t v10, int8_t v11, int8_t v12, int8_t v13, int8_t v14, int8_t v15,
|
|
int8_t v16, int8_t v17, int8_t v18, int8_t v19, int8_t v20, int8_t v21, int8_t v22, int8_t v23,
|
|
int8_t v24, int8_t v25, int8_t v26, int8_t v27, int8_t v28, int8_t v29, int8_t v30, int8_t v31
|
|
) : simd8(_mm256_setr_epi8(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15,
|
|
v16,v17,v18,v19,v20,v21,v22,v23,
|
|
v24,v25,v26,v27,v28,v29,v30,v31
|
|
)) {}
|
|
// Repeat 16 values as many times as necessary (usually for lookup tables)
|
|
simdjson_really_inline static simd8<int8_t> repeat_16(
|
|
int8_t v0, int8_t v1, int8_t v2, int8_t v3, int8_t v4, int8_t v5, int8_t v6, int8_t v7,
|
|
int8_t v8, int8_t v9, int8_t v10, int8_t v11, int8_t v12, int8_t v13, int8_t v14, int8_t v15
|
|
) {
|
|
return simd8<int8_t>(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15,
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
);
|
|
}
|
|
|
|
// Order-sensitive comparisons
|
|
simdjson_really_inline simd8<int8_t> max(const simd8<int8_t> other) const { return _mm256_max_epi8(*this, other); }
|
|
simdjson_really_inline simd8<int8_t> min(const simd8<int8_t> other) const { return _mm256_min_epi8(*this, other); }
|
|
simdjson_really_inline simd8<bool> operator>(const simd8<int8_t> other) const { return _mm256_cmpgt_epi8(*this, other); }
|
|
simdjson_really_inline simd8<bool> operator<(const simd8<int8_t> other) const { return _mm256_cmpgt_epi8(other, *this); }
|
|
};
|
|
|
|
// Unsigned bytes
|
|
template<>
|
|
struct simd8<uint8_t>: base8_numeric<uint8_t> {
|
|
simdjson_really_inline simd8() : base8_numeric<uint8_t>() {}
|
|
simdjson_really_inline simd8(const __m256i _value) : base8_numeric<uint8_t>(_value) {}
|
|
// Splat constructor
|
|
simdjson_really_inline simd8(uint8_t _value) : simd8(splat(_value)) {}
|
|
// Array constructor
|
|
simdjson_really_inline simd8(const uint8_t values[32]) : simd8(load(values)) {}
|
|
// Member-by-member initialization
|
|
simdjson_really_inline simd8(
|
|
uint8_t v0, uint8_t v1, uint8_t v2, uint8_t v3, uint8_t v4, uint8_t v5, uint8_t v6, uint8_t v7,
|
|
uint8_t v8, uint8_t v9, uint8_t v10, uint8_t v11, uint8_t v12, uint8_t v13, uint8_t v14, uint8_t v15,
|
|
uint8_t v16, uint8_t v17, uint8_t v18, uint8_t v19, uint8_t v20, uint8_t v21, uint8_t v22, uint8_t v23,
|
|
uint8_t v24, uint8_t v25, uint8_t v26, uint8_t v27, uint8_t v28, uint8_t v29, uint8_t v30, uint8_t v31
|
|
) : simd8(_mm256_setr_epi8(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15,
|
|
v16,v17,v18,v19,v20,v21,v22,v23,
|
|
v24,v25,v26,v27,v28,v29,v30,v31
|
|
)) {}
|
|
// Repeat 16 values as many times as necessary (usually for lookup tables)
|
|
simdjson_really_inline static simd8<uint8_t> repeat_16(
|
|
uint8_t v0, uint8_t v1, uint8_t v2, uint8_t v3, uint8_t v4, uint8_t v5, uint8_t v6, uint8_t v7,
|
|
uint8_t v8, uint8_t v9, uint8_t v10, uint8_t v11, uint8_t v12, uint8_t v13, uint8_t v14, uint8_t v15
|
|
) {
|
|
return simd8<uint8_t>(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15,
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
);
|
|
}
|
|
|
|
// Saturated math
|
|
simdjson_really_inline simd8<uint8_t> saturating_add(const simd8<uint8_t> other) const { return _mm256_adds_epu8(*this, other); }
|
|
simdjson_really_inline simd8<uint8_t> saturating_sub(const simd8<uint8_t> other) const { return _mm256_subs_epu8(*this, other); }
|
|
|
|
// Order-specific operations
|
|
simdjson_really_inline simd8<uint8_t> max(const simd8<uint8_t> other) const { return _mm256_max_epu8(*this, other); }
|
|
simdjson_really_inline simd8<uint8_t> min(const simd8<uint8_t> other) const { return _mm256_min_epu8(other, *this); }
|
|
// Same as >, but only guarantees true is nonzero (< guarantees true = -1)
|
|
simdjson_really_inline simd8<uint8_t> gt_bits(const simd8<uint8_t> other) const { return this->saturating_sub(other); }
|
|
// Same as <, but only guarantees true is nonzero (< guarantees true = -1)
|
|
simdjson_really_inline simd8<uint8_t> lt_bits(const simd8<uint8_t> other) const { return other.saturating_sub(*this); }
|
|
simdjson_really_inline simd8<bool> operator<=(const simd8<uint8_t> other) const { return other.max(*this) == other; }
|
|
simdjson_really_inline simd8<bool> operator>=(const simd8<uint8_t> other) const { return other.min(*this) == other; }
|
|
simdjson_really_inline simd8<bool> operator>(const simd8<uint8_t> other) const { return this->gt_bits(other).any_bits_set(); }
|
|
simdjson_really_inline simd8<bool> operator<(const simd8<uint8_t> other) const { return this->lt_bits(other).any_bits_set(); }
|
|
|
|
// Bit-specific operations
|
|
simdjson_really_inline simd8<bool> bits_not_set() const { return *this == uint8_t(0); }
|
|
simdjson_really_inline simd8<bool> bits_not_set(simd8<uint8_t> bits) const { return (*this & bits).bits_not_set(); }
|
|
simdjson_really_inline simd8<bool> any_bits_set() const { return ~this->bits_not_set(); }
|
|
simdjson_really_inline simd8<bool> any_bits_set(simd8<uint8_t> bits) const { return ~this->bits_not_set(bits); }
|
|
simdjson_really_inline bool is_ascii() const { return _mm256_movemask_epi8(*this) == 0; }
|
|
simdjson_really_inline bool bits_not_set_anywhere() const { return _mm256_testz_si256(*this, *this); }
|
|
simdjson_really_inline bool any_bits_set_anywhere() const { return !bits_not_set_anywhere(); }
|
|
simdjson_really_inline bool bits_not_set_anywhere(simd8<uint8_t> bits) const { return _mm256_testz_si256(*this, bits); }
|
|
simdjson_really_inline bool any_bits_set_anywhere(simd8<uint8_t> bits) const { return !bits_not_set_anywhere(bits); }
|
|
template<int N>
|
|
simdjson_really_inline simd8<uint8_t> shr() const { return simd8<uint8_t>(_mm256_srli_epi16(*this, N)) & uint8_t(0xFFu >> N); }
|
|
template<int N>
|
|
simdjson_really_inline simd8<uint8_t> shl() const { return simd8<uint8_t>(_mm256_slli_epi16(*this, N)) & uint8_t(0xFFu << N); }
|
|
// Get one of the bits and make a bitmask out of it.
|
|
// e.g. value.get_bit<7>() gets the high bit
|
|
template<int N>
|
|
simdjson_really_inline int get_bit() const { return _mm256_movemask_epi8(_mm256_slli_epi16(*this, 7-N)); }
|
|
};
|
|
|
|
template<typename T>
|
|
struct simd8x64 {
|
|
static constexpr int NUM_CHUNKS = 64 / sizeof(simd8<T>);
|
|
static_assert(NUM_CHUNKS == 2, "Haswell kernel should use two registers per 64-byte block.");
|
|
const simd8<T> chunks[NUM_CHUNKS];
|
|
|
|
simd8x64(const simd8x64<T>& o) = delete; // no copy allowed
|
|
simd8x64<T>& operator=(const simd8<T> other) = delete; // no assignment allowed
|
|
simd8x64() = delete; // no default constructor allowed
|
|
|
|
simdjson_really_inline simd8x64(const simd8<T> chunk0, const simd8<T> chunk1) : chunks{chunk0, chunk1} {}
|
|
simdjson_really_inline simd8x64(const T ptr[64]) : chunks{simd8<T>::load(ptr), simd8<T>::load(ptr+32)} {}
|
|
|
|
simdjson_really_inline void compress(uint64_t mask, T * output) const {
|
|
uint32_t mask1 = uint32_t(mask);
|
|
uint32_t mask2 = uint32_t(mask >> 32);
|
|
this->chunks[0].compress(mask1, output);
|
|
this->chunks[1].compress(mask2, output + 32 - count_ones(mask1));
|
|
}
|
|
|
|
simdjson_really_inline void store(T ptr[64]) const {
|
|
this->chunks[0].store(ptr+sizeof(simd8<T>)*0);
|
|
this->chunks[1].store(ptr+sizeof(simd8<T>)*1);
|
|
}
|
|
|
|
simdjson_really_inline uint64_t to_bitmask() const {
|
|
uint64_t r_lo = uint32_t(this->chunks[0].to_bitmask());
|
|
uint64_t r_hi = this->chunks[1].to_bitmask();
|
|
return r_lo | (r_hi << 32);
|
|
}
|
|
|
|
simdjson_really_inline simd8<T> reduce_or() const {
|
|
return this->chunks[0] | this->chunks[1];
|
|
}
|
|
|
|
simdjson_really_inline simd8x64<T> bit_or(const T m) const {
|
|
const simd8<T> mask = simd8<T>::splat(m);
|
|
return simd8x64<T>(
|
|
this->chunks[0] | mask,
|
|
this->chunks[1] | mask
|
|
);
|
|
}
|
|
|
|
simdjson_really_inline uint64_t eq(const T m) const {
|
|
const simd8<T> mask = simd8<T>::splat(m);
|
|
return simd8x64<bool>(
|
|
this->chunks[0] == mask,
|
|
this->chunks[1] == mask
|
|
).to_bitmask();
|
|
}
|
|
|
|
simdjson_really_inline uint64_t lteq(const T m) const {
|
|
const simd8<T> mask = simd8<T>::splat(m);
|
|
return simd8x64<bool>(
|
|
this->chunks[0] <= mask,
|
|
this->chunks[1] <= mask
|
|
).to_bitmask();
|
|
}
|
|
}; // struct simd8x64<T>
|
|
|
|
} // namespace simd
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
#endif // SIMDJSON_HASWELL_SIMD_H
|
|
/* end file src/haswell/simd.h */
|
|
|
|
/* end file src/haswell/simd.h */
|
|
/* begin file src/haswell/dom_parser_implementation.h */
|
|
#ifndef SIMDJSON_HASWELL_DOM_PARSER_IMPLEMENTATION_H
|
|
#define SIMDJSON_HASWELL_DOM_PARSER_IMPLEMENTATION_H
|
|
|
|
/* begin file src/generic/dom_parser_implementation.h */
|
|
/* isadetection.h already included: #include "isadetection.h" */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
// expectation: sizeof(open_container) = 64/8.
|
|
struct open_container {
|
|
uint32_t tape_index; // where, on the tape, does the scope ([,{) begins
|
|
uint32_t count; // how many elements in the scope
|
|
}; // struct open_container
|
|
|
|
static_assert(sizeof(open_container) == 64/8, "Open container must be 64 bits");
|
|
|
|
class dom_parser_implementation final : public internal::dom_parser_implementation {
|
|
public:
|
|
/** Tape location of each open { or [ */
|
|
std::unique_ptr<open_container[]> open_containers{};
|
|
/** Whether each open container is a [ or { */
|
|
std::unique_ptr<bool[]> is_array{};
|
|
/** Buffer passed to stage 1 */
|
|
const uint8_t *buf{};
|
|
/** Length passed to stage 1 */
|
|
size_t len{0};
|
|
/** Document passed to stage 2 */
|
|
dom::document *doc{};
|
|
|
|
simdjson_really_inline dom_parser_implementation();
|
|
dom_parser_implementation(const dom_parser_implementation &) = delete;
|
|
dom_parser_implementation & operator=(const dom_parser_implementation &) = delete;
|
|
|
|
SIMDJSON_WARN_UNUSED error_code parse(const uint8_t *buf, size_t len, dom::document &doc) noexcept final;
|
|
SIMDJSON_WARN_UNUSED error_code stage1(const uint8_t *buf, size_t len, bool partial) noexcept final;
|
|
SIMDJSON_WARN_UNUSED error_code check_for_unclosed_array() noexcept;
|
|
SIMDJSON_WARN_UNUSED error_code stage2(dom::document &doc) noexcept final;
|
|
SIMDJSON_WARN_UNUSED error_code stage2_next(dom::document &doc) noexcept final;
|
|
SIMDJSON_WARN_UNUSED error_code set_capacity(size_t capacity) noexcept final;
|
|
SIMDJSON_WARN_UNUSED error_code set_max_depth(size_t max_depth) noexcept final;
|
|
};
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
/* begin file src/generic/stage1/allocate.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage1 {
|
|
namespace allocate {
|
|
|
|
//
|
|
// Allocates stage 1 internal state and outputs in the parser
|
|
//
|
|
simdjson_really_inline error_code set_capacity(internal::dom_parser_implementation &parser, size_t capacity) {
|
|
size_t max_structures = SIMDJSON_ROUNDUP_N(capacity, 64) + 2 + 7;
|
|
parser.structural_indexes.reset( new (std::nothrow) uint32_t[max_structures] );
|
|
if (!parser.structural_indexes) { return MEMALLOC; }
|
|
parser.structural_indexes[0] = 0;
|
|
parser.n_structural_indexes = 0;
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace allocate
|
|
} // namespace stage1
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/allocate.h */
|
|
/* begin file src/generic/stage2/allocate.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
namespace allocate {
|
|
|
|
//
|
|
// Allocates stage 2 internal state and outputs in the parser
|
|
//
|
|
simdjson_really_inline error_code set_max_depth(dom_parser_implementation &parser, size_t max_depth) {
|
|
parser.open_containers.reset(new (std::nothrow) open_container[max_depth]);
|
|
parser.is_array.reset(new (std::nothrow) bool[max_depth]);
|
|
|
|
if (!parser.is_array || !parser.open_containers) {
|
|
return MEMALLOC;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace allocate
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/allocate.h */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
simdjson_really_inline dom_parser_implementation::dom_parser_implementation() {}
|
|
|
|
// Leaving these here so they can be inlined if so desired
|
|
SIMDJSON_WARN_UNUSED error_code dom_parser_implementation::set_capacity(size_t capacity) noexcept {
|
|
error_code err = stage1::allocate::set_capacity(*this, capacity);
|
|
if (err) { _capacity = 0; return err; }
|
|
_capacity = capacity;
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED error_code dom_parser_implementation::set_max_depth(size_t max_depth) noexcept {
|
|
error_code err = stage2::allocate::set_max_depth(*this, max_depth);
|
|
if (err) { _max_depth = 0; return err; }
|
|
_max_depth = max_depth;
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/allocate.h */
|
|
|
|
#endif // SIMDJSON_HASWELL_DOM_PARSER_IMPLEMENTATION_H
|
|
/* end file src/generic/stage2/allocate.h */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
SIMDJSON_WARN_UNUSED error_code implementation::create_dom_parser_implementation(
|
|
size_t capacity,
|
|
size_t max_depth,
|
|
std::unique_ptr<internal::dom_parser_implementation>& dst
|
|
) const noexcept {
|
|
dst.reset( new (std::nothrow) dom_parser_implementation() );
|
|
if (!dst) { return MEMALLOC; }
|
|
dst->set_capacity(capacity);
|
|
dst->set_max_depth(max_depth);
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
/* begin file src/haswell/end_implementation.h */
|
|
#undef SIMDJSON_IMPLEMENTATION
|
|
SIMDJSON_UNTARGET_REGION
|
|
/* end file src/haswell/end_implementation.h */
|
|
|
|
/* end file src/haswell/end_implementation.h */
|
|
/* begin file src/haswell/dom_parser_implementation.cpp */
|
|
/* begin file src/haswell/begin_implementation.h */
|
|
#define SIMDJSON_IMPLEMENTATION haswell
|
|
#define SIMDJSON_TARGET_HASWELL SIMDJSON_TARGET_REGION("avx2,bmi,pclmul,lzcnt")
|
|
|
|
/* haswell/implementation.h already included: #include "haswell/implementation.h" */
|
|
/* haswell/intrinsics.h already included: #include "haswell/intrinsics.h" // Generally need to be included outside SIMDJSON_TARGET_REGION */
|
|
|
|
SIMDJSON_TARGET_HASWELL
|
|
|
|
/* haswell/bitmanipulation.h already included: #include "haswell/bitmanipulation.h" */
|
|
/* haswell/bitmask.h already included: #include "haswell/bitmask.h" */
|
|
/* haswell/simd.h already included: #include "haswell/simd.h" */
|
|
|
|
/* end file src/haswell/begin_implementation.h */
|
|
/* haswell/dom_parser_implementation.h already included: #include "haswell/dom_parser_implementation.h" */
|
|
/* begin file src/generic/stage2/jsoncharutils.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
|
|
// return non-zero if not a structural or whitespace char
|
|
// zero otherwise
|
|
simdjson_really_inline uint32_t is_not_structural_or_whitespace(uint8_t c) {
|
|
return structural_or_whitespace_negated[c];
|
|
}
|
|
|
|
simdjson_really_inline uint32_t is_structural_or_whitespace(uint8_t c) {
|
|
return structural_or_whitespace[c];
|
|
}
|
|
|
|
// returns a value with the high 16 bits set if not valid
|
|
// otherwise returns the conversion of the 4 hex digits at src into the bottom
|
|
// 16 bits of the 32-bit return register
|
|
//
|
|
// see
|
|
// https://lemire.me/blog/2019/04/17/parsing-short-hexadecimal-strings-efficiently/
|
|
static inline uint32_t hex_to_u32_nocheck(
|
|
const uint8_t *src) { // strictly speaking, static inline is a C-ism
|
|
uint32_t v1 = digit_to_val32[630 + src[0]];
|
|
uint32_t v2 = digit_to_val32[420 + src[1]];
|
|
uint32_t v3 = digit_to_val32[210 + src[2]];
|
|
uint32_t v4 = digit_to_val32[0 + src[3]];
|
|
return v1 | v2 | v3 | v4;
|
|
}
|
|
|
|
// given a code point cp, writes to c
|
|
// the utf-8 code, outputting the length in
|
|
// bytes, if the length is zero, the code point
|
|
// is invalid
|
|
//
|
|
// This can possibly be made faster using pdep
|
|
// and clz and table lookups, but JSON documents
|
|
// have few escaped code points, and the following
|
|
// function looks cheap.
|
|
//
|
|
// Note: we assume that surrogates are treated separately
|
|
//
|
|
simdjson_really_inline size_t codepoint_to_utf8(uint32_t cp, uint8_t *c) {
|
|
if (cp <= 0x7F) {
|
|
c[0] = uint8_t(cp);
|
|
return 1; // ascii
|
|
}
|
|
if (cp <= 0x7FF) {
|
|
c[0] = uint8_t((cp >> 6) + 192);
|
|
c[1] = uint8_t((cp & 63) + 128);
|
|
return 2; // universal plane
|
|
// Surrogates are treated elsewhere...
|
|
//} //else if (0xd800 <= cp && cp <= 0xdfff) {
|
|
// return 0; // surrogates // could put assert here
|
|
} else if (cp <= 0xFFFF) {
|
|
c[0] = uint8_t((cp >> 12) + 224);
|
|
c[1] = uint8_t(((cp >> 6) & 63) + 128);
|
|
c[2] = uint8_t((cp & 63) + 128);
|
|
return 3;
|
|
} else if (cp <= 0x10FFFF) { // if you know you have a valid code point, this
|
|
// is not needed
|
|
c[0] = uint8_t((cp >> 18) + 240);
|
|
c[1] = uint8_t(((cp >> 12) & 63) + 128);
|
|
c[2] = uint8_t(((cp >> 6) & 63) + 128);
|
|
c[3] = uint8_t((cp & 63) + 128);
|
|
return 4;
|
|
}
|
|
// will return 0 when the code point was too large.
|
|
return 0; // bad r
|
|
}
|
|
|
|
#ifdef SIMDJSON_IS_32BITS // _umul128 for x86, arm
|
|
// this is a slow emulation routine for 32-bit
|
|
//
|
|
static simdjson_really_inline uint64_t __emulu(uint32_t x, uint32_t y) {
|
|
return x * (uint64_t)y;
|
|
}
|
|
static simdjson_really_inline uint64_t _umul128(uint64_t ab, uint64_t cd, uint64_t *hi) {
|
|
uint64_t ad = __emulu((uint32_t)(ab >> 32), (uint32_t)cd);
|
|
uint64_t bd = __emulu((uint32_t)ab, (uint32_t)cd);
|
|
uint64_t adbc = ad + __emulu((uint32_t)ab, (uint32_t)(cd >> 32));
|
|
uint64_t adbc_carry = !!(adbc < ad);
|
|
uint64_t lo = bd + (adbc << 32);
|
|
*hi = __emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) +
|
|
(adbc_carry << 32) + !!(lo < bd);
|
|
return lo;
|
|
}
|
|
#endif
|
|
|
|
simdjson_really_inline value128 full_multiplication(uint64_t value1, uint64_t value2) {
|
|
value128 answer;
|
|
#if defined(SIMDJSON_REGULAR_VISUAL_STUDIO) || defined(SIMDJSON_IS_32BITS)
|
|
#ifdef _M_ARM64
|
|
// ARM64 has native support for 64-bit multiplications, no need to emultate
|
|
answer.high = __umulh(value1, value2);
|
|
answer.low = value1 * value2;
|
|
#else
|
|
answer.low = _umul128(value1, value2, &answer.high); // _umul128 not available on ARM64
|
|
#endif // _M_ARM64
|
|
#else // defined(SIMDJSON_REGULAR_VISUAL_STUDIO) || defined(SIMDJSON_IS_32BITS)
|
|
__uint128_t r = ((__uint128_t)value1) * value2;
|
|
answer.low = uint64_t(r);
|
|
answer.high = uint64_t(r >> 64);
|
|
#endif
|
|
return answer;
|
|
}
|
|
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/jsoncharutils.h */
|
|
|
|
//
|
|
// Stage 1
|
|
//
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
using namespace simd;
|
|
|
|
struct json_character_block {
|
|
static simdjson_really_inline json_character_block classify(const simd::simd8x64<uint8_t>& in);
|
|
// ASCII white-space ('\r','\n','\t',' ')
|
|
simdjson_really_inline uint64_t whitespace() const { return _whitespace; }
|
|
// non-quote structural characters (comma, colon, braces, brackets)
|
|
simdjson_really_inline uint64_t op() const { return _op; }
|
|
// neither a structural character nor a white-space, so letters, numbers and quotes
|
|
simdjson_really_inline uint64_t scalar() { return ~(op() | whitespace()); }
|
|
|
|
uint64_t _whitespace; // ASCII white-space ('\r','\n','\t',' ')
|
|
uint64_t _op; // structural characters (comma, colon, braces, brackets but not quotes)
|
|
};
|
|
|
|
// This identifies structural characters (comma, colon, braces, brackets),
|
|
// and ASCII white-space ('\r','\n','\t',' ').
|
|
simdjson_really_inline json_character_block json_character_block::classify(const simd::simd8x64<uint8_t>& in) {
|
|
// These lookups rely on the fact that anything < 127 will match the lower 4 bits, which is why
|
|
// we can't use the generic lookup_16.
|
|
auto whitespace_table = simd8<uint8_t>::repeat_16(' ', 100, 100, 100, 17, 100, 113, 2, 100, '\t', '\n', 112, 100, '\r', 100, 100);
|
|
auto op_table = simd8<uint8_t>::repeat_16(',', '}', 0, 0, 0xc0u, 0, 0, 0, 0, 0, 0, 0, 0, 0, ':', '{');
|
|
|
|
// We compute whitespace and op separately. If the code later only use one or the
|
|
// other, given the fact that all functions are aggressively inlined, we can
|
|
// hope that useless computations will be omitted. This is namely case when
|
|
// minifying (we only need whitespace).
|
|
|
|
uint64_t whitespace = simd8x64<bool>(
|
|
in.chunks[0] == simd8<uint8_t>(_mm256_shuffle_epi8(whitespace_table, in.chunks[0])),
|
|
in.chunks[1] == simd8<uint8_t>(_mm256_shuffle_epi8(whitespace_table, in.chunks[1]))
|
|
).to_bitmask();
|
|
|
|
uint64_t op = simd8x64<bool>(
|
|
(in.chunks[0] | 32) == simd8<uint8_t>(_mm256_shuffle_epi8(op_table, in.chunks[0]-',')),
|
|
(in.chunks[1] | 32) == simd8<uint8_t>(_mm256_shuffle_epi8(op_table, in.chunks[1]-','))
|
|
).to_bitmask();
|
|
return { whitespace, op };
|
|
}
|
|
|
|
simdjson_really_inline bool is_ascii(const simd8x64<uint8_t>& input) {
|
|
return input.reduce_or().is_ascii();
|
|
}
|
|
|
|
SIMDJSON_UNUSED simdjson_really_inline simd8<bool> must_be_continuation(const simd8<uint8_t> prev1, const simd8<uint8_t> prev2, const simd8<uint8_t> prev3) {
|
|
simd8<uint8_t> is_second_byte = prev1.saturating_sub(0b11000000u-1); // Only 11______ will be > 0
|
|
simd8<uint8_t> is_third_byte = prev2.saturating_sub(0b11100000u-1); // Only 111_____ will be > 0
|
|
simd8<uint8_t> is_fourth_byte = prev3.saturating_sub(0b11110000u-1); // Only 1111____ will be > 0
|
|
// Caller requires a bool (all 1's). All values resulting from the subtraction will be <= 64, so signed comparison is fine.
|
|
return simd8<int8_t>(is_second_byte | is_third_byte | is_fourth_byte) > int8_t(0);
|
|
}
|
|
|
|
simdjson_really_inline simd8<bool> must_be_2_3_continuation(const simd8<uint8_t> prev2, const simd8<uint8_t> prev3) {
|
|
simd8<uint8_t> is_third_byte = prev2.saturating_sub(0b11100000u-1); // Only 111_____ will be > 0
|
|
simd8<uint8_t> is_fourth_byte = prev3.saturating_sub(0b11110000u-1); // Only 1111____ will be > 0
|
|
// Caller requires a bool (all 1's). All values resulting from the subtraction will be <= 64, so signed comparison is fine.
|
|
return simd8<int8_t>(is_third_byte | is_fourth_byte) > int8_t(0);
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
/* begin file src/generic/stage1/utf8_lookup4_algorithm.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace utf8_validation {
|
|
|
|
using namespace simd;
|
|
|
|
simdjson_really_inline simd8<uint8_t> check_special_cases(const simd8<uint8_t> input, const simd8<uint8_t> prev1) {
|
|
// Bit 0 = Too Short (lead byte/ASCII followed by lead byte/ASCII)
|
|
// Bit 1 = Too Long (ASCII followed by continuation)
|
|
// Bit 2 = Overlong 3-byte
|
|
// Bit 4 = Surrogate
|
|
// Bit 5 = Overlong 2-byte
|
|
// Bit 7 = Two Continuations
|
|
constexpr const uint8_t TOO_SHORT = 1<<0; // 11______ 0_______
|
|
// 11______ 11______
|
|
constexpr const uint8_t TOO_LONG = 1<<1; // 0_______ 10______
|
|
constexpr const uint8_t OVERLONG_3 = 1<<2; // 11100000 100_____
|
|
constexpr const uint8_t SURROGATE = 1<<4; // 11101101 101_____
|
|
constexpr const uint8_t OVERLONG_2 = 1<<5; // 1100000_ 10______
|
|
constexpr const uint8_t TWO_CONTS = 1<<7; // 10______ 10______
|
|
constexpr const uint8_t TOO_LARGE = 1<<3; // 11110100 1001____
|
|
// 11110100 101_____
|
|
// 11110101 1001____
|
|
// 11110101 101_____
|
|
// 1111011_ 1001____
|
|
// 1111011_ 101_____
|
|
// 11111___ 1001____
|
|
// 11111___ 101_____
|
|
constexpr const uint8_t TOO_LARGE_1000 = 1<<6;
|
|
// 11110101 1000____
|
|
// 1111011_ 1000____
|
|
// 11111___ 1000____
|
|
constexpr const uint8_t OVERLONG_4 = 1<<6; // 11110000 1000____
|
|
|
|
const simd8<uint8_t> byte_1_high = prev1.shr<4>().lookup_16<uint8_t>(
|
|
// 0_______ ________ <ASCII in byte 1>
|
|
TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG,
|
|
TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG,
|
|
// 10______ ________ <continuation in byte 1>
|
|
TWO_CONTS, TWO_CONTS, TWO_CONTS, TWO_CONTS,
|
|
// 1100____ ________ <two byte lead in byte 1>
|
|
TOO_SHORT | OVERLONG_2,
|
|
// 1101____ ________ <two byte lead in byte 1>
|
|
TOO_SHORT,
|
|
// 1110____ ________ <three byte lead in byte 1>
|
|
TOO_SHORT | OVERLONG_3 | SURROGATE,
|
|
// 1111____ ________ <four+ byte lead in byte 1>
|
|
TOO_SHORT | TOO_LARGE | TOO_LARGE_1000 | OVERLONG_4
|
|
);
|
|
constexpr const uint8_t CARRY = TOO_SHORT | TOO_LONG | TWO_CONTS; // These all have ____ in byte 1 .
|
|
const simd8<uint8_t> byte_1_low = (prev1 & 0x0F).lookup_16<uint8_t>(
|
|
// ____0000 ________
|
|
CARRY | OVERLONG_3 | OVERLONG_2 | OVERLONG_4,
|
|
// ____0001 ________
|
|
CARRY | OVERLONG_2,
|
|
// ____001_ ________
|
|
CARRY,
|
|
CARRY,
|
|
|
|
// ____0100 ________
|
|
CARRY | TOO_LARGE,
|
|
// ____0101 ________
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
// ____011_ ________
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
|
|
// ____1___ ________
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
// ____1101 ________
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000 | SURROGATE,
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000
|
|
);
|
|
const simd8<uint8_t> byte_2_high = input.shr<4>().lookup_16<uint8_t>(
|
|
// ________ 0_______ <ASCII in byte 2>
|
|
TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT,
|
|
TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT,
|
|
|
|
// ________ 1000____
|
|
TOO_LONG | OVERLONG_2 | TWO_CONTS | OVERLONG_3 | TOO_LARGE_1000 | OVERLONG_4,
|
|
// ________ 1001____
|
|
TOO_LONG | OVERLONG_2 | TWO_CONTS | OVERLONG_3 | TOO_LARGE,
|
|
// ________ 101_____
|
|
TOO_LONG | OVERLONG_2 | TWO_CONTS | SURROGATE | TOO_LARGE,
|
|
TOO_LONG | OVERLONG_2 | TWO_CONTS | SURROGATE | TOO_LARGE,
|
|
|
|
// ________ 11______
|
|
TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT
|
|
);
|
|
return (byte_1_high & byte_1_low & byte_2_high);
|
|
}
|
|
simdjson_really_inline simd8<uint8_t> check_multibyte_lengths(const simd8<uint8_t> input,
|
|
const simd8<uint8_t> prev_input, const simd8<uint8_t> sc) {
|
|
simd8<uint8_t> prev2 = input.prev<2>(prev_input);
|
|
simd8<uint8_t> prev3 = input.prev<3>(prev_input);
|
|
simd8<uint8_t> must23 = simd8<uint8_t>(must_be_2_3_continuation(prev2, prev3));
|
|
simd8<uint8_t> must23_80 = must23 & uint8_t(0x80);
|
|
return must23_80 ^ sc;
|
|
}
|
|
|
|
//
|
|
// Return nonzero if there are incomplete multibyte characters at the end of the block:
|
|
// e.g. if there is a 4-byte character, but it's 3 bytes from the end.
|
|
//
|
|
simdjson_really_inline simd8<uint8_t> is_incomplete(const simd8<uint8_t> input) {
|
|
// If the previous input's last 3 bytes match this, they're too short (they ended at EOF):
|
|
// ... 1111____ 111_____ 11______
|
|
static const uint8_t max_array[32] = {
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 0b11110000u-1, 0b11100000u-1, 0b11000000u-1
|
|
};
|
|
const simd8<uint8_t> max_value(&max_array[sizeof(max_array)-sizeof(simd8<uint8_t>)]);
|
|
return input.gt_bits(max_value);
|
|
}
|
|
|
|
struct utf8_checker {
|
|
// If this is nonzero, there has been a UTF-8 error.
|
|
simd8<uint8_t> error;
|
|
// The last input we received
|
|
simd8<uint8_t> prev_input_block;
|
|
// Whether the last input we received was incomplete (used for ASCII fast path)
|
|
simd8<uint8_t> prev_incomplete;
|
|
|
|
//
|
|
// Check whether the current bytes are valid UTF-8.
|
|
//
|
|
simdjson_really_inline void check_utf8_bytes(const simd8<uint8_t> input, const simd8<uint8_t> prev_input) {
|
|
// Flip prev1...prev3 so we can easily determine if they are 2+, 3+ or 4+ lead bytes
|
|
// (2, 3, 4-byte leads become large positive numbers instead of small negative numbers)
|
|
simd8<uint8_t> prev1 = input.prev<1>(prev_input);
|
|
simd8<uint8_t> sc = check_special_cases(input, prev1);
|
|
this->error |= check_multibyte_lengths(input, prev_input, sc);
|
|
}
|
|
|
|
// The only problem that can happen at EOF is that a multibyte character is too short.
|
|
simdjson_really_inline void check_eof() {
|
|
// If the previous block had incomplete UTF-8 characters at the end, an ASCII block can't
|
|
// possibly finish them.
|
|
this->error |= this->prev_incomplete;
|
|
}
|
|
|
|
simdjson_really_inline void check_next_input(const simd8x64<uint8_t>& input) {
|
|
if(simdjson_likely(is_ascii(input))) {
|
|
this->error |= this->prev_incomplete;
|
|
} else {
|
|
// you might think that a for-loop would work, but under Visual Studio, it is not good enough.
|
|
static_assert((simd8x64<uint8_t>::NUM_CHUNKS == 2) || (simd8x64<uint8_t>::NUM_CHUNKS == 4),
|
|
"We support either two or four chunks per 64-byte block.");
|
|
if(simd8x64<uint8_t>::NUM_CHUNKS == 2) {
|
|
this->check_utf8_bytes(input.chunks[0], this->prev_input_block);
|
|
this->check_utf8_bytes(input.chunks[1], input.chunks[0]);
|
|
} else if(simd8x64<uint8_t>::NUM_CHUNKS == 4) {
|
|
this->check_utf8_bytes(input.chunks[0], this->prev_input_block);
|
|
this->check_utf8_bytes(input.chunks[1], input.chunks[0]);
|
|
this->check_utf8_bytes(input.chunks[2], input.chunks[1]);
|
|
this->check_utf8_bytes(input.chunks[3], input.chunks[2]);
|
|
}
|
|
this->prev_incomplete = is_incomplete(input.chunks[simd8x64<uint8_t>::NUM_CHUNKS-1]);
|
|
this->prev_input_block = input.chunks[simd8x64<uint8_t>::NUM_CHUNKS-1];
|
|
|
|
}
|
|
}
|
|
|
|
simdjson_really_inline error_code errors() {
|
|
return this->error.any_bits_set_anywhere() ? error_code::UTF8_ERROR : error_code::SUCCESS;
|
|
}
|
|
|
|
}; // struct utf8_checker
|
|
} // namespace utf8_validation
|
|
|
|
using utf8_validation::utf8_checker;
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/utf8_lookup4_algorithm.h */
|
|
/* begin file src/generic/stage1/json_structural_indexer.h */
|
|
// This file contains the common code every implementation uses in stage1
|
|
// It is intended to be included multiple times and compiled multiple times
|
|
// We assume the file in which it is included already includes
|
|
// "simdjson/stage1.h" (this simplifies amalgation)
|
|
|
|
/* begin file src/generic/stage1/buf_block_reader.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
// Walks through a buffer in block-sized increments, loading the last part with spaces
|
|
template<size_t STEP_SIZE>
|
|
struct buf_block_reader {
|
|
public:
|
|
simdjson_really_inline buf_block_reader(const uint8_t *_buf, size_t _len);
|
|
simdjson_really_inline size_t block_index();
|
|
simdjson_really_inline bool has_full_block() const;
|
|
simdjson_really_inline const uint8_t *full_block() const;
|
|
/**
|
|
* Get the last block, padded with spaces.
|
|
*
|
|
* There will always be a last block, with at least 1 byte, unless len == 0 (in which case this
|
|
* function fills the buffer with spaces and returns 0. In particular, if len == STEP_SIZE there
|
|
* will be 0 full_blocks and 1 remainder block with STEP_SIZE bytes and no spaces for padding.
|
|
*
|
|
* @return the number of effective characters in the last block.
|
|
*/
|
|
simdjson_really_inline size_t get_remainder(uint8_t *dst) const;
|
|
simdjson_really_inline void advance();
|
|
private:
|
|
const uint8_t *buf;
|
|
const size_t len;
|
|
const size_t lenminusstep;
|
|
size_t idx;
|
|
};
|
|
|
|
// Routines to print masks and text for debugging bitmask operations
|
|
SIMDJSON_UNUSED static char * format_input_text_64(const uint8_t *text) {
|
|
static char *buf = (char*)malloc(sizeof(simd8x64<uint8_t>) + 1);
|
|
for (size_t i=0; i<sizeof(simd8x64<uint8_t>); i++) {
|
|
buf[i] = int8_t(text[i]) < ' ' ? '_' : int8_t(text[i]);
|
|
}
|
|
buf[sizeof(simd8x64<uint8_t>)] = '\0';
|
|
return buf;
|
|
}
|
|
|
|
// Routines to print masks and text for debugging bitmask operations
|
|
SIMDJSON_UNUSED static char * format_input_text(const simd8x64<uint8_t>& in) {
|
|
static char *buf = (char*)malloc(sizeof(simd8x64<uint8_t>) + 1);
|
|
in.store((uint8_t*)buf);
|
|
for (size_t i=0; i<sizeof(simd8x64<uint8_t>); i++) {
|
|
if (buf[i] < ' ') { buf[i] = '_'; }
|
|
}
|
|
buf[sizeof(simd8x64<uint8_t>)] = '\0';
|
|
return buf;
|
|
}
|
|
|
|
SIMDJSON_UNUSED static char * format_mask(uint64_t mask) {
|
|
static char *buf = (char*)malloc(64 + 1);
|
|
for (size_t i=0; i<64; i++) {
|
|
buf[i] = (mask & (size_t(1) << i)) ? 'X' : ' ';
|
|
}
|
|
buf[64] = '\0';
|
|
return buf;
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
simdjson_really_inline buf_block_reader<STEP_SIZE>::buf_block_reader(const uint8_t *_buf, size_t _len) : buf{_buf}, len{_len}, lenminusstep{len < STEP_SIZE ? 0 : len - STEP_SIZE}, idx{0} {}
|
|
|
|
template<size_t STEP_SIZE>
|
|
simdjson_really_inline size_t buf_block_reader<STEP_SIZE>::block_index() { return idx; }
|
|
|
|
template<size_t STEP_SIZE>
|
|
simdjson_really_inline bool buf_block_reader<STEP_SIZE>::has_full_block() const {
|
|
return idx < lenminusstep;
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
simdjson_really_inline const uint8_t *buf_block_reader<STEP_SIZE>::full_block() const {
|
|
return &buf[idx];
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
simdjson_really_inline size_t buf_block_reader<STEP_SIZE>::get_remainder(uint8_t *dst) const {
|
|
memset(dst, 0x20, STEP_SIZE); // memset STEP_SIZE because it's more efficient to write out 8 or 16 bytes at once.
|
|
memcpy(dst, buf + idx, len - idx);
|
|
return len - idx;
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
simdjson_really_inline void buf_block_reader<STEP_SIZE>::advance() {
|
|
idx += STEP_SIZE;
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/buf_block_reader.h */
|
|
/* begin file src/generic/stage1/json_string_scanner.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage1 {
|
|
|
|
struct json_string_block {
|
|
// Escaped characters (characters following an escape() character)
|
|
simdjson_really_inline uint64_t escaped() const { return _escaped; }
|
|
// Escape characters (backslashes that are not escaped--i.e. in \\, includes only the first \)
|
|
simdjson_really_inline uint64_t escape() const { return _backslash & ~_escaped; }
|
|
// Real (non-backslashed) quotes
|
|
simdjson_really_inline uint64_t quote() const { return _quote; }
|
|
// Start quotes of strings
|
|
simdjson_really_inline uint64_t string_start() const { return _quote & _in_string; }
|
|
// End quotes of strings
|
|
simdjson_really_inline uint64_t string_end() const { return _quote & ~_in_string; }
|
|
// Only characters inside the string (not including the quotes)
|
|
simdjson_really_inline uint64_t string_content() const { return _in_string & ~_quote; }
|
|
// Return a mask of whether the given characters are inside a string (only works on non-quotes)
|
|
simdjson_really_inline uint64_t non_quote_inside_string(uint64_t mask) const { return mask & _in_string; }
|
|
// Return a mask of whether the given characters are inside a string (only works on non-quotes)
|
|
simdjson_really_inline uint64_t non_quote_outside_string(uint64_t mask) const { return mask & ~_in_string; }
|
|
// Tail of string (everything except the start quote)
|
|
simdjson_really_inline uint64_t string_tail() const { return _in_string ^ _quote; }
|
|
|
|
// backslash characters
|
|
uint64_t _backslash;
|
|
// escaped characters (backslashed--does not include the hex characters after \u)
|
|
uint64_t _escaped;
|
|
// real quotes (non-backslashed ones)
|
|
uint64_t _quote;
|
|
// string characters (includes start quote but not end quote)
|
|
uint64_t _in_string;
|
|
};
|
|
|
|
// Scans blocks for string characters, storing the state necessary to do so
|
|
class json_string_scanner {
|
|
public:
|
|
simdjson_really_inline json_string_block next(const simd::simd8x64<uint8_t>& in);
|
|
simdjson_really_inline error_code finish(bool streaming);
|
|
|
|
private:
|
|
// Intended to be defined by the implementation
|
|
simdjson_really_inline uint64_t find_escaped(uint64_t escape);
|
|
simdjson_really_inline uint64_t find_escaped_branchless(uint64_t escape);
|
|
|
|
// Whether the last iteration was still inside a string (all 1's = true, all 0's = false).
|
|
uint64_t prev_in_string = 0ULL;
|
|
// Whether the first character of the next iteration is escaped.
|
|
uint64_t prev_escaped = 0ULL;
|
|
};
|
|
|
|
//
|
|
// Finds escaped characters (characters following \).
|
|
//
|
|
// Handles runs of backslashes like \\\" and \\\\" correctly (yielding 0101 and 01010, respectively).
|
|
//
|
|
// Does this by:
|
|
// - Shift the escape mask to get potentially escaped characters (characters after backslashes).
|
|
// - Mask escaped sequences that start on *even* bits with 1010101010 (odd bits are escaped, even bits are not)
|
|
// - Mask escaped sequences that start on *odd* bits with 0101010101 (even bits are escaped, odd bits are not)
|
|
//
|
|
// To distinguish between escaped sequences starting on even/odd bits, it finds the start of all
|
|
// escape sequences, filters out the ones that start on even bits, and adds that to the mask of
|
|
// escape sequences. This causes the addition to clear out the sequences starting on odd bits (since
|
|
// the start bit causes a carry), and leaves even-bit sequences alone.
|
|
//
|
|
// Example:
|
|
//
|
|
// text | \\\ | \\\"\\\" \\\" \\"\\" |
|
|
// escape | xxx | xx xxx xxx xx xx | Removed overflow backslash; will | it into follows_escape
|
|
// odd_starts | x | x x x | escape & ~even_bits & ~follows_escape
|
|
// even_seq | c| cxxx c xx c | c = carry bit -- will be masked out later
|
|
// invert_mask | | cxxx c xx c| even_seq << 1
|
|
// follows_escape | xx | x xx xxx xxx xx xx | Includes overflow bit
|
|
// escaped | x | x x x x x x x x |
|
|
// desired | x | x x x x x x x x |
|
|
// text | \\\ | \\\"\\\" \\\" \\"\\" |
|
|
//
|
|
simdjson_really_inline uint64_t json_string_scanner::find_escaped_branchless(uint64_t backslash) {
|
|
// If there was overflow, pretend the first character isn't a backslash
|
|
backslash &= ~prev_escaped;
|
|
uint64_t follows_escape = backslash << 1 | prev_escaped;
|
|
|
|
// Get sequences starting on even bits by clearing out the odd series using +
|
|
const uint64_t even_bits = 0x5555555555555555ULL;
|
|
uint64_t odd_sequence_starts = backslash & ~even_bits & ~follows_escape;
|
|
uint64_t sequences_starting_on_even_bits;
|
|
prev_escaped = add_overflow(odd_sequence_starts, backslash, &sequences_starting_on_even_bits);
|
|
uint64_t invert_mask = sequences_starting_on_even_bits << 1; // The mask we want to return is the *escaped* bits, not escapes.
|
|
|
|
// Mask every other backslashed character as an escaped character
|
|
// Flip the mask for sequences that start on even bits, to correct them
|
|
return (even_bits ^ invert_mask) & follows_escape;
|
|
}
|
|
|
|
//
|
|
// Return a mask of all string characters plus end quotes.
|
|
//
|
|
// prev_escaped is overflow saying whether the next character is escaped.
|
|
// prev_in_string is overflow saying whether we're still in a string.
|
|
//
|
|
// Backslash sequences outside of quotes will be detected in stage 2.
|
|
//
|
|
simdjson_really_inline json_string_block json_string_scanner::next(const simd::simd8x64<uint8_t>& in) {
|
|
const uint64_t backslash = in.eq('\\');
|
|
const uint64_t escaped = find_escaped(backslash);
|
|
const uint64_t quote = in.eq('"') & ~escaped;
|
|
|
|
//
|
|
// prefix_xor flips on bits inside the string (and flips off the end quote).
|
|
//
|
|
// Then we xor with prev_in_string: if we were in a string already, its effect is flipped
|
|
// (characters inside strings are outside, and characters outside strings are inside).
|
|
//
|
|
const uint64_t in_string = prefix_xor(quote) ^ prev_in_string;
|
|
|
|
//
|
|
// Check if we're still in a string at the end of the box so the next block will know
|
|
//
|
|
// right shift of a signed value expected to be well-defined and standard
|
|
// compliant as of C++20, John Regher from Utah U. says this is fine code
|
|
//
|
|
prev_in_string = uint64_t(static_cast<int64_t>(in_string) >> 63);
|
|
|
|
// Use ^ to turn the beginning quote off, and the end quote on.
|
|
return {
|
|
backslash,
|
|
escaped,
|
|
quote,
|
|
in_string
|
|
};
|
|
}
|
|
|
|
simdjson_really_inline error_code json_string_scanner::finish(bool streaming) {
|
|
if (prev_in_string and (not streaming)) {
|
|
return UNCLOSED_STRING;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace stage1
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/json_string_scanner.h */
|
|
/* begin file src/generic/stage1/json_scanner.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage1 {
|
|
|
|
/**
|
|
* A block of scanned json, with information on operators and scalars.
|
|
*
|
|
* We seek to identify pseudo-structural characters. Anything that is inside
|
|
* a string must be omitted (hence & ~_string.string_tail()).
|
|
* Otherwise, pseudo-structural characters come in two forms.
|
|
* 1. We have the structural characters ([,],{,},:, comma). The
|
|
* term 'structural character' is from the JSON RFC.
|
|
* 2. We have the 'scalar pseudo-structural characters'.
|
|
* Scalars are quotes, and any character except structural characters and white space.
|
|
*
|
|
* To identify the scalar pseudo-structural characters, we must look at what comes
|
|
* before them: it must be a space, a quote or a structural characters.
|
|
* Starting with simdjson v0.3, we identify them by
|
|
* negation: we identify everything that is followed by a non-quote scalar,
|
|
* and we negate that. Whatever remains must be a 'scalar pseudo-structural character'.
|
|
*/
|
|
struct json_block {
|
|
public:
|
|
/**
|
|
* The start of structurals.
|
|
* In simdjson prior to v0.3, these were called the pseudo-structural characters.
|
|
**/
|
|
simdjson_really_inline uint64_t structural_start() { return potential_structural_start() & ~_string.string_tail(); }
|
|
/** All JSON whitespace (i.e. not in a string) */
|
|
simdjson_really_inline uint64_t whitespace() { return non_quote_outside_string(_characters.whitespace()); }
|
|
|
|
// Helpers
|
|
|
|
/** Whether the given characters are inside a string (only works on non-quotes) */
|
|
simdjson_really_inline uint64_t non_quote_inside_string(uint64_t mask) { return _string.non_quote_inside_string(mask); }
|
|
/** Whether the given characters are outside a string (only works on non-quotes) */
|
|
simdjson_really_inline uint64_t non_quote_outside_string(uint64_t mask) { return _string.non_quote_outside_string(mask); }
|
|
|
|
// string and escape characters
|
|
json_string_block _string;
|
|
// whitespace, structural characters ('operators'), scalars
|
|
json_character_block _characters;
|
|
// whether the previous character was a scalar
|
|
uint64_t _follows_potential_nonquote_scalar;
|
|
private:
|
|
// Potential structurals (i.e. disregarding strings)
|
|
|
|
/**
|
|
* structural elements ([,],{,},:, comma) plus scalar starts like 123, true and "abc".
|
|
* They may reside inside a string.
|
|
**/
|
|
simdjson_really_inline uint64_t potential_structural_start() { return _characters.op() | potential_scalar_start(); }
|
|
/**
|
|
* The start of non-operator runs, like 123, true and "abc".
|
|
* It main reside inside a string.
|
|
**/
|
|
simdjson_really_inline uint64_t potential_scalar_start() {
|
|
// The term "scalar" refers to anything except structural characters and white space
|
|
// (so letters, numbers, quotes).
|
|
// Whenever it is preceded by something that is not a structural element ({,},[,],:, ") nor a white-space
|
|
// then we know that it is irrelevant structurally.
|
|
return _characters.scalar() & ~follows_potential_scalar();
|
|
}
|
|
/**
|
|
* Whether the given character is immediately after a non-operator like 123, true.
|
|
* The characters following a quote are not included.
|
|
*/
|
|
simdjson_really_inline uint64_t follows_potential_scalar() {
|
|
// _follows_potential_nonquote_scalar: is defined as marking any character that follows a character
|
|
// that is not a structural element ({,},[,],:, comma) nor a quote (") and that is not a
|
|
// white space.
|
|
// It is understood that within quoted region, anything at all could be marked (irrelevant).
|
|
return _follows_potential_nonquote_scalar;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Scans JSON for important bits: structural characters or 'operators', strings, and scalars.
|
|
*
|
|
* The scanner starts by calculating two distinct things:
|
|
* - string characters (taking \" into account)
|
|
* - structural characters or 'operators' ([]{},:, comma)
|
|
* and scalars (runs of non-operators like 123, true and "abc")
|
|
*
|
|
* To minimize data dependency (a key component of the scanner's speed), it finds these in parallel:
|
|
* in particular, the operator/scalar bit will find plenty of things that are actually part of
|
|
* strings. When we're done, json_block will fuse the two together by masking out tokens that are
|
|
* part of a string.
|
|
*/
|
|
class json_scanner {
|
|
public:
|
|
json_scanner() {}
|
|
simdjson_really_inline json_block next(const simd::simd8x64<uint8_t>& in);
|
|
simdjson_really_inline error_code finish(bool streaming);
|
|
|
|
private:
|
|
// Whether the last character of the previous iteration is part of a scalar token
|
|
// (anything except whitespace or a structural character/'operator').
|
|
uint64_t prev_scalar = 0ULL;
|
|
json_string_scanner string_scanner{};
|
|
};
|
|
|
|
|
|
//
|
|
// Check if the current character immediately follows a matching character.
|
|
//
|
|
// For example, this checks for quotes with backslashes in front of them:
|
|
//
|
|
// const uint64_t backslashed_quote = in.eq('"') & immediately_follows(in.eq('\'), prev_backslash);
|
|
//
|
|
simdjson_really_inline uint64_t follows(const uint64_t match, uint64_t &overflow) {
|
|
const uint64_t result = match << 1 | overflow;
|
|
overflow = match >> 63;
|
|
return result;
|
|
}
|
|
|
|
simdjson_really_inline json_block json_scanner::next(const simd::simd8x64<uint8_t>& in) {
|
|
json_string_block strings = string_scanner.next(in);
|
|
// identifies the white-space and the structurat characters
|
|
json_character_block characters = json_character_block::classify(in);
|
|
// The term "scalar" refers to anything except structural characters and white space
|
|
// (so letters, numbers, quotes).
|
|
// We want follows_scalar to mark anything that follows a non-quote scalar (so letters and numbers).
|
|
//
|
|
// A terminal quote should either be followed by a structural character (comma, brace, bracket, colon)
|
|
// or nothing. However, we still want ' "a string"true ' to mark the 't' of 'true' as a potential
|
|
// pseudo-structural character just like we would if we had ' "a string" true '; otherwise we
|
|
// may need to add an extra check when parsing strings.
|
|
//
|
|
// Performance: there are many ways to skin this cat.
|
|
const uint64_t nonquote_scalar = characters.scalar() & ~strings.quote();
|
|
uint64_t follows_nonquote_scalar = follows(nonquote_scalar, prev_scalar);
|
|
return {
|
|
strings,
|
|
characters,
|
|
follows_nonquote_scalar
|
|
};
|
|
}
|
|
|
|
simdjson_really_inline error_code json_scanner::finish(bool streaming) {
|
|
return string_scanner.finish(streaming);
|
|
}
|
|
|
|
} // namespace stage1
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/json_scanner.h */
|
|
/* begin file src/generic/stage1/json_minifier.h */
|
|
// This file contains the common code every implementation uses in stage1
|
|
// It is intended to be included multiple times and compiled multiple times
|
|
// We assume the file in which it is included already includes
|
|
// "simdjson/stage1.h" (this simplifies amalgation)
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage1 {
|
|
|
|
class json_minifier {
|
|
public:
|
|
template<size_t STEP_SIZE>
|
|
static error_code minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) noexcept;
|
|
|
|
private:
|
|
simdjson_really_inline json_minifier(uint8_t *_dst)
|
|
: dst{_dst}
|
|
{}
|
|
template<size_t STEP_SIZE>
|
|
simdjson_really_inline void step(const uint8_t *block_buf, buf_block_reader<STEP_SIZE> &reader) noexcept;
|
|
simdjson_really_inline void next(const simd::simd8x64<uint8_t>& in, json_block block);
|
|
simdjson_really_inline error_code finish(uint8_t *dst_start, size_t &dst_len);
|
|
json_scanner scanner{};
|
|
uint8_t *dst;
|
|
};
|
|
|
|
simdjson_really_inline void json_minifier::next(const simd::simd8x64<uint8_t>& in, json_block block) {
|
|
uint64_t mask = block.whitespace();
|
|
in.compress(mask, dst);
|
|
dst += 64 - count_ones(mask);
|
|
}
|
|
|
|
simdjson_really_inline error_code json_minifier::finish(uint8_t *dst_start, size_t &dst_len) {
|
|
*dst = '\0';
|
|
error_code error = scanner.finish(false);
|
|
if (error) { dst_len = 0; return error; }
|
|
dst_len = dst - dst_start;
|
|
return SUCCESS;
|
|
}
|
|
|
|
template<>
|
|
simdjson_really_inline void json_minifier::step<128>(const uint8_t *block_buf, buf_block_reader<128> &reader) noexcept {
|
|
simd::simd8x64<uint8_t> in_1(block_buf);
|
|
simd::simd8x64<uint8_t> in_2(block_buf+64);
|
|
json_block block_1 = scanner.next(in_1);
|
|
json_block block_2 = scanner.next(in_2);
|
|
this->next(in_1, block_1);
|
|
this->next(in_2, block_2);
|
|
reader.advance();
|
|
}
|
|
|
|
template<>
|
|
simdjson_really_inline void json_minifier::step<64>(const uint8_t *block_buf, buf_block_reader<64> &reader) noexcept {
|
|
simd::simd8x64<uint8_t> in_1(block_buf);
|
|
json_block block_1 = scanner.next(in_1);
|
|
this->next(block_buf, block_1);
|
|
reader.advance();
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
error_code json_minifier::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) noexcept {
|
|
buf_block_reader<STEP_SIZE> reader(buf, len);
|
|
json_minifier minifier(dst);
|
|
|
|
// Index the first n-1 blocks
|
|
while (reader.has_full_block()) {
|
|
minifier.step<STEP_SIZE>(reader.full_block(), reader);
|
|
}
|
|
|
|
// Index the last (remainder) block, padded with spaces
|
|
uint8_t block[STEP_SIZE];
|
|
if (simdjson_likely(reader.get_remainder(block)) > 0) {
|
|
minifier.step<STEP_SIZE>(block, reader);
|
|
}
|
|
|
|
return minifier.finish(dst, dst_len);
|
|
}
|
|
|
|
} // namespace stage1
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/json_minifier.h */
|
|
/* begin file src/generic/stage1/find_next_document_index.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
/**
|
|
* This algorithm is used to quickly identify the last structural position that
|
|
* makes up a complete document.
|
|
*
|
|
* It does this by going backwards and finding the last *document boundary* (a
|
|
* place where one value follows another without a comma between them). If the
|
|
* last document (the characters after the boundary) has an equal number of
|
|
* start and end brackets, it is considered complete.
|
|
*
|
|
* Simply put, we iterate over the structural characters, starting from
|
|
* the end. We consider that we found the end of a JSON document when the
|
|
* first element of the pair is NOT one of these characters: '{' '[' ';' ','
|
|
* and when the second element is NOT one of these characters: '}' '}' ';' ','.
|
|
*
|
|
* This simple comparison works most of the time, but it does not cover cases
|
|
* where the batch's structural indexes contain a perfect amount of documents.
|
|
* In such a case, we do not have access to the structural index which follows
|
|
* the last document, therefore, we do not have access to the second element in
|
|
* the pair, and that means we cannot identify the last document. To fix this
|
|
* issue, we keep a count of the open and closed curly/square braces we found
|
|
* while searching for the pair. When we find a pair AND the count of open and
|
|
* closed curly/square braces is the same, we know that we just passed a
|
|
* complete document, therefore the last json buffer location is the end of the
|
|
* batch.
|
|
*/
|
|
simdjson_really_inline uint32_t find_next_document_index(dom_parser_implementation &parser) {
|
|
// TODO don't count separately, just figure out depth
|
|
auto arr_cnt = 0;
|
|
auto obj_cnt = 0;
|
|
for (auto i = parser.n_structural_indexes - 1; i > 0; i--) {
|
|
auto idxb = parser.structural_indexes[i];
|
|
switch (parser.buf[idxb]) {
|
|
case ':':
|
|
case ',':
|
|
continue;
|
|
case '}':
|
|
obj_cnt--;
|
|
continue;
|
|
case ']':
|
|
arr_cnt--;
|
|
continue;
|
|
case '{':
|
|
obj_cnt++;
|
|
break;
|
|
case '[':
|
|
arr_cnt++;
|
|
break;
|
|
}
|
|
auto idxa = parser.structural_indexes[i - 1];
|
|
switch (parser.buf[idxa]) {
|
|
case '{':
|
|
case '[':
|
|
case ':':
|
|
case ',':
|
|
continue;
|
|
}
|
|
// Last document is complete, so the next document will appear after!
|
|
if (!arr_cnt && !obj_cnt) {
|
|
return parser.n_structural_indexes;
|
|
}
|
|
// Last document is incomplete; mark the document at i + 1 as the next one
|
|
return i;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/find_next_document_index.h */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage1 {
|
|
|
|
class bit_indexer {
|
|
public:
|
|
uint32_t *tail;
|
|
|
|
simdjson_really_inline bit_indexer(uint32_t *index_buf) : tail(index_buf) {}
|
|
|
|
// flatten out values in 'bits' assuming that they are are to have values of idx
|
|
// plus their position in the bitvector, and store these indexes at
|
|
// base_ptr[base] incrementing base as we go
|
|
// will potentially store extra values beyond end of valid bits, so base_ptr
|
|
// needs to be large enough to handle this
|
|
simdjson_really_inline void write(uint32_t idx, uint64_t bits) {
|
|
// In some instances, the next branch is expensive because it is mispredicted.
|
|
// Unfortunately, in other cases,
|
|
// it helps tremendously.
|
|
if (bits == 0)
|
|
return;
|
|
int cnt = static_cast<int>(count_ones(bits));
|
|
|
|
// Do the first 8 all together
|
|
for (int i=0; i<8; i++) {
|
|
this->tail[i] = idx + trailing_zeroes(bits);
|
|
bits = clear_lowest_bit(bits);
|
|
}
|
|
|
|
// Do the next 8 all together (we hope in most cases it won't happen at all
|
|
// and the branch is easily predicted).
|
|
if (simdjson_unlikely(cnt > 8)) {
|
|
for (int i=8; i<16; i++) {
|
|
this->tail[i] = idx + trailing_zeroes(bits);
|
|
bits = clear_lowest_bit(bits);
|
|
}
|
|
|
|
// Most files don't have 16+ structurals per block, so we take several basically guaranteed
|
|
// branch mispredictions here. 16+ structurals per block means either punctuation ({} [] , :)
|
|
// or the start of a value ("abc" true 123) every four characters.
|
|
if (simdjson_unlikely(cnt > 16)) {
|
|
int i = 16;
|
|
do {
|
|
this->tail[i] = idx + trailing_zeroes(bits);
|
|
bits = clear_lowest_bit(bits);
|
|
i++;
|
|
} while (i < cnt);
|
|
}
|
|
}
|
|
|
|
this->tail += cnt;
|
|
}
|
|
};
|
|
|
|
class json_structural_indexer {
|
|
public:
|
|
/**
|
|
* Find the important bits of JSON in a 128-byte chunk, and add them to structural_indexes.
|
|
*
|
|
* @param partial Setting the partial parameter to true allows the find_structural_bits to
|
|
* tolerate unclosed strings. The caller should still ensure that the input is valid UTF-8. If
|
|
* you are processing substrings, you may want to call on a function like trimmed_length_safe_utf8.
|
|
*/
|
|
template<size_t STEP_SIZE>
|
|
static error_code index(const uint8_t *buf, size_t len, dom_parser_implementation &parser, bool partial) noexcept;
|
|
|
|
private:
|
|
simdjson_really_inline json_structural_indexer(uint32_t *structural_indexes);
|
|
template<size_t STEP_SIZE>
|
|
simdjson_really_inline void step(const uint8_t *block, buf_block_reader<STEP_SIZE> &reader) noexcept;
|
|
simdjson_really_inline void next(const simd::simd8x64<uint8_t>& in, json_block block, size_t idx);
|
|
simdjson_really_inline error_code finish(dom_parser_implementation &parser, size_t idx, size_t len, bool partial);
|
|
|
|
json_scanner scanner{};
|
|
utf8_checker checker{};
|
|
bit_indexer indexer;
|
|
uint64_t prev_structurals = 0;
|
|
uint64_t unescaped_chars_error = 0;
|
|
};
|
|
|
|
simdjson_really_inline json_structural_indexer::json_structural_indexer(uint32_t *structural_indexes) : indexer{structural_indexes} {}
|
|
|
|
// Skip the last character if it is partial
|
|
simdjson_really_inline size_t trim_partial_utf8(const uint8_t *buf, size_t len) {
|
|
if (simdjson_unlikely(len < 3)) {
|
|
switch (len) {
|
|
case 2:
|
|
if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left
|
|
if (buf[len-2] >= 0b11100000) { return len-2; } // 3- and 4-byte characters with only 2 bytes left
|
|
return len;
|
|
case 1:
|
|
if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left
|
|
return len;
|
|
case 0:
|
|
return len;
|
|
}
|
|
}
|
|
if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left
|
|
if (buf[len-2] >= 0b11100000) { return len-2; } // 3- and 4-byte characters with only 1 byte left
|
|
if (buf[len-3] >= 0b11110000) { return len-3; } // 4-byte characters with only 3 bytes left
|
|
return len;
|
|
}
|
|
|
|
//
|
|
// PERF NOTES:
|
|
// We pipe 2 inputs through these stages:
|
|
// 1. Load JSON into registers. This takes a long time and is highly parallelizable, so we load
|
|
// 2 inputs' worth at once so that by the time step 2 is looking for them input, it's available.
|
|
// 2. Scan the JSON for critical data: strings, scalars and operators. This is the critical path.
|
|
// The output of step 1 depends entirely on this information. These functions don't quite use
|
|
// up enough CPU: the second half of the functions is highly serial, only using 1 execution core
|
|
// at a time. The second input's scans has some dependency on the first ones finishing it, but
|
|
// they can make a lot of progress before they need that information.
|
|
// 3. Step 1 doesn't use enough capacity, so we run some extra stuff while we're waiting for that
|
|
// to finish: utf-8 checks and generating the output from the last iteration.
|
|
//
|
|
// The reason we run 2 inputs at a time, is steps 2 and 3 are *still* not enough to soak up all
|
|
// available capacity with just one input. Running 2 at a time seems to give the CPU a good enough
|
|
// workout.
|
|
//
|
|
template<size_t STEP_SIZE>
|
|
error_code json_structural_indexer::index(const uint8_t *buf, size_t len, dom_parser_implementation &parser, bool partial) noexcept {
|
|
if (simdjson_unlikely(len > parser.capacity())) { return CAPACITY; }
|
|
if (partial) { len = trim_partial_utf8(buf, len); }
|
|
|
|
buf_block_reader<STEP_SIZE> reader(buf, len);
|
|
json_structural_indexer indexer(parser.structural_indexes.get());
|
|
|
|
// Read all but the last block
|
|
while (reader.has_full_block()) {
|
|
indexer.step<STEP_SIZE>(reader.full_block(), reader);
|
|
}
|
|
|
|
// Take care of the last block (will always be there unless file is empty)
|
|
uint8_t block[STEP_SIZE];
|
|
if (simdjson_unlikely(reader.get_remainder(block) == 0)) { return EMPTY; }
|
|
indexer.step<STEP_SIZE>(block, reader);
|
|
|
|
return indexer.finish(parser, reader.block_index(), len, partial);
|
|
}
|
|
|
|
template<>
|
|
simdjson_really_inline void json_structural_indexer::step<128>(const uint8_t *block, buf_block_reader<128> &reader) noexcept {
|
|
simd::simd8x64<uint8_t> in_1(block);
|
|
simd::simd8x64<uint8_t> in_2(block+64);
|
|
json_block block_1 = scanner.next(in_1);
|
|
json_block block_2 = scanner.next(in_2);
|
|
this->next(in_1, block_1, reader.block_index());
|
|
this->next(in_2, block_2, reader.block_index()+64);
|
|
reader.advance();
|
|
}
|
|
|
|
template<>
|
|
simdjson_really_inline void json_structural_indexer::step<64>(const uint8_t *block, buf_block_reader<64> &reader) noexcept {
|
|
simd::simd8x64<uint8_t> in_1(block);
|
|
json_block block_1 = scanner.next(in_1);
|
|
this->next(in_1, block_1, reader.block_index());
|
|
reader.advance();
|
|
}
|
|
|
|
simdjson_really_inline void json_structural_indexer::next(const simd::simd8x64<uint8_t>& in, json_block block, size_t idx) {
|
|
uint64_t unescaped = in.lteq(0x1F);
|
|
checker.check_next_input(in);
|
|
indexer.write(uint32_t(idx-64), prev_structurals); // Output *last* iteration's structurals to the parser
|
|
prev_structurals = block.structural_start();
|
|
unescaped_chars_error |= block.non_quote_inside_string(unescaped);
|
|
}
|
|
|
|
simdjson_really_inline error_code json_structural_indexer::finish(dom_parser_implementation &parser, size_t idx, size_t len, bool partial) {
|
|
// Write out the final iteration's structurals
|
|
indexer.write(uint32_t(idx-64), prev_structurals);
|
|
|
|
error_code error = scanner.finish(partial);
|
|
if (simdjson_unlikely(error != SUCCESS)) { return error; }
|
|
|
|
if (unescaped_chars_error) {
|
|
return UNESCAPED_CHARS;
|
|
}
|
|
|
|
parser.n_structural_indexes = uint32_t(indexer.tail - parser.structural_indexes.get());
|
|
/***
|
|
* This is related to https://github.com/simdjson/simdjson/issues/906
|
|
* Basically, we want to make sure that if the parsing continues beyond the last (valid)
|
|
* structural character, it quickly stops.
|
|
* Only three structural characters can be repeated without triggering an error in JSON: [,] and }.
|
|
* We repeat the padding character (at 'len'). We don't know what it is, but if the parsing
|
|
* continues, then it must be [,] or }.
|
|
* Suppose it is ] or }. We backtrack to the first character, what could it be that would
|
|
* not trigger an error? It could be ] or } but no, because you can't start a document that way.
|
|
* It can't be a comma, a colon or any simple value. So the only way we could continue is
|
|
* if the repeated character is [. But if so, the document must start with [. But if the document
|
|
* starts with [, it should end with ]. If we enforce that rule, then we would get
|
|
* ][[ which is invalid.
|
|
**/
|
|
parser.structural_indexes[parser.n_structural_indexes] = uint32_t(len);
|
|
parser.structural_indexes[parser.n_structural_indexes + 1] = uint32_t(len);
|
|
parser.structural_indexes[parser.n_structural_indexes + 2] = 0;
|
|
parser.next_structural_index = 0;
|
|
// a valid JSON file cannot have zero structural indexes - we should have found something
|
|
if (simdjson_unlikely(parser.n_structural_indexes == 0u)) {
|
|
return EMPTY;
|
|
}
|
|
if (simdjson_unlikely(parser.structural_indexes[parser.n_structural_indexes - 1] > len)) {
|
|
return UNEXPECTED_ERROR;
|
|
}
|
|
if (partial) {
|
|
auto new_structural_indexes = find_next_document_index(parser);
|
|
if (new_structural_indexes == 0 && parser.n_structural_indexes > 0) {
|
|
return CAPACITY; // If the buffer is partial but the document is incomplete, it's too big to parse.
|
|
}
|
|
parser.n_structural_indexes = new_structural_indexes;
|
|
}
|
|
return checker.errors();
|
|
}
|
|
|
|
} // namespace stage1
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/find_next_document_index.h */
|
|
/* begin file src/generic/stage1/utf8_validator.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage1 {
|
|
|
|
/**
|
|
* Validates that the string is actual UTF-8.
|
|
*/
|
|
template<class checker>
|
|
bool generic_validate_utf8(const uint8_t * input, size_t length) {
|
|
checker c{};
|
|
buf_block_reader<64> reader(input, length);
|
|
while (reader.has_full_block()) {
|
|
simd::simd8x64<uint8_t> in(reader.full_block());
|
|
c.check_next_input(in);
|
|
reader.advance();
|
|
}
|
|
uint8_t block[64]{};
|
|
reader.get_remainder(block);
|
|
simd::simd8x64<uint8_t> in(block);
|
|
c.check_next_input(in);
|
|
reader.advance();
|
|
return c.errors() == error_code::SUCCESS;
|
|
}
|
|
|
|
bool generic_validate_utf8(const char * input, size_t length) {
|
|
return generic_validate_utf8<utf8_checker>((const uint8_t *)input,length);
|
|
}
|
|
|
|
} // namespace stage1
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/utf8_validator.h */
|
|
|
|
//
|
|
// Stage 2
|
|
//
|
|
/* begin file src/haswell/stringparsing.h */
|
|
#ifndef SIMDJSON_HASWELL_STRINGPARSING_H
|
|
#define SIMDJSON_HASWELL_STRINGPARSING_H
|
|
|
|
/* haswell/simd.h already included: #include "haswell/simd.h" */
|
|
/* haswell/bitmanipulation.h already included: #include "haswell/bitmanipulation.h" */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
using namespace simd;
|
|
|
|
// Holds backslashes and quotes locations.
|
|
struct backslash_and_quote {
|
|
public:
|
|
static constexpr uint32_t BYTES_PROCESSED = 32;
|
|
simdjson_really_inline static backslash_and_quote copy_and_find(const uint8_t *src, uint8_t *dst);
|
|
|
|
simdjson_really_inline bool has_quote_first() { return ((bs_bits - 1) & quote_bits) != 0; }
|
|
simdjson_really_inline bool has_backslash() { return ((quote_bits - 1) & bs_bits) != 0; }
|
|
simdjson_really_inline int quote_index() { return trailing_zeroes(quote_bits); }
|
|
simdjson_really_inline int backslash_index() { return trailing_zeroes(bs_bits); }
|
|
|
|
uint32_t bs_bits;
|
|
uint32_t quote_bits;
|
|
}; // struct backslash_and_quote
|
|
|
|
simdjson_really_inline backslash_and_quote backslash_and_quote::copy_and_find(const uint8_t *src, uint8_t *dst) {
|
|
// this can read up to 15 bytes beyond the buffer size, but we require
|
|
// SIMDJSON_PADDING of padding
|
|
static_assert(SIMDJSON_PADDING >= (BYTES_PROCESSED - 1), "backslash and quote finder must process fewer than SIMDJSON_PADDING bytes");
|
|
simd8<uint8_t> v(src);
|
|
// store to dest unconditionally - we can overwrite the bits we don't like later
|
|
v.store(dst);
|
|
return {
|
|
(uint32_t)(v == '\\').to_bitmask(), // bs_bits
|
|
(uint32_t)(v == '"').to_bitmask(), // quote_bits
|
|
};
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
/* begin file src/generic/stage2/stringparsing.h */
|
|
// This file contains the common code every implementation uses
|
|
// It is intended to be included multiple times and compiled multiple times
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
namespace stringparsing {
|
|
|
|
// begin copypasta
|
|
// These chars yield themselves: " \ /
|
|
// b -> backspace, f -> formfeed, n -> newline, r -> cr, t -> horizontal tab
|
|
// u not handled in this table as it's complex
|
|
static const uint8_t escape_map[256] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x0.
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0x22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x2f,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x4.
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x5c, 0, 0, 0, // 0x5.
|
|
0, 0, 0x08, 0, 0, 0, 0x0c, 0, 0, 0, 0, 0, 0, 0, 0x0a, 0, // 0x6.
|
|
0, 0, 0x0d, 0, 0x09, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x7.
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
};
|
|
|
|
// handle a unicode codepoint
|
|
// write appropriate values into dest
|
|
// src will advance 6 bytes or 12 bytes
|
|
// dest will advance a variable amount (return via pointer)
|
|
// return true if the unicode codepoint was valid
|
|
// We work in little-endian then swap at write time
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool handle_unicode_codepoint(const uint8_t **src_ptr,
|
|
uint8_t **dst_ptr) {
|
|
// hex_to_u32_nocheck fills high 16 bits of the return value with 1s if the
|
|
// conversion isn't valid; we defer the check for this to inside the
|
|
// multilingual plane check
|
|
uint32_t code_point = hex_to_u32_nocheck(*src_ptr + 2);
|
|
*src_ptr += 6;
|
|
// check for low surrogate for characters outside the Basic
|
|
// Multilingual Plane.
|
|
if (code_point >= 0xd800 && code_point < 0xdc00) {
|
|
if (((*src_ptr)[0] != '\\') || (*src_ptr)[1] != 'u') {
|
|
return false;
|
|
}
|
|
uint32_t code_point_2 = hex_to_u32_nocheck(*src_ptr + 2);
|
|
|
|
// if the first code point is invalid we will get here, as we will go past
|
|
// the check for being outside the Basic Multilingual plane. If we don't
|
|
// find a \u immediately afterwards we fail out anyhow, but if we do,
|
|
// this check catches both the case of the first code point being invalid
|
|
// or the second code point being invalid.
|
|
if ((code_point | code_point_2) >> 16) {
|
|
return false;
|
|
}
|
|
|
|
code_point =
|
|
(((code_point - 0xd800) << 10) | (code_point_2 - 0xdc00)) + 0x10000;
|
|
*src_ptr += 6;
|
|
}
|
|
size_t offset = codepoint_to_utf8(code_point, *dst_ptr);
|
|
*dst_ptr += offset;
|
|
return offset > 0;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline uint8_t *parse_string(const uint8_t *src, uint8_t *dst) {
|
|
src++;
|
|
while (1) {
|
|
// Copy the next n bytes, and find the backslash and quote in them.
|
|
auto bs_quote = backslash_and_quote::copy_and_find(src, dst);
|
|
// If the next thing is the end quote, copy and return
|
|
if (bs_quote.has_quote_first()) {
|
|
// we encountered quotes first. Move dst to point to quotes and exit
|
|
return dst + bs_quote.quote_index();
|
|
}
|
|
if (bs_quote.has_backslash()) {
|
|
/* find out where the backspace is */
|
|
auto bs_dist = bs_quote.backslash_index();
|
|
uint8_t escape_char = src[bs_dist + 1];
|
|
/* we encountered backslash first. Handle backslash */
|
|
if (escape_char == 'u') {
|
|
/* move src/dst up to the start; they will be further adjusted
|
|
within the unicode codepoint handling code. */
|
|
src += bs_dist;
|
|
dst += bs_dist;
|
|
if (!handle_unicode_codepoint(&src, &dst)) {
|
|
return nullptr;
|
|
}
|
|
} else {
|
|
/* simple 1:1 conversion. Will eat bs_dist+2 characters in input and
|
|
* write bs_dist+1 characters to output
|
|
* note this may reach beyond the part of the buffer we've actually
|
|
* seen. I think this is ok */
|
|
uint8_t escape_result = escape_map[escape_char];
|
|
if (escape_result == 0u) {
|
|
return nullptr; /* bogus escape value is an error */
|
|
}
|
|
dst[bs_dist] = escape_result;
|
|
src += bs_dist + 2;
|
|
dst += bs_dist + 1;
|
|
}
|
|
} else {
|
|
/* they are the same. Since they can't co-occur, it means we
|
|
* encountered neither. */
|
|
src += backslash_and_quote::BYTES_PROCESSED;
|
|
dst += backslash_and_quote::BYTES_PROCESSED;
|
|
}
|
|
}
|
|
/* can't be reached */
|
|
return nullptr;
|
|
}
|
|
|
|
SIMDJSON_UNUSED SIMDJSON_WARN_UNUSED simdjson_really_inline error_code parse_string_to_buffer(const uint8_t *src, uint8_t *¤t_string_buf_loc, std::string_view &s) {
|
|
if (src[0] != '"') { return STRING_ERROR; }
|
|
auto end = stringparsing::parse_string(src, current_string_buf_loc);
|
|
if (!end) { return STRING_ERROR; }
|
|
s = std::string_view((const char *)current_string_buf_loc, end-current_string_buf_loc);
|
|
current_string_buf_loc = end;
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace stringparsing
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/stringparsing.h */
|
|
|
|
#endif // SIMDJSON_HASWELL_STRINGPARSING_H
|
|
/* end file src/generic/stage2/stringparsing.h */
|
|
/* begin file src/haswell/numberparsing.h */
|
|
#ifndef SIMDJSON_HASWELL_NUMBERPARSING_H
|
|
#define SIMDJSON_HASWELL_NUMBERPARSING_H
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
static simdjson_really_inline uint32_t parse_eight_digits_unrolled(const uint8_t *chars) {
|
|
// this actually computes *16* values so we are being wasteful.
|
|
const __m128i ascii0 = _mm_set1_epi8('0');
|
|
const __m128i mul_1_10 =
|
|
_mm_setr_epi8(10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1);
|
|
const __m128i mul_1_100 = _mm_setr_epi16(100, 1, 100, 1, 100, 1, 100, 1);
|
|
const __m128i mul_1_10000 =
|
|
_mm_setr_epi16(10000, 1, 10000, 1, 10000, 1, 10000, 1);
|
|
const __m128i input = _mm_sub_epi8(
|
|
_mm_loadu_si128(reinterpret_cast<const __m128i *>(chars)), ascii0);
|
|
const __m128i t1 = _mm_maddubs_epi16(input, mul_1_10);
|
|
const __m128i t2 = _mm_madd_epi16(t1, mul_1_100);
|
|
const __m128i t3 = _mm_packus_epi32(t2, t2);
|
|
const __m128i t4 = _mm_madd_epi16(t3, mul_1_10000);
|
|
return _mm_cvtsi128_si32(
|
|
t4); // only captures the sum of the first 8 digits, drop the rest
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
#define SWAR_NUMBER_PARSING
|
|
|
|
/* begin file src/generic/stage2/numberparsing.h */
|
|
#include <cmath>
|
|
#include <limits>
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
namespace numberparsing {
|
|
|
|
#ifdef JSON_TEST_NUMBERS
|
|
#define INVALID_NUMBER(SRC) (found_invalid_number((SRC)), NUMBER_ERROR)
|
|
#define WRITE_INTEGER(VALUE, SRC, WRITER) (found_integer((VALUE), (SRC)), (WRITER).append_s64((VALUE)))
|
|
#define WRITE_UNSIGNED(VALUE, SRC, WRITER) (found_unsigned_integer((VALUE), (SRC)), (WRITER).append_u64((VALUE)))
|
|
#define WRITE_DOUBLE(VALUE, SRC, WRITER) (found_float((VALUE), (SRC)), (WRITER).append_double((VALUE)))
|
|
#else
|
|
#define INVALID_NUMBER(SRC) (NUMBER_ERROR)
|
|
#define WRITE_INTEGER(VALUE, SRC, WRITER) (WRITER).append_s64((VALUE))
|
|
#define WRITE_UNSIGNED(VALUE, SRC, WRITER) (WRITER).append_u64((VALUE))
|
|
#define WRITE_DOUBLE(VALUE, SRC, WRITER) (WRITER).append_double((VALUE))
|
|
#endif
|
|
|
|
// Attempts to compute i * 10^(power) exactly; and if "negative" is
|
|
// true, negate the result.
|
|
// This function will only work in some cases, when it does not work, success is
|
|
// set to false. This should work *most of the time* (like 99% of the time).
|
|
// We assume that power is in the [FASTFLOAT_SMALLEST_POWER,
|
|
// FASTFLOAT_LARGEST_POWER] interval: the caller is responsible for this check.
|
|
simdjson_really_inline bool compute_float_64(int64_t power, uint64_t i, bool negative, double &d) {
|
|
// we start with a fast path
|
|
// It was described in
|
|
// Clinger WD. How to read floating point numbers accurately.
|
|
// ACM SIGPLAN Notices. 1990
|
|
#ifndef FLT_EVAL_METHOD
|
|
#error "FLT_EVAL_METHOD should be defined, please include cfloat."
|
|
#endif
|
|
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
|
|
// We cannot be certain that x/y is rounded to nearest.
|
|
if (0 <= power && power <= 22 && i <= 9007199254740991) {
|
|
#else
|
|
if (-22 <= power && power <= 22 && i <= 9007199254740991) {
|
|
#endif
|
|
// convert the integer into a double. This is lossless since
|
|
// 0 <= i <= 2^53 - 1.
|
|
d = double(i);
|
|
//
|
|
// The general idea is as follows.
|
|
// If 0 <= s < 2^53 and if 10^0 <= p <= 10^22 then
|
|
// 1) Both s and p can be represented exactly as 64-bit floating-point
|
|
// values
|
|
// (binary64).
|
|
// 2) Because s and p can be represented exactly as floating-point values,
|
|
// then s * p
|
|
// and s / p will produce correctly rounded values.
|
|
//
|
|
if (power < 0) {
|
|
d = d / power_of_ten[-power];
|
|
} else {
|
|
d = d * power_of_ten[power];
|
|
}
|
|
if (negative) {
|
|
d = -d;
|
|
}
|
|
return true;
|
|
}
|
|
// When 22 < power && power < 22 + 16, we could
|
|
// hope for another, secondary fast path. It wa
|
|
// described by David M. Gay in "Correctly rounded
|
|
// binary-decimal and decimal-binary conversions." (1990)
|
|
// If you need to compute i * 10^(22 + x) for x < 16,
|
|
// first compute i * 10^x, if you know that result is exact
|
|
// (e.g., when i * 10^x < 2^53),
|
|
// then you can still proceed and do (i * 10^x) * 10^22.
|
|
// Is this worth your time?
|
|
// You need 22 < power *and* power < 22 + 16 *and* (i * 10^(x-22) < 2^53)
|
|
// for this second fast path to work.
|
|
// If you you have 22 < power *and* power < 22 + 16, and then you
|
|
// optimistically compute "i * 10^(x-22)", there is still a chance that you
|
|
// have wasted your time if i * 10^(x-22) >= 2^53. It makes the use cases of
|
|
// this optimization maybe less common than we would like. Source:
|
|
// http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/
|
|
// also used in RapidJSON: https://rapidjson.org/strtod_8h_source.html
|
|
|
|
// The fast path has now failed, so we are failing back on the slower path.
|
|
|
|
// In the slow path, we need to adjust i so that it is > 1<<63 which is always
|
|
// possible, except if i == 0, so we handle i == 0 separately.
|
|
if(i == 0) {
|
|
d = 0.0;
|
|
return true;
|
|
}
|
|
|
|
// We are going to need to do some 64-bit arithmetic to get a more precise product.
|
|
// We use a table lookup approach.
|
|
// It is safe because
|
|
// power >= FASTFLOAT_SMALLEST_POWER
|
|
// and power <= FASTFLOAT_LARGEST_POWER
|
|
// We recover the mantissa of the power, it has a leading 1. It is always
|
|
// rounded down.
|
|
uint64_t factor_mantissa = mantissa_64[power - FASTFLOAT_SMALLEST_POWER];
|
|
|
|
// The exponent is 1024 + 63 + power
|
|
// + floor(log(5**power)/log(2)).
|
|
// The 1024 comes from the ieee64 standard.
|
|
// The 63 comes from the fact that we use a 64-bit word.
|
|
//
|
|
// Computing floor(log(5**power)/log(2)) could be
|
|
// slow. Instead we use a fast function.
|
|
//
|
|
// For power in (-400,350), we have that
|
|
// (((152170 + 65536) * power ) >> 16);
|
|
// is equal to
|
|
// floor(log(5**power)/log(2)) + power
|
|
//
|
|
// The 65536 is (1<<16) and corresponds to
|
|
// (65536 * power) >> 16 ---> power
|
|
//
|
|
// ((152170 * power ) >> 16) is equal to
|
|
// floor(log(5**power)/log(2))
|
|
//
|
|
// Note that this is not magic: 152170/(1<<16) is
|
|
// approximatively equal to log(5)/log(2).
|
|
// The 1<<16 value is a power of two; we could use a
|
|
// larger power of 2 if we wanted to.
|
|
//
|
|
int64_t exponent = (((152170 + 65536) * power) >> 16) + 1024 + 63;
|
|
|
|
|
|
// We want the most significant bit of i to be 1. Shift if needed.
|
|
int lz = leading_zeroes(i);
|
|
i <<= lz;
|
|
// We want the most significant 64 bits of the product. We know
|
|
// this will be non-zero because the most significant bit of i is
|
|
// 1.
|
|
value128 product = full_multiplication(i, factor_mantissa);
|
|
uint64_t lower = product.low;
|
|
uint64_t upper = product.high;
|
|
|
|
// We know that upper has at most one leading zero because
|
|
// both i and factor_mantissa have a leading one. This means
|
|
// that the result is at least as large as ((1<<63)*(1<<63))/(1<<64).
|
|
|
|
// As long as the first 9 bits of "upper" are not "1", then we
|
|
// know that we have an exact computed value for the leading
|
|
// 55 bits because any imprecision would play out as a +1, in
|
|
// the worst case.
|
|
if (simdjson_unlikely((upper & 0x1FF) == 0x1FF) && (lower + i < lower)) {
|
|
uint64_t factor_mantissa_low =
|
|
mantissa_128[power - FASTFLOAT_SMALLEST_POWER];
|
|
// next, we compute the 64-bit x 128-bit multiplication, getting a 192-bit
|
|
// result (three 64-bit values)
|
|
product = full_multiplication(i, factor_mantissa_low);
|
|
uint64_t product_low = product.low;
|
|
uint64_t product_middle2 = product.high;
|
|
uint64_t product_middle1 = lower;
|
|
uint64_t product_high = upper;
|
|
uint64_t product_middle = product_middle1 + product_middle2;
|
|
if (product_middle < product_middle1) {
|
|
product_high++; // overflow carry
|
|
}
|
|
// We want to check whether mantissa *i + i would affect our result.
|
|
// This does happen, e.g. with 7.3177701707893310e+15.
|
|
if (((product_middle + 1 == 0) && ((product_high & 0x1FF) == 0x1FF) &&
|
|
(product_low + i < product_low))) { // let us be prudent and bail out.
|
|
return false;
|
|
}
|
|
upper = product_high;
|
|
lower = product_middle;
|
|
}
|
|
// The final mantissa should be 53 bits with a leading 1.
|
|
// We shift it so that it occupies 54 bits with a leading 1.
|
|
///////
|
|
uint64_t upperbit = upper >> 63;
|
|
uint64_t mantissa = upper >> (upperbit + 9);
|
|
lz += int(1 ^ upperbit);
|
|
|
|
// Here we have mantissa < (1<<54).
|
|
|
|
// We have to round to even. The "to even" part
|
|
// is only a problem when we are right in between two floats
|
|
// which we guard against.
|
|
// If we have lots of trailing zeros, we may fall right between two
|
|
// floating-point values.
|
|
if (simdjson_unlikely((lower == 0) && ((upper & 0x1FF) == 0) &&
|
|
((mantissa & 3) == 1))) {
|
|
// if mantissa & 1 == 1 we might need to round up.
|
|
//
|
|
// Scenarios:
|
|
// 1. We are not in the middle. Then we should round up.
|
|
//
|
|
// 2. We are right in the middle. Whether we round up depends
|
|
// on the last significant bit: if it is "one" then we round
|
|
// up (round to even) otherwise, we do not.
|
|
//
|
|
// So if the last significant bit is 1, we can safely round up.
|
|
// Hence we only need to bail out if (mantissa & 3) == 1.
|
|
// Otherwise we may need more accuracy or analysis to determine whether
|
|
// we are exactly between two floating-point numbers.
|
|
// It can be triggered with 1e23.
|
|
// Note: because the factor_mantissa and factor_mantissa_low are
|
|
// almost always rounded down (except for small positive powers),
|
|
// almost always should round up.
|
|
return false;
|
|
}
|
|
|
|
mantissa += mantissa & 1;
|
|
mantissa >>= 1;
|
|
|
|
// Here we have mantissa < (1<<53), unless there was an overflow
|
|
if (mantissa >= (1ULL << 53)) {
|
|
//////////
|
|
// This will happen when parsing values such as 7.2057594037927933e+16
|
|
////////
|
|
mantissa = (1ULL << 52);
|
|
lz--; // undo previous addition
|
|
}
|
|
mantissa &= ~(1ULL << 52);
|
|
uint64_t real_exponent = exponent - lz;
|
|
// we have to check that real_exponent is in range, otherwise we bail out
|
|
if (simdjson_unlikely((real_exponent < 1) || (real_exponent > 2046))) {
|
|
return false;
|
|
}
|
|
mantissa |= real_exponent << 52;
|
|
mantissa |= (((uint64_t)negative) << 63);
|
|
memcpy(&d, &mantissa, sizeof(d));
|
|
return true;
|
|
}
|
|
|
|
static bool parse_float_strtod(const uint8_t *ptr, double *outDouble) {
|
|
char *endptr;
|
|
*outDouble = strtod((const char *)ptr, &endptr);
|
|
// Some libraries will set errno = ERANGE when the value is subnormal,
|
|
// yet we may want to be able to parse subnormal values.
|
|
// However, we do not want to tolerate NAN or infinite values.
|
|
//
|
|
// Values like infinity or NaN are not allowed in the JSON specification.
|
|
// If you consume a large value and you map it to "infinity", you will no
|
|
// longer be able to serialize back a standard-compliant JSON. And there is
|
|
// no realistic application where you might need values so large than they
|
|
// can't fit in binary64. The maximal value is about 1.7976931348623157 x
|
|
// 10^308 It is an unimaginable large number. There will never be any piece of
|
|
// engineering involving as many as 10^308 parts. It is estimated that there
|
|
// are about 10^80 atoms in the universe. The estimate for the total number
|
|
// of electrons is similar. Using a double-precision floating-point value, we
|
|
// can represent easily the number of atoms in the universe. We could also
|
|
// represent the number of ways you can pick any three individual atoms at
|
|
// random in the universe. If you ever encounter a number much larger than
|
|
// 10^308, you know that you have a bug. RapidJSON will reject a document with
|
|
// a float that does not fit in binary64. JSON for Modern C++ (nlohmann/json)
|
|
// will flat out throw an exception.
|
|
//
|
|
if ((endptr == (const char *)ptr) || (!std::isfinite(*outDouble))) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// check quickly whether the next 8 chars are made of digits
|
|
// at a glance, it looks better than Mula's
|
|
// http://0x80.pl/articles/swar-digits-validate.html
|
|
simdjson_really_inline bool is_made_of_eight_digits_fast(const uint8_t *chars) {
|
|
uint64_t val;
|
|
// this can read up to 7 bytes beyond the buffer size, but we require
|
|
// SIMDJSON_PADDING of padding
|
|
static_assert(7 <= SIMDJSON_PADDING, "SIMDJSON_PADDING must be bigger than 7");
|
|
memcpy(&val, chars, 8);
|
|
// a branchy method might be faster:
|
|
// return (( val & 0xF0F0F0F0F0F0F0F0 ) == 0x3030303030303030)
|
|
// && (( (val + 0x0606060606060606) & 0xF0F0F0F0F0F0F0F0 ) ==
|
|
// 0x3030303030303030);
|
|
return (((val & 0xF0F0F0F0F0F0F0F0) |
|
|
(((val + 0x0606060606060606) & 0xF0F0F0F0F0F0F0F0) >> 4)) ==
|
|
0x3333333333333333);
|
|
}
|
|
|
|
template<typename W>
|
|
error_code slow_float_parsing(SIMDJSON_UNUSED const uint8_t * src, W writer) {
|
|
double d;
|
|
if (parse_float_strtod(src, &d)) {
|
|
writer.append_double(d);
|
|
return SUCCESS;
|
|
}
|
|
return INVALID_NUMBER(src);
|
|
}
|
|
|
|
template<typename I>
|
|
NO_SANITIZE_UNDEFINED // We deliberately allow overflow here and check later
|
|
simdjson_really_inline bool parse_digit(const uint8_t c, I &i) {
|
|
const uint8_t digit = static_cast<uint8_t>(c - '0');
|
|
if (digit > 9) {
|
|
return false;
|
|
}
|
|
// PERF NOTE: multiplication by 10 is cheaper than arbitrary integer multiplication
|
|
i = 10 * i + digit; // might overflow, we will handle the overflow later
|
|
return true;
|
|
}
|
|
|
|
simdjson_really_inline error_code parse_decimal(SIMDJSON_UNUSED const uint8_t *const src, const uint8_t *&p, uint64_t &i, int64_t &exponent) {
|
|
// we continue with the fiction that we have an integer. If the
|
|
// floating point number is representable as x * 10^z for some integer
|
|
// z that fits in 53 bits, then we will be able to convert back the
|
|
// the integer into a float in a lossless manner.
|
|
const uint8_t *const first_after_period = p;
|
|
|
|
#ifdef SWAR_NUMBER_PARSING
|
|
// this helps if we have lots of decimals!
|
|
// this turns out to be frequent enough.
|
|
if (is_made_of_eight_digits_fast(p)) {
|
|
i = i * 100000000 + parse_eight_digits_unrolled(p);
|
|
p += 8;
|
|
}
|
|
#endif
|
|
// Unrolling the first digit makes a small difference on some implementations (e.g. westmere)
|
|
if (parse_digit(*p, i)) { ++p; }
|
|
while (parse_digit(*p, i)) { p++; }
|
|
exponent = first_after_period - p;
|
|
// Decimal without digits (123.) is illegal
|
|
if (exponent == 0) {
|
|
return INVALID_NUMBER(src);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
simdjson_really_inline error_code parse_exponent(SIMDJSON_UNUSED const uint8_t *const src, const uint8_t *&p, int64_t &exponent) {
|
|
// Exp Sign: -123.456e[-]78
|
|
bool neg_exp = ('-' == *p);
|
|
if (neg_exp || '+' == *p) { p++; } // Skip + as well
|
|
|
|
// Exponent: -123.456e-[78]
|
|
auto start_exp = p;
|
|
int64_t exp_number = 0;
|
|
while (parse_digit(*p, exp_number)) { ++p; }
|
|
// It is possible for parse_digit to overflow.
|
|
// In particular, it could overflow to INT64_MIN, and we cannot do - INT64_MIN.
|
|
// Thus we *must* check for possible overflow before we negate exp_number.
|
|
|
|
// Performance notes: it may seem like combining the two "simdjson_unlikely checks" below into
|
|
// a single simdjson_unlikely path would be faster. The reasoning is sound, but the compiler may
|
|
// not oblige and may, in fact, generate two distinct paths in any case. It might be
|
|
// possible to do uint64_t(p - start_exp - 1) >= 18 but it could end up trading off
|
|
// instructions for a simdjson_likely branch, an unconclusive gain.
|
|
|
|
// If there were no digits, it's an error.
|
|
if (simdjson_unlikely(p == start_exp)) {
|
|
return INVALID_NUMBER(src);
|
|
}
|
|
// We have a valid positive exponent in exp_number at this point, except that
|
|
// it may have overflowed.
|
|
|
|
// If there were more than 18 digits, we may have overflowed the integer. We have to do
|
|
// something!!!!
|
|
if (simdjson_unlikely(p > start_exp+18)) {
|
|
// Skip leading zeroes: 1e000000000000000000001 is technically valid and doesn't overflow
|
|
while (*start_exp == '0') { start_exp++; }
|
|
// 19 digits could overflow int64_t and is kind of absurd anyway. We don't
|
|
// support exponents smaller than -999,999,999,999,999,999 and bigger
|
|
// than 999,999,999,999,999,999.
|
|
// We can truncate.
|
|
// Note that 999999999999999999 is assuredly too large. The maximal ieee64 value before
|
|
// infinity is ~1.8e308. The smallest subnormal is ~5e-324. So, actually, we could
|
|
// truncate at 324.
|
|
// Note that there is no reason to fail per se at this point in time.
|
|
// E.g., 0e999999999999999999999 is a fine number.
|
|
if (p > start_exp+18) { exp_number = 999999999999999999; }
|
|
}
|
|
// At this point, we know that exp_number is a sane, positive, signed integer.
|
|
// It is <= 999,999,999,999,999,999. As long as 'exponent' is in
|
|
// [-8223372036854775808, 8223372036854775808], we won't overflow. Because 'exponent'
|
|
// is bounded in magnitude by the size of the JSON input, we are fine in this universe.
|
|
// To sum it up: the next line should never overflow.
|
|
exponent += (neg_exp ? -exp_number : exp_number);
|
|
return SUCCESS;
|
|
}
|
|
|
|
simdjson_really_inline int significant_digits(const uint8_t * start_digits, int digit_count) {
|
|
// It is possible that the integer had an overflow.
|
|
// We have to handle the case where we have 0.0000somenumber.
|
|
const uint8_t *start = start_digits;
|
|
while ((*start == '0') || (*start == '.')) {
|
|
start++;
|
|
}
|
|
// we over-decrement by one when there is a '.'
|
|
return digit_count - int(start - start_digits);
|
|
}
|
|
|
|
template<typename W>
|
|
simdjson_really_inline error_code write_float(const uint8_t *const src, bool negative, uint64_t i, const uint8_t * start_digits, int digit_count, int64_t exponent, W &writer) {
|
|
// If we frequently had to deal with long strings of digits,
|
|
// we could extend our code by using a 128-bit integer instead
|
|
// of a 64-bit integer. However, this is uncommon in practice.
|
|
// digit count is off by 1 because of the decimal (assuming there was one).
|
|
if (simdjson_unlikely(digit_count-1 >= 19 && significant_digits(start_digits, digit_count) >= 19)) {
|
|
// Ok, chances are good that we had an overflow!
|
|
// this is almost never going to get called!!!
|
|
// we start anew, going slowly!!!
|
|
// This will happen in the following examples:
|
|
// 10000000000000000000000000000000000000000000e+308
|
|
// 3.1415926535897932384626433832795028841971693993751
|
|
//
|
|
// NOTE: This makes a *copy* of the writer and passes it to slow_float_parsing. This happens
|
|
// because slow_float_parsing is a non-inlined function. If we passed our writer reference to
|
|
// it, it would force it to be stored in memory, preventing the compiler from picking it apart
|
|
// and putting into registers. i.e. if we pass it as reference, it gets slow.
|
|
// This is what forces the skip_double, as well.
|
|
error_code error = slow_float_parsing(src, writer);
|
|
writer.skip_double();
|
|
return error;
|
|
}
|
|
// NOTE: it's weird that the simdjson_unlikely() only wraps half the if, but it seems to get slower any other
|
|
// way we've tried: https://github.com/simdjson/simdjson/pull/990#discussion_r448497331
|
|
// To future reader: we'd love if someone found a better way, or at least could explain this result!
|
|
if (simdjson_unlikely(exponent < FASTFLOAT_SMALLEST_POWER) || (exponent > FASTFLOAT_LARGEST_POWER)) {
|
|
// this is almost never going to get called!!!
|
|
// we start anew, going slowly!!!
|
|
// NOTE: This makes a *copy* of the writer and passes it to slow_float_parsing. This happens
|
|
// because slow_float_parsing is a non-inlined function. If we passed our writer reference to
|
|
// it, it would force it to be stored in memory, preventing the compiler from picking it apart
|
|
// and putting into registers. i.e. if we pass it as reference, it gets slow.
|
|
// This is what forces the skip_double, as well.
|
|
error_code error = slow_float_parsing(src, writer);
|
|
writer.skip_double();
|
|
return error;
|
|
}
|
|
double d;
|
|
if (!compute_float_64(exponent, i, negative, d)) {
|
|
// we are almost never going to get here.
|
|
if (!parse_float_strtod(src, &d)) { return INVALID_NUMBER(src); }
|
|
}
|
|
WRITE_DOUBLE(d, src, writer);
|
|
return SUCCESS;
|
|
}
|
|
|
|
// for performance analysis, it is sometimes useful to skip parsing
|
|
#ifdef SIMDJSON_SKIPNUMBERPARSING
|
|
|
|
template<typename W>
|
|
simdjson_really_inline error_code parse_number(const uint8_t *const, W &writer) {
|
|
writer.append_s64(0); // always write zero
|
|
return SUCCESS; // always succeeds
|
|
}
|
|
|
|
#else
|
|
|
|
// parse the number at src
|
|
// define JSON_TEST_NUMBERS for unit testing
|
|
//
|
|
// It is assumed that the number is followed by a structural ({,},],[) character
|
|
// or a white space character. If that is not the case (e.g., when the JSON
|
|
// document is made of a single number), then it is necessary to copy the
|
|
// content and append a space before calling this function.
|
|
//
|
|
// Our objective is accurate parsing (ULP of 0) at high speed.
|
|
template<typename W>
|
|
simdjson_really_inline error_code parse_number(const uint8_t *const src, W &writer) {
|
|
|
|
//
|
|
// Check for minus sign
|
|
//
|
|
bool negative = (*src == '-');
|
|
const uint8_t *p = src + negative;
|
|
|
|
//
|
|
// Parse the integer part.
|
|
//
|
|
// PERF NOTE: we don't use is_made_of_eight_digits_fast because large integers like 123456789 are rare
|
|
const uint8_t *const start_digits = p;
|
|
uint64_t i = 0;
|
|
while (parse_digit(*p, i)) { p++; }
|
|
|
|
// If there were no digits, or if the integer starts with 0 and has more than one digit, it's an error.
|
|
int digit_count = int(p - start_digits);
|
|
if (digit_count == 0 || ('0' == *start_digits && digit_count > 1)) { return INVALID_NUMBER(src); }
|
|
|
|
//
|
|
// Handle floats if there is a . or e (or both)
|
|
//
|
|
int64_t exponent = 0;
|
|
bool is_float = false;
|
|
if ('.' == *p) {
|
|
is_float = true;
|
|
++p;
|
|
SIMDJSON_TRY( parse_decimal(src, p, i, exponent) );
|
|
digit_count = int(p - start_digits); // used later to guard against overflows
|
|
}
|
|
if (('e' == *p) || ('E' == *p)) {
|
|
is_float = true;
|
|
++p;
|
|
SIMDJSON_TRY( parse_exponent(src, p, exponent) );
|
|
}
|
|
if (is_float) {
|
|
const bool clean_end = is_structural_or_whitespace(*p);
|
|
SIMDJSON_TRY( write_float(src, negative, i, start_digits, digit_count, exponent, writer) );
|
|
if (!clean_end) { return INVALID_NUMBER(src); }
|
|
return SUCCESS;
|
|
}
|
|
|
|
// The longest negative 64-bit number is 19 digits.
|
|
// The longest positive 64-bit number is 20 digits.
|
|
// We do it this way so we don't trigger this branch unless we must.
|
|
int longest_digit_count = negative ? 19 : 20;
|
|
if (digit_count > longest_digit_count) { return INVALID_NUMBER(src); }
|
|
if (digit_count == longest_digit_count) {
|
|
if (negative) {
|
|
// Anything negative above INT64_MAX+1 is invalid
|
|
if (i > uint64_t(INT64_MAX)+1) { return INVALID_NUMBER(src); }
|
|
WRITE_INTEGER(~i+1, src, writer);
|
|
if (!is_structural_or_whitespace(*p)) { return INVALID_NUMBER(src); }
|
|
return SUCCESS;
|
|
// Positive overflow check:
|
|
// - A 20 digit number starting with 2-9 is overflow, because 18,446,744,073,709,551,615 is the
|
|
// biggest uint64_t.
|
|
// - A 20 digit number starting with 1 is overflow if it is less than INT64_MAX.
|
|
// If we got here, it's a 20 digit number starting with the digit "1".
|
|
// - If a 20 digit number starting with 1 overflowed (i*10+digit), the result will be smaller
|
|
// than 1,553,255,926,290,448,384.
|
|
// - That is smaller than the smallest possible 20-digit number the user could write:
|
|
// 10,000,000,000,000,000,000.
|
|
// - Therefore, if the number is positive and lower than that, it's overflow.
|
|
// - The value we are looking at is less than or equal to 9,223,372,036,854,775,808 (INT64_MAX).
|
|
//
|
|
} else if (src[0] != uint8_t('1') || i <= uint64_t(INT64_MAX)) { return INVALID_NUMBER(src); }
|
|
}
|
|
|
|
// Write unsigned if it doesn't fit in a signed integer.
|
|
if (i > uint64_t(INT64_MAX)) {
|
|
WRITE_UNSIGNED(i, src, writer);
|
|
} else {
|
|
WRITE_INTEGER(negative ? (~i+1) : i, src, writer);
|
|
}
|
|
if (!is_structural_or_whitespace(*p)) { return INVALID_NUMBER(src); }
|
|
return SUCCESS;
|
|
}
|
|
|
|
// SAX functions
|
|
namespace {
|
|
// Parse any number from 0 to 18,446,744,073,709,551,615
|
|
SIMDJSON_UNUSED simdjson_really_inline simdjson_result<uint64_t> parse_unsigned(const uint8_t * const src) noexcept {
|
|
const uint8_t *p = src;
|
|
|
|
//
|
|
// Parse the integer part.
|
|
//
|
|
// PERF NOTE: we don't use is_made_of_eight_digits_fast because large integers like 123456789 are rare
|
|
const uint8_t *const start_digits = p;
|
|
uint64_t i = 0;
|
|
while (parse_digit(*p, i)) { p++; }
|
|
|
|
// If there were no digits, or if the integer starts with 0 and has more than one digit, it's an error.
|
|
int digit_count = int(p - start_digits);
|
|
if (digit_count == 0 || ('0' == *start_digits && digit_count > 1)) { return NUMBER_ERROR; }
|
|
if (!is_structural_or_whitespace(*p)) { return NUMBER_ERROR; }
|
|
|
|
// The longest positive 64-bit number is 20 digits.
|
|
// We do it this way so we don't trigger this branch unless we must.
|
|
if (digit_count > 20) { return NUMBER_ERROR; }
|
|
if (digit_count == 20) {
|
|
// Positive overflow check:
|
|
// - A 20 digit number starting with 2-9 is overflow, because 18,446,744,073,709,551,615 is the
|
|
// biggest uint64_t.
|
|
// - A 20 digit number starting with 1 is overflow if it is less than INT64_MAX.
|
|
// If we got here, it's a 20 digit number starting with the digit "1".
|
|
// - If a 20 digit number starting with 1 overflowed (i*10+digit), the result will be smaller
|
|
// than 1,553,255,926,290,448,384.
|
|
// - That is smaller than the smallest possible 20-digit number the user could write:
|
|
// 10,000,000,000,000,000,000.
|
|
// - Therefore, if the number is positive and lower than that, it's overflow.
|
|
// - The value we are looking at is less than or equal to 9,223,372,036,854,775,808 (INT64_MAX).
|
|
//
|
|
if (src[0] != uint8_t('1') || i <= uint64_t(INT64_MAX)) { return NUMBER_ERROR; }
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
// Parse any number from 0 to 18,446,744,073,709,551,615
|
|
// Call this version of the method if you regularly expect 8- or 16-digit numbers.
|
|
SIMDJSON_UNUSED simdjson_really_inline simdjson_result<uint64_t> parse_large_unsigned(const uint8_t * const src) noexcept {
|
|
const uint8_t *p = src;
|
|
|
|
//
|
|
// Parse the integer part.
|
|
//
|
|
uint64_t i = 0;
|
|
if (is_made_of_eight_digits_fast(p)) {
|
|
i = i * 100000000 + parse_eight_digits_unrolled(p);
|
|
p += 8;
|
|
if (is_made_of_eight_digits_fast(p)) {
|
|
i = i * 100000000 + parse_eight_digits_unrolled(p);
|
|
p += 8;
|
|
if (parse_digit(*p, i)) { // digit 17
|
|
p++;
|
|
if (parse_digit(*p, i)) { // digit 18
|
|
p++;
|
|
if (parse_digit(*p, i)) { // digit 19
|
|
p++;
|
|
if (parse_digit(*p, i)) { // digit 20
|
|
p++;
|
|
if (parse_digit(*p, i)) { return NUMBER_ERROR; } // 21 digits is an error
|
|
// Positive overflow check:
|
|
// - A 20 digit number starting with 2-9 is overflow, because 18,446,744,073,709,551,615 is the
|
|
// biggest uint64_t.
|
|
// - A 20 digit number starting with 1 is overflow if it is less than INT64_MAX.
|
|
// If we got here, it's a 20 digit number starting with the digit "1".
|
|
// - If a 20 digit number starting with 1 overflowed (i*10+digit), the result will be smaller
|
|
// than 1,553,255,926,290,448,384.
|
|
// - That is smaller than the smallest possible 20-digit number the user could write:
|
|
// 10,000,000,000,000,000,000.
|
|
// - Therefore, if the number is positive and lower than that, it's overflow.
|
|
// - The value we are looking at is less than or equal to 9,223,372,036,854,775,808 (INT64_MAX).
|
|
//
|
|
if (src[0] != uint8_t('1') || i <= uint64_t(INT64_MAX)) { return NUMBER_ERROR; }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // 16 digits
|
|
} else { // 8 digits
|
|
// Less than 8 digits can't overflow, simpler logic here.
|
|
if (parse_digit(*p, i)) { p++; } else { return NUMBER_ERROR; }
|
|
while (parse_digit(*p, i)) { p++; }
|
|
}
|
|
|
|
if (!is_structural_or_whitespace(*p)) { return NUMBER_ERROR; }
|
|
// If there were no digits, or if the integer starts with 0 and has more than one digit, it's an error.
|
|
int digit_count = int(p - src);
|
|
if (digit_count == 0 || ('0' == *src && digit_count > 1)) { return NUMBER_ERROR; }
|
|
return i;
|
|
}
|
|
|
|
// Parse any number from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
|
|
SIMDJSON_UNUSED simdjson_really_inline simdjson_result<int64_t> parse_integer(const uint8_t *src) noexcept {
|
|
//
|
|
// Check for minus sign
|
|
//
|
|
bool negative = (*src == '-');
|
|
const uint8_t *p = src + negative;
|
|
|
|
//
|
|
// Parse the integer part.
|
|
//
|
|
// PERF NOTE: we don't use is_made_of_eight_digits_fast because large integers like 123456789 are rare
|
|
const uint8_t *const start_digits = p;
|
|
uint64_t i = 0;
|
|
while (parse_digit(*p, i)) { p++; }
|
|
|
|
// If there were no digits, or if the integer starts with 0 and has more than one digit, it's an error.
|
|
int digit_count = int(p - start_digits);
|
|
if (digit_count == 0 || ('0' == *start_digits && digit_count > 1)) { return NUMBER_ERROR; }
|
|
if (!is_structural_or_whitespace(*p)) { return NUMBER_ERROR; }
|
|
|
|
// The longest negative 64-bit number is 19 digits.
|
|
// The longest positive 64-bit number is 20 digits.
|
|
// We do it this way so we don't trigger this branch unless we must.
|
|
int longest_digit_count = negative ? 19 : 20;
|
|
if (digit_count > longest_digit_count) { return NUMBER_ERROR; }
|
|
if (digit_count == longest_digit_count) {
|
|
if(negative) {
|
|
// Anything negative above INT64_MAX+1 is invalid
|
|
if (i > uint64_t(INT64_MAX)+1) { return NUMBER_ERROR; }
|
|
return ~i+1;
|
|
|
|
// Positive overflow check:
|
|
// - A 20 digit number starting with 2-9 is overflow, because 18,446,744,073,709,551,615 is the
|
|
// biggest uint64_t.
|
|
// - A 20 digit number starting with 1 is overflow if it is less than INT64_MAX.
|
|
// If we got here, it's a 20 digit number starting with the digit "1".
|
|
// - If a 20 digit number starting with 1 overflowed (i*10+digit), the result will be smaller
|
|
// than 1,553,255,926,290,448,384.
|
|
// - That is smaller than the smallest possible 20-digit number the user could write:
|
|
// 10,000,000,000,000,000,000.
|
|
// - Therefore, if the number is positive and lower than that, it's overflow.
|
|
// - The value we are looking at is less than or equal to 9,223,372,036,854,775,808 (INT64_MAX).
|
|
//
|
|
} else if (src[0] != uint8_t('1') || i <= uint64_t(INT64_MAX)) { return NUMBER_ERROR; }
|
|
}
|
|
|
|
return negative ? (~i+1) : i;
|
|
}
|
|
|
|
SIMDJSON_UNUSED simdjson_really_inline simdjson_result<double> parse_double(const uint8_t * src) noexcept {
|
|
//
|
|
// Check for minus sign
|
|
//
|
|
bool negative = (*src == '-');
|
|
src += negative;
|
|
|
|
//
|
|
// Parse the integer part.
|
|
//
|
|
uint64_t i = 0;
|
|
const uint8_t *p = src;
|
|
p += parse_digit(*p, i);
|
|
bool leading_zero = (i == 0);
|
|
while (parse_digit(*p, i)) { p++; }
|
|
// no integer digits, or 0123 (zero must be solo)
|
|
if ( p == src || (leading_zero && p != src+1)) { return NUMBER_ERROR; }
|
|
|
|
//
|
|
// Parse the decimal part.
|
|
//
|
|
int64_t exponent = 0;
|
|
bool overflow;
|
|
if (simdjson_likely(*p == '.')) {
|
|
p++;
|
|
const uint8_t *start_decimal_digits = p;
|
|
if (!parse_digit(*p, i)) { return NUMBER_ERROR; } // no decimal digits
|
|
p++;
|
|
while (parse_digit(*p, i)) { p++; }
|
|
exponent = -(p - start_decimal_digits);
|
|
|
|
// Overflow check. 19 digits (minus the decimal) may be overflow.
|
|
overflow = p-src-1 >= 19;
|
|
if (simdjson_unlikely(overflow && leading_zero)) {
|
|
// Skip leading 0.00000 and see if it still overflows
|
|
const uint8_t *start_digits = src + 2;
|
|
while (*start_digits == '0') { start_digits++; }
|
|
overflow = start_digits-src >= 19;
|
|
}
|
|
} else {
|
|
overflow = p-src >= 19;
|
|
}
|
|
|
|
//
|
|
// Parse the exponent
|
|
//
|
|
if (*p == 'e' || *p == 'E') {
|
|
p++;
|
|
bool exp_neg = *p == '-';
|
|
p += exp_neg || *p == '+';
|
|
|
|
uint64_t exp = 0;
|
|
const uint8_t *start_exp_digits = p;
|
|
while (parse_digit(*p, exp)) { p++; }
|
|
// no exp digits, or 20+ exp digits
|
|
if (p-start_exp_digits == 0 || p-start_exp_digits > 19) { return NUMBER_ERROR; }
|
|
|
|
exponent += exp_neg ? 0-exp : exp;
|
|
overflow = overflow || exponent < FASTFLOAT_SMALLEST_POWER || exponent > FASTFLOAT_LARGEST_POWER;
|
|
}
|
|
|
|
//
|
|
// Assemble (or slow-parse) the float
|
|
//
|
|
double d;
|
|
if (simdjson_likely(!overflow)) {
|
|
if (compute_float_64(exponent, i, negative, d)) { return d; }
|
|
}
|
|
if (!parse_float_strtod(src-negative, &d)) {
|
|
return NUMBER_ERROR;
|
|
}
|
|
return d;
|
|
}
|
|
} //namespace {}
|
|
#endif // SIMDJSON_SKIPNUMBERPARSING
|
|
|
|
} // namespace numberparsing
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/numberparsing.h */
|
|
|
|
#endif // SIMDJSON_HASWELL_NUMBERPARSING_H
|
|
/* end file src/generic/stage2/numberparsing.h */
|
|
/* begin file src/generic/stage2/tape_builder.h */
|
|
/* begin file src/generic/stage2/json_iterator.h */
|
|
/* begin file src/generic/stage2/logger.h */
|
|
// This is for an internal-only stage 2 specific logger.
|
|
// Set LOG_ENABLED = true to log what stage 2 is doing!
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace logger {
|
|
|
|
static constexpr const char * DASHES = "----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------";
|
|
|
|
static constexpr const bool LOG_ENABLED = false;
|
|
static constexpr const int LOG_EVENT_LEN = 20;
|
|
static constexpr const int LOG_BUFFER_LEN = 30;
|
|
static constexpr const int LOG_SMALL_BUFFER_LEN = 10;
|
|
static constexpr const int LOG_INDEX_LEN = 5;
|
|
|
|
static int log_depth; // Not threadsafe. Log only.
|
|
|
|
// Helper to turn unprintable or newline characters into spaces
|
|
static simdjson_really_inline char printable_char(char c) {
|
|
if (c >= 0x20) {
|
|
return c;
|
|
} else {
|
|
return ' ';
|
|
}
|
|
}
|
|
|
|
// Print the header and set up log_start
|
|
static simdjson_really_inline void log_start() {
|
|
if (LOG_ENABLED) {
|
|
log_depth = 0;
|
|
printf("\n");
|
|
printf("| %-*s | %-*s | %-*s | %-*s | Detail |\n", LOG_EVENT_LEN, "Event", LOG_BUFFER_LEN, "Buffer", LOG_SMALL_BUFFER_LEN, "Next", 5, "Next#");
|
|
printf("|%.*s|%.*s|%.*s|%.*s|--------|\n", LOG_EVENT_LEN+2, DASHES, LOG_BUFFER_LEN+2, DASHES, LOG_SMALL_BUFFER_LEN+2, DASHES, 5+2, DASHES);
|
|
}
|
|
}
|
|
|
|
// Logs a single line of
|
|
template<typename S>
|
|
static simdjson_really_inline void log_line(S &structurals, const char *title_prefix, const char *title, const char *detail) {
|
|
if (LOG_ENABLED) {
|
|
printf("| %*s%s%-*s ", log_depth*2, "", title_prefix, LOG_EVENT_LEN - log_depth*2 - int(strlen(title_prefix)), title);
|
|
auto current_index = structurals.at_beginning() ? nullptr : structurals.next_structural-1;
|
|
auto next_index = structurals.next_structural;
|
|
auto current = current_index ? &structurals.buf[*current_index] : (const uint8_t*)" ";
|
|
auto next = &structurals.buf[*next_index];
|
|
{
|
|
// Print the next N characters in the buffer.
|
|
printf("| ");
|
|
// Otherwise, print the characters starting from the buffer position.
|
|
// Print spaces for unprintable or newline characters.
|
|
for (int i=0;i<LOG_BUFFER_LEN;i++) {
|
|
printf("%c", printable_char(current[i]));
|
|
}
|
|
printf(" ");
|
|
// Print the next N characters in the buffer.
|
|
printf("| ");
|
|
// Otherwise, print the characters starting from the buffer position.
|
|
// Print spaces for unprintable or newline characters.
|
|
for (int i=0;i<LOG_SMALL_BUFFER_LEN;i++) {
|
|
printf("%c", printable_char(next[i]));
|
|
}
|
|
printf(" ");
|
|
}
|
|
if (current_index) {
|
|
printf("| %*u ", LOG_INDEX_LEN, *current_index);
|
|
} else {
|
|
printf("| %-*s ", LOG_INDEX_LEN, "");
|
|
}
|
|
// printf("| %*u ", LOG_INDEX_LEN, structurals.next_tape_index());
|
|
printf("| %-s ", detail);
|
|
printf("|\n");
|
|
}
|
|
}
|
|
|
|
} // namespace logger
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/logger.h */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
|
|
class json_iterator {
|
|
public:
|
|
const uint8_t* const buf;
|
|
uint32_t *next_structural;
|
|
dom_parser_implementation &dom_parser;
|
|
uint32_t depth{0};
|
|
|
|
/**
|
|
* Walk the JSON document.
|
|
*
|
|
* The visitor receives callbacks when values are encountered. All callbacks pass the iterator as
|
|
* the first parameter; some callbacks have other parameters as well:
|
|
*
|
|
* - visit_document_start() - at the beginning.
|
|
* - visit_document_end() - at the end (if things were successful).
|
|
*
|
|
* - visit_array_start() - at the start `[` of a non-empty array.
|
|
* - visit_array_end() - at the end `]` of a non-empty array.
|
|
* - visit_empty_array() - when an empty array is encountered.
|
|
*
|
|
* - visit_object_end() - at the start `]` of a non-empty object.
|
|
* - visit_object_start() - at the end `]` of a non-empty object.
|
|
* - visit_empty_object() - when an empty object is encountered.
|
|
* - visit_key(const uint8_t *key) - when a key in an object field is encountered. key is
|
|
* guaranteed to point at the first quote of the string (`"key"`).
|
|
* - visit_primitive(const uint8_t *value) - when a value is a string, number, boolean or null.
|
|
* - visit_root_primitive(iter, uint8_t *value) - when the top-level value is a string, number, boolean or null.
|
|
*
|
|
* - increment_count(iter) - each time a value is found in an array or object.
|
|
*/
|
|
template<bool STREAMING, typename V>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code walk_document(V &visitor) noexcept;
|
|
|
|
/**
|
|
* Create an iterator capable of walking a JSON document.
|
|
*
|
|
* The document must have already passed through stage 1.
|
|
*/
|
|
simdjson_really_inline json_iterator(dom_parser_implementation &_dom_parser, size_t start_structural_index);
|
|
|
|
/**
|
|
* Look at the next token.
|
|
*
|
|
* Tokens can be strings, numbers, booleans, null, or operators (`[{]},:`)).
|
|
*
|
|
* They may include invalid JSON as well (such as `1.2.3` or `ture`).
|
|
*/
|
|
simdjson_really_inline const uint8_t *peek() const noexcept;
|
|
/**
|
|
* Advance to the next token.
|
|
*
|
|
* Tokens can be strings, numbers, booleans, null, or operators (`[{]},:`)).
|
|
*
|
|
* They may include invalid JSON as well (such as `1.2.3` or `ture`).
|
|
*/
|
|
simdjson_really_inline const uint8_t *advance() noexcept;
|
|
/**
|
|
* Get the remaining length of the document, from the start of the current token.
|
|
*/
|
|
simdjson_really_inline size_t remaining_len() const noexcept;
|
|
/**
|
|
* Check if we are at the end of the document.
|
|
*
|
|
* If this is true, there are no more tokens.
|
|
*/
|
|
simdjson_really_inline bool at_eof() const noexcept;
|
|
/**
|
|
* Check if we are at the beginning of the document.
|
|
*/
|
|
simdjson_really_inline bool at_beginning() const noexcept;
|
|
simdjson_really_inline uint8_t last_structural() const noexcept;
|
|
|
|
/**
|
|
* Log that a value has been found.
|
|
*
|
|
* Set ENABLE_LOGGING=true in logger.h to see logging.
|
|
*/
|
|
simdjson_really_inline void log_value(const char *type) const noexcept;
|
|
/**
|
|
* Log the start of a multipart value.
|
|
*
|
|
* Set ENABLE_LOGGING=true in logger.h to see logging.
|
|
*/
|
|
simdjson_really_inline void log_start_value(const char *type) const noexcept;
|
|
/**
|
|
* Log the end of a multipart value.
|
|
*
|
|
* Set ENABLE_LOGGING=true in logger.h to see logging.
|
|
*/
|
|
simdjson_really_inline void log_end_value(const char *type) const noexcept;
|
|
/**
|
|
* Log an error.
|
|
*
|
|
* Set ENABLE_LOGGING=true in logger.h to see logging.
|
|
*/
|
|
simdjson_really_inline void log_error(const char *error) const noexcept;
|
|
|
|
template<typename V>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_primitive(V &visitor, const uint8_t *value) noexcept;
|
|
template<typename V>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_primitive(V &visitor, const uint8_t *value) noexcept;
|
|
};
|
|
|
|
template<bool STREAMING, typename V>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code json_iterator::walk_document(V &visitor) noexcept {
|
|
logger::log_start();
|
|
|
|
//
|
|
// Start the document
|
|
//
|
|
if (at_eof()) { return EMPTY; }
|
|
log_start_value("document");
|
|
SIMDJSON_TRY( visitor.visit_document_start(*this) );
|
|
|
|
//
|
|
// Read first value
|
|
//
|
|
{
|
|
auto value = advance();
|
|
|
|
// Make sure the outer hash or array is closed before continuing; otherwise, there are ways we
|
|
// could get into memory corruption. See https://github.com/simdjson/simdjson/issues/906
|
|
if (!STREAMING) {
|
|
switch (*value) {
|
|
case '{': if (last_structural() != '}') { return TAPE_ERROR; }; break;
|
|
case '[': if (last_structural() != ']') { return TAPE_ERROR; }; break;
|
|
}
|
|
}
|
|
|
|
switch (*value) {
|
|
case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin;
|
|
case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin;
|
|
default: SIMDJSON_TRY( visitor.visit_root_primitive(*this, value) ); break;
|
|
}
|
|
}
|
|
goto document_end;
|
|
|
|
//
|
|
// Object parser states
|
|
//
|
|
object_begin:
|
|
log_start_value("object");
|
|
depth++;
|
|
if (depth >= dom_parser.max_depth()) { log_error("Exceeded max depth!"); return DEPTH_ERROR; }
|
|
dom_parser.is_array[depth] = false;
|
|
SIMDJSON_TRY( visitor.visit_object_start(*this) );
|
|
|
|
{
|
|
auto key = advance();
|
|
if (*key != '"') { log_error("Object does not start with a key"); return TAPE_ERROR; }
|
|
SIMDJSON_TRY( visitor.increment_count(*this) );
|
|
SIMDJSON_TRY( visitor.visit_key(*this, key) );
|
|
}
|
|
|
|
object_field:
|
|
if (simdjson_unlikely( *advance() != ':' )) { log_error("Missing colon after key in object"); return TAPE_ERROR; }
|
|
{
|
|
auto value = advance();
|
|
switch (*value) {
|
|
case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin;
|
|
case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin;
|
|
default: SIMDJSON_TRY( visitor.visit_primitive(*this, value) ); break;
|
|
}
|
|
}
|
|
|
|
object_continue:
|
|
switch (*advance()) {
|
|
case ',':
|
|
SIMDJSON_TRY( visitor.increment_count(*this) );
|
|
{
|
|
auto key = advance();
|
|
if (simdjson_unlikely( *key != '"' )) { log_error("Key string missing at beginning of field in object"); return TAPE_ERROR; }
|
|
SIMDJSON_TRY( visitor.visit_key(*this, key) );
|
|
}
|
|
goto object_field;
|
|
case '}': log_end_value("object"); SIMDJSON_TRY( visitor.visit_object_end(*this) ); goto scope_end;
|
|
default: log_error("No comma between object fields"); return TAPE_ERROR;
|
|
}
|
|
|
|
scope_end:
|
|
depth--;
|
|
if (depth == 0) { goto document_end; }
|
|
if (dom_parser.is_array[depth]) { goto array_continue; }
|
|
goto object_continue;
|
|
|
|
//
|
|
// Array parser states
|
|
//
|
|
array_begin:
|
|
log_start_value("array");
|
|
depth++;
|
|
if (depth >= dom_parser.max_depth()) { log_error("Exceeded max depth!"); return DEPTH_ERROR; }
|
|
dom_parser.is_array[depth] = true;
|
|
SIMDJSON_TRY( visitor.visit_array_start(*this) );
|
|
SIMDJSON_TRY( visitor.increment_count(*this) );
|
|
|
|
array_value:
|
|
{
|
|
auto value = advance();
|
|
switch (*value) {
|
|
case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin;
|
|
case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin;
|
|
default: SIMDJSON_TRY( visitor.visit_primitive(*this, value) ); break;
|
|
}
|
|
}
|
|
|
|
array_continue:
|
|
switch (*advance()) {
|
|
case ',': SIMDJSON_TRY( visitor.increment_count(*this) ); goto array_value;
|
|
case ']': log_end_value("array"); SIMDJSON_TRY( visitor.visit_array_end(*this) ); goto scope_end;
|
|
default: log_error("Missing comma between array values"); return TAPE_ERROR;
|
|
}
|
|
|
|
document_end:
|
|
log_end_value("document");
|
|
SIMDJSON_TRY( visitor.visit_document_end(*this) );
|
|
|
|
dom_parser.next_structural_index = uint32_t(next_structural - &dom_parser.structural_indexes[0]);
|
|
|
|
// If we didn't make it to the end, it's an error
|
|
if ( !STREAMING && dom_parser.next_structural_index != dom_parser.n_structural_indexes ) {
|
|
log_error("More than one JSON value at the root of the document, or extra characters at the end of the JSON!");
|
|
return TAPE_ERROR;
|
|
}
|
|
|
|
return SUCCESS;
|
|
|
|
} // walk_document()
|
|
|
|
simdjson_really_inline json_iterator::json_iterator(dom_parser_implementation &_dom_parser, size_t start_structural_index)
|
|
: buf{_dom_parser.buf},
|
|
next_structural{&_dom_parser.structural_indexes[start_structural_index]},
|
|
dom_parser{_dom_parser} {
|
|
}
|
|
|
|
simdjson_really_inline const uint8_t *json_iterator::peek() const noexcept {
|
|
return &buf[*(next_structural)];
|
|
}
|
|
simdjson_really_inline const uint8_t *json_iterator::advance() noexcept {
|
|
return &buf[*(next_structural++)];
|
|
}
|
|
simdjson_really_inline size_t json_iterator::remaining_len() const noexcept {
|
|
return dom_parser.len - *(next_structural-1);
|
|
}
|
|
|
|
simdjson_really_inline bool json_iterator::at_eof() const noexcept {
|
|
return next_structural == &dom_parser.structural_indexes[dom_parser.n_structural_indexes];
|
|
}
|
|
simdjson_really_inline bool json_iterator::at_beginning() const noexcept {
|
|
return next_structural == dom_parser.structural_indexes.get();
|
|
}
|
|
simdjson_really_inline uint8_t json_iterator::last_structural() const noexcept {
|
|
return buf[dom_parser.structural_indexes[dom_parser.n_structural_indexes - 1]];
|
|
}
|
|
|
|
simdjson_really_inline void json_iterator::log_value(const char *type) const noexcept {
|
|
logger::log_line(*this, "", type, "");
|
|
}
|
|
|
|
simdjson_really_inline void json_iterator::log_start_value(const char *type) const noexcept {
|
|
logger::log_line(*this, "+", type, "");
|
|
if (logger::LOG_ENABLED) { logger::log_depth++; }
|
|
}
|
|
|
|
simdjson_really_inline void json_iterator::log_end_value(const char *type) const noexcept {
|
|
if (logger::LOG_ENABLED) { logger::log_depth--; }
|
|
logger::log_line(*this, "-", type, "");
|
|
}
|
|
|
|
simdjson_really_inline void json_iterator::log_error(const char *error) const noexcept {
|
|
logger::log_line(*this, "", "ERROR", error);
|
|
}
|
|
|
|
template<typename V>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code json_iterator::visit_root_primitive(V &visitor, const uint8_t *value) noexcept {
|
|
switch (*value) {
|
|
case '"': return visitor.visit_root_string(*this, value);
|
|
case 't': return visitor.visit_root_true_atom(*this, value);
|
|
case 'f': return visitor.visit_root_false_atom(*this, value);
|
|
case 'n': return visitor.visit_root_null_atom(*this, value);
|
|
case '-':
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
return visitor.visit_root_number(*this, value);
|
|
default:
|
|
log_error("Document starts with a non-value character");
|
|
return TAPE_ERROR;
|
|
}
|
|
}
|
|
template<typename V>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code json_iterator::visit_primitive(V &visitor, const uint8_t *value) noexcept {
|
|
switch (*value) {
|
|
case '"': return visitor.visit_string(*this, value);
|
|
case 't': return visitor.visit_true_atom(*this, value);
|
|
case 'f': return visitor.visit_false_atom(*this, value);
|
|
case 'n': return visitor.visit_null_atom(*this, value);
|
|
case '-':
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
return visitor.visit_number(*this, value);
|
|
default:
|
|
log_error("Non-value found when value was expected!");
|
|
return TAPE_ERROR;
|
|
}
|
|
}
|
|
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/logger.h */
|
|
/* begin file src/generic/stage2/tape_writer.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
|
|
struct tape_writer {
|
|
/** The next place to write to tape */
|
|
uint64_t *next_tape_loc;
|
|
|
|
/** Write a signed 64-bit value to tape. */
|
|
simdjson_really_inline void append_s64(int64_t value) noexcept;
|
|
|
|
/** Write an unsigned 64-bit value to tape. */
|
|
simdjson_really_inline void append_u64(uint64_t value) noexcept;
|
|
|
|
/** Write a double value to tape. */
|
|
simdjson_really_inline void append_double(double value) noexcept;
|
|
|
|
/**
|
|
* Append a tape entry (an 8-bit type,and 56 bits worth of value).
|
|
*/
|
|
simdjson_really_inline void append(uint64_t val, internal::tape_type t) noexcept;
|
|
|
|
/**
|
|
* Skip the current tape entry without writing.
|
|
*
|
|
* Used to skip the start of the container, since we'll come back later to fill it in when the
|
|
* container ends.
|
|
*/
|
|
simdjson_really_inline void skip() noexcept;
|
|
|
|
/**
|
|
* Skip the number of tape entries necessary to write a large u64 or i64.
|
|
*/
|
|
simdjson_really_inline void skip_large_integer() noexcept;
|
|
|
|
/**
|
|
* Skip the number of tape entries necessary to write a double.
|
|
*/
|
|
simdjson_really_inline void skip_double() noexcept;
|
|
|
|
/**
|
|
* Write a value to a known location on tape.
|
|
*
|
|
* Used to go back and write out the start of a container after the container ends.
|
|
*/
|
|
simdjson_really_inline static void write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept;
|
|
|
|
private:
|
|
/**
|
|
* Append both the tape entry, and a supplementary value following it. Used for types that need
|
|
* all 64 bits, such as double and uint64_t.
|
|
*/
|
|
template<typename T>
|
|
simdjson_really_inline void append2(uint64_t val, T val2, internal::tape_type t) noexcept;
|
|
}; // struct number_writer
|
|
|
|
simdjson_really_inline void tape_writer::append_s64(int64_t value) noexcept {
|
|
append2(0, value, internal::tape_type::INT64);
|
|
}
|
|
|
|
simdjson_really_inline void tape_writer::append_u64(uint64_t value) noexcept {
|
|
append(0, internal::tape_type::UINT64);
|
|
*next_tape_loc = value;
|
|
next_tape_loc++;
|
|
}
|
|
|
|
/** Write a double value to tape. */
|
|
simdjson_really_inline void tape_writer::append_double(double value) noexcept {
|
|
append2(0, value, internal::tape_type::DOUBLE);
|
|
}
|
|
|
|
simdjson_really_inline void tape_writer::skip() noexcept {
|
|
next_tape_loc++;
|
|
}
|
|
|
|
simdjson_really_inline void tape_writer::skip_large_integer() noexcept {
|
|
next_tape_loc += 2;
|
|
}
|
|
|
|
simdjson_really_inline void tape_writer::skip_double() noexcept {
|
|
next_tape_loc += 2;
|
|
}
|
|
|
|
simdjson_really_inline void tape_writer::append(uint64_t val, internal::tape_type t) noexcept {
|
|
*next_tape_loc = val | ((uint64_t(char(t))) << 56);
|
|
next_tape_loc++;
|
|
}
|
|
|
|
template<typename T>
|
|
simdjson_really_inline void tape_writer::append2(uint64_t val, T val2, internal::tape_type t) noexcept {
|
|
append(val, t);
|
|
static_assert(sizeof(val2) == sizeof(*next_tape_loc), "Type is not 64 bits!");
|
|
memcpy(next_tape_loc, &val2, sizeof(val2));
|
|
next_tape_loc++;
|
|
}
|
|
|
|
simdjson_really_inline void tape_writer::write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept {
|
|
tape_loc = val | ((uint64_t(char(t))) << 56);
|
|
}
|
|
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/tape_writer.h */
|
|
/* begin file src/generic/stage2/atomparsing.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
namespace atomparsing {
|
|
|
|
// The string_to_uint32 is exclusively used to map literal strings to 32-bit values.
|
|
// We use memcpy instead of a pointer cast to avoid undefined behaviors since we cannot
|
|
// be certain that the character pointer will be properly aligned.
|
|
// You might think that using memcpy makes this function expensive, but you'd be wrong.
|
|
// All decent optimizing compilers (GCC, clang, Visual Studio) will compile string_to_uint32("false");
|
|
// to the compile-time constant 1936482662.
|
|
simdjson_really_inline uint32_t string_to_uint32(const char* str) { uint32_t val; std::memcpy(&val, str, sizeof(uint32_t)); return val; }
|
|
|
|
|
|
// Again in str4ncmp we use a memcpy to avoid undefined behavior. The memcpy may appear expensive.
|
|
// Yet all decent optimizing compilers will compile memcpy to a single instruction, just about.
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline uint32_t str4ncmp(const uint8_t *src, const char* atom) {
|
|
uint32_t srcval; // we want to avoid unaligned 32-bit loads (undefined in C/C++)
|
|
static_assert(sizeof(uint32_t) <= SIMDJSON_PADDING, "SIMDJSON_PADDING must be larger than 4 bytes");
|
|
std::memcpy(&srcval, src, sizeof(uint32_t));
|
|
return srcval ^ string_to_uint32(atom);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool is_valid_true_atom(const uint8_t *src) {
|
|
return (str4ncmp(src, "true") | is_not_structural_or_whitespace(src[4])) == 0;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool is_valid_true_atom(const uint8_t *src, size_t len) {
|
|
if (len > 4) { return is_valid_true_atom(src); }
|
|
else if (len == 4) { return !str4ncmp(src, "true"); }
|
|
else { return false; }
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool is_valid_false_atom(const uint8_t *src) {
|
|
return (str4ncmp(src+1, "alse") | is_not_structural_or_whitespace(src[5])) == 0;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool is_valid_false_atom(const uint8_t *src, size_t len) {
|
|
if (len > 5) { return is_valid_false_atom(src); }
|
|
else if (len == 5) { return !str4ncmp(src+1, "alse"); }
|
|
else { return false; }
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool is_valid_null_atom(const uint8_t *src) {
|
|
return (str4ncmp(src, "null") | is_not_structural_or_whitespace(src[4])) == 0;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool is_valid_null_atom(const uint8_t *src, size_t len) {
|
|
if (len > 4) { return is_valid_null_atom(src); }
|
|
else if (len == 4) { return !str4ncmp(src, "null"); }
|
|
else { return false; }
|
|
}
|
|
|
|
} // namespace atomparsing
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/atomparsing.h */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
|
|
struct tape_builder {
|
|
template<bool STREAMING>
|
|
SIMDJSON_WARN_UNUSED static simdjson_really_inline error_code parse_document(
|
|
dom_parser_implementation &dom_parser,
|
|
dom::document &doc) noexcept;
|
|
|
|
/** Called when a non-empty document starts. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_document_start(json_iterator &iter) noexcept;
|
|
/** Called when a non-empty document ends without error. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_document_end(json_iterator &iter) noexcept;
|
|
|
|
/** Called when a non-empty array starts. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_array_start(json_iterator &iter) noexcept;
|
|
/** Called when a non-empty array ends. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_array_end(json_iterator &iter) noexcept;
|
|
/** Called when an empty array is found. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_empty_array(json_iterator &iter) noexcept;
|
|
|
|
/** Called when a non-empty object starts. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_object_start(json_iterator &iter) noexcept;
|
|
/**
|
|
* Called when a key in a field is encountered.
|
|
*
|
|
* primitive, visit_object_start, visit_empty_object, visit_array_start, or visit_empty_array
|
|
* will be called after this with the field value.
|
|
*/
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_key(json_iterator &iter, const uint8_t *key) noexcept;
|
|
/** Called when a non-empty object ends. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_object_end(json_iterator &iter) noexcept;
|
|
/** Called when an empty object is found. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_empty_object(json_iterator &iter) noexcept;
|
|
|
|
/**
|
|
* Called when a string, number, boolean or null is found.
|
|
*/
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_primitive(json_iterator &iter, const uint8_t *value) noexcept;
|
|
/**
|
|
* Called when a string, number, boolean or null is found at the top level of a document (i.e.
|
|
* when there is no array or object and the entire document is a single string, number, boolean or
|
|
* null.
|
|
*
|
|
* This is separate from primitive() because simdjson's normal primitive parsing routines assume
|
|
* there is at least one more token after the value, which is only true in an array or object.
|
|
*/
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_primitive(json_iterator &iter, const uint8_t *value) noexcept;
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_string(json_iterator &iter, const uint8_t *value, bool key = false) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_number(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_true_atom(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_false_atom(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_null_atom(json_iterator &iter, const uint8_t *value) noexcept;
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_string(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_number(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_true_atom(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_false_atom(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_null_atom(json_iterator &iter, const uint8_t *value) noexcept;
|
|
|
|
/** Called each time a new field or element in an array or object is found. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code increment_count(json_iterator &iter) noexcept;
|
|
|
|
/** Next location to write to tape */
|
|
tape_writer tape;
|
|
private:
|
|
/** Next write location in the string buf for stage 2 parsing */
|
|
uint8_t *current_string_buf_loc;
|
|
|
|
simdjson_really_inline tape_builder(dom::document &doc) noexcept;
|
|
|
|
simdjson_really_inline uint32_t next_tape_index(json_iterator &iter) const noexcept;
|
|
simdjson_really_inline void start_container(json_iterator &iter) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code end_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code empty_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept;
|
|
simdjson_really_inline uint8_t *on_start_string(json_iterator &iter) noexcept;
|
|
simdjson_really_inline void on_end_string(uint8_t *dst) noexcept;
|
|
}; // class tape_builder
|
|
|
|
template<bool STREAMING>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::parse_document(
|
|
dom_parser_implementation &dom_parser,
|
|
dom::document &doc) noexcept {
|
|
dom_parser.doc = &doc;
|
|
json_iterator iter(dom_parser, STREAMING ? dom_parser.next_structural_index : 0);
|
|
tape_builder builder(doc);
|
|
return iter.walk_document<STREAMING>(builder);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_root_primitive(json_iterator &iter, const uint8_t *value) noexcept {
|
|
return iter.visit_root_primitive(*this, value);
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_primitive(json_iterator &iter, const uint8_t *value) noexcept {
|
|
return iter.visit_primitive(*this, value);
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_empty_object(json_iterator &iter) noexcept {
|
|
return empty_container(iter, internal::tape_type::START_OBJECT, internal::tape_type::END_OBJECT);
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_empty_array(json_iterator &iter) noexcept {
|
|
return empty_container(iter, internal::tape_type::START_ARRAY, internal::tape_type::END_ARRAY);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_document_start(json_iterator &iter) noexcept {
|
|
start_container(iter);
|
|
return SUCCESS;
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_object_start(json_iterator &iter) noexcept {
|
|
start_container(iter);
|
|
return SUCCESS;
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_array_start(json_iterator &iter) noexcept {
|
|
start_container(iter);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_object_end(json_iterator &iter) noexcept {
|
|
return end_container(iter, internal::tape_type::START_OBJECT, internal::tape_type::END_OBJECT);
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_array_end(json_iterator &iter) noexcept {
|
|
return end_container(iter, internal::tape_type::START_ARRAY, internal::tape_type::END_ARRAY);
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_document_end(json_iterator &iter) noexcept {
|
|
constexpr uint32_t start_tape_index = 0;
|
|
tape.append(start_tape_index, internal::tape_type::ROOT);
|
|
tape_writer::write(iter.dom_parser.doc->tape[start_tape_index], next_tape_index(iter), internal::tape_type::ROOT);
|
|
return SUCCESS;
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_key(json_iterator &iter, const uint8_t *key) noexcept {
|
|
return visit_string(iter, key, true);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::increment_count(json_iterator &iter) noexcept {
|
|
iter.dom_parser.open_containers[iter.depth].count++; // we have a key value pair in the object at parser.dom_parser.depth - 1
|
|
return SUCCESS;
|
|
}
|
|
|
|
simdjson_really_inline tape_builder::tape_builder(dom::document &doc) noexcept : tape{doc.tape.get()}, current_string_buf_loc{doc.string_buf.get()} {}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_string(json_iterator &iter, const uint8_t *value, bool key) noexcept {
|
|
iter.log_value(key ? "key" : "string");
|
|
uint8_t *dst = on_start_string(iter);
|
|
dst = stringparsing::parse_string(value, dst);
|
|
if (dst == nullptr) {
|
|
iter.log_error("Invalid escape in string");
|
|
return STRING_ERROR;
|
|
}
|
|
on_end_string(dst);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_root_string(json_iterator &iter, const uint8_t *value) noexcept {
|
|
return visit_string(iter, value);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_number(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("number");
|
|
return numberparsing::parse_number(value, tape);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_root_number(json_iterator &iter, const uint8_t *value) noexcept {
|
|
//
|
|
// We need to make a copy to make sure that the string is space terminated.
|
|
// This is not about padding the input, which should already padded up
|
|
// to len + SIMDJSON_PADDING. However, we have no control at this stage
|
|
// on how the padding was done. What if the input string was padded with nulls?
|
|
// It is quite common for an input string to have an extra null character (C string).
|
|
// We do not want to allow 9\0 (where \0 is the null character) inside a JSON
|
|
// document, but the string "9\0" by itself is fine. So we make a copy and
|
|
// pad the input with spaces when we know that there is just one input element.
|
|
// This copy is relatively expensive, but it will almost never be called in
|
|
// practice unless you are in the strange scenario where you have many JSON
|
|
// documents made of single atoms.
|
|
//
|
|
uint8_t *copy = static_cast<uint8_t *>(malloc(iter.remaining_len() + SIMDJSON_PADDING));
|
|
if (copy == nullptr) { return MEMALLOC; }
|
|
memcpy(copy, value, iter.remaining_len());
|
|
memset(copy + iter.remaining_len(), ' ', SIMDJSON_PADDING);
|
|
error_code error = visit_number(iter, copy);
|
|
free(copy);
|
|
return error;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_true_atom(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("true");
|
|
if (!atomparsing::is_valid_true_atom(value)) { return T_ATOM_ERROR; }
|
|
tape.append(0, internal::tape_type::TRUE_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_root_true_atom(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("true");
|
|
if (!atomparsing::is_valid_true_atom(value, iter.remaining_len())) { return T_ATOM_ERROR; }
|
|
tape.append(0, internal::tape_type::TRUE_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_false_atom(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("false");
|
|
if (!atomparsing::is_valid_false_atom(value)) { return F_ATOM_ERROR; }
|
|
tape.append(0, internal::tape_type::FALSE_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_root_false_atom(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("false");
|
|
if (!atomparsing::is_valid_false_atom(value, iter.remaining_len())) { return F_ATOM_ERROR; }
|
|
tape.append(0, internal::tape_type::FALSE_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_null_atom(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("null");
|
|
if (!atomparsing::is_valid_null_atom(value)) { return N_ATOM_ERROR; }
|
|
tape.append(0, internal::tape_type::NULL_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_root_null_atom(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("null");
|
|
if (!atomparsing::is_valid_null_atom(value, iter.remaining_len())) { return N_ATOM_ERROR; }
|
|
tape.append(0, internal::tape_type::NULL_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
// private:
|
|
|
|
simdjson_really_inline uint32_t tape_builder::next_tape_index(json_iterator &iter) const noexcept {
|
|
return uint32_t(tape.next_tape_loc - iter.dom_parser.doc->tape.get());
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::empty_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept {
|
|
auto start_index = next_tape_index(iter);
|
|
tape.append(start_index+2, start);
|
|
tape.append(start_index, end);
|
|
return SUCCESS;
|
|
}
|
|
|
|
simdjson_really_inline void tape_builder::start_container(json_iterator &iter) noexcept {
|
|
iter.dom_parser.open_containers[iter.depth].tape_index = next_tape_index(iter);
|
|
iter.dom_parser.open_containers[iter.depth].count = 0;
|
|
tape.skip(); // We don't actually *write* the start element until the end.
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::end_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept {
|
|
// Write the ending tape element, pointing at the start location
|
|
const uint32_t start_tape_index = iter.dom_parser.open_containers[iter.depth].tape_index;
|
|
tape.append(start_tape_index, end);
|
|
// Write the start tape element, pointing at the end location (and including count)
|
|
// count can overflow if it exceeds 24 bits... so we saturate
|
|
// the convention being that a cnt of 0xffffff or more is undetermined in value (>= 0xffffff).
|
|
const uint32_t count = iter.dom_parser.open_containers[iter.depth].count;
|
|
const uint32_t cntsat = count > 0xFFFFFF ? 0xFFFFFF : count;
|
|
tape_writer::write(iter.dom_parser.doc->tape[start_tape_index], next_tape_index(iter) | (uint64_t(cntsat) << 32), start);
|
|
return SUCCESS;
|
|
}
|
|
|
|
simdjson_really_inline uint8_t *tape_builder::on_start_string(json_iterator &iter) noexcept {
|
|
// we advance the point, accounting for the fact that we have a NULL termination
|
|
tape.append(current_string_buf_loc - iter.dom_parser.doc->string_buf.get(), internal::tape_type::STRING);
|
|
return current_string_buf_loc + sizeof(uint32_t);
|
|
}
|
|
|
|
simdjson_really_inline void tape_builder::on_end_string(uint8_t *dst) noexcept {
|
|
uint32_t str_length = uint32_t(dst - (current_string_buf_loc + sizeof(uint32_t)));
|
|
// TODO check for overflow in case someone has a crazy string (>=4GB?)
|
|
// But only add the overflow check when the document itself exceeds 4GB
|
|
// Currently unneeded because we refuse to parse docs larger or equal to 4GB.
|
|
memcpy(current_string_buf_loc, &str_length, sizeof(uint32_t));
|
|
// NULL termination is still handy if you expect all your strings to
|
|
// be NULL terminated? It comes at a small cost
|
|
*dst = 0;
|
|
current_string_buf_loc = dst + 1;
|
|
}
|
|
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/atomparsing.h */
|
|
|
|
//
|
|
// Implementation-specific overrides
|
|
//
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage1 {
|
|
|
|
simdjson_really_inline uint64_t json_string_scanner::find_escaped(uint64_t backslash) {
|
|
if (!backslash) { uint64_t escaped = prev_escaped; prev_escaped = 0; return escaped; }
|
|
return find_escaped_branchless(backslash);
|
|
}
|
|
|
|
} // namespace stage1
|
|
|
|
SIMDJSON_WARN_UNUSED error_code implementation::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept {
|
|
return haswell::stage1::json_minifier::minify<128>(buf, len, dst, dst_len);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED error_code dom_parser_implementation::stage1(const uint8_t *_buf, size_t _len, bool streaming) noexcept {
|
|
this->buf = _buf;
|
|
this->len = _len;
|
|
return haswell::stage1::json_structural_indexer::index<128>(_buf, _len, *this, streaming);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED bool implementation::validate_utf8(const char *buf, size_t len) const noexcept {
|
|
return haswell::stage1::generic_validate_utf8(buf,len);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED error_code dom_parser_implementation::stage2(dom::document &_doc) noexcept {
|
|
return stage2::tape_builder::parse_document<false>(*this, _doc);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED error_code dom_parser_implementation::stage2_next(dom::document &_doc) noexcept {
|
|
return stage2::tape_builder::parse_document<true>(*this, _doc);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED error_code dom_parser_implementation::parse(const uint8_t *_buf, size_t _len, dom::document &_doc) noexcept {
|
|
auto error = stage1(_buf, _len, false);
|
|
if (error) { return error; }
|
|
return stage2(_doc);
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
/* begin file src/haswell/end_implementation.h */
|
|
#undef SIMDJSON_IMPLEMENTATION
|
|
SIMDJSON_UNTARGET_REGION
|
|
/* end file src/haswell/end_implementation.h */
|
|
/* end file src/haswell/end_implementation.h */
|
|
#endif
|
|
#if SIMDJSON_IMPLEMENTATION_WESTMERE
|
|
/* begin file src/westmere/implementation.cpp */
|
|
/* begin file src/westmere/begin_implementation.h */
|
|
#define SIMDJSON_IMPLEMENTATION westmere
|
|
#define SIMDJSON_TARGET_WESTMERE SIMDJSON_TARGET_REGION("sse4.2,pclmul")
|
|
|
|
/* begin file src/westmere/intrinsics.h */
|
|
#ifndef SIMDJSON_WESTMERE_INTRINSICS_H
|
|
#define SIMDJSON_WESTMERE_INTRINSICS_H
|
|
|
|
#ifdef SIMDJSON_VISUAL_STUDIO
|
|
// under clang within visual studio, this will include <x86intrin.h>
|
|
#include <intrin.h> // visual studio or clang
|
|
#else
|
|
#include <x86intrin.h> // elsewhere
|
|
#endif // SIMDJSON_VISUAL_STUDIO
|
|
|
|
|
|
#ifdef SIMDJSON_CLANG_VISUAL_STUDIO
|
|
/**
|
|
* You are not supposed, normally, to include these
|
|
* headers directly. Instead you should either include intrin.h
|
|
* or x86intrin.h. However, when compiling with clang
|
|
* under Windows (i.e., when _MSC_VER is set), these headers
|
|
* only get included *if* the corresponding features are detected
|
|
* from macros:
|
|
*/
|
|
#include <smmintrin.h> // for _mm_alignr_epi8
|
|
#include <wmmintrin.h> // for _mm_clmulepi64_si128
|
|
#endif
|
|
|
|
|
|
|
|
#endif // SIMDJSON_WESTMERE_INTRINSICS_H
|
|
/* end file src/westmere/intrinsics.h */
|
|
/* westmere/implementation.h already included: #include "westmere/implementation.h" */
|
|
|
|
SIMDJSON_TARGET_WESTMERE
|
|
|
|
/* begin file src/westmere/bitmanipulation.h */
|
|
#ifndef SIMDJSON_WESTMERE_BITMANIPULATION_H
|
|
#define SIMDJSON_WESTMERE_BITMANIPULATION_H
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
// We sometimes call trailing_zero on inputs that are zero,
|
|
// but the algorithms do not end up using the returned value.
|
|
// Sadly, sanitizers are not smart enough to figure it out.
|
|
NO_SANITIZE_UNDEFINED
|
|
simdjson_really_inline int trailing_zeroes(uint64_t input_num) {
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
unsigned long ret;
|
|
// Search the mask data from least significant bit (LSB)
|
|
// to the most significant bit (MSB) for a set bit (1).
|
|
_BitScanForward64(&ret, input_num);
|
|
return (int)ret;
|
|
#else // SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
return __builtin_ctzll(input_num);
|
|
#endif // SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
}
|
|
|
|
/* result might be undefined when input_num is zero */
|
|
simdjson_really_inline uint64_t clear_lowest_bit(uint64_t input_num) {
|
|
return input_num & (input_num-1);
|
|
}
|
|
|
|
/* result might be undefined when input_num is zero */
|
|
simdjson_really_inline int leading_zeroes(uint64_t input_num) {
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
unsigned long leading_zero = 0;
|
|
// Search the mask data from most significant bit (MSB)
|
|
// to least significant bit (LSB) for a set bit (1).
|
|
if (_BitScanReverse64(&leading_zero, input_num))
|
|
return (int)(63 - leading_zero);
|
|
else
|
|
return 64;
|
|
#else
|
|
return __builtin_clzll(input_num);
|
|
#endif// SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
}
|
|
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
simdjson_really_inline unsigned __int64 count_ones(uint64_t input_num) {
|
|
// note: we do not support legacy 32-bit Windows
|
|
return __popcnt64(input_num);// Visual Studio wants two underscores
|
|
}
|
|
#else
|
|
simdjson_really_inline long long int count_ones(uint64_t input_num) {
|
|
return _popcnt64(input_num);
|
|
}
|
|
#endif
|
|
|
|
simdjson_really_inline bool add_overflow(uint64_t value1, uint64_t value2,
|
|
uint64_t *result) {
|
|
#ifdef SIMDJSON_REGULAR_VISUAL_STUDIO
|
|
return _addcarry_u64(0, value1, value2,
|
|
reinterpret_cast<unsigned __int64 *>(result));
|
|
#else
|
|
return __builtin_uaddll_overflow(value1, value2,
|
|
(unsigned long long *)result);
|
|
#endif
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
#endif // SIMDJSON_WESTMERE_BITMANIPULATION_H
|
|
/* end file src/westmere/bitmanipulation.h */
|
|
/* begin file src/westmere/bitmask.h */
|
|
#ifndef SIMDJSON_WESTMERE_BITMASK_H
|
|
#define SIMDJSON_WESTMERE_BITMASK_H
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
//
|
|
// Perform a "cumulative bitwise xor," flipping bits each time a 1 is encountered.
|
|
//
|
|
// For example, prefix_xor(00100100) == 00011100
|
|
//
|
|
simdjson_really_inline uint64_t prefix_xor(const uint64_t bitmask) {
|
|
// There should be no such thing with a processing supporting avx2
|
|
// but not clmul.
|
|
__m128i all_ones = _mm_set1_epi8('\xFF');
|
|
__m128i result = _mm_clmulepi64_si128(_mm_set_epi64x(0ULL, bitmask), all_ones, 0);
|
|
return _mm_cvtsi128_si64(result);
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
#endif // SIMDJSON_WESTMERE_BITMASK_H
|
|
/* end file src/westmere/bitmask.h */
|
|
/* begin file src/westmere/simd.h */
|
|
#ifndef SIMDJSON_WESTMERE_SIMD_H
|
|
#define SIMDJSON_WESTMERE_SIMD_H
|
|
|
|
/* simdprune_tables.h already included: #include "simdprune_tables.h" */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace simd {
|
|
|
|
template<typename Child>
|
|
struct base {
|
|
__m128i value;
|
|
|
|
// Zero constructor
|
|
simdjson_really_inline base() : value{__m128i()} {}
|
|
|
|
// Conversion from SIMD register
|
|
simdjson_really_inline base(const __m128i _value) : value(_value) {}
|
|
|
|
// Conversion to SIMD register
|
|
simdjson_really_inline operator const __m128i&() const { return this->value; }
|
|
simdjson_really_inline operator __m128i&() { return this->value; }
|
|
|
|
// Bit operations
|
|
simdjson_really_inline Child operator|(const Child other) const { return _mm_or_si128(*this, other); }
|
|
simdjson_really_inline Child operator&(const Child other) const { return _mm_and_si128(*this, other); }
|
|
simdjson_really_inline Child operator^(const Child other) const { return _mm_xor_si128(*this, other); }
|
|
simdjson_really_inline Child bit_andnot(const Child other) const { return _mm_andnot_si128(other, *this); }
|
|
simdjson_really_inline Child& operator|=(const Child other) { auto this_cast = (Child*)this; *this_cast = *this_cast | other; return *this_cast; }
|
|
simdjson_really_inline Child& operator&=(const Child other) { auto this_cast = (Child*)this; *this_cast = *this_cast & other; return *this_cast; }
|
|
simdjson_really_inline Child& operator^=(const Child other) { auto this_cast = (Child*)this; *this_cast = *this_cast ^ other; return *this_cast; }
|
|
};
|
|
|
|
// Forward-declared so they can be used by splat and friends.
|
|
template<typename T>
|
|
struct simd8;
|
|
|
|
template<typename T, typename Mask=simd8<bool>>
|
|
struct base8: base<simd8<T>> {
|
|
typedef uint16_t bitmask_t;
|
|
typedef uint32_t bitmask2_t;
|
|
|
|
simdjson_really_inline base8() : base<simd8<T>>() {}
|
|
simdjson_really_inline base8(const __m128i _value) : base<simd8<T>>(_value) {}
|
|
|
|
simdjson_really_inline Mask operator==(const simd8<T> other) const { return _mm_cmpeq_epi8(*this, other); }
|
|
|
|
static const int SIZE = sizeof(base<simd8<T>>::value);
|
|
|
|
template<int N=1>
|
|
simdjson_really_inline simd8<T> prev(const simd8<T> prev_chunk) const {
|
|
return _mm_alignr_epi8(*this, prev_chunk, 16 - N);
|
|
}
|
|
};
|
|
|
|
// SIMD byte mask type (returned by things like eq and gt)
|
|
template<>
|
|
struct simd8<bool>: base8<bool> {
|
|
static simdjson_really_inline simd8<bool> splat(bool _value) { return _mm_set1_epi8(uint8_t(-(!!_value))); }
|
|
|
|
simdjson_really_inline simd8<bool>() : base8() {}
|
|
simdjson_really_inline simd8<bool>(const __m128i _value) : base8<bool>(_value) {}
|
|
// Splat constructor
|
|
simdjson_really_inline simd8<bool>(bool _value) : base8<bool>(splat(_value)) {}
|
|
|
|
simdjson_really_inline int to_bitmask() const { return _mm_movemask_epi8(*this); }
|
|
simdjson_really_inline bool any() const { return !_mm_testz_si128(*this, *this); }
|
|
simdjson_really_inline simd8<bool> operator~() const { return *this ^ true; }
|
|
};
|
|
|
|
template<typename T>
|
|
struct base8_numeric: base8<T> {
|
|
static simdjson_really_inline simd8<T> splat(T _value) { return _mm_set1_epi8(_value); }
|
|
static simdjson_really_inline simd8<T> zero() { return _mm_setzero_si128(); }
|
|
static simdjson_really_inline simd8<T> load(const T values[16]) {
|
|
return _mm_loadu_si128(reinterpret_cast<const __m128i *>(values));
|
|
}
|
|
// Repeat 16 values as many times as necessary (usually for lookup tables)
|
|
static simdjson_really_inline simd8<T> repeat_16(
|
|
T v0, T v1, T v2, T v3, T v4, T v5, T v6, T v7,
|
|
T v8, T v9, T v10, T v11, T v12, T v13, T v14, T v15
|
|
) {
|
|
return simd8<T>(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
);
|
|
}
|
|
|
|
simdjson_really_inline base8_numeric() : base8<T>() {}
|
|
simdjson_really_inline base8_numeric(const __m128i _value) : base8<T>(_value) {}
|
|
|
|
// Store to array
|
|
simdjson_really_inline void store(T dst[16]) const { return _mm_storeu_si128(reinterpret_cast<__m128i *>(dst), *this); }
|
|
|
|
// Override to distinguish from bool version
|
|
simdjson_really_inline simd8<T> operator~() const { return *this ^ 0xFFu; }
|
|
|
|
// Addition/subtraction are the same for signed and unsigned
|
|
simdjson_really_inline simd8<T> operator+(const simd8<T> other) const { return _mm_add_epi8(*this, other); }
|
|
simdjson_really_inline simd8<T> operator-(const simd8<T> other) const { return _mm_sub_epi8(*this, other); }
|
|
simdjson_really_inline simd8<T>& operator+=(const simd8<T> other) { *this = *this + other; return *(simd8<T>*)this; }
|
|
simdjson_really_inline simd8<T>& operator-=(const simd8<T> other) { *this = *this - other; return *(simd8<T>*)this; }
|
|
|
|
// Perform a lookup assuming the value is between 0 and 16 (undefined behavior for out of range values)
|
|
template<typename L>
|
|
simdjson_really_inline simd8<L> lookup_16(simd8<L> lookup_table) const {
|
|
return _mm_shuffle_epi8(lookup_table, *this);
|
|
}
|
|
|
|
// Copies to 'output" all bytes corresponding to a 0 in the mask (interpreted as a bitset).
|
|
// Passing a 0 value for mask would be equivalent to writing out every byte to output.
|
|
// Only the first 16 - count_ones(mask) bytes of the result are significant but 16 bytes
|
|
// get written.
|
|
// Design consideration: it seems like a function with the
|
|
// signature simd8<L> compress(uint32_t mask) would be
|
|
// sensible, but the AVX ISA makes this kind of approach difficult.
|
|
template<typename L>
|
|
simdjson_really_inline void compress(uint16_t mask, L * output) const {
|
|
// this particular implementation was inspired by work done by @animetosho
|
|
// we do it in two steps, first 8 bytes and then second 8 bytes
|
|
uint8_t mask1 = uint8_t(mask); // least significant 8 bits
|
|
uint8_t mask2 = uint8_t(mask >> 8); // most significant 8 bits
|
|
// next line just loads the 64-bit values thintable_epi8[mask1] and
|
|
// thintable_epi8[mask2] into a 128-bit register, using only
|
|
// two instructions on most compilers.
|
|
__m128i shufmask = _mm_set_epi64x(thintable_epi8[mask2], thintable_epi8[mask1]);
|
|
// we increment by 0x08 the second half of the mask
|
|
shufmask =
|
|
_mm_add_epi8(shufmask, _mm_set_epi32(0x08080808, 0x08080808, 0, 0));
|
|
// this is the version "nearly pruned"
|
|
__m128i pruned = _mm_shuffle_epi8(*this, shufmask);
|
|
// we still need to put the two halves together.
|
|
// we compute the popcount of the first half:
|
|
int pop1 = BitsSetTable256mul2[mask1];
|
|
// then load the corresponding mask, what it does is to write
|
|
// only the first pop1 bytes from the first 8 bytes, and then
|
|
// it fills in with the bytes from the second 8 bytes + some filling
|
|
// at the end.
|
|
__m128i compactmask =
|
|
_mm_loadu_si128((const __m128i *)(pshufb_combine_table + pop1 * 8));
|
|
__m128i answer = _mm_shuffle_epi8(pruned, compactmask);
|
|
_mm_storeu_si128(( __m128i *)(output), answer);
|
|
}
|
|
|
|
template<typename L>
|
|
simdjson_really_inline simd8<L> lookup_16(
|
|
L replace0, L replace1, L replace2, L replace3,
|
|
L replace4, L replace5, L replace6, L replace7,
|
|
L replace8, L replace9, L replace10, L replace11,
|
|
L replace12, L replace13, L replace14, L replace15) const {
|
|
return lookup_16(simd8<L>::repeat_16(
|
|
replace0, replace1, replace2, replace3,
|
|
replace4, replace5, replace6, replace7,
|
|
replace8, replace9, replace10, replace11,
|
|
replace12, replace13, replace14, replace15
|
|
));
|
|
}
|
|
};
|
|
|
|
// Signed bytes
|
|
template<>
|
|
struct simd8<int8_t> : base8_numeric<int8_t> {
|
|
simdjson_really_inline simd8() : base8_numeric<int8_t>() {}
|
|
simdjson_really_inline simd8(const __m128i _value) : base8_numeric<int8_t>(_value) {}
|
|
// Splat constructor
|
|
simdjson_really_inline simd8(int8_t _value) : simd8(splat(_value)) {}
|
|
// Array constructor
|
|
simdjson_really_inline simd8(const int8_t* values) : simd8(load(values)) {}
|
|
// Member-by-member initialization
|
|
simdjson_really_inline simd8(
|
|
int8_t v0, int8_t v1, int8_t v2, int8_t v3, int8_t v4, int8_t v5, int8_t v6, int8_t v7,
|
|
int8_t v8, int8_t v9, int8_t v10, int8_t v11, int8_t v12, int8_t v13, int8_t v14, int8_t v15
|
|
) : simd8(_mm_setr_epi8(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
)) {}
|
|
// Repeat 16 values as many times as necessary (usually for lookup tables)
|
|
simdjson_really_inline static simd8<int8_t> repeat_16(
|
|
int8_t v0, int8_t v1, int8_t v2, int8_t v3, int8_t v4, int8_t v5, int8_t v6, int8_t v7,
|
|
int8_t v8, int8_t v9, int8_t v10, int8_t v11, int8_t v12, int8_t v13, int8_t v14, int8_t v15
|
|
) {
|
|
return simd8<int8_t>(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
);
|
|
}
|
|
|
|
// Order-sensitive comparisons
|
|
simdjson_really_inline simd8<int8_t> max(const simd8<int8_t> other) const { return _mm_max_epi8(*this, other); }
|
|
simdjson_really_inline simd8<int8_t> min(const simd8<int8_t> other) const { return _mm_min_epi8(*this, other); }
|
|
simdjson_really_inline simd8<bool> operator>(const simd8<int8_t> other) const { return _mm_cmpgt_epi8(*this, other); }
|
|
simdjson_really_inline simd8<bool> operator<(const simd8<int8_t> other) const { return _mm_cmpgt_epi8(other, *this); }
|
|
};
|
|
|
|
// Unsigned bytes
|
|
template<>
|
|
struct simd8<uint8_t>: base8_numeric<uint8_t> {
|
|
simdjson_really_inline simd8() : base8_numeric<uint8_t>() {}
|
|
simdjson_really_inline simd8(const __m128i _value) : base8_numeric<uint8_t>(_value) {}
|
|
// Splat constructor
|
|
simdjson_really_inline simd8(uint8_t _value) : simd8(splat(_value)) {}
|
|
// Array constructor
|
|
simdjson_really_inline simd8(const uint8_t* values) : simd8(load(values)) {}
|
|
// Member-by-member initialization
|
|
simdjson_really_inline simd8(
|
|
uint8_t v0, uint8_t v1, uint8_t v2, uint8_t v3, uint8_t v4, uint8_t v5, uint8_t v6, uint8_t v7,
|
|
uint8_t v8, uint8_t v9, uint8_t v10, uint8_t v11, uint8_t v12, uint8_t v13, uint8_t v14, uint8_t v15
|
|
) : simd8(_mm_setr_epi8(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
)) {}
|
|
// Repeat 16 values as many times as necessary (usually for lookup tables)
|
|
simdjson_really_inline static simd8<uint8_t> repeat_16(
|
|
uint8_t v0, uint8_t v1, uint8_t v2, uint8_t v3, uint8_t v4, uint8_t v5, uint8_t v6, uint8_t v7,
|
|
uint8_t v8, uint8_t v9, uint8_t v10, uint8_t v11, uint8_t v12, uint8_t v13, uint8_t v14, uint8_t v15
|
|
) {
|
|
return simd8<uint8_t>(
|
|
v0, v1, v2, v3, v4, v5, v6, v7,
|
|
v8, v9, v10,v11,v12,v13,v14,v15
|
|
);
|
|
}
|
|
|
|
// Saturated math
|
|
simdjson_really_inline simd8<uint8_t> saturating_add(const simd8<uint8_t> other) const { return _mm_adds_epu8(*this, other); }
|
|
simdjson_really_inline simd8<uint8_t> saturating_sub(const simd8<uint8_t> other) const { return _mm_subs_epu8(*this, other); }
|
|
|
|
// Order-specific operations
|
|
simdjson_really_inline simd8<uint8_t> max(const simd8<uint8_t> other) const { return _mm_max_epu8(*this, other); }
|
|
simdjson_really_inline simd8<uint8_t> min(const simd8<uint8_t> other) const { return _mm_min_epu8(*this, other); }
|
|
// Same as >, but only guarantees true is nonzero (< guarantees true = -1)
|
|
simdjson_really_inline simd8<uint8_t> gt_bits(const simd8<uint8_t> other) const { return this->saturating_sub(other); }
|
|
// Same as <, but only guarantees true is nonzero (< guarantees true = -1)
|
|
simdjson_really_inline simd8<uint8_t> lt_bits(const simd8<uint8_t> other) const { return other.saturating_sub(*this); }
|
|
simdjson_really_inline simd8<bool> operator<=(const simd8<uint8_t> other) const { return other.max(*this) == other; }
|
|
simdjson_really_inline simd8<bool> operator>=(const simd8<uint8_t> other) const { return other.min(*this) == other; }
|
|
simdjson_really_inline simd8<bool> operator>(const simd8<uint8_t> other) const { return this->gt_bits(other).any_bits_set(); }
|
|
simdjson_really_inline simd8<bool> operator<(const simd8<uint8_t> other) const { return this->gt_bits(other).any_bits_set(); }
|
|
|
|
// Bit-specific operations
|
|
simdjson_really_inline simd8<bool> bits_not_set() const { return *this == uint8_t(0); }
|
|
simdjson_really_inline simd8<bool> bits_not_set(simd8<uint8_t> bits) const { return (*this & bits).bits_not_set(); }
|
|
simdjson_really_inline simd8<bool> any_bits_set() const { return ~this->bits_not_set(); }
|
|
simdjson_really_inline simd8<bool> any_bits_set(simd8<uint8_t> bits) const { return ~this->bits_not_set(bits); }
|
|
simdjson_really_inline bool is_ascii() const { return _mm_movemask_epi8(*this) == 0; }
|
|
simdjson_really_inline bool bits_not_set_anywhere() const { return _mm_testz_si128(*this, *this); }
|
|
simdjson_really_inline bool any_bits_set_anywhere() const { return !bits_not_set_anywhere(); }
|
|
simdjson_really_inline bool bits_not_set_anywhere(simd8<uint8_t> bits) const { return _mm_testz_si128(*this, bits); }
|
|
simdjson_really_inline bool any_bits_set_anywhere(simd8<uint8_t> bits) const { return !bits_not_set_anywhere(bits); }
|
|
template<int N>
|
|
simdjson_really_inline simd8<uint8_t> shr() const { return simd8<uint8_t>(_mm_srli_epi16(*this, N)) & uint8_t(0xFFu >> N); }
|
|
template<int N>
|
|
simdjson_really_inline simd8<uint8_t> shl() const { return simd8<uint8_t>(_mm_slli_epi16(*this, N)) & uint8_t(0xFFu << N); }
|
|
// Get one of the bits and make a bitmask out of it.
|
|
// e.g. value.get_bit<7>() gets the high bit
|
|
template<int N>
|
|
simdjson_really_inline int get_bit() const { return _mm_movemask_epi8(_mm_slli_epi16(*this, 7-N)); }
|
|
};
|
|
|
|
template<typename T>
|
|
struct simd8x64 {
|
|
static constexpr int NUM_CHUNKS = 64 / sizeof(simd8<T>);
|
|
static_assert(NUM_CHUNKS == 4, "Westmere kernel should use four registers per 64-byte block.");
|
|
const simd8<T> chunks[NUM_CHUNKS];
|
|
|
|
simd8x64(const simd8x64<T>& o) = delete; // no copy allowed
|
|
simd8x64<T>& operator=(const simd8<T> other) = delete; // no assignment allowed
|
|
simd8x64() = delete; // no default constructor allowed
|
|
|
|
simdjson_really_inline simd8x64(const simd8<T> chunk0, const simd8<T> chunk1, const simd8<T> chunk2, const simd8<T> chunk3) : chunks{chunk0, chunk1, chunk2, chunk3} {}
|
|
simdjson_really_inline simd8x64(const T ptr[64]) : chunks{simd8<T>::load(ptr), simd8<T>::load(ptr+16), simd8<T>::load(ptr+32), simd8<T>::load(ptr+48)} {}
|
|
|
|
simdjson_really_inline void store(T ptr[64]) const {
|
|
this->chunks[0].store(ptr+sizeof(simd8<T>)*0);
|
|
this->chunks[1].store(ptr+sizeof(simd8<T>)*1);
|
|
this->chunks[2].store(ptr+sizeof(simd8<T>)*2);
|
|
this->chunks[3].store(ptr+sizeof(simd8<T>)*3);
|
|
}
|
|
|
|
simdjson_really_inline simd8<T> reduce_or() const {
|
|
return (this->chunks[0] | this->chunks[1]) | (this->chunks[2] | this->chunks[3]);
|
|
}
|
|
|
|
simdjson_really_inline void compress(uint64_t mask, T * output) const {
|
|
this->chunks[0].compress(uint16_t(mask), output);
|
|
this->chunks[1].compress(uint16_t(mask >> 16), output + 16 - count_ones(mask & 0xFFFF));
|
|
this->chunks[2].compress(uint16_t(mask >> 32), output + 32 - count_ones(mask & 0xFFFFFFFF));
|
|
this->chunks[3].compress(uint16_t(mask >> 48), output + 48 - count_ones(mask & 0xFFFFFFFFFFFF));
|
|
}
|
|
|
|
simdjson_really_inline uint64_t to_bitmask() const {
|
|
uint64_t r0 = uint32_t(this->chunks[0].to_bitmask());
|
|
uint64_t r1 = this->chunks[1].to_bitmask();
|
|
uint64_t r2 = this->chunks[2].to_bitmask();
|
|
uint64_t r3 = this->chunks[3].to_bitmask();
|
|
return r0 | (r1 << 16) | (r2 << 32) | (r3 << 48);
|
|
}
|
|
|
|
simdjson_really_inline simd8x64<T> bit_or(const T m) const {
|
|
const simd8<T> mask = simd8<T>::splat(m);
|
|
return simd8x64<T>(
|
|
this->chunks[0] | mask,
|
|
this->chunks[1] | mask,
|
|
this->chunks[2] | mask,
|
|
this->chunks[3] | mask
|
|
);
|
|
}
|
|
|
|
simdjson_really_inline uint64_t eq(const T m) const {
|
|
const simd8<T> mask = simd8<T>::splat(m);
|
|
return simd8x64<bool>(
|
|
this->chunks[0] == mask,
|
|
this->chunks[1] == mask,
|
|
this->chunks[2] == mask,
|
|
this->chunks[3] == mask
|
|
).to_bitmask();
|
|
}
|
|
|
|
simdjson_really_inline uint64_t lteq(const T m) const {
|
|
const simd8<T> mask = simd8<T>::splat(m);
|
|
return simd8x64<bool>(
|
|
this->chunks[0] <= mask,
|
|
this->chunks[1] <= mask,
|
|
this->chunks[2] <= mask,
|
|
this->chunks[3] <= mask
|
|
).to_bitmask();
|
|
}
|
|
}; // struct simd8x64<T>
|
|
|
|
} // namespace simd
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
#endif // SIMDJSON_WESTMERE_SIMD_INPUT_H
|
|
/* end file src/westmere/simd.h */
|
|
/* end file src/westmere/simd.h */
|
|
/* begin file src/westmere/dom_parser_implementation.h */
|
|
#ifndef SIMDJSON_WESTMERE_DOM_PARSER_IMPLEMENTATION_H
|
|
#define SIMDJSON_WESTMERE_DOM_PARSER_IMPLEMENTATION_H
|
|
|
|
/* begin file src/generic/dom_parser_implementation.h */
|
|
/* isadetection.h already included: #include "isadetection.h" */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
// expectation: sizeof(open_container) = 64/8.
|
|
struct open_container {
|
|
uint32_t tape_index; // where, on the tape, does the scope ([,{) begins
|
|
uint32_t count; // how many elements in the scope
|
|
}; // struct open_container
|
|
|
|
static_assert(sizeof(open_container) == 64/8, "Open container must be 64 bits");
|
|
|
|
class dom_parser_implementation final : public internal::dom_parser_implementation {
|
|
public:
|
|
/** Tape location of each open { or [ */
|
|
std::unique_ptr<open_container[]> open_containers{};
|
|
/** Whether each open container is a [ or { */
|
|
std::unique_ptr<bool[]> is_array{};
|
|
/** Buffer passed to stage 1 */
|
|
const uint8_t *buf{};
|
|
/** Length passed to stage 1 */
|
|
size_t len{0};
|
|
/** Document passed to stage 2 */
|
|
dom::document *doc{};
|
|
|
|
simdjson_really_inline dom_parser_implementation();
|
|
dom_parser_implementation(const dom_parser_implementation &) = delete;
|
|
dom_parser_implementation & operator=(const dom_parser_implementation &) = delete;
|
|
|
|
SIMDJSON_WARN_UNUSED error_code parse(const uint8_t *buf, size_t len, dom::document &doc) noexcept final;
|
|
SIMDJSON_WARN_UNUSED error_code stage1(const uint8_t *buf, size_t len, bool partial) noexcept final;
|
|
SIMDJSON_WARN_UNUSED error_code check_for_unclosed_array() noexcept;
|
|
SIMDJSON_WARN_UNUSED error_code stage2(dom::document &doc) noexcept final;
|
|
SIMDJSON_WARN_UNUSED error_code stage2_next(dom::document &doc) noexcept final;
|
|
SIMDJSON_WARN_UNUSED error_code set_capacity(size_t capacity) noexcept final;
|
|
SIMDJSON_WARN_UNUSED error_code set_max_depth(size_t max_depth) noexcept final;
|
|
};
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
/* begin file src/generic/stage1/allocate.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage1 {
|
|
namespace allocate {
|
|
|
|
//
|
|
// Allocates stage 1 internal state and outputs in the parser
|
|
//
|
|
simdjson_really_inline error_code set_capacity(internal::dom_parser_implementation &parser, size_t capacity) {
|
|
size_t max_structures = SIMDJSON_ROUNDUP_N(capacity, 64) + 2 + 7;
|
|
parser.structural_indexes.reset( new (std::nothrow) uint32_t[max_structures] );
|
|
if (!parser.structural_indexes) { return MEMALLOC; }
|
|
parser.structural_indexes[0] = 0;
|
|
parser.n_structural_indexes = 0;
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace allocate
|
|
} // namespace stage1
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/allocate.h */
|
|
/* begin file src/generic/stage2/allocate.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
namespace allocate {
|
|
|
|
//
|
|
// Allocates stage 2 internal state and outputs in the parser
|
|
//
|
|
simdjson_really_inline error_code set_max_depth(dom_parser_implementation &parser, size_t max_depth) {
|
|
parser.open_containers.reset(new (std::nothrow) open_container[max_depth]);
|
|
parser.is_array.reset(new (std::nothrow) bool[max_depth]);
|
|
|
|
if (!parser.is_array || !parser.open_containers) {
|
|
return MEMALLOC;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace allocate
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/allocate.h */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
simdjson_really_inline dom_parser_implementation::dom_parser_implementation() {}
|
|
|
|
// Leaving these here so they can be inlined if so desired
|
|
SIMDJSON_WARN_UNUSED error_code dom_parser_implementation::set_capacity(size_t capacity) noexcept {
|
|
error_code err = stage1::allocate::set_capacity(*this, capacity);
|
|
if (err) { _capacity = 0; return err; }
|
|
_capacity = capacity;
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED error_code dom_parser_implementation::set_max_depth(size_t max_depth) noexcept {
|
|
error_code err = stage2::allocate::set_max_depth(*this, max_depth);
|
|
if (err) { _max_depth = 0; return err; }
|
|
_max_depth = max_depth;
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/allocate.h */
|
|
|
|
#endif // SIMDJSON_WESTMERE_DOM_PARSER_IMPLEMENTATION_H
|
|
/* end file src/generic/stage2/allocate.h */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
SIMDJSON_WARN_UNUSED error_code implementation::create_dom_parser_implementation(
|
|
size_t capacity,
|
|
size_t max_depth,
|
|
std::unique_ptr<internal::dom_parser_implementation>& dst
|
|
) const noexcept {
|
|
dst.reset( new (std::nothrow) dom_parser_implementation() );
|
|
if (!dst) { return MEMALLOC; }
|
|
dst->set_capacity(capacity);
|
|
dst->set_max_depth(max_depth);
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
/* begin file src/westmere/end_implementation.h */
|
|
#undef SIMDJSON_IMPLEMENTATION
|
|
SIMDJSON_UNTARGET_REGION
|
|
/* end file src/westmere/end_implementation.h */
|
|
/* end file src/westmere/end_implementation.h */
|
|
/* begin file src/westmere/dom_parser_implementation.cpp */
|
|
/* begin file src/westmere/begin_implementation.h */
|
|
#define SIMDJSON_IMPLEMENTATION westmere
|
|
#define SIMDJSON_TARGET_WESTMERE SIMDJSON_TARGET_REGION("sse4.2,pclmul")
|
|
|
|
/* westmere/intrinsics.h already included: #include "westmere/intrinsics.h" // Generally need to be included outside SIMDJSON_TARGET_REGION */
|
|
/* westmere/implementation.h already included: #include "westmere/implementation.h" */
|
|
|
|
SIMDJSON_TARGET_WESTMERE
|
|
|
|
/* westmere/bitmanipulation.h already included: #include "westmere/bitmanipulation.h" */
|
|
/* westmere/bitmask.h already included: #include "westmere/bitmask.h" */
|
|
/* westmere/simd.h already included: #include "westmere/simd.h" */
|
|
/* end file src/westmere/begin_implementation.h */
|
|
/* westmere/dom_parser_implementation.h already included: #include "westmere/dom_parser_implementation.h" */
|
|
/* begin file src/generic/stage2/jsoncharutils.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
|
|
// return non-zero if not a structural or whitespace char
|
|
// zero otherwise
|
|
simdjson_really_inline uint32_t is_not_structural_or_whitespace(uint8_t c) {
|
|
return structural_or_whitespace_negated[c];
|
|
}
|
|
|
|
simdjson_really_inline uint32_t is_structural_or_whitespace(uint8_t c) {
|
|
return structural_or_whitespace[c];
|
|
}
|
|
|
|
// returns a value with the high 16 bits set if not valid
|
|
// otherwise returns the conversion of the 4 hex digits at src into the bottom
|
|
// 16 bits of the 32-bit return register
|
|
//
|
|
// see
|
|
// https://lemire.me/blog/2019/04/17/parsing-short-hexadecimal-strings-efficiently/
|
|
static inline uint32_t hex_to_u32_nocheck(
|
|
const uint8_t *src) { // strictly speaking, static inline is a C-ism
|
|
uint32_t v1 = digit_to_val32[630 + src[0]];
|
|
uint32_t v2 = digit_to_val32[420 + src[1]];
|
|
uint32_t v3 = digit_to_val32[210 + src[2]];
|
|
uint32_t v4 = digit_to_val32[0 + src[3]];
|
|
return v1 | v2 | v3 | v4;
|
|
}
|
|
|
|
// given a code point cp, writes to c
|
|
// the utf-8 code, outputting the length in
|
|
// bytes, if the length is zero, the code point
|
|
// is invalid
|
|
//
|
|
// This can possibly be made faster using pdep
|
|
// and clz and table lookups, but JSON documents
|
|
// have few escaped code points, and the following
|
|
// function looks cheap.
|
|
//
|
|
// Note: we assume that surrogates are treated separately
|
|
//
|
|
simdjson_really_inline size_t codepoint_to_utf8(uint32_t cp, uint8_t *c) {
|
|
if (cp <= 0x7F) {
|
|
c[0] = uint8_t(cp);
|
|
return 1; // ascii
|
|
}
|
|
if (cp <= 0x7FF) {
|
|
c[0] = uint8_t((cp >> 6) + 192);
|
|
c[1] = uint8_t((cp & 63) + 128);
|
|
return 2; // universal plane
|
|
// Surrogates are treated elsewhere...
|
|
//} //else if (0xd800 <= cp && cp <= 0xdfff) {
|
|
// return 0; // surrogates // could put assert here
|
|
} else if (cp <= 0xFFFF) {
|
|
c[0] = uint8_t((cp >> 12) + 224);
|
|
c[1] = uint8_t(((cp >> 6) & 63) + 128);
|
|
c[2] = uint8_t((cp & 63) + 128);
|
|
return 3;
|
|
} else if (cp <= 0x10FFFF) { // if you know you have a valid code point, this
|
|
// is not needed
|
|
c[0] = uint8_t((cp >> 18) + 240);
|
|
c[1] = uint8_t(((cp >> 12) & 63) + 128);
|
|
c[2] = uint8_t(((cp >> 6) & 63) + 128);
|
|
c[3] = uint8_t((cp & 63) + 128);
|
|
return 4;
|
|
}
|
|
// will return 0 when the code point was too large.
|
|
return 0; // bad r
|
|
}
|
|
|
|
#ifdef SIMDJSON_IS_32BITS // _umul128 for x86, arm
|
|
// this is a slow emulation routine for 32-bit
|
|
//
|
|
static simdjson_really_inline uint64_t __emulu(uint32_t x, uint32_t y) {
|
|
return x * (uint64_t)y;
|
|
}
|
|
static simdjson_really_inline uint64_t _umul128(uint64_t ab, uint64_t cd, uint64_t *hi) {
|
|
uint64_t ad = __emulu((uint32_t)(ab >> 32), (uint32_t)cd);
|
|
uint64_t bd = __emulu((uint32_t)ab, (uint32_t)cd);
|
|
uint64_t adbc = ad + __emulu((uint32_t)ab, (uint32_t)(cd >> 32));
|
|
uint64_t adbc_carry = !!(adbc < ad);
|
|
uint64_t lo = bd + (adbc << 32);
|
|
*hi = __emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) +
|
|
(adbc_carry << 32) + !!(lo < bd);
|
|
return lo;
|
|
}
|
|
#endif
|
|
|
|
simdjson_really_inline value128 full_multiplication(uint64_t value1, uint64_t value2) {
|
|
value128 answer;
|
|
#if defined(SIMDJSON_REGULAR_VISUAL_STUDIO) || defined(SIMDJSON_IS_32BITS)
|
|
#ifdef _M_ARM64
|
|
// ARM64 has native support for 64-bit multiplications, no need to emultate
|
|
answer.high = __umulh(value1, value2);
|
|
answer.low = value1 * value2;
|
|
#else
|
|
answer.low = _umul128(value1, value2, &answer.high); // _umul128 not available on ARM64
|
|
#endif // _M_ARM64
|
|
#else // defined(SIMDJSON_REGULAR_VISUAL_STUDIO) || defined(SIMDJSON_IS_32BITS)
|
|
__uint128_t r = ((__uint128_t)value1) * value2;
|
|
answer.low = uint64_t(r);
|
|
answer.high = uint64_t(r >> 64);
|
|
#endif
|
|
return answer;
|
|
}
|
|
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/jsoncharutils.h */
|
|
|
|
//
|
|
// Stage 1
|
|
//
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
using namespace simd;
|
|
|
|
struct json_character_block {
|
|
static simdjson_really_inline json_character_block classify(const simd::simd8x64<uint8_t>& in);
|
|
|
|
simdjson_really_inline uint64_t whitespace() const { return _whitespace; }
|
|
simdjson_really_inline uint64_t op() const { return _op; }
|
|
simdjson_really_inline uint64_t scalar() { return ~(op() | whitespace()); }
|
|
|
|
uint64_t _whitespace;
|
|
uint64_t _op;
|
|
};
|
|
|
|
simdjson_really_inline json_character_block json_character_block::classify(const simd::simd8x64<uint8_t>& in) {
|
|
// These lookups rely on the fact that anything < 127 will match the lower 4 bits, which is why
|
|
// we can't use the generic lookup_16.
|
|
auto whitespace_table = simd8<uint8_t>::repeat_16(' ', 100, 100, 100, 17, 100, 113, 2, 100, '\t', '\n', 112, 100, '\r', 100, 100);
|
|
auto op_table = simd8<uint8_t>::repeat_16(',', '}', 0, 0, 0xc0u, 0, 0, 0, 0, 0, 0, 0, 0, 0, ':', '{');
|
|
|
|
// We compute whitespace and op separately. If the code later only use one or the
|
|
// other, given the fact that all functions are aggressively inlined, we can
|
|
// hope that useless computations will be omitted. This is namely case when
|
|
// minifying (we only need whitespace).
|
|
|
|
uint64_t whitespace = simd8x64<bool>(
|
|
in.chunks[0] == simd8<uint8_t>(_mm_shuffle_epi8(whitespace_table, in.chunks[0])),
|
|
in.chunks[1] == simd8<uint8_t>(_mm_shuffle_epi8(whitespace_table, in.chunks[1])),
|
|
in.chunks[2] == simd8<uint8_t>(_mm_shuffle_epi8(whitespace_table, in.chunks[2])),
|
|
in.chunks[3] == simd8<uint8_t>(_mm_shuffle_epi8(whitespace_table, in.chunks[3]))
|
|
).to_bitmask();
|
|
|
|
// | 32 handles the fact that { } and [ ] are exactly 32 bytes apart
|
|
uint64_t op = simd8x64<bool>(
|
|
(in.chunks[0] | 32) == simd8<uint8_t>(_mm_shuffle_epi8(op_table, in.chunks[0]-',')),
|
|
(in.chunks[1] | 32) == simd8<uint8_t>(_mm_shuffle_epi8(op_table, in.chunks[1]-',')),
|
|
(in.chunks[2] | 32) == simd8<uint8_t>(_mm_shuffle_epi8(op_table, in.chunks[2]-',')),
|
|
(in.chunks[3] | 32) == simd8<uint8_t>(_mm_shuffle_epi8(op_table, in.chunks[3]-','))
|
|
).to_bitmask();
|
|
return { whitespace, op };
|
|
}
|
|
|
|
simdjson_really_inline bool is_ascii(const simd8x64<uint8_t>& input) {
|
|
return input.reduce_or().is_ascii();
|
|
}
|
|
|
|
SIMDJSON_UNUSED simdjson_really_inline simd8<bool> must_be_continuation(const simd8<uint8_t> prev1, const simd8<uint8_t> prev2, const simd8<uint8_t> prev3) {
|
|
simd8<uint8_t> is_second_byte = prev1.saturating_sub(0b11000000u-1); // Only 11______ will be > 0
|
|
simd8<uint8_t> is_third_byte = prev2.saturating_sub(0b11100000u-1); // Only 111_____ will be > 0
|
|
simd8<uint8_t> is_fourth_byte = prev3.saturating_sub(0b11110000u-1); // Only 1111____ will be > 0
|
|
// Caller requires a bool (all 1's). All values resulting from the subtraction will be <= 64, so signed comparison is fine.
|
|
return simd8<int8_t>(is_second_byte | is_third_byte | is_fourth_byte) > int8_t(0);
|
|
}
|
|
|
|
simdjson_really_inline simd8<bool> must_be_2_3_continuation(const simd8<uint8_t> prev2, const simd8<uint8_t> prev3) {
|
|
simd8<uint8_t> is_third_byte = prev2.saturating_sub(0b11100000u-1); // Only 111_____ will be > 0
|
|
simd8<uint8_t> is_fourth_byte = prev3.saturating_sub(0b11110000u-1); // Only 1111____ will be > 0
|
|
// Caller requires a bool (all 1's). All values resulting from the subtraction will be <= 64, so signed comparison is fine.
|
|
return simd8<int8_t>(is_third_byte | is_fourth_byte) > int8_t(0);
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
/* begin file src/generic/stage1/utf8_lookup4_algorithm.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace utf8_validation {
|
|
|
|
using namespace simd;
|
|
|
|
simdjson_really_inline simd8<uint8_t> check_special_cases(const simd8<uint8_t> input, const simd8<uint8_t> prev1) {
|
|
// Bit 0 = Too Short (lead byte/ASCII followed by lead byte/ASCII)
|
|
// Bit 1 = Too Long (ASCII followed by continuation)
|
|
// Bit 2 = Overlong 3-byte
|
|
// Bit 4 = Surrogate
|
|
// Bit 5 = Overlong 2-byte
|
|
// Bit 7 = Two Continuations
|
|
constexpr const uint8_t TOO_SHORT = 1<<0; // 11______ 0_______
|
|
// 11______ 11______
|
|
constexpr const uint8_t TOO_LONG = 1<<1; // 0_______ 10______
|
|
constexpr const uint8_t OVERLONG_3 = 1<<2; // 11100000 100_____
|
|
constexpr const uint8_t SURROGATE = 1<<4; // 11101101 101_____
|
|
constexpr const uint8_t OVERLONG_2 = 1<<5; // 1100000_ 10______
|
|
constexpr const uint8_t TWO_CONTS = 1<<7; // 10______ 10______
|
|
constexpr const uint8_t TOO_LARGE = 1<<3; // 11110100 1001____
|
|
// 11110100 101_____
|
|
// 11110101 1001____
|
|
// 11110101 101_____
|
|
// 1111011_ 1001____
|
|
// 1111011_ 101_____
|
|
// 11111___ 1001____
|
|
// 11111___ 101_____
|
|
constexpr const uint8_t TOO_LARGE_1000 = 1<<6;
|
|
// 11110101 1000____
|
|
// 1111011_ 1000____
|
|
// 11111___ 1000____
|
|
constexpr const uint8_t OVERLONG_4 = 1<<6; // 11110000 1000____
|
|
|
|
const simd8<uint8_t> byte_1_high = prev1.shr<4>().lookup_16<uint8_t>(
|
|
// 0_______ ________ <ASCII in byte 1>
|
|
TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG,
|
|
TOO_LONG, TOO_LONG, TOO_LONG, TOO_LONG,
|
|
// 10______ ________ <continuation in byte 1>
|
|
TWO_CONTS, TWO_CONTS, TWO_CONTS, TWO_CONTS,
|
|
// 1100____ ________ <two byte lead in byte 1>
|
|
TOO_SHORT | OVERLONG_2,
|
|
// 1101____ ________ <two byte lead in byte 1>
|
|
TOO_SHORT,
|
|
// 1110____ ________ <three byte lead in byte 1>
|
|
TOO_SHORT | OVERLONG_3 | SURROGATE,
|
|
// 1111____ ________ <four+ byte lead in byte 1>
|
|
TOO_SHORT | TOO_LARGE | TOO_LARGE_1000 | OVERLONG_4
|
|
);
|
|
constexpr const uint8_t CARRY = TOO_SHORT | TOO_LONG | TWO_CONTS; // These all have ____ in byte 1 .
|
|
const simd8<uint8_t> byte_1_low = (prev1 & 0x0F).lookup_16<uint8_t>(
|
|
// ____0000 ________
|
|
CARRY | OVERLONG_3 | OVERLONG_2 | OVERLONG_4,
|
|
// ____0001 ________
|
|
CARRY | OVERLONG_2,
|
|
// ____001_ ________
|
|
CARRY,
|
|
CARRY,
|
|
|
|
// ____0100 ________
|
|
CARRY | TOO_LARGE,
|
|
// ____0101 ________
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
// ____011_ ________
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
|
|
// ____1___ ________
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
// ____1101 ________
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000 | SURROGATE,
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000,
|
|
CARRY | TOO_LARGE | TOO_LARGE_1000
|
|
);
|
|
const simd8<uint8_t> byte_2_high = input.shr<4>().lookup_16<uint8_t>(
|
|
// ________ 0_______ <ASCII in byte 2>
|
|
TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT,
|
|
TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT,
|
|
|
|
// ________ 1000____
|
|
TOO_LONG | OVERLONG_2 | TWO_CONTS | OVERLONG_3 | TOO_LARGE_1000 | OVERLONG_4,
|
|
// ________ 1001____
|
|
TOO_LONG | OVERLONG_2 | TWO_CONTS | OVERLONG_3 | TOO_LARGE,
|
|
// ________ 101_____
|
|
TOO_LONG | OVERLONG_2 | TWO_CONTS | SURROGATE | TOO_LARGE,
|
|
TOO_LONG | OVERLONG_2 | TWO_CONTS | SURROGATE | TOO_LARGE,
|
|
|
|
// ________ 11______
|
|
TOO_SHORT, TOO_SHORT, TOO_SHORT, TOO_SHORT
|
|
);
|
|
return (byte_1_high & byte_1_low & byte_2_high);
|
|
}
|
|
simdjson_really_inline simd8<uint8_t> check_multibyte_lengths(const simd8<uint8_t> input,
|
|
const simd8<uint8_t> prev_input, const simd8<uint8_t> sc) {
|
|
simd8<uint8_t> prev2 = input.prev<2>(prev_input);
|
|
simd8<uint8_t> prev3 = input.prev<3>(prev_input);
|
|
simd8<uint8_t> must23 = simd8<uint8_t>(must_be_2_3_continuation(prev2, prev3));
|
|
simd8<uint8_t> must23_80 = must23 & uint8_t(0x80);
|
|
return must23_80 ^ sc;
|
|
}
|
|
|
|
//
|
|
// Return nonzero if there are incomplete multibyte characters at the end of the block:
|
|
// e.g. if there is a 4-byte character, but it's 3 bytes from the end.
|
|
//
|
|
simdjson_really_inline simd8<uint8_t> is_incomplete(const simd8<uint8_t> input) {
|
|
// If the previous input's last 3 bytes match this, they're too short (they ended at EOF):
|
|
// ... 1111____ 111_____ 11______
|
|
static const uint8_t max_array[32] = {
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 0b11110000u-1, 0b11100000u-1, 0b11000000u-1
|
|
};
|
|
const simd8<uint8_t> max_value(&max_array[sizeof(max_array)-sizeof(simd8<uint8_t>)]);
|
|
return input.gt_bits(max_value);
|
|
}
|
|
|
|
struct utf8_checker {
|
|
// If this is nonzero, there has been a UTF-8 error.
|
|
simd8<uint8_t> error;
|
|
// The last input we received
|
|
simd8<uint8_t> prev_input_block;
|
|
// Whether the last input we received was incomplete (used for ASCII fast path)
|
|
simd8<uint8_t> prev_incomplete;
|
|
|
|
//
|
|
// Check whether the current bytes are valid UTF-8.
|
|
//
|
|
simdjson_really_inline void check_utf8_bytes(const simd8<uint8_t> input, const simd8<uint8_t> prev_input) {
|
|
// Flip prev1...prev3 so we can easily determine if they are 2+, 3+ or 4+ lead bytes
|
|
// (2, 3, 4-byte leads become large positive numbers instead of small negative numbers)
|
|
simd8<uint8_t> prev1 = input.prev<1>(prev_input);
|
|
simd8<uint8_t> sc = check_special_cases(input, prev1);
|
|
this->error |= check_multibyte_lengths(input, prev_input, sc);
|
|
}
|
|
|
|
// The only problem that can happen at EOF is that a multibyte character is too short.
|
|
simdjson_really_inline void check_eof() {
|
|
// If the previous block had incomplete UTF-8 characters at the end, an ASCII block can't
|
|
// possibly finish them.
|
|
this->error |= this->prev_incomplete;
|
|
}
|
|
|
|
simdjson_really_inline void check_next_input(const simd8x64<uint8_t>& input) {
|
|
if(simdjson_likely(is_ascii(input))) {
|
|
this->error |= this->prev_incomplete;
|
|
} else {
|
|
// you might think that a for-loop would work, but under Visual Studio, it is not good enough.
|
|
static_assert((simd8x64<uint8_t>::NUM_CHUNKS == 2) || (simd8x64<uint8_t>::NUM_CHUNKS == 4),
|
|
"We support either two or four chunks per 64-byte block.");
|
|
if(simd8x64<uint8_t>::NUM_CHUNKS == 2) {
|
|
this->check_utf8_bytes(input.chunks[0], this->prev_input_block);
|
|
this->check_utf8_bytes(input.chunks[1], input.chunks[0]);
|
|
} else if(simd8x64<uint8_t>::NUM_CHUNKS == 4) {
|
|
this->check_utf8_bytes(input.chunks[0], this->prev_input_block);
|
|
this->check_utf8_bytes(input.chunks[1], input.chunks[0]);
|
|
this->check_utf8_bytes(input.chunks[2], input.chunks[1]);
|
|
this->check_utf8_bytes(input.chunks[3], input.chunks[2]);
|
|
}
|
|
this->prev_incomplete = is_incomplete(input.chunks[simd8x64<uint8_t>::NUM_CHUNKS-1]);
|
|
this->prev_input_block = input.chunks[simd8x64<uint8_t>::NUM_CHUNKS-1];
|
|
|
|
}
|
|
}
|
|
|
|
simdjson_really_inline error_code errors() {
|
|
return this->error.any_bits_set_anywhere() ? error_code::UTF8_ERROR : error_code::SUCCESS;
|
|
}
|
|
|
|
}; // struct utf8_checker
|
|
} // namespace utf8_validation
|
|
|
|
using utf8_validation::utf8_checker;
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/utf8_lookup4_algorithm.h */
|
|
/* begin file src/generic/stage1/json_structural_indexer.h */
|
|
// This file contains the common code every implementation uses in stage1
|
|
// It is intended to be included multiple times and compiled multiple times
|
|
// We assume the file in which it is included already includes
|
|
// "simdjson/stage1.h" (this simplifies amalgation)
|
|
|
|
/* begin file src/generic/stage1/buf_block_reader.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
// Walks through a buffer in block-sized increments, loading the last part with spaces
|
|
template<size_t STEP_SIZE>
|
|
struct buf_block_reader {
|
|
public:
|
|
simdjson_really_inline buf_block_reader(const uint8_t *_buf, size_t _len);
|
|
simdjson_really_inline size_t block_index();
|
|
simdjson_really_inline bool has_full_block() const;
|
|
simdjson_really_inline const uint8_t *full_block() const;
|
|
/**
|
|
* Get the last block, padded with spaces.
|
|
*
|
|
* There will always be a last block, with at least 1 byte, unless len == 0 (in which case this
|
|
* function fills the buffer with spaces and returns 0. In particular, if len == STEP_SIZE there
|
|
* will be 0 full_blocks and 1 remainder block with STEP_SIZE bytes and no spaces for padding.
|
|
*
|
|
* @return the number of effective characters in the last block.
|
|
*/
|
|
simdjson_really_inline size_t get_remainder(uint8_t *dst) const;
|
|
simdjson_really_inline void advance();
|
|
private:
|
|
const uint8_t *buf;
|
|
const size_t len;
|
|
const size_t lenminusstep;
|
|
size_t idx;
|
|
};
|
|
|
|
// Routines to print masks and text for debugging bitmask operations
|
|
SIMDJSON_UNUSED static char * format_input_text_64(const uint8_t *text) {
|
|
static char *buf = (char*)malloc(sizeof(simd8x64<uint8_t>) + 1);
|
|
for (size_t i=0; i<sizeof(simd8x64<uint8_t>); i++) {
|
|
buf[i] = int8_t(text[i]) < ' ' ? '_' : int8_t(text[i]);
|
|
}
|
|
buf[sizeof(simd8x64<uint8_t>)] = '\0';
|
|
return buf;
|
|
}
|
|
|
|
// Routines to print masks and text for debugging bitmask operations
|
|
SIMDJSON_UNUSED static char * format_input_text(const simd8x64<uint8_t>& in) {
|
|
static char *buf = (char*)malloc(sizeof(simd8x64<uint8_t>) + 1);
|
|
in.store((uint8_t*)buf);
|
|
for (size_t i=0; i<sizeof(simd8x64<uint8_t>); i++) {
|
|
if (buf[i] < ' ') { buf[i] = '_'; }
|
|
}
|
|
buf[sizeof(simd8x64<uint8_t>)] = '\0';
|
|
return buf;
|
|
}
|
|
|
|
SIMDJSON_UNUSED static char * format_mask(uint64_t mask) {
|
|
static char *buf = (char*)malloc(64 + 1);
|
|
for (size_t i=0; i<64; i++) {
|
|
buf[i] = (mask & (size_t(1) << i)) ? 'X' : ' ';
|
|
}
|
|
buf[64] = '\0';
|
|
return buf;
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
simdjson_really_inline buf_block_reader<STEP_SIZE>::buf_block_reader(const uint8_t *_buf, size_t _len) : buf{_buf}, len{_len}, lenminusstep{len < STEP_SIZE ? 0 : len - STEP_SIZE}, idx{0} {}
|
|
|
|
template<size_t STEP_SIZE>
|
|
simdjson_really_inline size_t buf_block_reader<STEP_SIZE>::block_index() { return idx; }
|
|
|
|
template<size_t STEP_SIZE>
|
|
simdjson_really_inline bool buf_block_reader<STEP_SIZE>::has_full_block() const {
|
|
return idx < lenminusstep;
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
simdjson_really_inline const uint8_t *buf_block_reader<STEP_SIZE>::full_block() const {
|
|
return &buf[idx];
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
simdjson_really_inline size_t buf_block_reader<STEP_SIZE>::get_remainder(uint8_t *dst) const {
|
|
memset(dst, 0x20, STEP_SIZE); // memset STEP_SIZE because it's more efficient to write out 8 or 16 bytes at once.
|
|
memcpy(dst, buf + idx, len - idx);
|
|
return len - idx;
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
simdjson_really_inline void buf_block_reader<STEP_SIZE>::advance() {
|
|
idx += STEP_SIZE;
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/buf_block_reader.h */
|
|
/* begin file src/generic/stage1/json_string_scanner.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage1 {
|
|
|
|
struct json_string_block {
|
|
// Escaped characters (characters following an escape() character)
|
|
simdjson_really_inline uint64_t escaped() const { return _escaped; }
|
|
// Escape characters (backslashes that are not escaped--i.e. in \\, includes only the first \)
|
|
simdjson_really_inline uint64_t escape() const { return _backslash & ~_escaped; }
|
|
// Real (non-backslashed) quotes
|
|
simdjson_really_inline uint64_t quote() const { return _quote; }
|
|
// Start quotes of strings
|
|
simdjson_really_inline uint64_t string_start() const { return _quote & _in_string; }
|
|
// End quotes of strings
|
|
simdjson_really_inline uint64_t string_end() const { return _quote & ~_in_string; }
|
|
// Only characters inside the string (not including the quotes)
|
|
simdjson_really_inline uint64_t string_content() const { return _in_string & ~_quote; }
|
|
// Return a mask of whether the given characters are inside a string (only works on non-quotes)
|
|
simdjson_really_inline uint64_t non_quote_inside_string(uint64_t mask) const { return mask & _in_string; }
|
|
// Return a mask of whether the given characters are inside a string (only works on non-quotes)
|
|
simdjson_really_inline uint64_t non_quote_outside_string(uint64_t mask) const { return mask & ~_in_string; }
|
|
// Tail of string (everything except the start quote)
|
|
simdjson_really_inline uint64_t string_tail() const { return _in_string ^ _quote; }
|
|
|
|
// backslash characters
|
|
uint64_t _backslash;
|
|
// escaped characters (backslashed--does not include the hex characters after \u)
|
|
uint64_t _escaped;
|
|
// real quotes (non-backslashed ones)
|
|
uint64_t _quote;
|
|
// string characters (includes start quote but not end quote)
|
|
uint64_t _in_string;
|
|
};
|
|
|
|
// Scans blocks for string characters, storing the state necessary to do so
|
|
class json_string_scanner {
|
|
public:
|
|
simdjson_really_inline json_string_block next(const simd::simd8x64<uint8_t>& in);
|
|
simdjson_really_inline error_code finish(bool streaming);
|
|
|
|
private:
|
|
// Intended to be defined by the implementation
|
|
simdjson_really_inline uint64_t find_escaped(uint64_t escape);
|
|
simdjson_really_inline uint64_t find_escaped_branchless(uint64_t escape);
|
|
|
|
// Whether the last iteration was still inside a string (all 1's = true, all 0's = false).
|
|
uint64_t prev_in_string = 0ULL;
|
|
// Whether the first character of the next iteration is escaped.
|
|
uint64_t prev_escaped = 0ULL;
|
|
};
|
|
|
|
//
|
|
// Finds escaped characters (characters following \).
|
|
//
|
|
// Handles runs of backslashes like \\\" and \\\\" correctly (yielding 0101 and 01010, respectively).
|
|
//
|
|
// Does this by:
|
|
// - Shift the escape mask to get potentially escaped characters (characters after backslashes).
|
|
// - Mask escaped sequences that start on *even* bits with 1010101010 (odd bits are escaped, even bits are not)
|
|
// - Mask escaped sequences that start on *odd* bits with 0101010101 (even bits are escaped, odd bits are not)
|
|
//
|
|
// To distinguish between escaped sequences starting on even/odd bits, it finds the start of all
|
|
// escape sequences, filters out the ones that start on even bits, and adds that to the mask of
|
|
// escape sequences. This causes the addition to clear out the sequences starting on odd bits (since
|
|
// the start bit causes a carry), and leaves even-bit sequences alone.
|
|
//
|
|
// Example:
|
|
//
|
|
// text | \\\ | \\\"\\\" \\\" \\"\\" |
|
|
// escape | xxx | xx xxx xxx xx xx | Removed overflow backslash; will | it into follows_escape
|
|
// odd_starts | x | x x x | escape & ~even_bits & ~follows_escape
|
|
// even_seq | c| cxxx c xx c | c = carry bit -- will be masked out later
|
|
// invert_mask | | cxxx c xx c| even_seq << 1
|
|
// follows_escape | xx | x xx xxx xxx xx xx | Includes overflow bit
|
|
// escaped | x | x x x x x x x x |
|
|
// desired | x | x x x x x x x x |
|
|
// text | \\\ | \\\"\\\" \\\" \\"\\" |
|
|
//
|
|
simdjson_really_inline uint64_t json_string_scanner::find_escaped_branchless(uint64_t backslash) {
|
|
// If there was overflow, pretend the first character isn't a backslash
|
|
backslash &= ~prev_escaped;
|
|
uint64_t follows_escape = backslash << 1 | prev_escaped;
|
|
|
|
// Get sequences starting on even bits by clearing out the odd series using +
|
|
const uint64_t even_bits = 0x5555555555555555ULL;
|
|
uint64_t odd_sequence_starts = backslash & ~even_bits & ~follows_escape;
|
|
uint64_t sequences_starting_on_even_bits;
|
|
prev_escaped = add_overflow(odd_sequence_starts, backslash, &sequences_starting_on_even_bits);
|
|
uint64_t invert_mask = sequences_starting_on_even_bits << 1; // The mask we want to return is the *escaped* bits, not escapes.
|
|
|
|
// Mask every other backslashed character as an escaped character
|
|
// Flip the mask for sequences that start on even bits, to correct them
|
|
return (even_bits ^ invert_mask) & follows_escape;
|
|
}
|
|
|
|
//
|
|
// Return a mask of all string characters plus end quotes.
|
|
//
|
|
// prev_escaped is overflow saying whether the next character is escaped.
|
|
// prev_in_string is overflow saying whether we're still in a string.
|
|
//
|
|
// Backslash sequences outside of quotes will be detected in stage 2.
|
|
//
|
|
simdjson_really_inline json_string_block json_string_scanner::next(const simd::simd8x64<uint8_t>& in) {
|
|
const uint64_t backslash = in.eq('\\');
|
|
const uint64_t escaped = find_escaped(backslash);
|
|
const uint64_t quote = in.eq('"') & ~escaped;
|
|
|
|
//
|
|
// prefix_xor flips on bits inside the string (and flips off the end quote).
|
|
//
|
|
// Then we xor with prev_in_string: if we were in a string already, its effect is flipped
|
|
// (characters inside strings are outside, and characters outside strings are inside).
|
|
//
|
|
const uint64_t in_string = prefix_xor(quote) ^ prev_in_string;
|
|
|
|
//
|
|
// Check if we're still in a string at the end of the box so the next block will know
|
|
//
|
|
// right shift of a signed value expected to be well-defined and standard
|
|
// compliant as of C++20, John Regher from Utah U. says this is fine code
|
|
//
|
|
prev_in_string = uint64_t(static_cast<int64_t>(in_string) >> 63);
|
|
|
|
// Use ^ to turn the beginning quote off, and the end quote on.
|
|
return {
|
|
backslash,
|
|
escaped,
|
|
quote,
|
|
in_string
|
|
};
|
|
}
|
|
|
|
simdjson_really_inline error_code json_string_scanner::finish(bool streaming) {
|
|
if (prev_in_string and (not streaming)) {
|
|
return UNCLOSED_STRING;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace stage1
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/json_string_scanner.h */
|
|
/* begin file src/generic/stage1/json_scanner.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage1 {
|
|
|
|
/**
|
|
* A block of scanned json, with information on operators and scalars.
|
|
*
|
|
* We seek to identify pseudo-structural characters. Anything that is inside
|
|
* a string must be omitted (hence & ~_string.string_tail()).
|
|
* Otherwise, pseudo-structural characters come in two forms.
|
|
* 1. We have the structural characters ([,],{,},:, comma). The
|
|
* term 'structural character' is from the JSON RFC.
|
|
* 2. We have the 'scalar pseudo-structural characters'.
|
|
* Scalars are quotes, and any character except structural characters and white space.
|
|
*
|
|
* To identify the scalar pseudo-structural characters, we must look at what comes
|
|
* before them: it must be a space, a quote or a structural characters.
|
|
* Starting with simdjson v0.3, we identify them by
|
|
* negation: we identify everything that is followed by a non-quote scalar,
|
|
* and we negate that. Whatever remains must be a 'scalar pseudo-structural character'.
|
|
*/
|
|
struct json_block {
|
|
public:
|
|
/**
|
|
* The start of structurals.
|
|
* In simdjson prior to v0.3, these were called the pseudo-structural characters.
|
|
**/
|
|
simdjson_really_inline uint64_t structural_start() { return potential_structural_start() & ~_string.string_tail(); }
|
|
/** All JSON whitespace (i.e. not in a string) */
|
|
simdjson_really_inline uint64_t whitespace() { return non_quote_outside_string(_characters.whitespace()); }
|
|
|
|
// Helpers
|
|
|
|
/** Whether the given characters are inside a string (only works on non-quotes) */
|
|
simdjson_really_inline uint64_t non_quote_inside_string(uint64_t mask) { return _string.non_quote_inside_string(mask); }
|
|
/** Whether the given characters are outside a string (only works on non-quotes) */
|
|
simdjson_really_inline uint64_t non_quote_outside_string(uint64_t mask) { return _string.non_quote_outside_string(mask); }
|
|
|
|
// string and escape characters
|
|
json_string_block _string;
|
|
// whitespace, structural characters ('operators'), scalars
|
|
json_character_block _characters;
|
|
// whether the previous character was a scalar
|
|
uint64_t _follows_potential_nonquote_scalar;
|
|
private:
|
|
// Potential structurals (i.e. disregarding strings)
|
|
|
|
/**
|
|
* structural elements ([,],{,},:, comma) plus scalar starts like 123, true and "abc".
|
|
* They may reside inside a string.
|
|
**/
|
|
simdjson_really_inline uint64_t potential_structural_start() { return _characters.op() | potential_scalar_start(); }
|
|
/**
|
|
* The start of non-operator runs, like 123, true and "abc".
|
|
* It main reside inside a string.
|
|
**/
|
|
simdjson_really_inline uint64_t potential_scalar_start() {
|
|
// The term "scalar" refers to anything except structural characters and white space
|
|
// (so letters, numbers, quotes).
|
|
// Whenever it is preceded by something that is not a structural element ({,},[,],:, ") nor a white-space
|
|
// then we know that it is irrelevant structurally.
|
|
return _characters.scalar() & ~follows_potential_scalar();
|
|
}
|
|
/**
|
|
* Whether the given character is immediately after a non-operator like 123, true.
|
|
* The characters following a quote are not included.
|
|
*/
|
|
simdjson_really_inline uint64_t follows_potential_scalar() {
|
|
// _follows_potential_nonquote_scalar: is defined as marking any character that follows a character
|
|
// that is not a structural element ({,},[,],:, comma) nor a quote (") and that is not a
|
|
// white space.
|
|
// It is understood that within quoted region, anything at all could be marked (irrelevant).
|
|
return _follows_potential_nonquote_scalar;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Scans JSON for important bits: structural characters or 'operators', strings, and scalars.
|
|
*
|
|
* The scanner starts by calculating two distinct things:
|
|
* - string characters (taking \" into account)
|
|
* - structural characters or 'operators' ([]{},:, comma)
|
|
* and scalars (runs of non-operators like 123, true and "abc")
|
|
*
|
|
* To minimize data dependency (a key component of the scanner's speed), it finds these in parallel:
|
|
* in particular, the operator/scalar bit will find plenty of things that are actually part of
|
|
* strings. When we're done, json_block will fuse the two together by masking out tokens that are
|
|
* part of a string.
|
|
*/
|
|
class json_scanner {
|
|
public:
|
|
json_scanner() {}
|
|
simdjson_really_inline json_block next(const simd::simd8x64<uint8_t>& in);
|
|
simdjson_really_inline error_code finish(bool streaming);
|
|
|
|
private:
|
|
// Whether the last character of the previous iteration is part of a scalar token
|
|
// (anything except whitespace or a structural character/'operator').
|
|
uint64_t prev_scalar = 0ULL;
|
|
json_string_scanner string_scanner{};
|
|
};
|
|
|
|
|
|
//
|
|
// Check if the current character immediately follows a matching character.
|
|
//
|
|
// For example, this checks for quotes with backslashes in front of them:
|
|
//
|
|
// const uint64_t backslashed_quote = in.eq('"') & immediately_follows(in.eq('\'), prev_backslash);
|
|
//
|
|
simdjson_really_inline uint64_t follows(const uint64_t match, uint64_t &overflow) {
|
|
const uint64_t result = match << 1 | overflow;
|
|
overflow = match >> 63;
|
|
return result;
|
|
}
|
|
|
|
simdjson_really_inline json_block json_scanner::next(const simd::simd8x64<uint8_t>& in) {
|
|
json_string_block strings = string_scanner.next(in);
|
|
// identifies the white-space and the structurat characters
|
|
json_character_block characters = json_character_block::classify(in);
|
|
// The term "scalar" refers to anything except structural characters and white space
|
|
// (so letters, numbers, quotes).
|
|
// We want follows_scalar to mark anything that follows a non-quote scalar (so letters and numbers).
|
|
//
|
|
// A terminal quote should either be followed by a structural character (comma, brace, bracket, colon)
|
|
// or nothing. However, we still want ' "a string"true ' to mark the 't' of 'true' as a potential
|
|
// pseudo-structural character just like we would if we had ' "a string" true '; otherwise we
|
|
// may need to add an extra check when parsing strings.
|
|
//
|
|
// Performance: there are many ways to skin this cat.
|
|
const uint64_t nonquote_scalar = characters.scalar() & ~strings.quote();
|
|
uint64_t follows_nonquote_scalar = follows(nonquote_scalar, prev_scalar);
|
|
return {
|
|
strings,
|
|
characters,
|
|
follows_nonquote_scalar
|
|
};
|
|
}
|
|
|
|
simdjson_really_inline error_code json_scanner::finish(bool streaming) {
|
|
return string_scanner.finish(streaming);
|
|
}
|
|
|
|
} // namespace stage1
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/json_scanner.h */
|
|
/* begin file src/generic/stage1/json_minifier.h */
|
|
// This file contains the common code every implementation uses in stage1
|
|
// It is intended to be included multiple times and compiled multiple times
|
|
// We assume the file in which it is included already includes
|
|
// "simdjson/stage1.h" (this simplifies amalgation)
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage1 {
|
|
|
|
class json_minifier {
|
|
public:
|
|
template<size_t STEP_SIZE>
|
|
static error_code minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) noexcept;
|
|
|
|
private:
|
|
simdjson_really_inline json_minifier(uint8_t *_dst)
|
|
: dst{_dst}
|
|
{}
|
|
template<size_t STEP_SIZE>
|
|
simdjson_really_inline void step(const uint8_t *block_buf, buf_block_reader<STEP_SIZE> &reader) noexcept;
|
|
simdjson_really_inline void next(const simd::simd8x64<uint8_t>& in, json_block block);
|
|
simdjson_really_inline error_code finish(uint8_t *dst_start, size_t &dst_len);
|
|
json_scanner scanner{};
|
|
uint8_t *dst;
|
|
};
|
|
|
|
simdjson_really_inline void json_minifier::next(const simd::simd8x64<uint8_t>& in, json_block block) {
|
|
uint64_t mask = block.whitespace();
|
|
in.compress(mask, dst);
|
|
dst += 64 - count_ones(mask);
|
|
}
|
|
|
|
simdjson_really_inline error_code json_minifier::finish(uint8_t *dst_start, size_t &dst_len) {
|
|
*dst = '\0';
|
|
error_code error = scanner.finish(false);
|
|
if (error) { dst_len = 0; return error; }
|
|
dst_len = dst - dst_start;
|
|
return SUCCESS;
|
|
}
|
|
|
|
template<>
|
|
simdjson_really_inline void json_minifier::step<128>(const uint8_t *block_buf, buf_block_reader<128> &reader) noexcept {
|
|
simd::simd8x64<uint8_t> in_1(block_buf);
|
|
simd::simd8x64<uint8_t> in_2(block_buf+64);
|
|
json_block block_1 = scanner.next(in_1);
|
|
json_block block_2 = scanner.next(in_2);
|
|
this->next(in_1, block_1);
|
|
this->next(in_2, block_2);
|
|
reader.advance();
|
|
}
|
|
|
|
template<>
|
|
simdjson_really_inline void json_minifier::step<64>(const uint8_t *block_buf, buf_block_reader<64> &reader) noexcept {
|
|
simd::simd8x64<uint8_t> in_1(block_buf);
|
|
json_block block_1 = scanner.next(in_1);
|
|
this->next(block_buf, block_1);
|
|
reader.advance();
|
|
}
|
|
|
|
template<size_t STEP_SIZE>
|
|
error_code json_minifier::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) noexcept {
|
|
buf_block_reader<STEP_SIZE> reader(buf, len);
|
|
json_minifier minifier(dst);
|
|
|
|
// Index the first n-1 blocks
|
|
while (reader.has_full_block()) {
|
|
minifier.step<STEP_SIZE>(reader.full_block(), reader);
|
|
}
|
|
|
|
// Index the last (remainder) block, padded with spaces
|
|
uint8_t block[STEP_SIZE];
|
|
if (simdjson_likely(reader.get_remainder(block)) > 0) {
|
|
minifier.step<STEP_SIZE>(block, reader);
|
|
}
|
|
|
|
return minifier.finish(dst, dst_len);
|
|
}
|
|
|
|
} // namespace stage1
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/json_minifier.h */
|
|
/* begin file src/generic/stage1/find_next_document_index.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
/**
|
|
* This algorithm is used to quickly identify the last structural position that
|
|
* makes up a complete document.
|
|
*
|
|
* It does this by going backwards and finding the last *document boundary* (a
|
|
* place where one value follows another without a comma between them). If the
|
|
* last document (the characters after the boundary) has an equal number of
|
|
* start and end brackets, it is considered complete.
|
|
*
|
|
* Simply put, we iterate over the structural characters, starting from
|
|
* the end. We consider that we found the end of a JSON document when the
|
|
* first element of the pair is NOT one of these characters: '{' '[' ';' ','
|
|
* and when the second element is NOT one of these characters: '}' '}' ';' ','.
|
|
*
|
|
* This simple comparison works most of the time, but it does not cover cases
|
|
* where the batch's structural indexes contain a perfect amount of documents.
|
|
* In such a case, we do not have access to the structural index which follows
|
|
* the last document, therefore, we do not have access to the second element in
|
|
* the pair, and that means we cannot identify the last document. To fix this
|
|
* issue, we keep a count of the open and closed curly/square braces we found
|
|
* while searching for the pair. When we find a pair AND the count of open and
|
|
* closed curly/square braces is the same, we know that we just passed a
|
|
* complete document, therefore the last json buffer location is the end of the
|
|
* batch.
|
|
*/
|
|
simdjson_really_inline uint32_t find_next_document_index(dom_parser_implementation &parser) {
|
|
// TODO don't count separately, just figure out depth
|
|
auto arr_cnt = 0;
|
|
auto obj_cnt = 0;
|
|
for (auto i = parser.n_structural_indexes - 1; i > 0; i--) {
|
|
auto idxb = parser.structural_indexes[i];
|
|
switch (parser.buf[idxb]) {
|
|
case ':':
|
|
case ',':
|
|
continue;
|
|
case '}':
|
|
obj_cnt--;
|
|
continue;
|
|
case ']':
|
|
arr_cnt--;
|
|
continue;
|
|
case '{':
|
|
obj_cnt++;
|
|
break;
|
|
case '[':
|
|
arr_cnt++;
|
|
break;
|
|
}
|
|
auto idxa = parser.structural_indexes[i - 1];
|
|
switch (parser.buf[idxa]) {
|
|
case '{':
|
|
case '[':
|
|
case ':':
|
|
case ',':
|
|
continue;
|
|
}
|
|
// Last document is complete, so the next document will appear after!
|
|
if (!arr_cnt && !obj_cnt) {
|
|
return parser.n_structural_indexes;
|
|
}
|
|
// Last document is incomplete; mark the document at i + 1 as the next one
|
|
return i;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/find_next_document_index.h */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage1 {
|
|
|
|
class bit_indexer {
|
|
public:
|
|
uint32_t *tail;
|
|
|
|
simdjson_really_inline bit_indexer(uint32_t *index_buf) : tail(index_buf) {}
|
|
|
|
// flatten out values in 'bits' assuming that they are are to have values of idx
|
|
// plus their position in the bitvector, and store these indexes at
|
|
// base_ptr[base] incrementing base as we go
|
|
// will potentially store extra values beyond end of valid bits, so base_ptr
|
|
// needs to be large enough to handle this
|
|
simdjson_really_inline void write(uint32_t idx, uint64_t bits) {
|
|
// In some instances, the next branch is expensive because it is mispredicted.
|
|
// Unfortunately, in other cases,
|
|
// it helps tremendously.
|
|
if (bits == 0)
|
|
return;
|
|
int cnt = static_cast<int>(count_ones(bits));
|
|
|
|
// Do the first 8 all together
|
|
for (int i=0; i<8; i++) {
|
|
this->tail[i] = idx + trailing_zeroes(bits);
|
|
bits = clear_lowest_bit(bits);
|
|
}
|
|
|
|
// Do the next 8 all together (we hope in most cases it won't happen at all
|
|
// and the branch is easily predicted).
|
|
if (simdjson_unlikely(cnt > 8)) {
|
|
for (int i=8; i<16; i++) {
|
|
this->tail[i] = idx + trailing_zeroes(bits);
|
|
bits = clear_lowest_bit(bits);
|
|
}
|
|
|
|
// Most files don't have 16+ structurals per block, so we take several basically guaranteed
|
|
// branch mispredictions here. 16+ structurals per block means either punctuation ({} [] , :)
|
|
// or the start of a value ("abc" true 123) every four characters.
|
|
if (simdjson_unlikely(cnt > 16)) {
|
|
int i = 16;
|
|
do {
|
|
this->tail[i] = idx + trailing_zeroes(bits);
|
|
bits = clear_lowest_bit(bits);
|
|
i++;
|
|
} while (i < cnt);
|
|
}
|
|
}
|
|
|
|
this->tail += cnt;
|
|
}
|
|
};
|
|
|
|
class json_structural_indexer {
|
|
public:
|
|
/**
|
|
* Find the important bits of JSON in a 128-byte chunk, and add them to structural_indexes.
|
|
*
|
|
* @param partial Setting the partial parameter to true allows the find_structural_bits to
|
|
* tolerate unclosed strings. The caller should still ensure that the input is valid UTF-8. If
|
|
* you are processing substrings, you may want to call on a function like trimmed_length_safe_utf8.
|
|
*/
|
|
template<size_t STEP_SIZE>
|
|
static error_code index(const uint8_t *buf, size_t len, dom_parser_implementation &parser, bool partial) noexcept;
|
|
|
|
private:
|
|
simdjson_really_inline json_structural_indexer(uint32_t *structural_indexes);
|
|
template<size_t STEP_SIZE>
|
|
simdjson_really_inline void step(const uint8_t *block, buf_block_reader<STEP_SIZE> &reader) noexcept;
|
|
simdjson_really_inline void next(const simd::simd8x64<uint8_t>& in, json_block block, size_t idx);
|
|
simdjson_really_inline error_code finish(dom_parser_implementation &parser, size_t idx, size_t len, bool partial);
|
|
|
|
json_scanner scanner{};
|
|
utf8_checker checker{};
|
|
bit_indexer indexer;
|
|
uint64_t prev_structurals = 0;
|
|
uint64_t unescaped_chars_error = 0;
|
|
};
|
|
|
|
simdjson_really_inline json_structural_indexer::json_structural_indexer(uint32_t *structural_indexes) : indexer{structural_indexes} {}
|
|
|
|
// Skip the last character if it is partial
|
|
simdjson_really_inline size_t trim_partial_utf8(const uint8_t *buf, size_t len) {
|
|
if (simdjson_unlikely(len < 3)) {
|
|
switch (len) {
|
|
case 2:
|
|
if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left
|
|
if (buf[len-2] >= 0b11100000) { return len-2; } // 3- and 4-byte characters with only 2 bytes left
|
|
return len;
|
|
case 1:
|
|
if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left
|
|
return len;
|
|
case 0:
|
|
return len;
|
|
}
|
|
}
|
|
if (buf[len-1] >= 0b11000000) { return len-1; } // 2-, 3- and 4-byte characters with only 1 byte left
|
|
if (buf[len-2] >= 0b11100000) { return len-2; } // 3- and 4-byte characters with only 1 byte left
|
|
if (buf[len-3] >= 0b11110000) { return len-3; } // 4-byte characters with only 3 bytes left
|
|
return len;
|
|
}
|
|
|
|
//
|
|
// PERF NOTES:
|
|
// We pipe 2 inputs through these stages:
|
|
// 1. Load JSON into registers. This takes a long time and is highly parallelizable, so we load
|
|
// 2 inputs' worth at once so that by the time step 2 is looking for them input, it's available.
|
|
// 2. Scan the JSON for critical data: strings, scalars and operators. This is the critical path.
|
|
// The output of step 1 depends entirely on this information. These functions don't quite use
|
|
// up enough CPU: the second half of the functions is highly serial, only using 1 execution core
|
|
// at a time. The second input's scans has some dependency on the first ones finishing it, but
|
|
// they can make a lot of progress before they need that information.
|
|
// 3. Step 1 doesn't use enough capacity, so we run some extra stuff while we're waiting for that
|
|
// to finish: utf-8 checks and generating the output from the last iteration.
|
|
//
|
|
// The reason we run 2 inputs at a time, is steps 2 and 3 are *still* not enough to soak up all
|
|
// available capacity with just one input. Running 2 at a time seems to give the CPU a good enough
|
|
// workout.
|
|
//
|
|
template<size_t STEP_SIZE>
|
|
error_code json_structural_indexer::index(const uint8_t *buf, size_t len, dom_parser_implementation &parser, bool partial) noexcept {
|
|
if (simdjson_unlikely(len > parser.capacity())) { return CAPACITY; }
|
|
if (partial) { len = trim_partial_utf8(buf, len); }
|
|
|
|
buf_block_reader<STEP_SIZE> reader(buf, len);
|
|
json_structural_indexer indexer(parser.structural_indexes.get());
|
|
|
|
// Read all but the last block
|
|
while (reader.has_full_block()) {
|
|
indexer.step<STEP_SIZE>(reader.full_block(), reader);
|
|
}
|
|
|
|
// Take care of the last block (will always be there unless file is empty)
|
|
uint8_t block[STEP_SIZE];
|
|
if (simdjson_unlikely(reader.get_remainder(block) == 0)) { return EMPTY; }
|
|
indexer.step<STEP_SIZE>(block, reader);
|
|
|
|
return indexer.finish(parser, reader.block_index(), len, partial);
|
|
}
|
|
|
|
template<>
|
|
simdjson_really_inline void json_structural_indexer::step<128>(const uint8_t *block, buf_block_reader<128> &reader) noexcept {
|
|
simd::simd8x64<uint8_t> in_1(block);
|
|
simd::simd8x64<uint8_t> in_2(block+64);
|
|
json_block block_1 = scanner.next(in_1);
|
|
json_block block_2 = scanner.next(in_2);
|
|
this->next(in_1, block_1, reader.block_index());
|
|
this->next(in_2, block_2, reader.block_index()+64);
|
|
reader.advance();
|
|
}
|
|
|
|
template<>
|
|
simdjson_really_inline void json_structural_indexer::step<64>(const uint8_t *block, buf_block_reader<64> &reader) noexcept {
|
|
simd::simd8x64<uint8_t> in_1(block);
|
|
json_block block_1 = scanner.next(in_1);
|
|
this->next(in_1, block_1, reader.block_index());
|
|
reader.advance();
|
|
}
|
|
|
|
simdjson_really_inline void json_structural_indexer::next(const simd::simd8x64<uint8_t>& in, json_block block, size_t idx) {
|
|
uint64_t unescaped = in.lteq(0x1F);
|
|
checker.check_next_input(in);
|
|
indexer.write(uint32_t(idx-64), prev_structurals); // Output *last* iteration's structurals to the parser
|
|
prev_structurals = block.structural_start();
|
|
unescaped_chars_error |= block.non_quote_inside_string(unescaped);
|
|
}
|
|
|
|
simdjson_really_inline error_code json_structural_indexer::finish(dom_parser_implementation &parser, size_t idx, size_t len, bool partial) {
|
|
// Write out the final iteration's structurals
|
|
indexer.write(uint32_t(idx-64), prev_structurals);
|
|
|
|
error_code error = scanner.finish(partial);
|
|
if (simdjson_unlikely(error != SUCCESS)) { return error; }
|
|
|
|
if (unescaped_chars_error) {
|
|
return UNESCAPED_CHARS;
|
|
}
|
|
|
|
parser.n_structural_indexes = uint32_t(indexer.tail - parser.structural_indexes.get());
|
|
/***
|
|
* This is related to https://github.com/simdjson/simdjson/issues/906
|
|
* Basically, we want to make sure that if the parsing continues beyond the last (valid)
|
|
* structural character, it quickly stops.
|
|
* Only three structural characters can be repeated without triggering an error in JSON: [,] and }.
|
|
* We repeat the padding character (at 'len'). We don't know what it is, but if the parsing
|
|
* continues, then it must be [,] or }.
|
|
* Suppose it is ] or }. We backtrack to the first character, what could it be that would
|
|
* not trigger an error? It could be ] or } but no, because you can't start a document that way.
|
|
* It can't be a comma, a colon or any simple value. So the only way we could continue is
|
|
* if the repeated character is [. But if so, the document must start with [. But if the document
|
|
* starts with [, it should end with ]. If we enforce that rule, then we would get
|
|
* ][[ which is invalid.
|
|
**/
|
|
parser.structural_indexes[parser.n_structural_indexes] = uint32_t(len);
|
|
parser.structural_indexes[parser.n_structural_indexes + 1] = uint32_t(len);
|
|
parser.structural_indexes[parser.n_structural_indexes + 2] = 0;
|
|
parser.next_structural_index = 0;
|
|
// a valid JSON file cannot have zero structural indexes - we should have found something
|
|
if (simdjson_unlikely(parser.n_structural_indexes == 0u)) {
|
|
return EMPTY;
|
|
}
|
|
if (simdjson_unlikely(parser.structural_indexes[parser.n_structural_indexes - 1] > len)) {
|
|
return UNEXPECTED_ERROR;
|
|
}
|
|
if (partial) {
|
|
auto new_structural_indexes = find_next_document_index(parser);
|
|
if (new_structural_indexes == 0 && parser.n_structural_indexes > 0) {
|
|
return CAPACITY; // If the buffer is partial but the document is incomplete, it's too big to parse.
|
|
}
|
|
parser.n_structural_indexes = new_structural_indexes;
|
|
}
|
|
return checker.errors();
|
|
}
|
|
|
|
} // namespace stage1
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/find_next_document_index.h */
|
|
/* begin file src/generic/stage1/utf8_validator.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage1 {
|
|
|
|
/**
|
|
* Validates that the string is actual UTF-8.
|
|
*/
|
|
template<class checker>
|
|
bool generic_validate_utf8(const uint8_t * input, size_t length) {
|
|
checker c{};
|
|
buf_block_reader<64> reader(input, length);
|
|
while (reader.has_full_block()) {
|
|
simd::simd8x64<uint8_t> in(reader.full_block());
|
|
c.check_next_input(in);
|
|
reader.advance();
|
|
}
|
|
uint8_t block[64]{};
|
|
reader.get_remainder(block);
|
|
simd::simd8x64<uint8_t> in(block);
|
|
c.check_next_input(in);
|
|
reader.advance();
|
|
return c.errors() == error_code::SUCCESS;
|
|
}
|
|
|
|
bool generic_validate_utf8(const char * input, size_t length) {
|
|
return generic_validate_utf8<utf8_checker>((const uint8_t *)input,length);
|
|
}
|
|
|
|
} // namespace stage1
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage1/utf8_validator.h */
|
|
|
|
//
|
|
// Stage 2
|
|
//
|
|
/* begin file src/westmere/stringparsing.h */
|
|
#ifndef SIMDJSON_WESTMERE_STRINGPARSING_H
|
|
#define SIMDJSON_WESTMERE_STRINGPARSING_H
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
using namespace simd;
|
|
|
|
// Holds backslashes and quotes locations.
|
|
struct backslash_and_quote {
|
|
public:
|
|
static constexpr uint32_t BYTES_PROCESSED = 32;
|
|
simdjson_really_inline static backslash_and_quote copy_and_find(const uint8_t *src, uint8_t *dst);
|
|
|
|
simdjson_really_inline bool has_quote_first() { return ((bs_bits - 1) & quote_bits) != 0; }
|
|
simdjson_really_inline bool has_backslash() { return bs_bits != 0; }
|
|
simdjson_really_inline int quote_index() { return trailing_zeroes(quote_bits); }
|
|
simdjson_really_inline int backslash_index() { return trailing_zeroes(bs_bits); }
|
|
|
|
uint32_t bs_bits;
|
|
uint32_t quote_bits;
|
|
}; // struct backslash_and_quote
|
|
|
|
simdjson_really_inline backslash_and_quote backslash_and_quote::copy_and_find(const uint8_t *src, uint8_t *dst) {
|
|
// this can read up to 31 bytes beyond the buffer size, but we require
|
|
// SIMDJSON_PADDING of padding
|
|
static_assert(SIMDJSON_PADDING >= (BYTES_PROCESSED - 1), "backslash and quote finder must process fewer than SIMDJSON_PADDING bytes");
|
|
simd8<uint8_t> v0(src);
|
|
simd8<uint8_t> v1(src + 16);
|
|
v0.store(dst);
|
|
v1.store(dst + 16);
|
|
uint64_t bs_and_quote = simd8x64<bool>(v0 == '\\', v1 == '\\', v0 == '"', v1 == '"').to_bitmask();
|
|
return {
|
|
uint32_t(bs_and_quote), // bs_bits
|
|
uint32_t(bs_and_quote >> 32) // quote_bits
|
|
};
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
/* begin file src/generic/stage2/stringparsing.h */
|
|
// This file contains the common code every implementation uses
|
|
// It is intended to be included multiple times and compiled multiple times
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
namespace stringparsing {
|
|
|
|
// begin copypasta
|
|
// These chars yield themselves: " \ /
|
|
// b -> backspace, f -> formfeed, n -> newline, r -> cr, t -> horizontal tab
|
|
// u not handled in this table as it's complex
|
|
static const uint8_t escape_map[256] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x0.
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0x22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x2f,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x4.
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x5c, 0, 0, 0, // 0x5.
|
|
0, 0, 0x08, 0, 0, 0, 0x0c, 0, 0, 0, 0, 0, 0, 0, 0x0a, 0, // 0x6.
|
|
0, 0, 0x0d, 0, 0x09, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x7.
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
};
|
|
|
|
// handle a unicode codepoint
|
|
// write appropriate values into dest
|
|
// src will advance 6 bytes or 12 bytes
|
|
// dest will advance a variable amount (return via pointer)
|
|
// return true if the unicode codepoint was valid
|
|
// We work in little-endian then swap at write time
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool handle_unicode_codepoint(const uint8_t **src_ptr,
|
|
uint8_t **dst_ptr) {
|
|
// hex_to_u32_nocheck fills high 16 bits of the return value with 1s if the
|
|
// conversion isn't valid; we defer the check for this to inside the
|
|
// multilingual plane check
|
|
uint32_t code_point = hex_to_u32_nocheck(*src_ptr + 2);
|
|
*src_ptr += 6;
|
|
// check for low surrogate for characters outside the Basic
|
|
// Multilingual Plane.
|
|
if (code_point >= 0xd800 && code_point < 0xdc00) {
|
|
if (((*src_ptr)[0] != '\\') || (*src_ptr)[1] != 'u') {
|
|
return false;
|
|
}
|
|
uint32_t code_point_2 = hex_to_u32_nocheck(*src_ptr + 2);
|
|
|
|
// if the first code point is invalid we will get here, as we will go past
|
|
// the check for being outside the Basic Multilingual plane. If we don't
|
|
// find a \u immediately afterwards we fail out anyhow, but if we do,
|
|
// this check catches both the case of the first code point being invalid
|
|
// or the second code point being invalid.
|
|
if ((code_point | code_point_2) >> 16) {
|
|
return false;
|
|
}
|
|
|
|
code_point =
|
|
(((code_point - 0xd800) << 10) | (code_point_2 - 0xdc00)) + 0x10000;
|
|
*src_ptr += 6;
|
|
}
|
|
size_t offset = codepoint_to_utf8(code_point, *dst_ptr);
|
|
*dst_ptr += offset;
|
|
return offset > 0;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline uint8_t *parse_string(const uint8_t *src, uint8_t *dst) {
|
|
src++;
|
|
while (1) {
|
|
// Copy the next n bytes, and find the backslash and quote in them.
|
|
auto bs_quote = backslash_and_quote::copy_and_find(src, dst);
|
|
// If the next thing is the end quote, copy and return
|
|
if (bs_quote.has_quote_first()) {
|
|
// we encountered quotes first. Move dst to point to quotes and exit
|
|
return dst + bs_quote.quote_index();
|
|
}
|
|
if (bs_quote.has_backslash()) {
|
|
/* find out where the backspace is */
|
|
auto bs_dist = bs_quote.backslash_index();
|
|
uint8_t escape_char = src[bs_dist + 1];
|
|
/* we encountered backslash first. Handle backslash */
|
|
if (escape_char == 'u') {
|
|
/* move src/dst up to the start; they will be further adjusted
|
|
within the unicode codepoint handling code. */
|
|
src += bs_dist;
|
|
dst += bs_dist;
|
|
if (!handle_unicode_codepoint(&src, &dst)) {
|
|
return nullptr;
|
|
}
|
|
} else {
|
|
/* simple 1:1 conversion. Will eat bs_dist+2 characters in input and
|
|
* write bs_dist+1 characters to output
|
|
* note this may reach beyond the part of the buffer we've actually
|
|
* seen. I think this is ok */
|
|
uint8_t escape_result = escape_map[escape_char];
|
|
if (escape_result == 0u) {
|
|
return nullptr; /* bogus escape value is an error */
|
|
}
|
|
dst[bs_dist] = escape_result;
|
|
src += bs_dist + 2;
|
|
dst += bs_dist + 1;
|
|
}
|
|
} else {
|
|
/* they are the same. Since they can't co-occur, it means we
|
|
* encountered neither. */
|
|
src += backslash_and_quote::BYTES_PROCESSED;
|
|
dst += backslash_and_quote::BYTES_PROCESSED;
|
|
}
|
|
}
|
|
/* can't be reached */
|
|
return nullptr;
|
|
}
|
|
|
|
SIMDJSON_UNUSED SIMDJSON_WARN_UNUSED simdjson_really_inline error_code parse_string_to_buffer(const uint8_t *src, uint8_t *¤t_string_buf_loc, std::string_view &s) {
|
|
if (src[0] != '"') { return STRING_ERROR; }
|
|
auto end = stringparsing::parse_string(src, current_string_buf_loc);
|
|
if (!end) { return STRING_ERROR; }
|
|
s = std::string_view((const char *)current_string_buf_loc, end-current_string_buf_loc);
|
|
current_string_buf_loc = end;
|
|
return SUCCESS;
|
|
}
|
|
|
|
} // namespace stringparsing
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/stringparsing.h */
|
|
|
|
#endif // SIMDJSON_WESTMERE_STRINGPARSING_H
|
|
/* end file src/generic/stage2/stringparsing.h */
|
|
/* begin file src/westmere/numberparsing.h */
|
|
#ifndef SIMDJSON_WESTMERE_NUMBERPARSING_H
|
|
#define SIMDJSON_WESTMERE_NUMBERPARSING_H
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
|
|
static simdjson_really_inline uint32_t parse_eight_digits_unrolled(const uint8_t *chars) {
|
|
// this actually computes *16* values so we are being wasteful.
|
|
const __m128i ascii0 = _mm_set1_epi8('0');
|
|
const __m128i mul_1_10 =
|
|
_mm_setr_epi8(10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1);
|
|
const __m128i mul_1_100 = _mm_setr_epi16(100, 1, 100, 1, 100, 1, 100, 1);
|
|
const __m128i mul_1_10000 =
|
|
_mm_setr_epi16(10000, 1, 10000, 1, 10000, 1, 10000, 1);
|
|
const __m128i input = _mm_sub_epi8(
|
|
_mm_loadu_si128(reinterpret_cast<const __m128i *>(chars)), ascii0);
|
|
const __m128i t1 = _mm_maddubs_epi16(input, mul_1_10);
|
|
const __m128i t2 = _mm_madd_epi16(t1, mul_1_100);
|
|
const __m128i t3 = _mm_packus_epi32(t2, t2);
|
|
const __m128i t4 = _mm_madd_epi16(t3, mul_1_10000);
|
|
return _mm_cvtsi128_si32(
|
|
t4); // only captures the sum of the first 8 digits, drop the rest
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
#define SWAR_NUMBER_PARSING
|
|
|
|
/* begin file src/generic/stage2/numberparsing.h */
|
|
#include <cmath>
|
|
#include <limits>
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
namespace numberparsing {
|
|
|
|
#ifdef JSON_TEST_NUMBERS
|
|
#define INVALID_NUMBER(SRC) (found_invalid_number((SRC)), NUMBER_ERROR)
|
|
#define WRITE_INTEGER(VALUE, SRC, WRITER) (found_integer((VALUE), (SRC)), (WRITER).append_s64((VALUE)))
|
|
#define WRITE_UNSIGNED(VALUE, SRC, WRITER) (found_unsigned_integer((VALUE), (SRC)), (WRITER).append_u64((VALUE)))
|
|
#define WRITE_DOUBLE(VALUE, SRC, WRITER) (found_float((VALUE), (SRC)), (WRITER).append_double((VALUE)))
|
|
#else
|
|
#define INVALID_NUMBER(SRC) (NUMBER_ERROR)
|
|
#define WRITE_INTEGER(VALUE, SRC, WRITER) (WRITER).append_s64((VALUE))
|
|
#define WRITE_UNSIGNED(VALUE, SRC, WRITER) (WRITER).append_u64((VALUE))
|
|
#define WRITE_DOUBLE(VALUE, SRC, WRITER) (WRITER).append_double((VALUE))
|
|
#endif
|
|
|
|
// Attempts to compute i * 10^(power) exactly; and if "negative" is
|
|
// true, negate the result.
|
|
// This function will only work in some cases, when it does not work, success is
|
|
// set to false. This should work *most of the time* (like 99% of the time).
|
|
// We assume that power is in the [FASTFLOAT_SMALLEST_POWER,
|
|
// FASTFLOAT_LARGEST_POWER] interval: the caller is responsible for this check.
|
|
simdjson_really_inline bool compute_float_64(int64_t power, uint64_t i, bool negative, double &d) {
|
|
// we start with a fast path
|
|
// It was described in
|
|
// Clinger WD. How to read floating point numbers accurately.
|
|
// ACM SIGPLAN Notices. 1990
|
|
#ifndef FLT_EVAL_METHOD
|
|
#error "FLT_EVAL_METHOD should be defined, please include cfloat."
|
|
#endif
|
|
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
|
|
// We cannot be certain that x/y is rounded to nearest.
|
|
if (0 <= power && power <= 22 && i <= 9007199254740991) {
|
|
#else
|
|
if (-22 <= power && power <= 22 && i <= 9007199254740991) {
|
|
#endif
|
|
// convert the integer into a double. This is lossless since
|
|
// 0 <= i <= 2^53 - 1.
|
|
d = double(i);
|
|
//
|
|
// The general idea is as follows.
|
|
// If 0 <= s < 2^53 and if 10^0 <= p <= 10^22 then
|
|
// 1) Both s and p can be represented exactly as 64-bit floating-point
|
|
// values
|
|
// (binary64).
|
|
// 2) Because s and p can be represented exactly as floating-point values,
|
|
// then s * p
|
|
// and s / p will produce correctly rounded values.
|
|
//
|
|
if (power < 0) {
|
|
d = d / power_of_ten[-power];
|
|
} else {
|
|
d = d * power_of_ten[power];
|
|
}
|
|
if (negative) {
|
|
d = -d;
|
|
}
|
|
return true;
|
|
}
|
|
// When 22 < power && power < 22 + 16, we could
|
|
// hope for another, secondary fast path. It wa
|
|
// described by David M. Gay in "Correctly rounded
|
|
// binary-decimal and decimal-binary conversions." (1990)
|
|
// If you need to compute i * 10^(22 + x) for x < 16,
|
|
// first compute i * 10^x, if you know that result is exact
|
|
// (e.g., when i * 10^x < 2^53),
|
|
// then you can still proceed and do (i * 10^x) * 10^22.
|
|
// Is this worth your time?
|
|
// You need 22 < power *and* power < 22 + 16 *and* (i * 10^(x-22) < 2^53)
|
|
// for this second fast path to work.
|
|
// If you you have 22 < power *and* power < 22 + 16, and then you
|
|
// optimistically compute "i * 10^(x-22)", there is still a chance that you
|
|
// have wasted your time if i * 10^(x-22) >= 2^53. It makes the use cases of
|
|
// this optimization maybe less common than we would like. Source:
|
|
// http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/
|
|
// also used in RapidJSON: https://rapidjson.org/strtod_8h_source.html
|
|
|
|
// The fast path has now failed, so we are failing back on the slower path.
|
|
|
|
// In the slow path, we need to adjust i so that it is > 1<<63 which is always
|
|
// possible, except if i == 0, so we handle i == 0 separately.
|
|
if(i == 0) {
|
|
d = 0.0;
|
|
return true;
|
|
}
|
|
|
|
// We are going to need to do some 64-bit arithmetic to get a more precise product.
|
|
// We use a table lookup approach.
|
|
// It is safe because
|
|
// power >= FASTFLOAT_SMALLEST_POWER
|
|
// and power <= FASTFLOAT_LARGEST_POWER
|
|
// We recover the mantissa of the power, it has a leading 1. It is always
|
|
// rounded down.
|
|
uint64_t factor_mantissa = mantissa_64[power - FASTFLOAT_SMALLEST_POWER];
|
|
|
|
// The exponent is 1024 + 63 + power
|
|
// + floor(log(5**power)/log(2)).
|
|
// The 1024 comes from the ieee64 standard.
|
|
// The 63 comes from the fact that we use a 64-bit word.
|
|
//
|
|
// Computing floor(log(5**power)/log(2)) could be
|
|
// slow. Instead we use a fast function.
|
|
//
|
|
// For power in (-400,350), we have that
|
|
// (((152170 + 65536) * power ) >> 16);
|
|
// is equal to
|
|
// floor(log(5**power)/log(2)) + power
|
|
//
|
|
// The 65536 is (1<<16) and corresponds to
|
|
// (65536 * power) >> 16 ---> power
|
|
//
|
|
// ((152170 * power ) >> 16) is equal to
|
|
// floor(log(5**power)/log(2))
|
|
//
|
|
// Note that this is not magic: 152170/(1<<16) is
|
|
// approximatively equal to log(5)/log(2).
|
|
// The 1<<16 value is a power of two; we could use a
|
|
// larger power of 2 if we wanted to.
|
|
//
|
|
int64_t exponent = (((152170 + 65536) * power) >> 16) + 1024 + 63;
|
|
|
|
|
|
// We want the most significant bit of i to be 1. Shift if needed.
|
|
int lz = leading_zeroes(i);
|
|
i <<= lz;
|
|
// We want the most significant 64 bits of the product. We know
|
|
// this will be non-zero because the most significant bit of i is
|
|
// 1.
|
|
value128 product = full_multiplication(i, factor_mantissa);
|
|
uint64_t lower = product.low;
|
|
uint64_t upper = product.high;
|
|
|
|
// We know that upper has at most one leading zero because
|
|
// both i and factor_mantissa have a leading one. This means
|
|
// that the result is at least as large as ((1<<63)*(1<<63))/(1<<64).
|
|
|
|
// As long as the first 9 bits of "upper" are not "1", then we
|
|
// know that we have an exact computed value for the leading
|
|
// 55 bits because any imprecision would play out as a +1, in
|
|
// the worst case.
|
|
if (simdjson_unlikely((upper & 0x1FF) == 0x1FF) && (lower + i < lower)) {
|
|
uint64_t factor_mantissa_low =
|
|
mantissa_128[power - FASTFLOAT_SMALLEST_POWER];
|
|
// next, we compute the 64-bit x 128-bit multiplication, getting a 192-bit
|
|
// result (three 64-bit values)
|
|
product = full_multiplication(i, factor_mantissa_low);
|
|
uint64_t product_low = product.low;
|
|
uint64_t product_middle2 = product.high;
|
|
uint64_t product_middle1 = lower;
|
|
uint64_t product_high = upper;
|
|
uint64_t product_middle = product_middle1 + product_middle2;
|
|
if (product_middle < product_middle1) {
|
|
product_high++; // overflow carry
|
|
}
|
|
// We want to check whether mantissa *i + i would affect our result.
|
|
// This does happen, e.g. with 7.3177701707893310e+15.
|
|
if (((product_middle + 1 == 0) && ((product_high & 0x1FF) == 0x1FF) &&
|
|
(product_low + i < product_low))) { // let us be prudent and bail out.
|
|
return false;
|
|
}
|
|
upper = product_high;
|
|
lower = product_middle;
|
|
}
|
|
// The final mantissa should be 53 bits with a leading 1.
|
|
// We shift it so that it occupies 54 bits with a leading 1.
|
|
///////
|
|
uint64_t upperbit = upper >> 63;
|
|
uint64_t mantissa = upper >> (upperbit + 9);
|
|
lz += int(1 ^ upperbit);
|
|
|
|
// Here we have mantissa < (1<<54).
|
|
|
|
// We have to round to even. The "to even" part
|
|
// is only a problem when we are right in between two floats
|
|
// which we guard against.
|
|
// If we have lots of trailing zeros, we may fall right between two
|
|
// floating-point values.
|
|
if (simdjson_unlikely((lower == 0) && ((upper & 0x1FF) == 0) &&
|
|
((mantissa & 3) == 1))) {
|
|
// if mantissa & 1 == 1 we might need to round up.
|
|
//
|
|
// Scenarios:
|
|
// 1. We are not in the middle. Then we should round up.
|
|
//
|
|
// 2. We are right in the middle. Whether we round up depends
|
|
// on the last significant bit: if it is "one" then we round
|
|
// up (round to even) otherwise, we do not.
|
|
//
|
|
// So if the last significant bit is 1, we can safely round up.
|
|
// Hence we only need to bail out if (mantissa & 3) == 1.
|
|
// Otherwise we may need more accuracy or analysis to determine whether
|
|
// we are exactly between two floating-point numbers.
|
|
// It can be triggered with 1e23.
|
|
// Note: because the factor_mantissa and factor_mantissa_low are
|
|
// almost always rounded down (except for small positive powers),
|
|
// almost always should round up.
|
|
return false;
|
|
}
|
|
|
|
mantissa += mantissa & 1;
|
|
mantissa >>= 1;
|
|
|
|
// Here we have mantissa < (1<<53), unless there was an overflow
|
|
if (mantissa >= (1ULL << 53)) {
|
|
//////////
|
|
// This will happen when parsing values such as 7.2057594037927933e+16
|
|
////////
|
|
mantissa = (1ULL << 52);
|
|
lz--; // undo previous addition
|
|
}
|
|
mantissa &= ~(1ULL << 52);
|
|
uint64_t real_exponent = exponent - lz;
|
|
// we have to check that real_exponent is in range, otherwise we bail out
|
|
if (simdjson_unlikely((real_exponent < 1) || (real_exponent > 2046))) {
|
|
return false;
|
|
}
|
|
mantissa |= real_exponent << 52;
|
|
mantissa |= (((uint64_t)negative) << 63);
|
|
memcpy(&d, &mantissa, sizeof(d));
|
|
return true;
|
|
}
|
|
|
|
static bool parse_float_strtod(const uint8_t *ptr, double *outDouble) {
|
|
char *endptr;
|
|
*outDouble = strtod((const char *)ptr, &endptr);
|
|
// Some libraries will set errno = ERANGE when the value is subnormal,
|
|
// yet we may want to be able to parse subnormal values.
|
|
// However, we do not want to tolerate NAN or infinite values.
|
|
//
|
|
// Values like infinity or NaN are not allowed in the JSON specification.
|
|
// If you consume a large value and you map it to "infinity", you will no
|
|
// longer be able to serialize back a standard-compliant JSON. And there is
|
|
// no realistic application where you might need values so large than they
|
|
// can't fit in binary64. The maximal value is about 1.7976931348623157 x
|
|
// 10^308 It is an unimaginable large number. There will never be any piece of
|
|
// engineering involving as many as 10^308 parts. It is estimated that there
|
|
// are about 10^80 atoms in the universe. The estimate for the total number
|
|
// of electrons is similar. Using a double-precision floating-point value, we
|
|
// can represent easily the number of atoms in the universe. We could also
|
|
// represent the number of ways you can pick any three individual atoms at
|
|
// random in the universe. If you ever encounter a number much larger than
|
|
// 10^308, you know that you have a bug. RapidJSON will reject a document with
|
|
// a float that does not fit in binary64. JSON for Modern C++ (nlohmann/json)
|
|
// will flat out throw an exception.
|
|
//
|
|
if ((endptr == (const char *)ptr) || (!std::isfinite(*outDouble))) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// check quickly whether the next 8 chars are made of digits
|
|
// at a glance, it looks better than Mula's
|
|
// http://0x80.pl/articles/swar-digits-validate.html
|
|
simdjson_really_inline bool is_made_of_eight_digits_fast(const uint8_t *chars) {
|
|
uint64_t val;
|
|
// this can read up to 7 bytes beyond the buffer size, but we require
|
|
// SIMDJSON_PADDING of padding
|
|
static_assert(7 <= SIMDJSON_PADDING, "SIMDJSON_PADDING must be bigger than 7");
|
|
memcpy(&val, chars, 8);
|
|
// a branchy method might be faster:
|
|
// return (( val & 0xF0F0F0F0F0F0F0F0 ) == 0x3030303030303030)
|
|
// && (( (val + 0x0606060606060606) & 0xF0F0F0F0F0F0F0F0 ) ==
|
|
// 0x3030303030303030);
|
|
return (((val & 0xF0F0F0F0F0F0F0F0) |
|
|
(((val + 0x0606060606060606) & 0xF0F0F0F0F0F0F0F0) >> 4)) ==
|
|
0x3333333333333333);
|
|
}
|
|
|
|
template<typename W>
|
|
error_code slow_float_parsing(SIMDJSON_UNUSED const uint8_t * src, W writer) {
|
|
double d;
|
|
if (parse_float_strtod(src, &d)) {
|
|
writer.append_double(d);
|
|
return SUCCESS;
|
|
}
|
|
return INVALID_NUMBER(src);
|
|
}
|
|
|
|
template<typename I>
|
|
NO_SANITIZE_UNDEFINED // We deliberately allow overflow here and check later
|
|
simdjson_really_inline bool parse_digit(const uint8_t c, I &i) {
|
|
const uint8_t digit = static_cast<uint8_t>(c - '0');
|
|
if (digit > 9) {
|
|
return false;
|
|
}
|
|
// PERF NOTE: multiplication by 10 is cheaper than arbitrary integer multiplication
|
|
i = 10 * i + digit; // might overflow, we will handle the overflow later
|
|
return true;
|
|
}
|
|
|
|
simdjson_really_inline error_code parse_decimal(SIMDJSON_UNUSED const uint8_t *const src, const uint8_t *&p, uint64_t &i, int64_t &exponent) {
|
|
// we continue with the fiction that we have an integer. If the
|
|
// floating point number is representable as x * 10^z for some integer
|
|
// z that fits in 53 bits, then we will be able to convert back the
|
|
// the integer into a float in a lossless manner.
|
|
const uint8_t *const first_after_period = p;
|
|
|
|
#ifdef SWAR_NUMBER_PARSING
|
|
// this helps if we have lots of decimals!
|
|
// this turns out to be frequent enough.
|
|
if (is_made_of_eight_digits_fast(p)) {
|
|
i = i * 100000000 + parse_eight_digits_unrolled(p);
|
|
p += 8;
|
|
}
|
|
#endif
|
|
// Unrolling the first digit makes a small difference on some implementations (e.g. westmere)
|
|
if (parse_digit(*p, i)) { ++p; }
|
|
while (parse_digit(*p, i)) { p++; }
|
|
exponent = first_after_period - p;
|
|
// Decimal without digits (123.) is illegal
|
|
if (exponent == 0) {
|
|
return INVALID_NUMBER(src);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
simdjson_really_inline error_code parse_exponent(SIMDJSON_UNUSED const uint8_t *const src, const uint8_t *&p, int64_t &exponent) {
|
|
// Exp Sign: -123.456e[-]78
|
|
bool neg_exp = ('-' == *p);
|
|
if (neg_exp || '+' == *p) { p++; } // Skip + as well
|
|
|
|
// Exponent: -123.456e-[78]
|
|
auto start_exp = p;
|
|
int64_t exp_number = 0;
|
|
while (parse_digit(*p, exp_number)) { ++p; }
|
|
// It is possible for parse_digit to overflow.
|
|
// In particular, it could overflow to INT64_MIN, and we cannot do - INT64_MIN.
|
|
// Thus we *must* check for possible overflow before we negate exp_number.
|
|
|
|
// Performance notes: it may seem like combining the two "simdjson_unlikely checks" below into
|
|
// a single simdjson_unlikely path would be faster. The reasoning is sound, but the compiler may
|
|
// not oblige and may, in fact, generate two distinct paths in any case. It might be
|
|
// possible to do uint64_t(p - start_exp - 1) >= 18 but it could end up trading off
|
|
// instructions for a simdjson_likely branch, an unconclusive gain.
|
|
|
|
// If there were no digits, it's an error.
|
|
if (simdjson_unlikely(p == start_exp)) {
|
|
return INVALID_NUMBER(src);
|
|
}
|
|
// We have a valid positive exponent in exp_number at this point, except that
|
|
// it may have overflowed.
|
|
|
|
// If there were more than 18 digits, we may have overflowed the integer. We have to do
|
|
// something!!!!
|
|
if (simdjson_unlikely(p > start_exp+18)) {
|
|
// Skip leading zeroes: 1e000000000000000000001 is technically valid and doesn't overflow
|
|
while (*start_exp == '0') { start_exp++; }
|
|
// 19 digits could overflow int64_t and is kind of absurd anyway. We don't
|
|
// support exponents smaller than -999,999,999,999,999,999 and bigger
|
|
// than 999,999,999,999,999,999.
|
|
// We can truncate.
|
|
// Note that 999999999999999999 is assuredly too large. The maximal ieee64 value before
|
|
// infinity is ~1.8e308. The smallest subnormal is ~5e-324. So, actually, we could
|
|
// truncate at 324.
|
|
// Note that there is no reason to fail per se at this point in time.
|
|
// E.g., 0e999999999999999999999 is a fine number.
|
|
if (p > start_exp+18) { exp_number = 999999999999999999; }
|
|
}
|
|
// At this point, we know that exp_number is a sane, positive, signed integer.
|
|
// It is <= 999,999,999,999,999,999. As long as 'exponent' is in
|
|
// [-8223372036854775808, 8223372036854775808], we won't overflow. Because 'exponent'
|
|
// is bounded in magnitude by the size of the JSON input, we are fine in this universe.
|
|
// To sum it up: the next line should never overflow.
|
|
exponent += (neg_exp ? -exp_number : exp_number);
|
|
return SUCCESS;
|
|
}
|
|
|
|
simdjson_really_inline int significant_digits(const uint8_t * start_digits, int digit_count) {
|
|
// It is possible that the integer had an overflow.
|
|
// We have to handle the case where we have 0.0000somenumber.
|
|
const uint8_t *start = start_digits;
|
|
while ((*start == '0') || (*start == '.')) {
|
|
start++;
|
|
}
|
|
// we over-decrement by one when there is a '.'
|
|
return digit_count - int(start - start_digits);
|
|
}
|
|
|
|
template<typename W>
|
|
simdjson_really_inline error_code write_float(const uint8_t *const src, bool negative, uint64_t i, const uint8_t * start_digits, int digit_count, int64_t exponent, W &writer) {
|
|
// If we frequently had to deal with long strings of digits,
|
|
// we could extend our code by using a 128-bit integer instead
|
|
// of a 64-bit integer. However, this is uncommon in practice.
|
|
// digit count is off by 1 because of the decimal (assuming there was one).
|
|
if (simdjson_unlikely(digit_count-1 >= 19 && significant_digits(start_digits, digit_count) >= 19)) {
|
|
// Ok, chances are good that we had an overflow!
|
|
// this is almost never going to get called!!!
|
|
// we start anew, going slowly!!!
|
|
// This will happen in the following examples:
|
|
// 10000000000000000000000000000000000000000000e+308
|
|
// 3.1415926535897932384626433832795028841971693993751
|
|
//
|
|
// NOTE: This makes a *copy* of the writer and passes it to slow_float_parsing. This happens
|
|
// because slow_float_parsing is a non-inlined function. If we passed our writer reference to
|
|
// it, it would force it to be stored in memory, preventing the compiler from picking it apart
|
|
// and putting into registers. i.e. if we pass it as reference, it gets slow.
|
|
// This is what forces the skip_double, as well.
|
|
error_code error = slow_float_parsing(src, writer);
|
|
writer.skip_double();
|
|
return error;
|
|
}
|
|
// NOTE: it's weird that the simdjson_unlikely() only wraps half the if, but it seems to get slower any other
|
|
// way we've tried: https://github.com/simdjson/simdjson/pull/990#discussion_r448497331
|
|
// To future reader: we'd love if someone found a better way, or at least could explain this result!
|
|
if (simdjson_unlikely(exponent < FASTFLOAT_SMALLEST_POWER) || (exponent > FASTFLOAT_LARGEST_POWER)) {
|
|
// this is almost never going to get called!!!
|
|
// we start anew, going slowly!!!
|
|
// NOTE: This makes a *copy* of the writer and passes it to slow_float_parsing. This happens
|
|
// because slow_float_parsing is a non-inlined function. If we passed our writer reference to
|
|
// it, it would force it to be stored in memory, preventing the compiler from picking it apart
|
|
// and putting into registers. i.e. if we pass it as reference, it gets slow.
|
|
// This is what forces the skip_double, as well.
|
|
error_code error = slow_float_parsing(src, writer);
|
|
writer.skip_double();
|
|
return error;
|
|
}
|
|
double d;
|
|
if (!compute_float_64(exponent, i, negative, d)) {
|
|
// we are almost never going to get here.
|
|
if (!parse_float_strtod(src, &d)) { return INVALID_NUMBER(src); }
|
|
}
|
|
WRITE_DOUBLE(d, src, writer);
|
|
return SUCCESS;
|
|
}
|
|
|
|
// for performance analysis, it is sometimes useful to skip parsing
|
|
#ifdef SIMDJSON_SKIPNUMBERPARSING
|
|
|
|
template<typename W>
|
|
simdjson_really_inline error_code parse_number(const uint8_t *const, W &writer) {
|
|
writer.append_s64(0); // always write zero
|
|
return SUCCESS; // always succeeds
|
|
}
|
|
|
|
#else
|
|
|
|
// parse the number at src
|
|
// define JSON_TEST_NUMBERS for unit testing
|
|
//
|
|
// It is assumed that the number is followed by a structural ({,},],[) character
|
|
// or a white space character. If that is not the case (e.g., when the JSON
|
|
// document is made of a single number), then it is necessary to copy the
|
|
// content and append a space before calling this function.
|
|
//
|
|
// Our objective is accurate parsing (ULP of 0) at high speed.
|
|
template<typename W>
|
|
simdjson_really_inline error_code parse_number(const uint8_t *const src, W &writer) {
|
|
|
|
//
|
|
// Check for minus sign
|
|
//
|
|
bool negative = (*src == '-');
|
|
const uint8_t *p = src + negative;
|
|
|
|
//
|
|
// Parse the integer part.
|
|
//
|
|
// PERF NOTE: we don't use is_made_of_eight_digits_fast because large integers like 123456789 are rare
|
|
const uint8_t *const start_digits = p;
|
|
uint64_t i = 0;
|
|
while (parse_digit(*p, i)) { p++; }
|
|
|
|
// If there were no digits, or if the integer starts with 0 and has more than one digit, it's an error.
|
|
int digit_count = int(p - start_digits);
|
|
if (digit_count == 0 || ('0' == *start_digits && digit_count > 1)) { return INVALID_NUMBER(src); }
|
|
|
|
//
|
|
// Handle floats if there is a . or e (or both)
|
|
//
|
|
int64_t exponent = 0;
|
|
bool is_float = false;
|
|
if ('.' == *p) {
|
|
is_float = true;
|
|
++p;
|
|
SIMDJSON_TRY( parse_decimal(src, p, i, exponent) );
|
|
digit_count = int(p - start_digits); // used later to guard against overflows
|
|
}
|
|
if (('e' == *p) || ('E' == *p)) {
|
|
is_float = true;
|
|
++p;
|
|
SIMDJSON_TRY( parse_exponent(src, p, exponent) );
|
|
}
|
|
if (is_float) {
|
|
const bool clean_end = is_structural_or_whitespace(*p);
|
|
SIMDJSON_TRY( write_float(src, negative, i, start_digits, digit_count, exponent, writer) );
|
|
if (!clean_end) { return INVALID_NUMBER(src); }
|
|
return SUCCESS;
|
|
}
|
|
|
|
// The longest negative 64-bit number is 19 digits.
|
|
// The longest positive 64-bit number is 20 digits.
|
|
// We do it this way so we don't trigger this branch unless we must.
|
|
int longest_digit_count = negative ? 19 : 20;
|
|
if (digit_count > longest_digit_count) { return INVALID_NUMBER(src); }
|
|
if (digit_count == longest_digit_count) {
|
|
if (negative) {
|
|
// Anything negative above INT64_MAX+1 is invalid
|
|
if (i > uint64_t(INT64_MAX)+1) { return INVALID_NUMBER(src); }
|
|
WRITE_INTEGER(~i+1, src, writer);
|
|
if (!is_structural_or_whitespace(*p)) { return INVALID_NUMBER(src); }
|
|
return SUCCESS;
|
|
// Positive overflow check:
|
|
// - A 20 digit number starting with 2-9 is overflow, because 18,446,744,073,709,551,615 is the
|
|
// biggest uint64_t.
|
|
// - A 20 digit number starting with 1 is overflow if it is less than INT64_MAX.
|
|
// If we got here, it's a 20 digit number starting with the digit "1".
|
|
// - If a 20 digit number starting with 1 overflowed (i*10+digit), the result will be smaller
|
|
// than 1,553,255,926,290,448,384.
|
|
// - That is smaller than the smallest possible 20-digit number the user could write:
|
|
// 10,000,000,000,000,000,000.
|
|
// - Therefore, if the number is positive and lower than that, it's overflow.
|
|
// - The value we are looking at is less than or equal to 9,223,372,036,854,775,808 (INT64_MAX).
|
|
//
|
|
} else if (src[0] != uint8_t('1') || i <= uint64_t(INT64_MAX)) { return INVALID_NUMBER(src); }
|
|
}
|
|
|
|
// Write unsigned if it doesn't fit in a signed integer.
|
|
if (i > uint64_t(INT64_MAX)) {
|
|
WRITE_UNSIGNED(i, src, writer);
|
|
} else {
|
|
WRITE_INTEGER(negative ? (~i+1) : i, src, writer);
|
|
}
|
|
if (!is_structural_or_whitespace(*p)) { return INVALID_NUMBER(src); }
|
|
return SUCCESS;
|
|
}
|
|
|
|
// SAX functions
|
|
namespace {
|
|
// Parse any number from 0 to 18,446,744,073,709,551,615
|
|
SIMDJSON_UNUSED simdjson_really_inline simdjson_result<uint64_t> parse_unsigned(const uint8_t * const src) noexcept {
|
|
const uint8_t *p = src;
|
|
|
|
//
|
|
// Parse the integer part.
|
|
//
|
|
// PERF NOTE: we don't use is_made_of_eight_digits_fast because large integers like 123456789 are rare
|
|
const uint8_t *const start_digits = p;
|
|
uint64_t i = 0;
|
|
while (parse_digit(*p, i)) { p++; }
|
|
|
|
// If there were no digits, or if the integer starts with 0 and has more than one digit, it's an error.
|
|
int digit_count = int(p - start_digits);
|
|
if (digit_count == 0 || ('0' == *start_digits && digit_count > 1)) { return NUMBER_ERROR; }
|
|
if (!is_structural_or_whitespace(*p)) { return NUMBER_ERROR; }
|
|
|
|
// The longest positive 64-bit number is 20 digits.
|
|
// We do it this way so we don't trigger this branch unless we must.
|
|
if (digit_count > 20) { return NUMBER_ERROR; }
|
|
if (digit_count == 20) {
|
|
// Positive overflow check:
|
|
// - A 20 digit number starting with 2-9 is overflow, because 18,446,744,073,709,551,615 is the
|
|
// biggest uint64_t.
|
|
// - A 20 digit number starting with 1 is overflow if it is less than INT64_MAX.
|
|
// If we got here, it's a 20 digit number starting with the digit "1".
|
|
// - If a 20 digit number starting with 1 overflowed (i*10+digit), the result will be smaller
|
|
// than 1,553,255,926,290,448,384.
|
|
// - That is smaller than the smallest possible 20-digit number the user could write:
|
|
// 10,000,000,000,000,000,000.
|
|
// - Therefore, if the number is positive and lower than that, it's overflow.
|
|
// - The value we are looking at is less than or equal to 9,223,372,036,854,775,808 (INT64_MAX).
|
|
//
|
|
if (src[0] != uint8_t('1') || i <= uint64_t(INT64_MAX)) { return NUMBER_ERROR; }
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
// Parse any number from 0 to 18,446,744,073,709,551,615
|
|
// Call this version of the method if you regularly expect 8- or 16-digit numbers.
|
|
SIMDJSON_UNUSED simdjson_really_inline simdjson_result<uint64_t> parse_large_unsigned(const uint8_t * const src) noexcept {
|
|
const uint8_t *p = src;
|
|
|
|
//
|
|
// Parse the integer part.
|
|
//
|
|
uint64_t i = 0;
|
|
if (is_made_of_eight_digits_fast(p)) {
|
|
i = i * 100000000 + parse_eight_digits_unrolled(p);
|
|
p += 8;
|
|
if (is_made_of_eight_digits_fast(p)) {
|
|
i = i * 100000000 + parse_eight_digits_unrolled(p);
|
|
p += 8;
|
|
if (parse_digit(*p, i)) { // digit 17
|
|
p++;
|
|
if (parse_digit(*p, i)) { // digit 18
|
|
p++;
|
|
if (parse_digit(*p, i)) { // digit 19
|
|
p++;
|
|
if (parse_digit(*p, i)) { // digit 20
|
|
p++;
|
|
if (parse_digit(*p, i)) { return NUMBER_ERROR; } // 21 digits is an error
|
|
// Positive overflow check:
|
|
// - A 20 digit number starting with 2-9 is overflow, because 18,446,744,073,709,551,615 is the
|
|
// biggest uint64_t.
|
|
// - A 20 digit number starting with 1 is overflow if it is less than INT64_MAX.
|
|
// If we got here, it's a 20 digit number starting with the digit "1".
|
|
// - If a 20 digit number starting with 1 overflowed (i*10+digit), the result will be smaller
|
|
// than 1,553,255,926,290,448,384.
|
|
// - That is smaller than the smallest possible 20-digit number the user could write:
|
|
// 10,000,000,000,000,000,000.
|
|
// - Therefore, if the number is positive and lower than that, it's overflow.
|
|
// - The value we are looking at is less than or equal to 9,223,372,036,854,775,808 (INT64_MAX).
|
|
//
|
|
if (src[0] != uint8_t('1') || i <= uint64_t(INT64_MAX)) { return NUMBER_ERROR; }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // 16 digits
|
|
} else { // 8 digits
|
|
// Less than 8 digits can't overflow, simpler logic here.
|
|
if (parse_digit(*p, i)) { p++; } else { return NUMBER_ERROR; }
|
|
while (parse_digit(*p, i)) { p++; }
|
|
}
|
|
|
|
if (!is_structural_or_whitespace(*p)) { return NUMBER_ERROR; }
|
|
// If there were no digits, or if the integer starts with 0 and has more than one digit, it's an error.
|
|
int digit_count = int(p - src);
|
|
if (digit_count == 0 || ('0' == *src && digit_count > 1)) { return NUMBER_ERROR; }
|
|
return i;
|
|
}
|
|
|
|
// Parse any number from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
|
|
SIMDJSON_UNUSED simdjson_really_inline simdjson_result<int64_t> parse_integer(const uint8_t *src) noexcept {
|
|
//
|
|
// Check for minus sign
|
|
//
|
|
bool negative = (*src == '-');
|
|
const uint8_t *p = src + negative;
|
|
|
|
//
|
|
// Parse the integer part.
|
|
//
|
|
// PERF NOTE: we don't use is_made_of_eight_digits_fast because large integers like 123456789 are rare
|
|
const uint8_t *const start_digits = p;
|
|
uint64_t i = 0;
|
|
while (parse_digit(*p, i)) { p++; }
|
|
|
|
// If there were no digits, or if the integer starts with 0 and has more than one digit, it's an error.
|
|
int digit_count = int(p - start_digits);
|
|
if (digit_count == 0 || ('0' == *start_digits && digit_count > 1)) { return NUMBER_ERROR; }
|
|
if (!is_structural_or_whitespace(*p)) { return NUMBER_ERROR; }
|
|
|
|
// The longest negative 64-bit number is 19 digits.
|
|
// The longest positive 64-bit number is 20 digits.
|
|
// We do it this way so we don't trigger this branch unless we must.
|
|
int longest_digit_count = negative ? 19 : 20;
|
|
if (digit_count > longest_digit_count) { return NUMBER_ERROR; }
|
|
if (digit_count == longest_digit_count) {
|
|
if(negative) {
|
|
// Anything negative above INT64_MAX+1 is invalid
|
|
if (i > uint64_t(INT64_MAX)+1) { return NUMBER_ERROR; }
|
|
return ~i+1;
|
|
|
|
// Positive overflow check:
|
|
// - A 20 digit number starting with 2-9 is overflow, because 18,446,744,073,709,551,615 is the
|
|
// biggest uint64_t.
|
|
// - A 20 digit number starting with 1 is overflow if it is less than INT64_MAX.
|
|
// If we got here, it's a 20 digit number starting with the digit "1".
|
|
// - If a 20 digit number starting with 1 overflowed (i*10+digit), the result will be smaller
|
|
// than 1,553,255,926,290,448,384.
|
|
// - That is smaller than the smallest possible 20-digit number the user could write:
|
|
// 10,000,000,000,000,000,000.
|
|
// - Therefore, if the number is positive and lower than that, it's overflow.
|
|
// - The value we are looking at is less than or equal to 9,223,372,036,854,775,808 (INT64_MAX).
|
|
//
|
|
} else if (src[0] != uint8_t('1') || i <= uint64_t(INT64_MAX)) { return NUMBER_ERROR; }
|
|
}
|
|
|
|
return negative ? (~i+1) : i;
|
|
}
|
|
|
|
SIMDJSON_UNUSED simdjson_really_inline simdjson_result<double> parse_double(const uint8_t * src) noexcept {
|
|
//
|
|
// Check for minus sign
|
|
//
|
|
bool negative = (*src == '-');
|
|
src += negative;
|
|
|
|
//
|
|
// Parse the integer part.
|
|
//
|
|
uint64_t i = 0;
|
|
const uint8_t *p = src;
|
|
p += parse_digit(*p, i);
|
|
bool leading_zero = (i == 0);
|
|
while (parse_digit(*p, i)) { p++; }
|
|
// no integer digits, or 0123 (zero must be solo)
|
|
if ( p == src || (leading_zero && p != src+1)) { return NUMBER_ERROR; }
|
|
|
|
//
|
|
// Parse the decimal part.
|
|
//
|
|
int64_t exponent = 0;
|
|
bool overflow;
|
|
if (simdjson_likely(*p == '.')) {
|
|
p++;
|
|
const uint8_t *start_decimal_digits = p;
|
|
if (!parse_digit(*p, i)) { return NUMBER_ERROR; } // no decimal digits
|
|
p++;
|
|
while (parse_digit(*p, i)) { p++; }
|
|
exponent = -(p - start_decimal_digits);
|
|
|
|
// Overflow check. 19 digits (minus the decimal) may be overflow.
|
|
overflow = p-src-1 >= 19;
|
|
if (simdjson_unlikely(overflow && leading_zero)) {
|
|
// Skip leading 0.00000 and see if it still overflows
|
|
const uint8_t *start_digits = src + 2;
|
|
while (*start_digits == '0') { start_digits++; }
|
|
overflow = start_digits-src >= 19;
|
|
}
|
|
} else {
|
|
overflow = p-src >= 19;
|
|
}
|
|
|
|
//
|
|
// Parse the exponent
|
|
//
|
|
if (*p == 'e' || *p == 'E') {
|
|
p++;
|
|
bool exp_neg = *p == '-';
|
|
p += exp_neg || *p == '+';
|
|
|
|
uint64_t exp = 0;
|
|
const uint8_t *start_exp_digits = p;
|
|
while (parse_digit(*p, exp)) { p++; }
|
|
// no exp digits, or 20+ exp digits
|
|
if (p-start_exp_digits == 0 || p-start_exp_digits > 19) { return NUMBER_ERROR; }
|
|
|
|
exponent += exp_neg ? 0-exp : exp;
|
|
overflow = overflow || exponent < FASTFLOAT_SMALLEST_POWER || exponent > FASTFLOAT_LARGEST_POWER;
|
|
}
|
|
|
|
//
|
|
// Assemble (or slow-parse) the float
|
|
//
|
|
double d;
|
|
if (simdjson_likely(!overflow)) {
|
|
if (compute_float_64(exponent, i, negative, d)) { return d; }
|
|
}
|
|
if (!parse_float_strtod(src-negative, &d)) {
|
|
return NUMBER_ERROR;
|
|
}
|
|
return d;
|
|
}
|
|
} //namespace {}
|
|
#endif // SIMDJSON_SKIPNUMBERPARSING
|
|
|
|
} // namespace numberparsing
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/numberparsing.h */
|
|
|
|
#endif // SIMDJSON_WESTMERE_NUMBERPARSING_H
|
|
/* end file src/generic/stage2/numberparsing.h */
|
|
/* begin file src/generic/stage2/tape_builder.h */
|
|
/* begin file src/generic/stage2/json_iterator.h */
|
|
/* begin file src/generic/stage2/logger.h */
|
|
// This is for an internal-only stage 2 specific logger.
|
|
// Set LOG_ENABLED = true to log what stage 2 is doing!
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace logger {
|
|
|
|
static constexpr const char * DASHES = "----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------";
|
|
|
|
static constexpr const bool LOG_ENABLED = false;
|
|
static constexpr const int LOG_EVENT_LEN = 20;
|
|
static constexpr const int LOG_BUFFER_LEN = 30;
|
|
static constexpr const int LOG_SMALL_BUFFER_LEN = 10;
|
|
static constexpr const int LOG_INDEX_LEN = 5;
|
|
|
|
static int log_depth; // Not threadsafe. Log only.
|
|
|
|
// Helper to turn unprintable or newline characters into spaces
|
|
static simdjson_really_inline char printable_char(char c) {
|
|
if (c >= 0x20) {
|
|
return c;
|
|
} else {
|
|
return ' ';
|
|
}
|
|
}
|
|
|
|
// Print the header and set up log_start
|
|
static simdjson_really_inline void log_start() {
|
|
if (LOG_ENABLED) {
|
|
log_depth = 0;
|
|
printf("\n");
|
|
printf("| %-*s | %-*s | %-*s | %-*s | Detail |\n", LOG_EVENT_LEN, "Event", LOG_BUFFER_LEN, "Buffer", LOG_SMALL_BUFFER_LEN, "Next", 5, "Next#");
|
|
printf("|%.*s|%.*s|%.*s|%.*s|--------|\n", LOG_EVENT_LEN+2, DASHES, LOG_BUFFER_LEN+2, DASHES, LOG_SMALL_BUFFER_LEN+2, DASHES, 5+2, DASHES);
|
|
}
|
|
}
|
|
|
|
// Logs a single line of
|
|
template<typename S>
|
|
static simdjson_really_inline void log_line(S &structurals, const char *title_prefix, const char *title, const char *detail) {
|
|
if (LOG_ENABLED) {
|
|
printf("| %*s%s%-*s ", log_depth*2, "", title_prefix, LOG_EVENT_LEN - log_depth*2 - int(strlen(title_prefix)), title);
|
|
auto current_index = structurals.at_beginning() ? nullptr : structurals.next_structural-1;
|
|
auto next_index = structurals.next_structural;
|
|
auto current = current_index ? &structurals.buf[*current_index] : (const uint8_t*)" ";
|
|
auto next = &structurals.buf[*next_index];
|
|
{
|
|
// Print the next N characters in the buffer.
|
|
printf("| ");
|
|
// Otherwise, print the characters starting from the buffer position.
|
|
// Print spaces for unprintable or newline characters.
|
|
for (int i=0;i<LOG_BUFFER_LEN;i++) {
|
|
printf("%c", printable_char(current[i]));
|
|
}
|
|
printf(" ");
|
|
// Print the next N characters in the buffer.
|
|
printf("| ");
|
|
// Otherwise, print the characters starting from the buffer position.
|
|
// Print spaces for unprintable or newline characters.
|
|
for (int i=0;i<LOG_SMALL_BUFFER_LEN;i++) {
|
|
printf("%c", printable_char(next[i]));
|
|
}
|
|
printf(" ");
|
|
}
|
|
if (current_index) {
|
|
printf("| %*u ", LOG_INDEX_LEN, *current_index);
|
|
} else {
|
|
printf("| %-*s ", LOG_INDEX_LEN, "");
|
|
}
|
|
// printf("| %*u ", LOG_INDEX_LEN, structurals.next_tape_index());
|
|
printf("| %-s ", detail);
|
|
printf("|\n");
|
|
}
|
|
}
|
|
|
|
} // namespace logger
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/logger.h */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
|
|
class json_iterator {
|
|
public:
|
|
const uint8_t* const buf;
|
|
uint32_t *next_structural;
|
|
dom_parser_implementation &dom_parser;
|
|
uint32_t depth{0};
|
|
|
|
/**
|
|
* Walk the JSON document.
|
|
*
|
|
* The visitor receives callbacks when values are encountered. All callbacks pass the iterator as
|
|
* the first parameter; some callbacks have other parameters as well:
|
|
*
|
|
* - visit_document_start() - at the beginning.
|
|
* - visit_document_end() - at the end (if things were successful).
|
|
*
|
|
* - visit_array_start() - at the start `[` of a non-empty array.
|
|
* - visit_array_end() - at the end `]` of a non-empty array.
|
|
* - visit_empty_array() - when an empty array is encountered.
|
|
*
|
|
* - visit_object_end() - at the start `]` of a non-empty object.
|
|
* - visit_object_start() - at the end `]` of a non-empty object.
|
|
* - visit_empty_object() - when an empty object is encountered.
|
|
* - visit_key(const uint8_t *key) - when a key in an object field is encountered. key is
|
|
* guaranteed to point at the first quote of the string (`"key"`).
|
|
* - visit_primitive(const uint8_t *value) - when a value is a string, number, boolean or null.
|
|
* - visit_root_primitive(iter, uint8_t *value) - when the top-level value is a string, number, boolean or null.
|
|
*
|
|
* - increment_count(iter) - each time a value is found in an array or object.
|
|
*/
|
|
template<bool STREAMING, typename V>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code walk_document(V &visitor) noexcept;
|
|
|
|
/**
|
|
* Create an iterator capable of walking a JSON document.
|
|
*
|
|
* The document must have already passed through stage 1.
|
|
*/
|
|
simdjson_really_inline json_iterator(dom_parser_implementation &_dom_parser, size_t start_structural_index);
|
|
|
|
/**
|
|
* Look at the next token.
|
|
*
|
|
* Tokens can be strings, numbers, booleans, null, or operators (`[{]},:`)).
|
|
*
|
|
* They may include invalid JSON as well (such as `1.2.3` or `ture`).
|
|
*/
|
|
simdjson_really_inline const uint8_t *peek() const noexcept;
|
|
/**
|
|
* Advance to the next token.
|
|
*
|
|
* Tokens can be strings, numbers, booleans, null, or operators (`[{]},:`)).
|
|
*
|
|
* They may include invalid JSON as well (such as `1.2.3` or `ture`).
|
|
*/
|
|
simdjson_really_inline const uint8_t *advance() noexcept;
|
|
/**
|
|
* Get the remaining length of the document, from the start of the current token.
|
|
*/
|
|
simdjson_really_inline size_t remaining_len() const noexcept;
|
|
/**
|
|
* Check if we are at the end of the document.
|
|
*
|
|
* If this is true, there are no more tokens.
|
|
*/
|
|
simdjson_really_inline bool at_eof() const noexcept;
|
|
/**
|
|
* Check if we are at the beginning of the document.
|
|
*/
|
|
simdjson_really_inline bool at_beginning() const noexcept;
|
|
simdjson_really_inline uint8_t last_structural() const noexcept;
|
|
|
|
/**
|
|
* Log that a value has been found.
|
|
*
|
|
* Set ENABLE_LOGGING=true in logger.h to see logging.
|
|
*/
|
|
simdjson_really_inline void log_value(const char *type) const noexcept;
|
|
/**
|
|
* Log the start of a multipart value.
|
|
*
|
|
* Set ENABLE_LOGGING=true in logger.h to see logging.
|
|
*/
|
|
simdjson_really_inline void log_start_value(const char *type) const noexcept;
|
|
/**
|
|
* Log the end of a multipart value.
|
|
*
|
|
* Set ENABLE_LOGGING=true in logger.h to see logging.
|
|
*/
|
|
simdjson_really_inline void log_end_value(const char *type) const noexcept;
|
|
/**
|
|
* Log an error.
|
|
*
|
|
* Set ENABLE_LOGGING=true in logger.h to see logging.
|
|
*/
|
|
simdjson_really_inline void log_error(const char *error) const noexcept;
|
|
|
|
template<typename V>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_primitive(V &visitor, const uint8_t *value) noexcept;
|
|
template<typename V>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_primitive(V &visitor, const uint8_t *value) noexcept;
|
|
};
|
|
|
|
template<bool STREAMING, typename V>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code json_iterator::walk_document(V &visitor) noexcept {
|
|
logger::log_start();
|
|
|
|
//
|
|
// Start the document
|
|
//
|
|
if (at_eof()) { return EMPTY; }
|
|
log_start_value("document");
|
|
SIMDJSON_TRY( visitor.visit_document_start(*this) );
|
|
|
|
//
|
|
// Read first value
|
|
//
|
|
{
|
|
auto value = advance();
|
|
|
|
// Make sure the outer hash or array is closed before continuing; otherwise, there are ways we
|
|
// could get into memory corruption. See https://github.com/simdjson/simdjson/issues/906
|
|
if (!STREAMING) {
|
|
switch (*value) {
|
|
case '{': if (last_structural() != '}') { return TAPE_ERROR; }; break;
|
|
case '[': if (last_structural() != ']') { return TAPE_ERROR; }; break;
|
|
}
|
|
}
|
|
|
|
switch (*value) {
|
|
case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin;
|
|
case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin;
|
|
default: SIMDJSON_TRY( visitor.visit_root_primitive(*this, value) ); break;
|
|
}
|
|
}
|
|
goto document_end;
|
|
|
|
//
|
|
// Object parser states
|
|
//
|
|
object_begin:
|
|
log_start_value("object");
|
|
depth++;
|
|
if (depth >= dom_parser.max_depth()) { log_error("Exceeded max depth!"); return DEPTH_ERROR; }
|
|
dom_parser.is_array[depth] = false;
|
|
SIMDJSON_TRY( visitor.visit_object_start(*this) );
|
|
|
|
{
|
|
auto key = advance();
|
|
if (*key != '"') { log_error("Object does not start with a key"); return TAPE_ERROR; }
|
|
SIMDJSON_TRY( visitor.increment_count(*this) );
|
|
SIMDJSON_TRY( visitor.visit_key(*this, key) );
|
|
}
|
|
|
|
object_field:
|
|
if (simdjson_unlikely( *advance() != ':' )) { log_error("Missing colon after key in object"); return TAPE_ERROR; }
|
|
{
|
|
auto value = advance();
|
|
switch (*value) {
|
|
case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin;
|
|
case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin;
|
|
default: SIMDJSON_TRY( visitor.visit_primitive(*this, value) ); break;
|
|
}
|
|
}
|
|
|
|
object_continue:
|
|
switch (*advance()) {
|
|
case ',':
|
|
SIMDJSON_TRY( visitor.increment_count(*this) );
|
|
{
|
|
auto key = advance();
|
|
if (simdjson_unlikely( *key != '"' )) { log_error("Key string missing at beginning of field in object"); return TAPE_ERROR; }
|
|
SIMDJSON_TRY( visitor.visit_key(*this, key) );
|
|
}
|
|
goto object_field;
|
|
case '}': log_end_value("object"); SIMDJSON_TRY( visitor.visit_object_end(*this) ); goto scope_end;
|
|
default: log_error("No comma between object fields"); return TAPE_ERROR;
|
|
}
|
|
|
|
scope_end:
|
|
depth--;
|
|
if (depth == 0) { goto document_end; }
|
|
if (dom_parser.is_array[depth]) { goto array_continue; }
|
|
goto object_continue;
|
|
|
|
//
|
|
// Array parser states
|
|
//
|
|
array_begin:
|
|
log_start_value("array");
|
|
depth++;
|
|
if (depth >= dom_parser.max_depth()) { log_error("Exceeded max depth!"); return DEPTH_ERROR; }
|
|
dom_parser.is_array[depth] = true;
|
|
SIMDJSON_TRY( visitor.visit_array_start(*this) );
|
|
SIMDJSON_TRY( visitor.increment_count(*this) );
|
|
|
|
array_value:
|
|
{
|
|
auto value = advance();
|
|
switch (*value) {
|
|
case '{': if (*peek() == '}') { advance(); log_value("empty object"); SIMDJSON_TRY( visitor.visit_empty_object(*this) ); break; } goto object_begin;
|
|
case '[': if (*peek() == ']') { advance(); log_value("empty array"); SIMDJSON_TRY( visitor.visit_empty_array(*this) ); break; } goto array_begin;
|
|
default: SIMDJSON_TRY( visitor.visit_primitive(*this, value) ); break;
|
|
}
|
|
}
|
|
|
|
array_continue:
|
|
switch (*advance()) {
|
|
case ',': SIMDJSON_TRY( visitor.increment_count(*this) ); goto array_value;
|
|
case ']': log_end_value("array"); SIMDJSON_TRY( visitor.visit_array_end(*this) ); goto scope_end;
|
|
default: log_error("Missing comma between array values"); return TAPE_ERROR;
|
|
}
|
|
|
|
document_end:
|
|
log_end_value("document");
|
|
SIMDJSON_TRY( visitor.visit_document_end(*this) );
|
|
|
|
dom_parser.next_structural_index = uint32_t(next_structural - &dom_parser.structural_indexes[0]);
|
|
|
|
// If we didn't make it to the end, it's an error
|
|
if ( !STREAMING && dom_parser.next_structural_index != dom_parser.n_structural_indexes ) {
|
|
log_error("More than one JSON value at the root of the document, or extra characters at the end of the JSON!");
|
|
return TAPE_ERROR;
|
|
}
|
|
|
|
return SUCCESS;
|
|
|
|
} // walk_document()
|
|
|
|
simdjson_really_inline json_iterator::json_iterator(dom_parser_implementation &_dom_parser, size_t start_structural_index)
|
|
: buf{_dom_parser.buf},
|
|
next_structural{&_dom_parser.structural_indexes[start_structural_index]},
|
|
dom_parser{_dom_parser} {
|
|
}
|
|
|
|
simdjson_really_inline const uint8_t *json_iterator::peek() const noexcept {
|
|
return &buf[*(next_structural)];
|
|
}
|
|
simdjson_really_inline const uint8_t *json_iterator::advance() noexcept {
|
|
return &buf[*(next_structural++)];
|
|
}
|
|
simdjson_really_inline size_t json_iterator::remaining_len() const noexcept {
|
|
return dom_parser.len - *(next_structural-1);
|
|
}
|
|
|
|
simdjson_really_inline bool json_iterator::at_eof() const noexcept {
|
|
return next_structural == &dom_parser.structural_indexes[dom_parser.n_structural_indexes];
|
|
}
|
|
simdjson_really_inline bool json_iterator::at_beginning() const noexcept {
|
|
return next_structural == dom_parser.structural_indexes.get();
|
|
}
|
|
simdjson_really_inline uint8_t json_iterator::last_structural() const noexcept {
|
|
return buf[dom_parser.structural_indexes[dom_parser.n_structural_indexes - 1]];
|
|
}
|
|
|
|
simdjson_really_inline void json_iterator::log_value(const char *type) const noexcept {
|
|
logger::log_line(*this, "", type, "");
|
|
}
|
|
|
|
simdjson_really_inline void json_iterator::log_start_value(const char *type) const noexcept {
|
|
logger::log_line(*this, "+", type, "");
|
|
if (logger::LOG_ENABLED) { logger::log_depth++; }
|
|
}
|
|
|
|
simdjson_really_inline void json_iterator::log_end_value(const char *type) const noexcept {
|
|
if (logger::LOG_ENABLED) { logger::log_depth--; }
|
|
logger::log_line(*this, "-", type, "");
|
|
}
|
|
|
|
simdjson_really_inline void json_iterator::log_error(const char *error) const noexcept {
|
|
logger::log_line(*this, "", "ERROR", error);
|
|
}
|
|
|
|
template<typename V>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code json_iterator::visit_root_primitive(V &visitor, const uint8_t *value) noexcept {
|
|
switch (*value) {
|
|
case '"': return visitor.visit_root_string(*this, value);
|
|
case 't': return visitor.visit_root_true_atom(*this, value);
|
|
case 'f': return visitor.visit_root_false_atom(*this, value);
|
|
case 'n': return visitor.visit_root_null_atom(*this, value);
|
|
case '-':
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
return visitor.visit_root_number(*this, value);
|
|
default:
|
|
log_error("Document starts with a non-value character");
|
|
return TAPE_ERROR;
|
|
}
|
|
}
|
|
template<typename V>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code json_iterator::visit_primitive(V &visitor, const uint8_t *value) noexcept {
|
|
switch (*value) {
|
|
case '"': return visitor.visit_string(*this, value);
|
|
case 't': return visitor.visit_true_atom(*this, value);
|
|
case 'f': return visitor.visit_false_atom(*this, value);
|
|
case 'n': return visitor.visit_null_atom(*this, value);
|
|
case '-':
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
return visitor.visit_number(*this, value);
|
|
default:
|
|
log_error("Non-value found when value was expected!");
|
|
return TAPE_ERROR;
|
|
}
|
|
}
|
|
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/logger.h */
|
|
/* begin file src/generic/stage2/tape_writer.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
|
|
struct tape_writer {
|
|
/** The next place to write to tape */
|
|
uint64_t *next_tape_loc;
|
|
|
|
/** Write a signed 64-bit value to tape. */
|
|
simdjson_really_inline void append_s64(int64_t value) noexcept;
|
|
|
|
/** Write an unsigned 64-bit value to tape. */
|
|
simdjson_really_inline void append_u64(uint64_t value) noexcept;
|
|
|
|
/** Write a double value to tape. */
|
|
simdjson_really_inline void append_double(double value) noexcept;
|
|
|
|
/**
|
|
* Append a tape entry (an 8-bit type,and 56 bits worth of value).
|
|
*/
|
|
simdjson_really_inline void append(uint64_t val, internal::tape_type t) noexcept;
|
|
|
|
/**
|
|
* Skip the current tape entry without writing.
|
|
*
|
|
* Used to skip the start of the container, since we'll come back later to fill it in when the
|
|
* container ends.
|
|
*/
|
|
simdjson_really_inline void skip() noexcept;
|
|
|
|
/**
|
|
* Skip the number of tape entries necessary to write a large u64 or i64.
|
|
*/
|
|
simdjson_really_inline void skip_large_integer() noexcept;
|
|
|
|
/**
|
|
* Skip the number of tape entries necessary to write a double.
|
|
*/
|
|
simdjson_really_inline void skip_double() noexcept;
|
|
|
|
/**
|
|
* Write a value to a known location on tape.
|
|
*
|
|
* Used to go back and write out the start of a container after the container ends.
|
|
*/
|
|
simdjson_really_inline static void write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept;
|
|
|
|
private:
|
|
/**
|
|
* Append both the tape entry, and a supplementary value following it. Used for types that need
|
|
* all 64 bits, such as double and uint64_t.
|
|
*/
|
|
template<typename T>
|
|
simdjson_really_inline void append2(uint64_t val, T val2, internal::tape_type t) noexcept;
|
|
}; // struct number_writer
|
|
|
|
simdjson_really_inline void tape_writer::append_s64(int64_t value) noexcept {
|
|
append2(0, value, internal::tape_type::INT64);
|
|
}
|
|
|
|
simdjson_really_inline void tape_writer::append_u64(uint64_t value) noexcept {
|
|
append(0, internal::tape_type::UINT64);
|
|
*next_tape_loc = value;
|
|
next_tape_loc++;
|
|
}
|
|
|
|
/** Write a double value to tape. */
|
|
simdjson_really_inline void tape_writer::append_double(double value) noexcept {
|
|
append2(0, value, internal::tape_type::DOUBLE);
|
|
}
|
|
|
|
simdjson_really_inline void tape_writer::skip() noexcept {
|
|
next_tape_loc++;
|
|
}
|
|
|
|
simdjson_really_inline void tape_writer::skip_large_integer() noexcept {
|
|
next_tape_loc += 2;
|
|
}
|
|
|
|
simdjson_really_inline void tape_writer::skip_double() noexcept {
|
|
next_tape_loc += 2;
|
|
}
|
|
|
|
simdjson_really_inline void tape_writer::append(uint64_t val, internal::tape_type t) noexcept {
|
|
*next_tape_loc = val | ((uint64_t(char(t))) << 56);
|
|
next_tape_loc++;
|
|
}
|
|
|
|
template<typename T>
|
|
simdjson_really_inline void tape_writer::append2(uint64_t val, T val2, internal::tape_type t) noexcept {
|
|
append(val, t);
|
|
static_assert(sizeof(val2) == sizeof(*next_tape_loc), "Type is not 64 bits!");
|
|
memcpy(next_tape_loc, &val2, sizeof(val2));
|
|
next_tape_loc++;
|
|
}
|
|
|
|
simdjson_really_inline void tape_writer::write(uint64_t &tape_loc, uint64_t val, internal::tape_type t) noexcept {
|
|
tape_loc = val | ((uint64_t(char(t))) << 56);
|
|
}
|
|
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/tape_writer.h */
|
|
/* begin file src/generic/stage2/atomparsing.h */
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
namespace atomparsing {
|
|
|
|
// The string_to_uint32 is exclusively used to map literal strings to 32-bit values.
|
|
// We use memcpy instead of a pointer cast to avoid undefined behaviors since we cannot
|
|
// be certain that the character pointer will be properly aligned.
|
|
// You might think that using memcpy makes this function expensive, but you'd be wrong.
|
|
// All decent optimizing compilers (GCC, clang, Visual Studio) will compile string_to_uint32("false");
|
|
// to the compile-time constant 1936482662.
|
|
simdjson_really_inline uint32_t string_to_uint32(const char* str) { uint32_t val; std::memcpy(&val, str, sizeof(uint32_t)); return val; }
|
|
|
|
|
|
// Again in str4ncmp we use a memcpy to avoid undefined behavior. The memcpy may appear expensive.
|
|
// Yet all decent optimizing compilers will compile memcpy to a single instruction, just about.
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline uint32_t str4ncmp(const uint8_t *src, const char* atom) {
|
|
uint32_t srcval; // we want to avoid unaligned 32-bit loads (undefined in C/C++)
|
|
static_assert(sizeof(uint32_t) <= SIMDJSON_PADDING, "SIMDJSON_PADDING must be larger than 4 bytes");
|
|
std::memcpy(&srcval, src, sizeof(uint32_t));
|
|
return srcval ^ string_to_uint32(atom);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool is_valid_true_atom(const uint8_t *src) {
|
|
return (str4ncmp(src, "true") | is_not_structural_or_whitespace(src[4])) == 0;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool is_valid_true_atom(const uint8_t *src, size_t len) {
|
|
if (len > 4) { return is_valid_true_atom(src); }
|
|
else if (len == 4) { return !str4ncmp(src, "true"); }
|
|
else { return false; }
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool is_valid_false_atom(const uint8_t *src) {
|
|
return (str4ncmp(src+1, "alse") | is_not_structural_or_whitespace(src[5])) == 0;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool is_valid_false_atom(const uint8_t *src, size_t len) {
|
|
if (len > 5) { return is_valid_false_atom(src); }
|
|
else if (len == 5) { return !str4ncmp(src+1, "alse"); }
|
|
else { return false; }
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool is_valid_null_atom(const uint8_t *src) {
|
|
return (str4ncmp(src, "null") | is_not_structural_or_whitespace(src[4])) == 0;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED
|
|
simdjson_really_inline bool is_valid_null_atom(const uint8_t *src, size_t len) {
|
|
if (len > 4) { return is_valid_null_atom(src); }
|
|
else if (len == 4) { return !str4ncmp(src, "null"); }
|
|
else { return false; }
|
|
}
|
|
|
|
} // namespace atomparsing
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/atomparsing.h */
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage2 {
|
|
|
|
struct tape_builder {
|
|
template<bool STREAMING>
|
|
SIMDJSON_WARN_UNUSED static simdjson_really_inline error_code parse_document(
|
|
dom_parser_implementation &dom_parser,
|
|
dom::document &doc) noexcept;
|
|
|
|
/** Called when a non-empty document starts. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_document_start(json_iterator &iter) noexcept;
|
|
/** Called when a non-empty document ends without error. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_document_end(json_iterator &iter) noexcept;
|
|
|
|
/** Called when a non-empty array starts. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_array_start(json_iterator &iter) noexcept;
|
|
/** Called when a non-empty array ends. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_array_end(json_iterator &iter) noexcept;
|
|
/** Called when an empty array is found. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_empty_array(json_iterator &iter) noexcept;
|
|
|
|
/** Called when a non-empty object starts. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_object_start(json_iterator &iter) noexcept;
|
|
/**
|
|
* Called when a key in a field is encountered.
|
|
*
|
|
* primitive, visit_object_start, visit_empty_object, visit_array_start, or visit_empty_array
|
|
* will be called after this with the field value.
|
|
*/
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_key(json_iterator &iter, const uint8_t *key) noexcept;
|
|
/** Called when a non-empty object ends. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_object_end(json_iterator &iter) noexcept;
|
|
/** Called when an empty object is found. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_empty_object(json_iterator &iter) noexcept;
|
|
|
|
/**
|
|
* Called when a string, number, boolean or null is found.
|
|
*/
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_primitive(json_iterator &iter, const uint8_t *value) noexcept;
|
|
/**
|
|
* Called when a string, number, boolean or null is found at the top level of a document (i.e.
|
|
* when there is no array or object and the entire document is a single string, number, boolean or
|
|
* null.
|
|
*
|
|
* This is separate from primitive() because simdjson's normal primitive parsing routines assume
|
|
* there is at least one more token after the value, which is only true in an array or object.
|
|
*/
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_primitive(json_iterator &iter, const uint8_t *value) noexcept;
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_string(json_iterator &iter, const uint8_t *value, bool key = false) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_number(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_true_atom(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_false_atom(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_null_atom(json_iterator &iter, const uint8_t *value) noexcept;
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_string(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_number(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_true_atom(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_false_atom(json_iterator &iter, const uint8_t *value) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code visit_root_null_atom(json_iterator &iter, const uint8_t *value) noexcept;
|
|
|
|
/** Called each time a new field or element in an array or object is found. */
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code increment_count(json_iterator &iter) noexcept;
|
|
|
|
/** Next location to write to tape */
|
|
tape_writer tape;
|
|
private:
|
|
/** Next write location in the string buf for stage 2 parsing */
|
|
uint8_t *current_string_buf_loc;
|
|
|
|
simdjson_really_inline tape_builder(dom::document &doc) noexcept;
|
|
|
|
simdjson_really_inline uint32_t next_tape_index(json_iterator &iter) const noexcept;
|
|
simdjson_really_inline void start_container(json_iterator &iter) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code end_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept;
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code empty_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept;
|
|
simdjson_really_inline uint8_t *on_start_string(json_iterator &iter) noexcept;
|
|
simdjson_really_inline void on_end_string(uint8_t *dst) noexcept;
|
|
}; // class tape_builder
|
|
|
|
template<bool STREAMING>
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::parse_document(
|
|
dom_parser_implementation &dom_parser,
|
|
dom::document &doc) noexcept {
|
|
dom_parser.doc = &doc;
|
|
json_iterator iter(dom_parser, STREAMING ? dom_parser.next_structural_index : 0);
|
|
tape_builder builder(doc);
|
|
return iter.walk_document<STREAMING>(builder);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_root_primitive(json_iterator &iter, const uint8_t *value) noexcept {
|
|
return iter.visit_root_primitive(*this, value);
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_primitive(json_iterator &iter, const uint8_t *value) noexcept {
|
|
return iter.visit_primitive(*this, value);
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_empty_object(json_iterator &iter) noexcept {
|
|
return empty_container(iter, internal::tape_type::START_OBJECT, internal::tape_type::END_OBJECT);
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_empty_array(json_iterator &iter) noexcept {
|
|
return empty_container(iter, internal::tape_type::START_ARRAY, internal::tape_type::END_ARRAY);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_document_start(json_iterator &iter) noexcept {
|
|
start_container(iter);
|
|
return SUCCESS;
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_object_start(json_iterator &iter) noexcept {
|
|
start_container(iter);
|
|
return SUCCESS;
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_array_start(json_iterator &iter) noexcept {
|
|
start_container(iter);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_object_end(json_iterator &iter) noexcept {
|
|
return end_container(iter, internal::tape_type::START_OBJECT, internal::tape_type::END_OBJECT);
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_array_end(json_iterator &iter) noexcept {
|
|
return end_container(iter, internal::tape_type::START_ARRAY, internal::tape_type::END_ARRAY);
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_document_end(json_iterator &iter) noexcept {
|
|
constexpr uint32_t start_tape_index = 0;
|
|
tape.append(start_tape_index, internal::tape_type::ROOT);
|
|
tape_writer::write(iter.dom_parser.doc->tape[start_tape_index], next_tape_index(iter), internal::tape_type::ROOT);
|
|
return SUCCESS;
|
|
}
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_key(json_iterator &iter, const uint8_t *key) noexcept {
|
|
return visit_string(iter, key, true);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::increment_count(json_iterator &iter) noexcept {
|
|
iter.dom_parser.open_containers[iter.depth].count++; // we have a key value pair in the object at parser.dom_parser.depth - 1
|
|
return SUCCESS;
|
|
}
|
|
|
|
simdjson_really_inline tape_builder::tape_builder(dom::document &doc) noexcept : tape{doc.tape.get()}, current_string_buf_loc{doc.string_buf.get()} {}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_string(json_iterator &iter, const uint8_t *value, bool key) noexcept {
|
|
iter.log_value(key ? "key" : "string");
|
|
uint8_t *dst = on_start_string(iter);
|
|
dst = stringparsing::parse_string(value, dst);
|
|
if (dst == nullptr) {
|
|
iter.log_error("Invalid escape in string");
|
|
return STRING_ERROR;
|
|
}
|
|
on_end_string(dst);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_root_string(json_iterator &iter, const uint8_t *value) noexcept {
|
|
return visit_string(iter, value);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_number(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("number");
|
|
return numberparsing::parse_number(value, tape);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_root_number(json_iterator &iter, const uint8_t *value) noexcept {
|
|
//
|
|
// We need to make a copy to make sure that the string is space terminated.
|
|
// This is not about padding the input, which should already padded up
|
|
// to len + SIMDJSON_PADDING. However, we have no control at this stage
|
|
// on how the padding was done. What if the input string was padded with nulls?
|
|
// It is quite common for an input string to have an extra null character (C string).
|
|
// We do not want to allow 9\0 (where \0 is the null character) inside a JSON
|
|
// document, but the string "9\0" by itself is fine. So we make a copy and
|
|
// pad the input with spaces when we know that there is just one input element.
|
|
// This copy is relatively expensive, but it will almost never be called in
|
|
// practice unless you are in the strange scenario where you have many JSON
|
|
// documents made of single atoms.
|
|
//
|
|
uint8_t *copy = static_cast<uint8_t *>(malloc(iter.remaining_len() + SIMDJSON_PADDING));
|
|
if (copy == nullptr) { return MEMALLOC; }
|
|
memcpy(copy, value, iter.remaining_len());
|
|
memset(copy + iter.remaining_len(), ' ', SIMDJSON_PADDING);
|
|
error_code error = visit_number(iter, copy);
|
|
free(copy);
|
|
return error;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_true_atom(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("true");
|
|
if (!atomparsing::is_valid_true_atom(value)) { return T_ATOM_ERROR; }
|
|
tape.append(0, internal::tape_type::TRUE_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_root_true_atom(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("true");
|
|
if (!atomparsing::is_valid_true_atom(value, iter.remaining_len())) { return T_ATOM_ERROR; }
|
|
tape.append(0, internal::tape_type::TRUE_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_false_atom(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("false");
|
|
if (!atomparsing::is_valid_false_atom(value)) { return F_ATOM_ERROR; }
|
|
tape.append(0, internal::tape_type::FALSE_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_root_false_atom(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("false");
|
|
if (!atomparsing::is_valid_false_atom(value, iter.remaining_len())) { return F_ATOM_ERROR; }
|
|
tape.append(0, internal::tape_type::FALSE_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_null_atom(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("null");
|
|
if (!atomparsing::is_valid_null_atom(value)) { return N_ATOM_ERROR; }
|
|
tape.append(0, internal::tape_type::NULL_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::visit_root_null_atom(json_iterator &iter, const uint8_t *value) noexcept {
|
|
iter.log_value("null");
|
|
if (!atomparsing::is_valid_null_atom(value, iter.remaining_len())) { return N_ATOM_ERROR; }
|
|
tape.append(0, internal::tape_type::NULL_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
// private:
|
|
|
|
simdjson_really_inline uint32_t tape_builder::next_tape_index(json_iterator &iter) const noexcept {
|
|
return uint32_t(tape.next_tape_loc - iter.dom_parser.doc->tape.get());
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::empty_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept {
|
|
auto start_index = next_tape_index(iter);
|
|
tape.append(start_index+2, start);
|
|
tape.append(start_index, end);
|
|
return SUCCESS;
|
|
}
|
|
|
|
simdjson_really_inline void tape_builder::start_container(json_iterator &iter) noexcept {
|
|
iter.dom_parser.open_containers[iter.depth].tape_index = next_tape_index(iter);
|
|
iter.dom_parser.open_containers[iter.depth].count = 0;
|
|
tape.skip(); // We don't actually *write* the start element until the end.
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED simdjson_really_inline error_code tape_builder::end_container(json_iterator &iter, internal::tape_type start, internal::tape_type end) noexcept {
|
|
// Write the ending tape element, pointing at the start location
|
|
const uint32_t start_tape_index = iter.dom_parser.open_containers[iter.depth].tape_index;
|
|
tape.append(start_tape_index, end);
|
|
// Write the start tape element, pointing at the end location (and including count)
|
|
// count can overflow if it exceeds 24 bits... so we saturate
|
|
// the convention being that a cnt of 0xffffff or more is undetermined in value (>= 0xffffff).
|
|
const uint32_t count = iter.dom_parser.open_containers[iter.depth].count;
|
|
const uint32_t cntsat = count > 0xFFFFFF ? 0xFFFFFF : count;
|
|
tape_writer::write(iter.dom_parser.doc->tape[start_tape_index], next_tape_index(iter) | (uint64_t(cntsat) << 32), start);
|
|
return SUCCESS;
|
|
}
|
|
|
|
simdjson_really_inline uint8_t *tape_builder::on_start_string(json_iterator &iter) noexcept {
|
|
// we advance the point, accounting for the fact that we have a NULL termination
|
|
tape.append(current_string_buf_loc - iter.dom_parser.doc->string_buf.get(), internal::tape_type::STRING);
|
|
return current_string_buf_loc + sizeof(uint32_t);
|
|
}
|
|
|
|
simdjson_really_inline void tape_builder::on_end_string(uint8_t *dst) noexcept {
|
|
uint32_t str_length = uint32_t(dst - (current_string_buf_loc + sizeof(uint32_t)));
|
|
// TODO check for overflow in case someone has a crazy string (>=4GB?)
|
|
// But only add the overflow check when the document itself exceeds 4GB
|
|
// Currently unneeded because we refuse to parse docs larger or equal to 4GB.
|
|
memcpy(current_string_buf_loc, &str_length, sizeof(uint32_t));
|
|
// NULL termination is still handy if you expect all your strings to
|
|
// be NULL terminated? It comes at a small cost
|
|
*dst = 0;
|
|
current_string_buf_loc = dst + 1;
|
|
}
|
|
|
|
} // namespace stage2
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
/* end file src/generic/stage2/atomparsing.h */
|
|
|
|
//
|
|
// Implementation-specific overrides
|
|
//
|
|
|
|
namespace {
|
|
namespace SIMDJSON_IMPLEMENTATION {
|
|
namespace stage1 {
|
|
|
|
simdjson_really_inline uint64_t json_string_scanner::find_escaped(uint64_t backslash) {
|
|
if (!backslash) { uint64_t escaped = prev_escaped; prev_escaped = 0; return escaped; }
|
|
return find_escaped_branchless(backslash);
|
|
}
|
|
|
|
} // namespace stage1
|
|
|
|
SIMDJSON_WARN_UNUSED error_code implementation::minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept {
|
|
return westmere::stage1::json_minifier::minify<64>(buf, len, dst, dst_len);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED error_code dom_parser_implementation::stage1(const uint8_t *_buf, size_t _len, bool streaming) noexcept {
|
|
this->buf = _buf;
|
|
this->len = _len;
|
|
return westmere::stage1::json_structural_indexer::index<64>(_buf, _len, *this, streaming);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED bool implementation::validate_utf8(const char *buf, size_t len) const noexcept {
|
|
return westmere::stage1::generic_validate_utf8(buf,len);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED error_code dom_parser_implementation::stage2(dom::document &_doc) noexcept {
|
|
return stage2::tape_builder::parse_document<false>(*this, _doc);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED error_code dom_parser_implementation::stage2_next(dom::document &_doc) noexcept {
|
|
return stage2::tape_builder::parse_document<true>(*this, _doc);
|
|
}
|
|
|
|
SIMDJSON_WARN_UNUSED error_code dom_parser_implementation::parse(const uint8_t *_buf, size_t _len, dom::document &_doc) noexcept {
|
|
auto error = stage1(_buf, _len, false);
|
|
if (error) { return error; }
|
|
return stage2(_doc);
|
|
}
|
|
|
|
} // namespace SIMDJSON_IMPLEMENTATION
|
|
} // unnamed namespace
|
|
|
|
/* begin file src/westmere/end_implementation.h */
|
|
#undef SIMDJSON_IMPLEMENTATION
|
|
SIMDJSON_UNTARGET_REGION
|
|
/* end file src/westmere/end_implementation.h */
|
|
/* end file src/westmere/end_implementation.h */
|
|
#endif
|
|
|
|
SIMDJSON_POP_DISABLE_WARNINGS
|
|
/* end file src/westmere/end_implementation.h */
|