simdjson/singleheader/simdjson.cpp

1898 lines
65 KiB
C++

/* auto-generated on Wed 13 Mar 2019 21:02:37 EDT. Do not edit! */
#include "simdjson.h"
/* used for http://dmalloc.com/ Dmalloc - Debug Malloc Library */
#ifdef DMALLOC
#include "dmalloc.h"
#endif
/* begin file src/jsonioutil.cpp */
#include <cstring>
#include <cstdlib>
char * allocate_padded_buffer(size_t length) {
// we could do a simple malloc
//return (char *) malloc(length + SIMDJSON_PADDING);
// However, we might as well align to cache lines...
size_t totalpaddedlength = length + SIMDJSON_PADDING;
char *padded_buffer = (char *) aligned_malloc(64, totalpaddedlength);
return padded_buffer;
}
std::string_view get_corpus(const std::string& filename) {
std::FILE *fp = std::fopen(filename.c_str(), "rb");
if (fp != nullptr) {
std::fseek(fp, 0, SEEK_END);
size_t len = std::ftell(fp);
char * buf = allocate_padded_buffer(len);
if(buf == nullptr) {
std::fclose(fp);
throw std::runtime_error("could not allocate memory");
}
std::rewind(fp);
size_t readb = std::fread(buf, 1, len, fp);
std::fclose(fp);
if(readb != len) {
aligned_free(buf);
throw std::runtime_error("could not read the data");
}
return std::string_view(buf,len);
}
throw std::runtime_error("could not load corpus");
}
/* end file src/jsonioutil.cpp */
/* begin file src/jsonminifier.cpp */
#include <cstdint>
#ifndef __AVX2__
static uint8_t jump_table[256 * 3] = {
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1,
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0,
1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
};
size_t jsonminify(const unsigned char *bytes, size_t howmany,
unsigned char *out) {
size_t i = 0, pos = 0;
uint8_t quote = 0;
uint8_t nonescape = 1;
while (i < howmany) {
unsigned char c = bytes[i];
uint8_t *meta = jump_table + 3 * c;
quote = quote ^ (meta[0] & nonescape);
out[pos] = c;
pos += meta[2] | quote;
i += 1;
nonescape = (~nonescape) | (meta[1]);
}
return pos;
}
#else
#include <cstring>
// a straightforward comparison of a mask against input.
static uint64_t cmp_mask_against_input_mini(__m256i input_lo, __m256i input_hi,
__m256i mask) {
__m256i cmp_res_0 = _mm256_cmpeq_epi8(input_lo, mask);
uint64_t res_0 = static_cast<uint32_t>(_mm256_movemask_epi8(cmp_res_0));
__m256i cmp_res_1 = _mm256_cmpeq_epi8(input_hi, mask);
uint64_t res_1 = _mm256_movemask_epi8(cmp_res_1);
return res_0 | (res_1 << 32);
}
// take input from buf and remove useless whitespace, input and output can be
// the same, result is null terminated, return the string length (minus the null termination)
size_t jsonminify(const uint8_t *buf, size_t len, uint8_t *out) {
// Useful constant masks
const uint64_t even_bits = 0x5555555555555555ULL;
const uint64_t odd_bits = ~even_bits;
uint8_t *initout(out);
uint64_t prev_iter_ends_odd_backslash =
0ULL; // either 0 or 1, but a 64-bit value
uint64_t prev_iter_inside_quote = 0ULL; // either all zeros or all ones
size_t idx = 0;
if (len >= 64) {
size_t avxlen = len - 63;
for (; idx < avxlen; idx += 64) {
__m256i input_lo = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(buf + idx + 0));
__m256i input_hi = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(buf + idx + 32));
uint64_t bs_bits = cmp_mask_against_input_mini(input_lo, input_hi,
_mm256_set1_epi8('\\'));
uint64_t start_edges = bs_bits & ~(bs_bits << 1);
uint64_t even_start_mask = even_bits ^ prev_iter_ends_odd_backslash;
uint64_t even_starts = start_edges & even_start_mask;
uint64_t odd_starts = start_edges & ~even_start_mask;
uint64_t even_carries = bs_bits + even_starts;
uint64_t odd_carries;
bool iter_ends_odd_backslash = add_overflow(
bs_bits, odd_starts, &odd_carries);
odd_carries |= prev_iter_ends_odd_backslash;
prev_iter_ends_odd_backslash = iter_ends_odd_backslash ? 0x1ULL : 0x0ULL;
uint64_t even_carry_ends = even_carries & ~bs_bits;
uint64_t odd_carry_ends = odd_carries & ~bs_bits;
uint64_t even_start_odd_end = even_carry_ends & odd_bits;
uint64_t odd_start_even_end = odd_carry_ends & even_bits;
uint64_t odd_ends = even_start_odd_end | odd_start_even_end;
uint64_t quote_bits = cmp_mask_against_input_mini(input_lo, input_hi,
_mm256_set1_epi8('"'));
quote_bits = quote_bits & ~odd_ends;
uint64_t quote_mask = _mm_cvtsi128_si64(_mm_clmulepi64_si128(
_mm_set_epi64x(0ULL, quote_bits), _mm_set1_epi8(0xFF), 0));
quote_mask ^= prev_iter_inside_quote;
prev_iter_inside_quote = static_cast<uint64_t>(static_cast<int64_t>(quote_mask) >> 63);// might be undefined behavior, should be fully defined in C++20, ok according to John Regher from Utah University
const __m256i low_nibble_mask = _mm256_setr_epi8(
// 0 9 a b c d
16, 0, 0, 0, 0, 0, 0, 0, 0, 8, 12, 1, 2, 9, 0, 0, 16, 0, 0, 0, 0, 0,
0, 0, 0, 8, 12, 1, 2, 9, 0, 0);
const __m256i high_nibble_mask = _mm256_setr_epi8(
// 0 2 3 5 7
8, 0, 18, 4, 0, 1, 0, 1, 0, 0, 0, 3, 2, 1, 0, 0, 8, 0, 18, 4, 0, 1, 0,
1, 0, 0, 0, 3, 2, 1, 0, 0);
__m256i whitespace_shufti_mask = _mm256_set1_epi8(0x18);
__m256i v_lo = _mm256_and_si256(
_mm256_shuffle_epi8(low_nibble_mask, input_lo),
_mm256_shuffle_epi8(high_nibble_mask,
_mm256_and_si256(_mm256_srli_epi32(input_lo, 4),
_mm256_set1_epi8(0x7f))));
__m256i v_hi = _mm256_and_si256(
_mm256_shuffle_epi8(low_nibble_mask, input_hi),
_mm256_shuffle_epi8(high_nibble_mask,
_mm256_and_si256(_mm256_srli_epi32(input_hi, 4),
_mm256_set1_epi8(0x7f))));
__m256i tmp_ws_lo = _mm256_cmpeq_epi8(
_mm256_and_si256(v_lo, whitespace_shufti_mask), _mm256_set1_epi8(0));
__m256i tmp_ws_hi = _mm256_cmpeq_epi8(
_mm256_and_si256(v_hi, whitespace_shufti_mask), _mm256_set1_epi8(0));
uint64_t ws_res_0 = static_cast<uint32_t>(_mm256_movemask_epi8(tmp_ws_lo));
uint64_t ws_res_1 = _mm256_movemask_epi8(tmp_ws_hi);
uint64_t whitespace = ~(ws_res_0 | (ws_res_1 << 32));
whitespace &= ~quote_mask;
int mask1 = whitespace & 0xFFFF;
int mask2 = (whitespace >> 16) & 0xFFFF;
int mask3 = (whitespace >> 32) & 0xFFFF;
int mask4 = (whitespace >> 48) & 0xFFFF;
int pop1 = hamming((~whitespace) & 0xFFFF);
int pop2 = hamming((~whitespace) & UINT64_C(0xFFFFFFFF));
int pop3 = hamming((~whitespace) & UINT64_C(0xFFFFFFFFFFFF));
int pop4 = hamming((~whitespace));
__m256i vmask1 =
_mm256_loadu2_m128i(reinterpret_cast<const __m128i *>(mask128_epi8) + (mask2 & 0x7FFF),
reinterpret_cast<const __m128i *>(mask128_epi8) + (mask1 & 0x7FFF));
__m256i vmask2 =
_mm256_loadu2_m128i(reinterpret_cast<const __m128i *>(mask128_epi8) + (mask4 & 0x7FFF),
reinterpret_cast<const __m128i *>(mask128_epi8) + (mask3 & 0x7FFF));
__m256i result1 = _mm256_shuffle_epi8(input_lo, vmask1);
__m256i result2 = _mm256_shuffle_epi8(input_hi, vmask2);
_mm256_storeu2_m128i(reinterpret_cast<__m128i *>(out + pop1), reinterpret_cast<__m128i *>(out), result1);
_mm256_storeu2_m128i(reinterpret_cast<__m128i *>(out + pop3), reinterpret_cast<__m128i *>(out + pop2),
result2);
out += pop4;
}
}
// we finish off the job... copying and pasting the code is not ideal here,
// but it gets the job done.
if (idx < len) {
uint8_t buffer[64];
memset(buffer, 0, 64);
memcpy(buffer, buf + idx, len - idx);
__m256i input_lo = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(buffer));
__m256i input_hi = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(buffer + 32));
uint64_t bs_bits =
cmp_mask_against_input_mini(input_lo, input_hi, _mm256_set1_epi8('\\'));
uint64_t start_edges = bs_bits & ~(bs_bits << 1);
uint64_t even_start_mask = even_bits ^ prev_iter_ends_odd_backslash;
uint64_t even_starts = start_edges & even_start_mask;
uint64_t odd_starts = start_edges & ~even_start_mask;
uint64_t even_carries = bs_bits + even_starts;
uint64_t odd_carries;
//bool iter_ends_odd_backslash =
add_overflow( bs_bits, odd_starts, &odd_carries);
odd_carries |= prev_iter_ends_odd_backslash;
//prev_iter_ends_odd_backslash = iter_ends_odd_backslash ? 0x1ULL : 0x0ULL; // we never use it
uint64_t even_carry_ends = even_carries & ~bs_bits;
uint64_t odd_carry_ends = odd_carries & ~bs_bits;
uint64_t even_start_odd_end = even_carry_ends & odd_bits;
uint64_t odd_start_even_end = odd_carry_ends & even_bits;
uint64_t odd_ends = even_start_odd_end | odd_start_even_end;
uint64_t quote_bits =
cmp_mask_against_input_mini(input_lo, input_hi, _mm256_set1_epi8('"'));
quote_bits = quote_bits & ~odd_ends;
uint64_t quote_mask = _mm_cvtsi128_si64(_mm_clmulepi64_si128(
_mm_set_epi64x(0ULL, quote_bits), _mm_set1_epi8(0xFF), 0));
quote_mask ^= prev_iter_inside_quote;
// prev_iter_inside_quote = (uint64_t)((int64_t)quote_mask >> 63);// we don't need this anymore
__m256i mask_20 = _mm256_set1_epi8(0x20); // c==32
__m256i mask_70 =
_mm256_set1_epi8(0x70); // adding 0x70 does not check low 4-bits
// but moves any value >= 16 above 128
__m256i lut_cntrl = _mm256_setr_epi8(
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00,
0x00, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0xFF, 0xFF, 0x00, 0x00, 0xFF, 0x00, 0x00);
__m256i tmp_ws_lo = _mm256_or_si256(
_mm256_cmpeq_epi8(mask_20, input_lo),
_mm256_shuffle_epi8(lut_cntrl, _mm256_adds_epu8(mask_70, input_lo)));
__m256i tmp_ws_hi = _mm256_or_si256(
_mm256_cmpeq_epi8(mask_20, input_hi),
_mm256_shuffle_epi8(lut_cntrl, _mm256_adds_epu8(mask_70, input_hi)));
uint64_t ws_res_0 = static_cast<uint32_t>(_mm256_movemask_epi8(tmp_ws_lo));
uint64_t ws_res_1 = _mm256_movemask_epi8(tmp_ws_hi);
uint64_t whitespace = (ws_res_0 | (ws_res_1 << 32));
whitespace &= ~quote_mask;
if (len - idx < 64) {
whitespace |= UINT64_C(0xFFFFFFFFFFFFFFFF) << (len - idx);
}
int mask1 = whitespace & 0xFFFF;
int mask2 = (whitespace >> 16) & 0xFFFF;
int mask3 = (whitespace >> 32) & 0xFFFF;
int mask4 = (whitespace >> 48) & 0xFFFF;
int pop1 = hamming((~whitespace) & 0xFFFF);
int pop2 = hamming((~whitespace) & UINT64_C(0xFFFFFFFF));
int pop3 = hamming((~whitespace) & UINT64_C(0xFFFFFFFFFFFF));
int pop4 = hamming((~whitespace));
__m256i vmask1 =
_mm256_loadu2_m128i(reinterpret_cast<const __m128i *>(mask128_epi8) + (mask2 & 0x7FFF),
reinterpret_cast<const __m128i *>(mask128_epi8) + (mask1 & 0x7FFF));
__m256i vmask2 =
_mm256_loadu2_m128i(reinterpret_cast<const __m128i *>(mask128_epi8) + (mask4 & 0x7FFF),
reinterpret_cast<const __m128i *>(mask128_epi8) + (mask3 & 0x7FFF));
__m256i result1 = _mm256_shuffle_epi8(input_lo, vmask1);
__m256i result2 = _mm256_shuffle_epi8(input_hi, vmask2);
_mm256_storeu2_m128i(reinterpret_cast<__m128i *>(buffer + pop1), reinterpret_cast<__m128i *>(buffer),
result1);
_mm256_storeu2_m128i(reinterpret_cast<__m128i *>(buffer + pop3), reinterpret_cast<__m128i *>(buffer + pop2),
result2);
memcpy(out, buffer, pop4);
out += pop4;
}
*out = '\0';// NULL termination
return out - initout;
}
#endif
/* end file src/jsonminifier.cpp */
/* begin file src/jsonparser.cpp */
#ifdef _MSC_VER
#include <windows.h>
#include <sysinfoapi.h>
#else
#include <unistd.h>
#endif
// parse a document found in buf, need to preallocate ParsedJson.
WARN_UNUSED
int json_parse(const uint8_t *buf, size_t len, ParsedJson &pj, bool reallocifneeded) {
if (pj.bytecapacity < len) {
return simdjson::CAPACITY;
}
bool reallocated = false;
if(reallocifneeded) {
// realloc is needed if the end of the memory crosses a page
#ifdef _MSC_VER
SYSTEM_INFO sysInfo;
GetSystemInfo(&sysInfo);
long pagesize = sysInfo.dwPageSize;
#else
long pagesize = sysconf (_SC_PAGESIZE);
#endif
if ( (reinterpret_cast<uintptr_t>(buf + len - 1) % pagesize ) < SIMDJSON_PADDING ) {
const uint8_t *tmpbuf = buf;
buf = (uint8_t *) allocate_padded_buffer(len);
if(buf == NULL) return simdjson::MEMALLOC;
memcpy((void*)buf,tmpbuf,len);
reallocated = true;
}
}
// find_structural_bits returns a boolean, not an int, we invert its result to keep consistent with res == 0 meaning success
int res = !find_structural_bits(buf, len, pj);
if (!res) {
res = unified_machine(buf, len, pj);
}
if(reallocated) { aligned_free((void*)buf);}
return res;
}
WARN_UNUSED
ParsedJson build_parsed_json(const uint8_t *buf, size_t len, bool reallocifneeded) {
ParsedJson pj;
bool ok = pj.allocateCapacity(len);
if(ok) {
int res = json_parse(buf, len, pj, reallocifneeded);
ok = res == simdjson::SUCCESS;
assert(ok == pj.isValid());
} else {
std::cerr << "failure during memory allocation " << std::endl;
}
return pj;
}
/* end file src/jsonparser.cpp */
/* begin file src/stage1_find_marks.cpp */
#include <cassert>
#ifndef SIMDJSON_SKIPUTF8VALIDATION
#define SIMDJSON_UTF8VALIDATE
#endif
// It seems that many parsers do UTF-8 validation.
// RapidJSON does not do it by default, but a flag
// allows it.
#ifdef SIMDJSON_UTF8VALIDATE
#endif
using namespace std;
really_inline void check_utf8(__m256i input_lo, __m256i input_hi,
__m256i &has_error,
struct avx_processed_utf_bytes &previous) {
__m256i highbit = _mm256_set1_epi8(0x80);
if ((_mm256_testz_si256(_mm256_or_si256(input_lo, input_hi), highbit)) == 1) {
// it is ascii, we just check continuation
has_error = _mm256_or_si256(
_mm256_cmpgt_epi8(
previous.carried_continuations,
_mm256_setr_epi8(9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1)),
has_error);
} else {
// it is not ascii so we have to do heavy work
previous = avxcheckUTF8Bytes(input_lo, &previous, &has_error);
previous = avxcheckUTF8Bytes(input_hi, &previous, &has_error);
}
}
// a straightforward comparison of a mask against input. 5 uops; would be
// cheaper in AVX512.
really_inline uint64_t cmp_mask_against_input(__m256i input_lo,
__m256i input_hi, __m256i mask) {
__m256i cmp_res_0 = _mm256_cmpeq_epi8(input_lo, mask);
uint64_t res_0 = static_cast<uint32_t>(_mm256_movemask_epi8(cmp_res_0));
__m256i cmp_res_1 = _mm256_cmpeq_epi8(input_hi, mask);
uint64_t res_1 = _mm256_movemask_epi8(cmp_res_1);
return res_0 | (res_1 << 32);
}
// find all values less than or equal than the content of maxval (using unsigned arithmetic)
really_inline uint64_t unsigned_lteq_against_input(__m256i input_lo,
__m256i input_hi, __m256i maxval) {
__m256i cmp_res_0 = _mm256_cmpeq_epi8(_mm256_max_epu8(maxval,input_lo),maxval);
uint64_t res_0 = static_cast<uint32_t>(_mm256_movemask_epi8(cmp_res_0));
__m256i cmp_res_1 = _mm256_cmpeq_epi8(_mm256_max_epu8(maxval,input_hi),maxval);
uint64_t res_1 = _mm256_movemask_epi8(cmp_res_1);
return res_0 | (res_1 << 32);
}
// return a bitvector indicating where we have characters that end an odd-length
// sequence of backslashes (and thus change the behavior of the next character
// to follow). A even-length sequence of backslashes, and, for that matter, the
// largest even-length prefix of our odd-length sequence of backslashes, simply
// modify the behavior of the backslashes themselves.
// We also update the prev_iter_ends_odd_backslash reference parameter to
// indicate whether we end an iteration on an odd-length sequence of
// backslashes, which modifies our subsequent search for odd-length
// sequences of backslashes in an obvious way.
really_inline uint64_t
find_odd_backslash_sequences(__m256i input_lo, __m256i input_hi,
uint64_t &prev_iter_ends_odd_backslash) {
const uint64_t even_bits = 0x5555555555555555ULL;
const uint64_t odd_bits = ~even_bits;
uint64_t bs_bits =
cmp_mask_against_input(input_lo, input_hi, _mm256_set1_epi8('\\'));
uint64_t start_edges = bs_bits & ~(bs_bits << 1);
// flip lowest if we have an odd-length run at the end of the prior
// iteration
uint64_t even_start_mask = even_bits ^ prev_iter_ends_odd_backslash;
uint64_t even_starts = start_edges & even_start_mask;
uint64_t odd_starts = start_edges & ~even_start_mask;
uint64_t even_carries = bs_bits + even_starts;
uint64_t odd_carries;
// must record the carry-out of our odd-carries out of bit 63; this
// indicates whether the sense of any edge going to the next iteration
// should be flipped
bool iter_ends_odd_backslash =
add_overflow(bs_bits, odd_starts, &odd_carries);
odd_carries |=
prev_iter_ends_odd_backslash; // push in bit zero as a potential end
// if we had an odd-numbered run at the
// end of the previous iteration
prev_iter_ends_odd_backslash = iter_ends_odd_backslash ? 0x1ULL : 0x0ULL;
uint64_t even_carry_ends = even_carries & ~bs_bits;
uint64_t odd_carry_ends = odd_carries & ~bs_bits;
uint64_t even_start_odd_end = even_carry_ends & odd_bits;
uint64_t odd_start_even_end = odd_carry_ends & even_bits;
uint64_t odd_ends = even_start_odd_end | odd_start_even_end;
return odd_ends;
}
// return both the quote mask (which is a half-open mask that covers the first
// quote
// in an unescaped quote pair and everything in the quote pair) and the quote
// bits, which are the simple
// unescaped quoted bits. We also update the prev_iter_inside_quote value to
// tell the next iteration
// whether we finished the final iteration inside a quote pair; if so, this
// inverts our behavior of
// whether we're inside quotes for the next iteration.
// Note that we don't do any error checking to see if we have backslash
// sequences outside quotes; these
// backslash sequences (of any length) will be detected elsewhere.
really_inline uint64_t find_quote_mask_and_bits(
__m256i input_lo, __m256i input_hi, uint64_t odd_ends,
uint64_t &prev_iter_inside_quote, uint64_t &quote_bits, uint64_t &error_mask) {
quote_bits =
cmp_mask_against_input(input_lo, input_hi, _mm256_set1_epi8('"'));
quote_bits = quote_bits & ~odd_ends;
// remove from the valid quoted region the unescapted characters.
uint64_t quote_mask = _mm_cvtsi128_si64(_mm_clmulepi64_si128(
_mm_set_epi64x(0ULL, quote_bits), _mm_set1_epi8(0xFF), 0));
quote_mask ^= prev_iter_inside_quote;
// All Unicode characters may be placed within the
// quotation marks, except for the characters that MUST be escaped:
// quotation mark, reverse solidus, and the control characters (U+0000
//through U+001F).
// https://tools.ietf.org/html/rfc8259
uint64_t unescaped = unsigned_lteq_against_input(input_lo, input_hi, _mm256_set1_epi8(0x1F));
error_mask |= quote_mask & unescaped;
// right shift of a signed value expected to be well-defined and standard
// compliant as of C++20,
// John Regher from Utah U. says this is fine code
prev_iter_inside_quote =
static_cast<uint64_t>(static_cast<int64_t>(quote_mask) >> 63);
return quote_mask;
}
really_inline void find_whitespace_and_structurals(const __m256i input_lo,
__m256i input_hi,
uint64_t &whitespace,
uint64_t &structurals) {
// do a 'shufti' to detect structural JSON characters
// they are { 0x7b } 0x7d : 0x3a [ 0x5b ] 0x5d , 0x2c
// these go into the first 3 buckets of the comparison (1/2/4)
// we are also interested in the four whitespace characters
// space 0x20, linefeed 0x0a, horizontal tab 0x09 and carriage return 0x0d
// these go into the next 2 buckets of the comparison (8/16)
const __m256i low_nibble_mask = _mm256_setr_epi8(
16, 0, 0, 0, 0, 0, 0, 0, 0, 8, 12, 1, 2, 9, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0,
0, 8, 12, 1, 2, 9, 0, 0);
const __m256i high_nibble_mask = _mm256_setr_epi8(
8, 0, 18, 4, 0, 1, 0, 1, 0, 0, 0, 3, 2, 1, 0, 0, 8, 0, 18, 4, 0, 1, 0, 1,
0, 0, 0, 3, 2, 1, 0, 0);
__m256i structural_shufti_mask = _mm256_set1_epi8(0x7);
__m256i whitespace_shufti_mask = _mm256_set1_epi8(0x18);
__m256i v_lo = _mm256_and_si256(
_mm256_shuffle_epi8(low_nibble_mask, input_lo),
_mm256_shuffle_epi8(high_nibble_mask,
_mm256_and_si256(_mm256_srli_epi32(input_lo, 4),
_mm256_set1_epi8(0x7f))));
__m256i v_hi = _mm256_and_si256(
_mm256_shuffle_epi8(low_nibble_mask, input_hi),
_mm256_shuffle_epi8(high_nibble_mask,
_mm256_and_si256(_mm256_srli_epi32(input_hi, 4),
_mm256_set1_epi8(0x7f))));
__m256i tmp_lo = _mm256_cmpeq_epi8(
_mm256_and_si256(v_lo, structural_shufti_mask), _mm256_set1_epi8(0));
__m256i tmp_hi = _mm256_cmpeq_epi8(
_mm256_and_si256(v_hi, structural_shufti_mask), _mm256_set1_epi8(0));
uint64_t structural_res_0 =
static_cast<uint32_t>(_mm256_movemask_epi8(tmp_lo));
uint64_t structural_res_1 = _mm256_movemask_epi8(tmp_hi);
structurals = ~(structural_res_0 | (structural_res_1 << 32));
__m256i tmp_ws_lo = _mm256_cmpeq_epi8(
_mm256_and_si256(v_lo, whitespace_shufti_mask), _mm256_set1_epi8(0));
__m256i tmp_ws_hi = _mm256_cmpeq_epi8(
_mm256_and_si256(v_hi, whitespace_shufti_mask), _mm256_set1_epi8(0));
uint64_t ws_res_0 = static_cast<uint32_t>(_mm256_movemask_epi8(tmp_ws_lo));
uint64_t ws_res_1 = _mm256_movemask_epi8(tmp_ws_hi);
whitespace = ~(ws_res_0 | (ws_res_1 << 32));
}
// flatten out values in 'bits' assuming that they are are to have values of idx
// plus their position in the bitvector, and store these indexes at
// base_ptr[base] incrementing base as we go
// will potentially store extra values beyond end of valid bits, so base_ptr
// needs to be large enough to handle this
really_inline void flatten_bits(uint32_t *base_ptr, uint32_t &base,
uint32_t idx, uint64_t bits) {
uint32_t cnt = hamming(bits);
uint32_t next_base = base + cnt;
while (bits != 0u) {
base_ptr[base + 0] = static_cast<uint32_t>(idx) - 64 + trailingzeroes(bits);
bits = bits & (bits - 1);
base_ptr[base + 1] = static_cast<uint32_t>(idx) - 64 + trailingzeroes(bits);
bits = bits & (bits - 1);
base_ptr[base + 2] = static_cast<uint32_t>(idx) - 64 + trailingzeroes(bits);
bits = bits & (bits - 1);
base_ptr[base + 3] = static_cast<uint32_t>(idx) - 64 + trailingzeroes(bits);
bits = bits & (bits - 1);
base_ptr[base + 4] = static_cast<uint32_t>(idx) - 64 + trailingzeroes(bits);
bits = bits & (bits - 1);
base_ptr[base + 5] = static_cast<uint32_t>(idx) - 64 + trailingzeroes(bits);
bits = bits & (bits - 1);
base_ptr[base + 6] = static_cast<uint32_t>(idx) - 64 + trailingzeroes(bits);
bits = bits & (bits - 1);
base_ptr[base + 7] = static_cast<uint32_t>(idx) - 64 + trailingzeroes(bits);
bits = bits & (bits - 1);
base += 8;
}
base = next_base;
}
// return a updated structural bit vector with quoted contents cleared out and
// pseudo-structural characters added to the mask
// updates prev_iter_ends_pseudo_pred which tells us whether the previous
// iteration ended on a whitespace or a structural character (which means that
// the next iteration
// will have a pseudo-structural character at its start)
really_inline uint64_t finalize_structurals(
uint64_t structurals, uint64_t whitespace, uint64_t quote_mask,
uint64_t quote_bits, uint64_t &prev_iter_ends_pseudo_pred) {
// mask off anything inside quotes
structurals &= ~quote_mask;
// add the real quote bits back into our bitmask as well, so we can
// quickly traverse the strings we've spent all this trouble gathering
structurals |= quote_bits;
// Now, establish "pseudo-structural characters". These are non-whitespace
// characters that are (a) outside quotes and (b) have a predecessor that's
// either whitespace or a structural character. This means that subsequent
// passes will get a chance to encounter the first character of every string
// of non-whitespace and, if we're parsing an atom like true/false/null or a
// number we can stop at the first whitespace or structural character
// following it.
// a qualified predecessor is something that can happen 1 position before an
// psuedo-structural character
uint64_t pseudo_pred = structurals | whitespace;
uint64_t shifted_pseudo_pred =
(pseudo_pred << 1) | prev_iter_ends_pseudo_pred;
prev_iter_ends_pseudo_pred = pseudo_pred >> 63;
uint64_t pseudo_structurals =
shifted_pseudo_pred & (~whitespace) & (~quote_mask);
structurals |= pseudo_structurals;
// now, we've used our close quotes all we need to. So let's switch them off
// they will be off in the quote mask and on in quote bits.
structurals &= ~(quote_bits & ~quote_mask);
return structurals;
}
WARN_UNUSED
/*never_inline*/ bool find_structural_bits(const uint8_t *buf, size_t len,
ParsedJson &pj) {
if (len > pj.bytecapacity) {
cerr << "Your ParsedJson object only supports documents up to "
<< pj.bytecapacity << " bytes but you are trying to process " << len
<< " bytes\n";
return false;
}
uint32_t *base_ptr = pj.structural_indexes;
uint32_t base = 0;
#ifdef SIMDJSON_UTF8VALIDATE
__m256i has_error = _mm256_setzero_si256();
struct avx_processed_utf_bytes previous {};
previous.rawbytes = _mm256_setzero_si256();
previous.high_nibbles = _mm256_setzero_si256();
previous.carried_continuations = _mm256_setzero_si256();
#endif
// we have padded the input out to 64 byte multiple with the remainder being
// zeros
// persistent state across loop
// does the last iteration end with an odd-length sequence of backslashes?
// either 0 or 1, but a 64-bit value
uint64_t prev_iter_ends_odd_backslash = 0ULL;
// does the previous iteration end inside a double-quote pair?
uint64_t prev_iter_inside_quote = 0ULL; // either all zeros or all ones
// does the previous iteration end on something that is a predecessor of a
// pseudo-structural character - i.e. whitespace or a structural character
// effectively the very first char is considered to follow "whitespace" for
// the
// purposes of pseudo-structural character detection so we initialize to 1
uint64_t prev_iter_ends_pseudo_pred = 1ULL;
// structurals are persistent state across loop as we flatten them on the
// subsequent iteration into our array pointed to be base_ptr.
// This is harmless on the first iteration as structurals==0
// and is done for performance reasons; we can hide some of the latency of the
// expensive carryless multiply in the previous step with this work
uint64_t structurals = 0;
size_t lenminus64 = len < 64 ? 0 : len - 64;
size_t idx = 0;
uint64_t error_mask = 0; // for unescaped characters within strings (ASCII code points < 0x20)
for (; idx < lenminus64; idx += 64) {
#ifndef _MSC_VER
__builtin_prefetch(buf + idx + 128);
#endif
__m256i input_lo =
_mm256_loadu_si256(reinterpret_cast<const __m256i *>(buf + idx + 0));
__m256i input_hi =
_mm256_loadu_si256(reinterpret_cast<const __m256i *>(buf + idx + 32));
#ifdef SIMDJSON_UTF8VALIDATE
check_utf8(input_lo, input_hi, has_error, previous);
#endif
// detect odd sequences of backslashes
uint64_t odd_ends = find_odd_backslash_sequences(
input_lo, input_hi, prev_iter_ends_odd_backslash);
// detect insides of quote pairs ("quote_mask") and also our quote_bits
// themselves
uint64_t quote_bits;
uint64_t quote_mask = find_quote_mask_and_bits(
input_lo, input_hi, odd_ends, prev_iter_inside_quote, quote_bits, error_mask);
// take the previous iterations structural bits, not our current iteration,
// and flatten
flatten_bits(base_ptr, base, idx, structurals);
uint64_t whitespace;
find_whitespace_and_structurals(input_lo, input_hi, whitespace,
structurals);
// fixup structurals to reflect quotes and add pseudo-structural characters
structurals = finalize_structurals(structurals, whitespace, quote_mask,
quote_bits, prev_iter_ends_pseudo_pred);
}
////////////////
/// we use a giant copy-paste which is ugly.
/// but otherwise the string needs to be properly padded or else we
/// risk invalidating the UTF-8 checks.
////////////
if (idx < len) {
uint8_t tmpbuf[64];
memset(tmpbuf, 0x20, 64);
memcpy(tmpbuf, buf + idx, len - idx);
__m256i input_lo =
_mm256_loadu_si256(reinterpret_cast<const __m256i *>(tmpbuf + 0));
__m256i input_hi =
_mm256_loadu_si256(reinterpret_cast<const __m256i *>(tmpbuf + 32));
#ifdef SIMDJSON_UTF8VALIDATE
check_utf8(input_lo, input_hi, has_error, previous);
#endif
// detect odd sequences of backslashes
uint64_t odd_ends = find_odd_backslash_sequences(
input_lo, input_hi, prev_iter_ends_odd_backslash);
// detect insides of quote pairs ("quote_mask") and also our quote_bits
// themselves
uint64_t quote_bits;
uint64_t quote_mask = find_quote_mask_and_bits(
input_lo, input_hi, odd_ends, prev_iter_inside_quote, quote_bits, error_mask);
// take the previous iterations structural bits, not our current iteration,
// and flatten
flatten_bits(base_ptr, base, idx, structurals);
uint64_t whitespace;
find_whitespace_and_structurals(input_lo, input_hi, whitespace,
structurals);
// fixup structurals to reflect quotes and add pseudo-structural characters
structurals = finalize_structurals(structurals, whitespace, quote_mask,
quote_bits, prev_iter_ends_pseudo_pred);
idx += 64;
}
// finally, flatten out the remaining structurals from the last iteration
flatten_bits(base_ptr, base, idx, structurals);
pj.n_structural_indexes = base;
// a valid JSON file cannot have zero structural indexes - we should have
// found something
if (pj.n_structural_indexes == 0u) {
return false;
}
if (base_ptr[pj.n_structural_indexes - 1] > len) {
fprintf(stderr, "Internal bug\n");
return false;
}
if (len != base_ptr[pj.n_structural_indexes - 1]) {
// the string might not be NULL terminated, but we add a virtual NULL ending
// character.
base_ptr[pj.n_structural_indexes++] = len;
}
// make it safe to dereference one beyond this array
base_ptr[pj.n_structural_indexes] = 0;
if (error_mask) {
return false;
}
#ifdef SIMDJSON_UTF8VALIDATE
return _mm256_testz_si256(has_error, has_error) != 0;
#else
return true;
#endif
}
bool find_structural_bits(const char *buf, size_t len, ParsedJson &pj) {
return find_structural_bits(reinterpret_cast<const uint8_t *>(buf), len, pj);
}
/* end file src/stage1_find_marks.cpp */
/* begin file src/stage2_build_tape.cpp */
#ifdef _MSC_VER
/* Microsoft C/C++-compatible compiler */
#include <intrin.h>
#else
#include <x86intrin.h>
#endif
#include <cassert>
#include <cstring>
#include <iostream>
#define PATH_SEP '/'
using namespace std;
WARN_UNUSED
really_inline bool is_valid_true_atom(const uint8_t *loc) {
uint64_t tv = *reinterpret_cast<const uint64_t *>("true ");
uint64_t mask4 = 0x00000000ffffffff;
uint32_t error = 0;
uint64_t locval; // we want to avoid unaligned 64-bit loads (undefined in C/C++)
std::memcpy(&locval, loc, sizeof(uint64_t));
error = (locval & mask4) ^ tv;
error |= is_not_structural_or_whitespace(loc[4]);
return error == 0;
}
WARN_UNUSED
really_inline bool is_valid_false_atom(const uint8_t *loc) {
uint64_t fv = *reinterpret_cast<const uint64_t *>("false ");
uint64_t mask5 = 0x000000ffffffffff;
uint32_t error = 0;
uint64_t locval; // we want to avoid unaligned 64-bit loads (undefined in C/C++)
std::memcpy(&locval, loc, sizeof(uint64_t));
error = (locval & mask5) ^ fv;
error |= is_not_structural_or_whitespace(loc[5]);
return error == 0;
}
WARN_UNUSED
really_inline bool is_valid_null_atom(const uint8_t *loc) {
uint64_t nv = *reinterpret_cast<const uint64_t *>("null ");
uint64_t mask4 = 0x00000000ffffffff;
uint32_t error = 0;
uint64_t locval; // we want to avoid unaligned 64-bit loads (undefined in C/C++)
std::memcpy(&locval, loc, sizeof(uint64_t));
error = (locval & mask4) ^ nv;
error |= is_not_structural_or_whitespace(loc[4]);
return error == 0;
}
/************
* The JSON is parsed to a tape, see the accompanying tape.md file
* for documentation.
***********/
WARN_UNUSED
int unified_machine(const uint8_t *buf, size_t len, ParsedJson &pj) {
uint32_t i = 0; // index of the structural character (0,1,2,3...)
uint32_t idx; // location of the structural character in the input (buf)
uint8_t c; // used to track the (structural) character we are looking at, updated
// by UPDATE_CHAR macro
uint32_t depth = 0; // could have an arbitrary starting depth
pj.init();
if(pj.bytecapacity < len) {
return simdjson::CAPACITY;
}
// this macro reads the next structural character, updating idx, i and c.
#define UPDATE_CHAR() \
{ \
idx = pj.structural_indexes[i++]; \
c = buf[idx]; \
}
////////////////////////////// START STATE /////////////////////////////
#ifdef SIMDJSON_USE_COMPUTED_GOTO
pj.ret_address[depth] = &&start_continue;
#else
pj.ret_address[depth] = 's';
#endif
pj.containing_scope_offset[depth] = pj.get_current_loc();
pj.write_tape(0, 'r'); // r for root, 0 is going to get overwritten
// the root is used, if nothing else, to capture the size of the tape
depth++; // everything starts at depth = 1, depth = 0 is just for the root, the root may contain an object, an array or something else.
if (depth > pj.depthcapacity) {
goto fail;
}
UPDATE_CHAR();
switch (c) {
case '{':
pj.containing_scope_offset[depth] = pj.get_current_loc();
#ifdef SIMDJSON_USE_COMPUTED_GOTO
pj.ret_address[depth] = &&start_continue;
#else
pj.ret_address[depth] = 's';
#endif
depth++;
if (depth > pj.depthcapacity) {
goto fail;
}
pj.write_tape(0, c); // strangely, moving this to object_begin slows things down
goto object_begin;
case '[':
pj.containing_scope_offset[depth] = pj.get_current_loc();
#ifdef SIMDJSON_USE_COMPUTED_GOTO
pj.ret_address[depth] = &&start_continue;
#else
pj.ret_address[depth] = 's';
#endif
depth++;
if (depth > pj.depthcapacity) {
goto fail;
}
pj.write_tape(0, c);
goto array_begin;
#define SIMDJSON_ALLOWANYTHINGINROOT
// A JSON text is a serialized value. Note that certain previous
// specifications of JSON constrained a JSON text to be an object or an
// array. Implementations that generate only objects or arrays where a
// JSON text is called for will be interoperable in the sense that all
// implementations will accept these as conforming JSON texts.
// https://tools.ietf.org/html/rfc8259
#ifdef SIMDJSON_ALLOWANYTHINGINROOT
case '"': {
if (!parse_string(buf, len, pj, depth, idx)) {
goto fail;
}
break;
}
case 't': {
// we need to make a copy to make sure that the string is NULL terminated.
// this only applies to the JSON document made solely of the true value.
// this will almost never be called in practice
char * copy = static_cast<char *>(malloc(len + SIMDJSON_PADDING));
if(copy == nullptr) { goto fail;
}
memcpy(copy, buf, len);
copy[len] = '\0';
if (!is_valid_true_atom(reinterpret_cast<const uint8_t *>(copy) + idx)) {
free(copy);
goto fail;
}
free(copy);
pj.write_tape(0, c);
break;
}
case 'f': {
// we need to make a copy to make sure that the string is NULL terminated.
// this only applies to the JSON document made solely of the false value.
// this will almost never be called in practice
char * copy = static_cast<char *>(malloc(len + SIMDJSON_PADDING));
if(copy == nullptr) { goto fail;
}
memcpy(copy, buf, len);
copy[len] = '\0';
if (!is_valid_false_atom(reinterpret_cast<const uint8_t *>(copy) + idx)) {
free(copy);
goto fail;
}
free(copy);
pj.write_tape(0, c);
break;
}
case 'n': {
// we need to make a copy to make sure that the string is NULL terminated.
// this only applies to the JSON document made solely of the null value.
// this will almost never be called in practice
char * copy = static_cast<char *>(malloc(len + SIMDJSON_PADDING));
if(copy == nullptr) { goto fail;
}
memcpy(copy, buf, len);
copy[len] = '\0';
if (!is_valid_null_atom(reinterpret_cast<const uint8_t *>(copy) + idx)) {
free(copy);
goto fail;
}
free(copy);
pj.write_tape(0, c);
break;
}
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9': {
// we need to make a copy to make sure that the string is NULL terminated.
// this is done only for JSON documents made of a sole number
// this will almost never be called in practice
char * copy = static_cast<char *>(malloc(len + SIMDJSON_PADDING));
if(copy == nullptr) { goto fail;
}
memcpy(copy, buf, len);
copy[len] = '\0';
if (!parse_number(reinterpret_cast<const uint8_t *>(copy), pj, idx, false)) {
free(copy);
goto fail;
}
free(copy);
break;
}
case '-': {
// we need to make a copy to make sure that the string is NULL terminated.
// this is done only for JSON documents made of a sole number
// this will almost never be called in practice
char * copy = static_cast<char *>(malloc(len + SIMDJSON_PADDING));
if(copy == nullptr) { goto fail;
}
memcpy(copy, buf, len);
copy[len] = '\0';
if (!parse_number(reinterpret_cast<const uint8_t *>(copy), pj, idx, true)) {
free(copy);
goto fail;
}
free(copy);
break;
}
#endif // ALLOWANYTHINGINROOT
default:
goto fail;
}
start_continue:
// the string might not be NULL terminated.
if(i + 1 == pj.n_structural_indexes) {
goto succeed;
} else {
goto fail;
}
////////////////////////////// OBJECT STATES /////////////////////////////
object_begin:
UPDATE_CHAR();
switch (c) {
case '"': {
if (!parse_string(buf, len, pj, depth, idx)) {
goto fail;
}
goto object_key_state;
}
case '}':
goto scope_end; // could also go to object_continue
default:
goto fail;
}
object_key_state:
UPDATE_CHAR();
if (c != ':') {
goto fail;
}
UPDATE_CHAR();
switch (c) {
case '"': {
if (!parse_string(buf, len, pj, depth, idx)) {
goto fail;
}
break;
}
case 't':
if (!is_valid_true_atom(buf + idx)) {
goto fail;
}
pj.write_tape(0, c);
break;
case 'f':
if (!is_valid_false_atom(buf + idx)) {
goto fail;
}
pj.write_tape(0, c);
break;
case 'n':
if (!is_valid_null_atom(buf + idx)) {
goto fail;
}
pj.write_tape(0, c);
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9': {
if (!parse_number(buf, pj, idx, false)) {
goto fail;
}
break;
}
case '-': {
if (!parse_number(buf, pj, idx, true)) {
goto fail;
}
break;
}
case '{': {
pj.containing_scope_offset[depth] = pj.get_current_loc();
pj.write_tape(0, c); // here the compilers knows what c is so this gets optimized
// we have not yet encountered } so we need to come back for it
#ifdef SIMDJSON_USE_COMPUTED_GOTO
pj.ret_address[depth] = &&object_continue;
#else
pj.ret_address[depth] = 'o';
#endif
// we found an object inside an object, so we need to increment the depth
depth++;
if (depth > pj.depthcapacity) {
goto fail;
}
goto object_begin;
}
case '[': {
pj.containing_scope_offset[depth] = pj.get_current_loc();
pj.write_tape(0, c); // here the compilers knows what c is so this gets optimized
// we have not yet encountered } so we need to come back for it
#ifdef SIMDJSON_USE_COMPUTED_GOTO
pj.ret_address[depth] = &&object_continue;
#else
pj.ret_address[depth] = 'o';
#endif
// we found an array inside an object, so we need to increment the depth
depth++;
if (depth > pj.depthcapacity) {
goto fail;
}
goto array_begin;
}
default:
goto fail;
}
object_continue:
UPDATE_CHAR();
switch (c) {
case ',':
UPDATE_CHAR();
if (c != '"') {
goto fail;
} else {
if (!parse_string(buf, len, pj, depth, idx)) {
goto fail;
}
goto object_key_state;
}
case '}':
goto scope_end;
default:
goto fail;
}
////////////////////////////// COMMON STATE /////////////////////////////
scope_end:
// write our tape location to the header scope
depth--;
pj.write_tape(pj.containing_scope_offset[depth], c);
pj.annotate_previousloc(pj.containing_scope_offset[depth],
pj.get_current_loc());
// goto saved_state
#ifdef SIMDJSON_USE_COMPUTED_GOTO
goto *pj.ret_address[depth];
#else
if(pj.ret_address[depth] == 'a') {
goto array_continue;
} else if (pj.ret_address[depth] == 'o') {
goto object_continue;
} else goto start_continue;
#endif
////////////////////////////// ARRAY STATES /////////////////////////////
array_begin:
UPDATE_CHAR();
if (c == ']') {
goto scope_end; // could also go to array_continue
}
main_array_switch:
// we call update char on all paths in, so we can peek at c on the
// on paths that can accept a close square brace (post-, and at start)
switch (c) {
case '"': {
if (!parse_string(buf, len, pj, depth, idx)) {
goto fail;
}
break;
}
case 't':
if (!is_valid_true_atom(buf + idx)) {
goto fail;
}
pj.write_tape(0, c);
break;
case 'f':
if (!is_valid_false_atom(buf + idx)) {
goto fail;
}
pj.write_tape(0, c);
break;
case 'n':
if (!is_valid_null_atom(buf + idx)) {
goto fail;
}
pj.write_tape(0, c);
break; // goto array_continue;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9': {
if (!parse_number(buf, pj, idx, false)) {
goto fail;
}
break; // goto array_continue;
}
case '-': {
if (!parse_number(buf, pj, idx, true)) {
goto fail;
}
break; // goto array_continue;
}
case '{': {
// we have not yet encountered ] so we need to come back for it
pj.containing_scope_offset[depth] = pj.get_current_loc();
pj.write_tape(0, c); // here the compilers knows what c is so this gets optimized
#ifdef SIMDJSON_USE_COMPUTED_GOTO
pj.ret_address[depth] = &&array_continue;
#else
pj.ret_address[depth] = 'a';
#endif
// we found an object inside an array, so we need to increment the depth
depth++;
if (depth > pj.depthcapacity) {
goto fail;
}
goto object_begin;
}
case '[': {
// we have not yet encountered ] so we need to come back for it
pj.containing_scope_offset[depth] = pj.get_current_loc();
pj.write_tape(0, c); // here the compilers knows what c is so this gets optimized
#ifdef SIMDJSON_USE_COMPUTED_GOTO
pj.ret_address[depth] = &&array_continue;
#else
pj.ret_address[depth] = 'a';
#endif
// we found an array inside an array, so we need to increment the depth
depth++;
if (depth > pj.depthcapacity) {
goto fail;
}
goto array_begin;
}
default:
goto fail;
}
array_continue:
UPDATE_CHAR();
switch (c) {
case ',':
UPDATE_CHAR();
goto main_array_switch;
case ']':
goto scope_end;
default:
goto fail;
}
////////////////////////////// FINAL STATES /////////////////////////////
succeed:
depth --;
if(depth != 0) {
fprintf(stderr, "internal bug\n");
abort();
}
if(pj.containing_scope_offset[depth] != 0) {
fprintf(stderr, "internal bug\n");
abort();
}
pj.annotate_previousloc(pj.containing_scope_offset[depth],
pj.get_current_loc());
pj.write_tape(pj.containing_scope_offset[depth], 'r'); // r is root
pj.isvalid = true;
return simdjson::SUCCESS;
fail:
return simdjson::TAPE_ERROR;
}
int unified_machine(const char *buf, size_t len, ParsedJson &pj) {
return unified_machine(reinterpret_cast<const uint8_t*>(buf), len, pj);
}
/* end file src/stage2_build_tape.cpp */
/* begin file src/parsedjson.cpp */
ParsedJson::ParsedJson() :
structural_indexes(nullptr), tape(nullptr), containing_scope_offset(nullptr),
ret_address(nullptr), string_buf(nullptr), current_string_buf_loc(nullptr) {}
ParsedJson::~ParsedJson() {
deallocate();
}
ParsedJson::ParsedJson(ParsedJson && p)
: bytecapacity(p.bytecapacity),
depthcapacity(p.depthcapacity),
tapecapacity(p.tapecapacity),
stringcapacity(p.stringcapacity),
current_loc(p.current_loc),
n_structural_indexes(p.n_structural_indexes),
structural_indexes(p.structural_indexes),
tape(p.tape),
containing_scope_offset(p.containing_scope_offset),
ret_address(p.ret_address),
string_buf(p.string_buf),
current_string_buf_loc(p.current_string_buf_loc),
isvalid(p.isvalid) {
p.structural_indexes=nullptr;
p.tape=nullptr;
p.containing_scope_offset=nullptr;
p.ret_address=nullptr;
p.string_buf=nullptr;
p.current_string_buf_loc=nullptr;
}
WARN_UNUSED
bool ParsedJson::allocateCapacity(size_t len, size_t maxdepth) {
if ((maxdepth == 0) || (len == 0)) {
std::cerr << "capacities must be non-zero " << std::endl;
return false;
}
if(len > SIMDJSON_MAXSIZE_BYTES) {
return false;
}
if ((len <= bytecapacity) && (depthcapacity < maxdepth)) {
return true;
}
deallocate();
isvalid = false;
bytecapacity = 0; // will only set it to len after allocations are a success
n_structural_indexes = 0;
uint32_t max_structures = ROUNDUP_N(len, 64) + 2 + 7;
structural_indexes = new (std::nothrow) uint32_t[max_structures];
size_t localtapecapacity = ROUNDUP_N(len, 64);
// a document with only zero-length strings... could have len/3 string
// and we would need len/3 * 5 bytes on the string buffer
size_t localstringcapacity = ROUNDUP_N(5 * len / 3 + 32, 64);
string_buf = new (std::nothrow) uint8_t[localstringcapacity];
tape = new (std::nothrow) uint64_t[localtapecapacity];
containing_scope_offset = new (std::nothrow) uint32_t[maxdepth];
#ifdef SIMDJSON_USE_COMPUTED_GOTO
ret_address = new (std::nothrow) void *[maxdepth];
#else
ret_address = new (std::nothrow) char[maxdepth];
#endif
if ((string_buf == nullptr) || (tape == nullptr) ||
(containing_scope_offset == nullptr) || (ret_address == nullptr) || (structural_indexes == nullptr)) {
std::cerr << "Could not allocate memory" << std::endl;
delete[] ret_address;
delete[] containing_scope_offset;
delete[] tape;
delete[] string_buf;
delete[] structural_indexes;
return false;
}
bytecapacity = len;
depthcapacity = maxdepth;
tapecapacity = localtapecapacity;
stringcapacity = localstringcapacity;
return true;
}
bool ParsedJson::isValid() const {
return isvalid;
}
void ParsedJson::deallocate() {
bytecapacity = 0;
depthcapacity = 0;
tapecapacity = 0;
stringcapacity = 0;
delete[] ret_address;
delete[] containing_scope_offset;
delete[] tape;
delete[] string_buf;
delete[] structural_indexes;
isvalid = false;
}
void ParsedJson::init() {
current_string_buf_loc = string_buf;
current_loc = 0;
isvalid = false;
}
WARN_UNUSED
bool ParsedJson::printjson(std::ostream &os) {
if(!isvalid) {
return false;
}
uint32_t string_length;
size_t tapeidx = 0;
uint64_t tape_val = tape[tapeidx];
uint8_t type = (tape_val >> 56);
size_t howmany = 0;
if (type == 'r') {
howmany = tape_val & JSONVALUEMASK;
} else {
fprintf(stderr, "Error: no starting root node?");
return false;
}
if (howmany > tapecapacity) {
fprintf(stderr,
"We may be exceeding the tape capacity. Is this a valid document?\n");
return false;
}
tapeidx++;
bool *inobject = new bool[depthcapacity];
auto *inobjectidx = new size_t[depthcapacity];
int depth = 1; // only root at level 0
inobjectidx[depth] = 0;
inobject[depth] = false;
for (; tapeidx < howmany; tapeidx++) {
tape_val = tape[tapeidx];
uint64_t payload = tape_val & JSONVALUEMASK;
type = (tape_val >> 56);
if (!inobject[depth]) {
if ((inobjectidx[depth] > 0) && (type != ']')) {
os << ",";
}
inobjectidx[depth]++;
} else { // if (inobject) {
if ((inobjectidx[depth] > 0) && ((inobjectidx[depth] & 1) == 0) &&
(type != '}')) {
os << ",";
}
if (((inobjectidx[depth] & 1) == 1)) {
os << ":";
}
inobjectidx[depth]++;
}
switch (type) {
case '"': // we have a string
os << '"';
memcpy(&string_length,string_buf + payload, sizeof(uint32_t));
print_with_escapes((const unsigned char *)(string_buf + payload + sizeof(uint32_t)), string_length);
os << '"';
break;
case 'l': // we have a long int
if (tapeidx + 1 >= howmany) {
delete[] inobject;
delete[] inobjectidx;
return false;
}
os << static_cast<int64_t>(tape[++tapeidx]);
break;
case 'd': // we have a double
if (tapeidx + 1 >= howmany){
delete[] inobject;
delete[] inobjectidx;
return false;
}
double answer;
memcpy(&answer, &tape[++tapeidx], sizeof(answer));
os << answer;
break;
case 'n': // we have a null
os << "null";
break;
case 't': // we have a true
os << "true";
break;
case 'f': // we have a false
os << "false";
break;
case '{': // we have an object
os << '{';
depth++;
inobject[depth] = true;
inobjectidx[depth] = 0;
break;
case '}': // we end an object
depth--;
os << '}';
break;
case '[': // we start an array
os << '[';
depth++;
inobject[depth] = false;
inobjectidx[depth] = 0;
break;
case ']': // we end an array
depth--;
os << ']';
break;
case 'r': // we start and end with the root node
fprintf(stderr, "should we be hitting the root node?\n");
delete[] inobject;
delete[] inobjectidx;
return false;
default:
fprintf(stderr, "bug %c\n", type);
delete[] inobject;
delete[] inobjectidx;
return false;
}
}
delete[] inobject;
delete[] inobjectidx;
return true;
}
WARN_UNUSED
bool ParsedJson::dump_raw_tape(std::ostream &os) {
if(!isvalid) {
return false;
}
uint32_t string_length;
size_t tapeidx = 0;
uint64_t tape_val = tape[tapeidx];
uint8_t type = (tape_val >> 56);
os << tapeidx << " : " << type;
tapeidx++;
size_t howmany = 0;
if (type == 'r') {
howmany = tape_val & JSONVALUEMASK;
} else {
fprintf(stderr, "Error: no starting root node?");
return false;
}
os << "\t// pointing to " << howmany <<" (right after last node)\n";
uint64_t payload;
for (; tapeidx < howmany; tapeidx++) {
os << tapeidx << " : ";
tape_val = tape[tapeidx];
payload = tape_val & JSONVALUEMASK;
type = (tape_val >> 56);
switch (type) {
case '"': // we have a string
os << "string \"";
memcpy(&string_length,string_buf + payload, sizeof(uint32_t));
print_with_escapes((const unsigned char *)(string_buf + payload + sizeof(uint32_t)), string_length);
os << '"';
os << '\n';
break;
case 'l': // we have a long int
if (tapeidx + 1 >= howmany) {
return false;
}
os << "integer " << static_cast<int64_t>(tape[++tapeidx]) << "\n";
break;
case 'd': // we have a double
os << "float ";
if (tapeidx + 1 >= howmany) {
return false;
}
double answer;
memcpy(&answer, &tape[++tapeidx], sizeof(answer));
os << answer << '\n';
break;
case 'n': // we have a null
os << "null\n";
break;
case 't': // we have a true
os << "true\n";
break;
case 'f': // we have a false
os << "false\n";
break;
case '{': // we have an object
os << "{\t// pointing to next tape location " << payload << " (first node after the scope) \n";
break;
case '}': // we end an object
os << "}\t// pointing to previous tape location " << payload << " (start of the scope) \n";
break;
case '[': // we start an array
os << "[\t// pointing to next tape location " << payload << " (first node after the scope) \n";
break;
case ']': // we end an array
os << "]\t// pointing to previous tape location " << payload << " (start of the scope) \n";
break;
case 'r': // we start and end with the root node
printf("end of root\n");
return false;
default:
return false;
}
}
tape_val = tape[tapeidx];
payload = tape_val & JSONVALUEMASK;
type = (tape_val >> 56);
os << tapeidx << " : "<< type <<"\t// pointing to " << payload <<" (start root)\n";
return true;
}
/* end file src/parsedjson.cpp */
/* begin file src/parsedjsoniterator.cpp */
#include <iterator>
ParsedJson::iterator::iterator(ParsedJson &pj_) : pj(pj_), depth(0), location(0), tape_length(0), depthindex(nullptr) {
if(pj.isValid()) {
depthindex = new scopeindex_t[pj.depthcapacity];
if(depthindex == nullptr) { return;
}
depthindex[0].start_of_scope = location;
current_val = pj.tape[location++];
current_type = (current_val >> 56);
depthindex[0].scope_type = current_type;
if (current_type == 'r') {
tape_length = current_val & JSONVALUEMASK;
if(location < tape_length) {
current_val = pj.tape[location];
current_type = (current_val >> 56);
depth++;
depthindex[depth].start_of_scope = location;
depthindex[depth].scope_type = current_type;
}
}
}
}
ParsedJson::iterator::~iterator() {
delete[] depthindex;
}
ParsedJson::iterator::iterator(const iterator &o):
pj(o.pj), depth(o.depth), location(o.location),
tape_length(o.tape_length), current_type(o.current_type),
current_val(o.current_val), depthindex(nullptr) {
depthindex = new scopeindex_t[pj.depthcapacity];
if(depthindex != nullptr) {
memcpy(o.depthindex, depthindex, pj.depthcapacity * sizeof(depthindex[0]));
} else {
tape_length = 0;
}
}
ParsedJson::iterator::iterator(iterator &&o):
pj(o.pj), depth(o.depth), location(o.location),
tape_length(o.tape_length), current_type(o.current_type),
current_val(o.current_val), depthindex(o.depthindex) {
o.depthindex = nullptr;// we take ownership
}
WARN_UNUSED
bool ParsedJson::iterator::isOk() const {
return location < tape_length;
}
// useful for debuging purposes
size_t ParsedJson::iterator::get_tape_location() const {
return location;
}
// useful for debuging purposes
size_t ParsedJson::iterator::get_tape_length() const {
return tape_length;
}
// returns the current depth (start at 1 with 0 reserved for the fictitious root node)
size_t ParsedJson::iterator::get_depth() const {
return depth;
}
// A scope is a series of nodes at the same depth, typically it is either an object ({) or an array ([).
// The root node has type 'r'.
uint8_t ParsedJson::iterator::get_scope_type() const {
return depthindex[depth].scope_type;
}
bool ParsedJson::iterator::move_forward() {
if(location + 1 >= tape_length) {
return false; // we are at the end!
}
if ((current_type == '[') || (current_type == '{')){
// We are entering a new scope
depth++;
depthindex[depth].start_of_scope = location;
depthindex[depth].scope_type = current_type;
} else if ((current_type == ']') || (current_type == '}')) {
// Leaving a scope.
depth--;
if(depth == 0) {
// Should not be necessary
return false;
}
} else if ((current_type == 'd') || (current_type == 'l')) {
// d and l types use 2 locations on the tape, not just one.
location += 1;
}
location += 1;
current_val = pj.tape[location];
current_type = (current_val >> 56);
return true;
}
uint8_t ParsedJson::iterator::get_type() const {
return current_type;
}
int64_t ParsedJson::iterator::get_integer() const {
if(location + 1 >= tape_length) {
return 0;// default value in case of error
}
return static_cast<int64_t>(pj.tape[location + 1]);
}
double ParsedJson::iterator::get_double() const {
if(location + 1 >= tape_length) {
return NAN;// default value in case of error
}
double answer;
memcpy(&answer, & pj.tape[location + 1], sizeof(answer));
return answer;
}
const char * ParsedJson::iterator::get_string() const {
return reinterpret_cast<const char *>(pj.string_buf + (current_val & JSONVALUEMASK) + sizeof(uint32_t)) ;
}
uint32_t ParsedJson::iterator::get_string_length() const {
uint32_t answer;
memcpy(&answer, reinterpret_cast<const char *>(pj.string_buf + (current_val & JSONVALUEMASK)), sizeof(uint32_t));
return answer;
}
bool ParsedJson::iterator::is_object_or_array() const {
return is_object_or_array(get_type());
}
bool ParsedJson::iterator::is_object() const {
return get_type() == '{';
}
bool ParsedJson::iterator::is_array() const {
return get_type() == '[';
}
bool ParsedJson::iterator::is_string() const {
return get_type() == '"';
}
bool ParsedJson::iterator::is_integer() const {
return get_type() == 'l';
}
bool ParsedJson::iterator::is_double() const {
return get_type() == 'd';
}
bool ParsedJson::iterator::is_object_or_array(uint8_t type) {
return (type == '[' || (type == '{'));
}
bool ParsedJson::iterator::move_to_key(const char * key) {
if(down()) {
do {
assert(is_string());
bool rightkey = (strcmp(get_string(),key)==0);// null chars would fool this
next();
if(rightkey) {
return true;
}
} while(next());
assert(up());// not found
}
return false;
}
bool ParsedJson::iterator::next() {
if ((current_type == '[') || (current_type == '{')){
// we need to jump
size_t npos = ( current_val & JSONVALUEMASK);
if(npos >= tape_length) {
return false; // shoud never happen unless at the root
}
uint64_t nextval = pj.tape[npos];
uint8_t nexttype = (nextval >> 56);
if((nexttype == ']') || (nexttype == '}')) {
return false; // we reached the end of the scope
}
location = npos;
current_val = nextval;
current_type = nexttype;
return true;
}
size_t increment = (current_type == 'd' || current_type == 'l') ? 2 : 1;
if(location + increment >= tape_length) { return false;
}
uint64_t nextval = pj.tape[location + increment];
uint8_t nexttype = (nextval >> 56);
if((nexttype == ']') || (nexttype == '}')) {
return false; // we reached the end of the scope
}
location = location + increment;
current_val = nextval;
current_type = nexttype;
return true;
}
bool ParsedJson::iterator::prev() {
if(location - 1 < depthindex[depth].start_of_scope) { return false;
}
location -= 1;
current_val = pj.tape[location];
current_type = (current_val >> 56);
if ((current_type == ']') || (current_type == '}')){
// we need to jump
size_t new_location = ( current_val & JSONVALUEMASK);
if(new_location < depthindex[depth].start_of_scope) {
return false; // shoud never happen
}
location = new_location;
current_val = pj.tape[location];
current_type = (current_val >> 56);
}
return true;
}
bool ParsedJson::iterator::up() {
if(depth == 1) {
return false; // don't allow moving back to root
}
to_start_scope();
// next we just move to the previous value
depth--;
location -= 1;
current_val = pj.tape[location];
current_type = (current_val >> 56);
return true;
}
bool ParsedJson::iterator::down() {
if(location + 1 >= tape_length) { return false;
}
if ((current_type == '[') || (current_type == '{')) {
size_t npos = (current_val & JSONVALUEMASK);
if(npos == location + 2) {
return false; // we have an empty scope
}
depth++;
location = location + 1;
depthindex[depth].start_of_scope = location;
depthindex[depth].scope_type = current_type;
current_val = pj.tape[location];
current_type = (current_val >> 56);
return true;
}
return false;
}
void ParsedJson::iterator::to_start_scope() {
location = depthindex[depth].start_of_scope;
current_val = pj.tape[location];
current_type = (current_val >> 56);
}
bool ParsedJson::iterator::print(std::ostream &os, bool escape_strings) const {
if(!isOk()) {
return false;
}
switch (current_type) {
case '"': // we have a string
os << '"';
if(escape_strings) {
print_with_escapes(get_string(), os, get_string_length());
} else {
// was: os << get_string();, but given that we can include null chars, we have to do something crazier:
std::copy(get_string(), get_string() + get_string_length(), std::ostream_iterator<char>(os));
}
os << '"';
break;
case 'l': // we have a long int
os << get_integer();
break;
case 'd':
os << get_double();
break;
case 'n': // we have a null
os << "null";
break;
case 't': // we have a true
os << "true";
break;
case 'f': // we have a false
os << "false";
break;
case '{': // we have an object
case '}': // we end an object
case '[': // we start an array
case ']': // we end an array
os << static_cast<char>(current_type);
break;
default:
return false;
}
return true;
}
/* end file src/parsedjsoniterator.cpp */