simdjson/singleheader/simdjson.h

5096 lines
168 KiB
C++

/* auto-generated on Thu 2 Apr 2020 18:58:25 EDT. Do not edit! */
/* begin file include/simdjson.h */
#ifndef SIMDJSON_H
#define SIMDJSON_H
/**
* @mainpage
*
* Check the [README.md](https://github.com/lemire/simdjson/blob/master/README.md#simdjson--parsing-gigabytes-of-json-per-second).
*/
/* begin file include/simdjson/compiler_check.h */
#ifndef SIMDJSON_COMPILER_CHECK_H
#define SIMDJSON_COMPILER_CHECK_H
#ifndef __cplusplus
#error simdjson requires a C++ compiler
#endif
#ifndef SIMDJSON_CPLUSPLUS
#if defined(_MSVC_LANG) && !defined(__clang__)
#define SIMDJSON_CPLUSPLUS (_MSC_VER == 1900 ? 201103L : _MSVC_LANG)
#else
#define SIMDJSON_CPLUSPLUS __cplusplus
#endif
#endif
#if (SIMDJSON_CPLUSPLUS < 201703L)
#error simdjson requires a compiler compliant with the C++17 standard
#endif
#endif // SIMDJSON_COMPILER_CHECK_H
/* end file include/simdjson/compiler_check.h */
// Public API
/* begin file include/simdjson/simdjson_version.h */
// /include/simdjson/simdjson_version.h automatically generated by release.py,
// do not change by hand
#ifndef SIMDJSON_SIMDJSON_VERSION_H
#define SIMDJSON_SIMDJSON_VERSION_H
/** The version of simdjson being used (major.minor.revision) */
#define SIMDJSON_VERSION 0.3.1
namespace simdjson {
enum {
/**
* The major version (MAJOR.minor.revision) of simdjson being used.
*/
SIMDJSON_VERSION_MAJOR = 0,
/**
* The minor version (major.MINOR.revision) of simdjson being used.
*/
SIMDJSON_VERSION_MINOR = 3,
/**
* The revision (major.minor.REVISION) of simdjson being used.
*/
SIMDJSON_VERSION_REVISION = 1
};
} // namespace simdjson
#endif // SIMDJSON_SIMDJSON_VERSION_H
/* end file include/simdjson/simdjson_version.h */
/* begin file include/simdjson/error.h */
#ifndef SIMDJSON_ERROR_H
#define SIMDJSON_ERROR_H
/* begin file include/simdjson/common_defs.h */
#ifndef SIMDJSON_COMMON_DEFS_H
#define SIMDJSON_COMMON_DEFS_H
#include <cassert>
/* begin file include/simdjson/portability.h */
#ifndef SIMDJSON_PORTABILITY_H
#define SIMDJSON_PORTABILITY_H
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#ifdef _MSC_VER
#include <iso646.h>
#endif
#if defined(__x86_64__) || defined(_M_AMD64)
#define IS_X86_64 1
#endif
#if defined(__aarch64__) || defined(_M_ARM64)
#define IS_ARM64 1
#endif
// this is almost standard?
#undef STRINGIFY_IMPLEMENTATION_
#undef STRINGIFY
#define STRINGIFY_IMPLEMENTATION_(a) #a
#define STRINGIFY(a) STRINGIFY_IMPLEMENTATION_(a)
#ifndef SIMDJSON_IMPLEMENTATION_FALLBACK
#define SIMDJSON_IMPLEMENTATION_FALLBACK 1
#endif
#if IS_ARM64
#ifndef SIMDJSON_IMPLEMENTATION_ARM64
#define SIMDJSON_IMPLEMENTATION_ARM64 1
#endif
#define SIMDJSON_IMPLEMENTATION_HASWELL 0
#define SIMDJSON_IMPLEMENTATION_WESTMERE 0
#endif // IS_ARM64
#if IS_X86_64
#ifndef SIMDJSON_IMPLEMENTATION_HASWELL
#define SIMDJSON_IMPLEMENTATION_HASWELL 1
#endif
#ifndef SIMDJSON_IMPLEMENTATION_WESTMERE
#define SIMDJSON_IMPLEMENTATION_WESTMERE 1
#endif
#define SIMDJSON_IMPLEMENTATION_ARM64 0
#endif // IS_X86_64
// we are going to use runtime dispatch
#ifdef IS_X86_64
#ifdef __clang__
// clang does not have GCC push pop
// warning: clang attribute push can't be used within a namespace in clang up
// til 8.0 so TARGET_REGION and UNTARGET_REGION must be *outside* of a
// namespace.
#define TARGET_REGION(T) \
_Pragma(STRINGIFY( \
clang attribute push(__attribute__((target(T))), apply_to = function)))
#define UNTARGET_REGION _Pragma("clang attribute pop")
#elif defined(__GNUC__)
// GCC is easier
#define TARGET_REGION(T) \
_Pragma("GCC push_options") _Pragma(STRINGIFY(GCC target(T)))
#define UNTARGET_REGION _Pragma("GCC pop_options")
#endif // clang then gcc
#endif // x86
// Default target region macros don't do anything.
#ifndef TARGET_REGION
#define TARGET_REGION(T)
#define UNTARGET_REGION
#endif
// under GCC and CLANG, we use these two macros
#define TARGET_HASWELL TARGET_REGION("avx2,bmi,pclmul,lzcnt")
#define TARGET_WESTMERE TARGET_REGION("sse4.2,pclmul")
#define TARGET_ARM64
// Threading is disabled
#undef SIMDJSON_THREADS_ENABLED
// Is threading enabled?
#if defined(BOOST_HAS_THREADS) || defined(_REENTRANT) || defined(_MT)
#define SIMDJSON_THREADS_ENABLED
#endif
#if defined(__clang__)
#define NO_SANITIZE_UNDEFINED __attribute__((no_sanitize("undefined")))
#elif defined(__GNUC__)
#define NO_SANITIZE_UNDEFINED __attribute__((no_sanitize_undefined))
#else
#define NO_SANITIZE_UNDEFINED
#endif
#ifdef _MSC_VER
#include <intrin.h> // visual studio
#endif
#ifdef _MSC_VER
#define simdjson_strcasecmp _stricmp
#else
#define simdjson_strcasecmp strcasecmp
#endif
namespace simdjson {
/** @private portable version of posix_memalign */
static inline void *aligned_malloc(size_t alignment, size_t size) {
void *p;
#ifdef _MSC_VER
p = _aligned_malloc(size, alignment);
#elif defined(__MINGW32__) || defined(__MINGW64__)
p = __mingw_aligned_malloc(size, alignment);
#else
// somehow, if this is used before including "x86intrin.h", it creates an
// implicit defined warning.
if (posix_memalign(&p, alignment, size) != 0) {
return nullptr;
}
#endif
return p;
}
/** @private */
static inline char *aligned_malloc_char(size_t alignment, size_t size) {
return (char *)aligned_malloc(alignment, size);
}
/** @private */
static inline void aligned_free(void *mem_block) {
if (mem_block == nullptr) {
return;
}
#ifdef _MSC_VER
_aligned_free(mem_block);
#elif defined(__MINGW32__) || defined(__MINGW64__)
__mingw_aligned_free(mem_block);
#else
free(mem_block);
#endif
}
/** @private */
static inline void aligned_free_char(char *mem_block) {
aligned_free((void *)mem_block);
}
} // namespace simdjson
#endif // SIMDJSON_PORTABILITY_H
/* end file include/simdjson/portability.h */
namespace simdjson {
#ifndef SIMDJSON_EXCEPTIONS
#if __cpp_exceptions
#define SIMDJSON_EXCEPTIONS 1
#else
#define SIMDJSON_EXCEPTIONS 0
#endif
#endif
/** The maximum document size supported by simdjson. */
constexpr size_t SIMDJSON_MAXSIZE_BYTES = 0xFFFFFFFF;
/**
* The amount of padding needed in a buffer to parse JSON.
*
* the input buf should be readable up to buf + SIMDJSON_PADDING
* this is a stopgap; there should be a better description of the
* main loop and its behavior that abstracts over this
* See https://github.com/lemire/simdjson/issues/174
*/
constexpr size_t SIMDJSON_PADDING = 32;
/**
* By default, simdjson supports this many nested objects and arrays.
*
* This is the default for parser::max_depth().
*/
constexpr size_t DEFAULT_MAX_DEPTH = 1024;
} // namespace simdjson
#if defined(__GNUC__)
// Marks a block with a name so that MCA analysis can see it.
#define BEGIN_DEBUG_BLOCK(name) __asm volatile("# LLVM-MCA-BEGIN " #name);
#define END_DEBUG_BLOCK(name) __asm volatile("# LLVM-MCA-END " #name);
#define DEBUG_BLOCK(name, block) BEGIN_DEBUG_BLOCK(name); block; END_DEBUG_BLOCK(name);
#else
#define BEGIN_DEBUG_BLOCK(name)
#define END_DEBUG_BLOCK(name)
#define DEBUG_BLOCK(name, block)
#endif
#if !defined(_MSC_VER) && !defined(SIMDJSON_NO_COMPUTED_GOTO)
// Implemented using Labels as Values which works in GCC and CLANG (and maybe
// also in Intel's compiler), but won't work in MSVC.
#define SIMDJSON_USE_COMPUTED_GOTO
#endif
// Align to N-byte boundary
#define ROUNDUP_N(a, n) (((a) + ((n)-1)) & ~((n)-1))
#define ROUNDDOWN_N(a, n) ((a) & ~((n)-1))
#define ISALIGNED_N(ptr, n) (((uintptr_t)(ptr) & ((n)-1)) == 0)
#ifdef _MSC_VER
#define really_inline __forceinline
#define never_inline __declspec(noinline)
#define UNUSED
#define WARN_UNUSED
#ifndef likely
#define likely(x) x
#endif
#ifndef unlikely
#define unlikely(x) x
#endif
#define SIMDJSON_PUSH_DISABLE_WARNINGS __pragma(warning( push ))
#define SIMDJSON_PUSH_DISABLE_ALL_WARNINGS __pragma(warning( push, 0 ))
#define SIMDJSON_DISABLE_VS_WARNING(WARNING_NUMBER) __pragma(warning( disable : WARNING_NUMBER ))
#define SIMDJSON_DISABLE_DEPRECATED_WARNING SIMDJSON_DISABLE_VS_WARNING(4996)
#define SIMDJSON_POP_DISABLE_WARNINGS __pragma(warning( pop ))
#else // MSC_VER
#define really_inline inline __attribute__((always_inline, unused))
#define never_inline inline __attribute__((noinline, unused))
#define UNUSED __attribute__((unused))
#define WARN_UNUSED __attribute__((warn_unused_result))
#ifndef likely
#define likely(x) __builtin_expect(!!(x), 1)
#endif
#ifndef unlikely
#define unlikely(x) __builtin_expect(!!(x), 0)
#endif
#define SIMDJSON_PUSH_DISABLE_WARNINGS _Pragma("GCC diagnostic push")
// gcc doesn't seem to disable all warnings with all and extra, add warnings here as necessary
#define SIMDJSON_PUSH_DISABLE_ALL_WARNINGS SIMDJSON_PUSH_DISABLE_WARNINGS \
SIMDJSON_DISABLE_GCC_WARNING(-Wall) \
SIMDJSON_DISABLE_GCC_WARNING(-Wextra) \
SIMDJSON_DISABLE_GCC_WARNING(-Wshadow) \
SIMDJSON_DISABLE_GCC_WARNING(-Wunused-parameter) \
SIMDJSON_DISABLE_GCC_WARNING(-Wimplicit-fallthrough)
#define SIMDJSON_PRAGMA(P) _Pragma(#P)
#define SIMDJSON_DISABLE_GCC_WARNING(WARNING) SIMDJSON_PRAGMA(GCC diagnostic ignored #WARNING)
#define SIMDJSON_DISABLE_DEPRECATED_WARNING SIMDJSON_DISABLE_GCC_WARNING(-Wdeprecated-declarations)
#define SIMDJSON_POP_DISABLE_WARNINGS _Pragma("GCC diagnostic pop")
#endif // MSC_VER
#endif // SIMDJSON_COMMON_DEFS_H
/* end file include/simdjson/portability.h */
#include <string>
#include <utility>
namespace simdjson {
/**
* All possible errors returned by simdjson.
*/
enum error_code {
SUCCESS = 0, ///< No error
SUCCESS_AND_HAS_MORE, ///< @private No error and buffer still has more data
CAPACITY, ///< This parser can't support a document that big
MEMALLOC, ///< Error allocating memory, most likely out of memory
TAPE_ERROR, ///< Something went wrong while writing to the tape (stage 2), this is a generic error
DEPTH_ERROR, ///< Your document exceeds the user-specified depth limitation
STRING_ERROR, ///< Problem while parsing a string
T_ATOM_ERROR, ///< Problem while parsing an atom starting with the letter 't'
F_ATOM_ERROR, ///< Problem while parsing an atom starting with the letter 'f'
N_ATOM_ERROR, ///< Problem while parsing an atom starting with the letter 'n'
NUMBER_ERROR, ///< Problem while parsing a number
UTF8_ERROR, ///< the input is not valid UTF-8
UNINITIALIZED, ///< unknown error, or uninitialized document
EMPTY, ///< no structural element found
UNESCAPED_CHARS, ///< found unescaped characters in a string.
UNCLOSED_STRING, ///< missing quote at the end
UNSUPPORTED_ARCHITECTURE, ///< unsupported architecture
INCORRECT_TYPE, ///< JSON element has a different type than user expected
NUMBER_OUT_OF_RANGE, ///< JSON number does not fit in 64 bits
INDEX_OUT_OF_BOUNDS, ///< JSON array index too large
NO_SUCH_FIELD, ///< JSON field not found in object
IO_ERROR, ///< Error reading a file
INVALID_JSON_POINTER, ///< Invalid JSON pointer reference
INVALID_URI_FRAGMENT, ///< Invalid URI fragment
UNEXPECTED_ERROR, ///< indicative of a bug in simdjson
/** @private Number of error codes */
NUM_ERROR_CODES
};
/**
* Get the error message for the given error code.
*
* dom::parser parser;
* auto [doc, error] = parser.parse("foo");
* if (error) { printf("Error: %s\n", error_message(error)); }
*
* @return The error message.
*/
inline const char *error_message(error_code error) noexcept;
/**
* Write the error message to the output stream
*/
inline std::ostream& operator<<(std::ostream& out, error_code error) noexcept;
/**
* Exception thrown when an exception-supporting simdjson method is called
*/
struct simdjson_error : public std::exception {
/**
* Create an exception from a simdjson error code.
* @param error The error code
*/
simdjson_error(error_code error) noexcept : _error{error} { }
/** The error message */
const char *what() const noexcept { return error_message(error()); }
/** The error code */
error_code error() const noexcept { return _error; }
private:
/** The error code that was used */
error_code _error;
};
namespace internal {
/**
* The result of a simdjson operation that could fail.
*
* Gives the option of reading error codes, or throwing an exception by casting to the desired result.
*
* This is a base class for implementations that want to add functions to the result type for
* chaining.
*
* Override like:
*
* struct simdjson_result<T> : public internal::simdjson_result_base<T> {
* simdjson_result() noexcept : internal::simdjson_result_base<T>() {}
* simdjson_result(error_code error) noexcept : internal::simdjson_result_base<T>(error) {}
* simdjson_result(T &&value) noexcept : internal::simdjson_result_base<T>(std::forward(value)) {}
* simdjson_result(T &&value, error_code error) noexcept : internal::simdjson_result_base<T>(value, error) {}
* // Your extra methods here
* }
*
* Then any method returning simdjson_result<T> will be chainable with your methods.
*/
template<typename T>
struct simdjson_result_base : public std::pair<T, error_code> {
/**
* Create a new empty result with error = UNINITIALIZED.
*/
really_inline simdjson_result_base() noexcept;
/**
* Create a new error result.
*/
really_inline simdjson_result_base(error_code error) noexcept;
/**
* Create a new successful result.
*/
really_inline simdjson_result_base(T &&value) noexcept;
/**
* Create a new result with both things (use if you don't want to branch when creating the result).
*/
really_inline simdjson_result_base(T &&value, error_code error) noexcept;
/**
* Move the value and the error to the provided variables.
*/
really_inline void tie(T &value, error_code &error) && noexcept;
/**
* The error.
*/
really_inline error_code error() const noexcept;
#if SIMDJSON_EXCEPTIONS
/**
* Get the result value.
*
* @throw simdjson_error if there was an error.
*/
really_inline T& value() noexcept(false);
/**
* Take the result value (move it).
*
* @throw simdjson_error if there was an error.
*/
really_inline T&& take_value() && noexcept(false);
/**
* Cast to the value (will throw on error).
*
* @throw simdjson_error if there was an error.
*/
really_inline operator T&&() && noexcept(false);
#endif // SIMDJSON_EXCEPTIONS
}; // struct simdjson_result_base
} // namespace internal
/**
* The result of a simdjson operation that could fail.
*
* Gives the option of reading error codes, or throwing an exception by casting to the desired result.
*/
template<typename T>
struct simdjson_result : public internal::simdjson_result_base<T> {
/**
* @private Create a new empty result with error = UNINITIALIZED.
*/
really_inline simdjson_result() noexcept;
/**
* @private Create a new error result.
*/
really_inline simdjson_result(T &&value) noexcept;
/**
* @private Create a new successful result.
*/
really_inline simdjson_result(error_code error_code) noexcept;
/**
* @private Create a new result with both things (use if you don't want to branch when creating the result).
*/
really_inline simdjson_result(T &&value, error_code error) noexcept;
/**
* Move the value and the error to the provided variables.
*/
really_inline void tie(T& t, error_code & e) && noexcept;
/**
* The error.
*/
really_inline error_code error() const noexcept;
#if SIMDJSON_EXCEPTIONS
/**
* Get the result value.
*
* @throw simdjson_error if there was an error.
*/
really_inline T& value() noexcept(false);
/**
* Take the result value (move it).
*
* @throw simdjson_error if there was an error.
*/
really_inline T&& take_value() && noexcept(false);
/**
* Cast to the value (will throw on error).
*
* @throw simdjson_error if there was an error.
*/
really_inline operator T&&() && noexcept(false);
#endif // SIMDJSON_EXCEPTIONS
}; // struct simdjson_result
/**
* @deprecated This is an alias and will be removed, use error_code instead
*/
using ErrorValues [[deprecated("This is an alias and will be removed, use error_code instead")]] = error_code;
/**
* @deprecated Error codes should be stored and returned as `error_code`, use `error_message()` instead.
*/
[[deprecated("Error codes should be stored and returned as `error_code`, use `error_message()` instead.")]]
inline const std::string &error_message(int error) noexcept;
} // namespace simdjson
#endif // SIMDJSON_ERROR_H
/* end file include/simdjson/portability.h */
/* begin file include/simdjson/padded_string.h */
#ifndef SIMDJSON_PADDED_STRING_H
#define SIMDJSON_PADDED_STRING_H
#include <cstring>
#include <memory>
#include <string>
namespace simdjson {
/**
* String with extra allocation for ease of use with parser::parse()
*
* This is a move-only class, it cannot be copied.
*/
struct padded_string final {
/**
* Create a new, empty padded string.
*/
explicit inline padded_string() noexcept;
/**
* Create a new padded string buffer.
*
* @param length the size of the string.
*/
explicit inline padded_string(size_t length) noexcept;
/**
* Create a new padded string by copying the given input.
*
* @param data the buffer to copy
* @param length the number of bytes to copy
*/
explicit inline padded_string(const char *data, size_t length) noexcept;
/**
* Create a new padded string by copying the given input.
*
* @param str_ the string to copy
*/
inline padded_string(const std::string & str_ ) noexcept;
/**
* Create a new padded string by copying the given input.
*
* @param str_ the string to copy
*/
inline padded_string(std::string_view sv_) noexcept;
/**
* Move one padded string into another.
*
* The original padded string will be reduced to zero capacity.
*
* @param o the string to move.
*/
inline padded_string(padded_string &&o) noexcept;
/**
* Move one padded string into another.
*
* The original padded string will be reduced to zero capacity.
*
* @param o the string to move.
*/
inline padded_string &operator=(padded_string &&o) noexcept;
inline void swap(padded_string &o) noexcept;
~padded_string() noexcept;
/**
* The length of the string.
*
* Does not include padding.
*/
size_t size() const noexcept;
/**
* The length of the string.
*
* Does not include padding.
*/
size_t length() const noexcept;
/**
* The string data.
**/
const char *data() const noexcept;
/**
* The string data.
**/
char *data() noexcept;
/**
* Create a std::string_view with the same content.
*/
operator std::string_view() const;
/**
* Load this padded string from a file.
*
* @param path the path to the file.
**/
inline static simdjson_result<padded_string> load(const std::string &path) noexcept;
private:
padded_string &operator=(const padded_string &o) = delete;
padded_string(const padded_string &o) = delete;
size_t viable_size;
char *data_ptr{nullptr};
}; // padded_string
} // namespace simdjson
// This is deliberately outside of simdjson so that people get it without having to use the namespace
inline simdjson::padded_string operator "" _padded(const char *str, size_t len) {
return simdjson::padded_string(str, len);
}
namespace simdjson::internal {
// low-level function to allocate memory with padding so we can read past the
// "length" bytes safely. if you must provide a pointer to some data, create it
// with this function: length is the max. size in bytes of the string caller is
// responsible to free the memory (free(...))
inline char *allocate_padded_buffer(size_t length) noexcept;
} // namespace simdjson::internal;
#endif // SIMDJSON_PADDED_STRING_H
/* end file include/simdjson/padded_string.h */
/* begin file include/simdjson/implementation.h */
#ifndef SIMDJSON_IMPLEMENTATION_H
#define SIMDJSON_IMPLEMENTATION_H
#include <optional>
#include <string>
#include <atomic>
#include <vector>
/* begin file include/simdjson/document.h */
#ifndef SIMDJSON_DOCUMENT_H
#define SIMDJSON_DOCUMENT_H
#include <cstring>
#include <memory>
#include <string>
#include <limits>
#include <sstream>
/* begin file include/simdjson/simdjson.h */
/**
* @file
* @deprecated We'll be removing this file so it isn't confused with the top level simdjson.h
*/
#ifndef SIMDJSON_SIMDJSON_H
#define SIMDJSON_SIMDJSON_H
#endif // SIMDJSON_H
/* end file include/simdjson/simdjson.h */
namespace simdjson::dom {
class parser;
class element;
class array;
class object;
class key_value_pair;
class document;
class document_stream;
/** The default batch size for parser.parse_many() and parser.load_many() */
static constexpr size_t DEFAULT_BATCH_SIZE = 1000000;
} // namespace simdjson::dom
namespace simdjson {
template<> struct simdjson_result<dom::element>;
template<> struct simdjson_result<dom::array>;
template<> struct simdjson_result<dom::object>;
template<typename T>
class minify;
} // namespace simdjson
namespace simdjson::internal {
using namespace simdjson::dom;
constexpr const uint64_t JSON_VALUE_MASK = 0x00FFFFFFFFFFFFFF;
/**
* The possible types in the tape. Internal only.
*/
enum class tape_type {
ROOT = 'r',
START_ARRAY = '[',
START_OBJECT = '{',
END_ARRAY = ']',
END_OBJECT = '}',
STRING = '"',
INT64 = 'l',
UINT64 = 'u',
DOUBLE = 'd',
TRUE_VALUE = 't',
FALSE_VALUE = 'f',
NULL_VALUE = 'n'
};
/**
* A reference to an element on the tape. Internal only.
*/
class tape_ref {
public:
really_inline tape_ref() noexcept;
really_inline tape_ref(const document *doc, size_t json_index) noexcept;
inline size_t after_element() const noexcept;
really_inline tape_type tape_ref_type() const noexcept;
really_inline uint64_t tape_value() const noexcept;
template<typename T>
really_inline T next_tape_value() const noexcept;
inline std::string_view get_string_view() const noexcept;
/** The document this element references. */
const document *doc;
/** The index of this element on `doc.tape[]` */
size_t json_index;
};
} // namespace simdjson::internal
namespace simdjson::dom {
/**
* The actual concrete type of a JSON element
* This is the type it is most easily cast to with get<>.
*/
enum class element_type {
ARRAY, ///< dom::array
OBJECT, ///< dom::object
INT64, ///< int64_t
UINT64, ///< uint64_t: any integer that fits in uint64_t but *not* int64_t
DOUBLE, ///< double: Any number with a "." or "e" that fits in double.
STRING, ///< std::string_view
BOOL, ///< bool
NULL_VALUE ///< null
};
/**
* JSON array.
*/
class array : protected internal::tape_ref {
public:
/** Create a new, invalid array */
really_inline array() noexcept;
class iterator : protected internal::tape_ref {
public:
/**
* Get the actual value
*/
inline element operator*() const noexcept;
/**
* Get the next value.
*
* Part of the std::iterator interface.
*/
inline void operator++() noexcept;
/**
* Check if these values come from the same place in the JSON.
*
* Part of the std::iterator interface.
*/
inline bool operator!=(const iterator& other) const noexcept;
private:
really_inline iterator(const document *doc, size_t json_index) noexcept;
friend class array;
};
/**
* Return the first array element.
*
* Part of the std::iterable interface.
*/
inline iterator begin() const noexcept;
/**
* One past the last array element.
*
* Part of the std::iterable interface.
*/
inline iterator end() const noexcept;
/**
* Get the value associated with the given JSON pointer.
*
* dom::parser parser;
* array a = parser.parse(R"([ { "foo": { "a": [ 10, 20, 30 ] }} ])");
* a.at("0/foo/a/1") == 20
* a.at("0")["foo"]["a"].at(1) == 20
*
* @return The value associated with the given JSON pointer, or:
* - NO_SUCH_FIELD if a field does not exist in an object
* - INDEX_OUT_OF_BOUNDS if an array index is larger than an array length
* - INCORRECT_TYPE if a non-integer is used to access an array
* - INVALID_JSON_POINTER if the JSON pointer is invalid and cannot be parsed
*/
inline simdjson_result<element> at(const std::string_view &json_pointer) const noexcept;
/**
* Get the value at the given index.
*
* @return The value at the given index, or:
* - INDEX_OUT_OF_BOUNDS if the array index is larger than an array length
*/
inline simdjson_result<element> at(size_t index) const noexcept;
private:
really_inline array(const document *doc, size_t json_index) noexcept;
friend class element;
friend struct simdjson_result<element>;
template<typename T>
friend class simdjson::minify;
};
/**
* JSON object.
*/
class object : protected internal::tape_ref {
public:
/** Create a new, invalid object */
really_inline object() noexcept;
class iterator : protected internal::tape_ref {
public:
/**
* Get the actual key/value pair
*/
inline const key_value_pair operator*() const noexcept;
/**
* Get the next key/value pair.
*
* Part of the std::iterator interface.
*/
inline void operator++() noexcept;
/**
* Check if these key value pairs come from the same place in the JSON.
*
* Part of the std::iterator interface.
*/
inline bool operator!=(const iterator& other) const noexcept;
/**
* Get the key of this key/value pair.
*/
inline std::string_view key() const noexcept;
/**
* Get the key of this key/value pair.
*/
inline const char *key_c_str() const noexcept;
/**
* Get the value of this key/value pair.
*/
inline element value() const noexcept;
private:
really_inline iterator(const document *doc, size_t json_index) noexcept;
friend class object;
};
/**
* Return the first key/value pair.
*
* Part of the std::iterable interface.
*/
inline iterator begin() const noexcept;
/**
* One past the last key/value pair.
*
* Part of the std::iterable interface.
*/
inline iterator end() const noexcept;
/**
* Get the value associated with the given key.
*
* The key will be matched against **unescaped** JSON:
*
* dom::parser parser;
* parser.parse(R"({ "a\n": 1 })")["a\n"].get<uint64_t>().value == 1
* parser.parse(R"({ "a\n": 1 })")["a\\n"].get<uint64_t>().error == NO_SUCH_FIELD
*
* @return The value associated with this field, or:
* - NO_SUCH_FIELD if the field does not exist in the object
* - INCORRECT_TYPE if this is not an object
*/
inline simdjson_result<element> operator[](const std::string_view &key) const noexcept;
/**
* Get the value associated with the given key.
*
* The key will be matched against **unescaped** JSON:
*
* dom::parser parser;
* parser.parse(R"({ "a\n": 1 })")["a\n"].get<uint64_t>().value == 1
* parser.parse(R"({ "a\n": 1 })")["a\\n"].get<uint64_t>().error == NO_SUCH_FIELD
*
* @return The value associated with this field, or:
* - NO_SUCH_FIELD if the field does not exist in the object
* - INCORRECT_TYPE if this is not an object
*/
inline simdjson_result<element> operator[](const char *key) const noexcept;
/**
* Get the value associated with the given JSON pointer.
*
* dom::parser parser;
* object obj = parser.parse(R"({ "foo": { "a": [ 10, 20, 30 ] }})");
* obj.at("foo/a/1") == 20
* obj.at("foo")["a"].at(1) == 20
*
* @return The value associated with the given JSON pointer, or:
* - NO_SUCH_FIELD if a field does not exist in an object
* - INDEX_OUT_OF_BOUNDS if an array index is larger than an array length
* - INCORRECT_TYPE if a non-integer is used to access an array
* - INVALID_JSON_POINTER if the JSON pointer is invalid and cannot be parsed
*/
inline simdjson_result<element> at(const std::string_view &json_pointer) const noexcept;
/**
* Get the value associated with the given key.
*
* The key will be matched against **unescaped** JSON:
*
* dom::parser parser;
* parser.parse(R"({ "a\n": 1 })")["a\n"].get<uint64_t>().value == 1
* parser.parse(R"({ "a\n": 1 })")["a\\n"].get<uint64_t>().error == NO_SUCH_FIELD
*
* @return The value associated with this field, or:
* - NO_SUCH_FIELD if the field does not exist in the object
*/
inline simdjson_result<element> at_key(const std::string_view &key) const noexcept;
/**
* Get the value associated with the given key in a case-insensitive manner.
*
* Note: The key will be matched against **unescaped** JSON.
*
* @return The value associated with this field, or:
* - NO_SUCH_FIELD if the field does not exist in the object
*/
inline simdjson_result<element> at_key_case_insensitive(const std::string_view &key) const noexcept;
private:
really_inline object(const document *doc, size_t json_index) noexcept;
friend class element;
friend struct simdjson_result<element>;
template<typename T>
friend class simdjson::minify;
};
/**
* A parsed JSON document.
*
* This class cannot be copied, only moved, to avoid unintended allocations.
*/
class document {
public:
/**
* Create a document container with zero capacity.
*
* The parser will allocate capacity as needed.
*/
document() noexcept = default;
~document() noexcept = default;
/**
* Take another document's buffers.
*
* @param other The document to take. Its capacity is zeroed and it is invalidated.
*/
document(document &&other) noexcept = default;
/** @private */
document(const document &) = delete; // Disallow copying
/**
* Take another document's buffers.
*
* @param other The document to take. Its capacity is zeroed.
*/
document &operator=(document &&other) noexcept = default;
/** @private */
document &operator=(const document &) = delete; // Disallow copying
/**
* Get the root element of this document as a JSON array.
*/
element root() const noexcept;
/**
* @private Dump the raw tape for debugging.
*
* @param os the stream to output to.
* @return false if the tape is likely wrong (e.g., you did not parse a valid JSON).
*/
bool dump_raw_tape(std::ostream &os) const noexcept;
/** @private Structural values. */
std::unique_ptr<uint64_t[]> tape;
/** @private String values.
*
* Should be at least byte_capacity.
*/
std::unique_ptr<uint8_t[]> string_buf;
private:
inline error_code allocate(size_t len) noexcept;
template<typename T>
friend class simdjson::minify;
friend class parser;
}; // class document
/**
* A JSON element.
*
* References an element in a JSON document, representing a JSON null, boolean, string, number,
* array or object.
*/
class element : protected internal::tape_ref {
public:
/** Create a new, invalid element. */
really_inline element() noexcept;
/** The type of this element. */
really_inline element_type type() const noexcept;
/** Whether this element is a json `null`. */
really_inline bool is_null() const noexcept;
/**
* Tell whether the value can be cast to the given primitive type.
*
* Supported types:
* - Boolean: bool
* - Number: double, uint64_t, int64_t
* - String: std::string_view, const char *
* - Array: array
*/
template<typename T>
really_inline bool is() const noexcept;
/**
* Get the value as the given primitive type.
*
* Supported types:
* - Boolean: bool
* - Number: double, uint64_t, int64_t
* - String: std::string_view, const char *
* - Array: array
*
* @returns The value cast to the given type, or:
* INCORRECT_TYPE if the value cannot be cast to the given type.
*/
template<typename T>
really_inline simdjson_result<T> get() const noexcept;
#if SIMDJSON_EXCEPTIONS
/**
* Read this element as a boolean.
*
* @return The boolean value
* @exception simdjson_error(INCORRECT_TYPE) if the JSON element is not a boolean.
*/
inline operator bool() const noexcept(false);
/**
* Read this element as a null-terminated string.
*
* Does *not* convert other types to a string; requires that the JSON type of the element was
* an actual string.
*
* @return The string value.
* @exception simdjson_error(INCORRECT_TYPE) if the JSON element is not a string.
*/
inline explicit operator const char*() const noexcept(false);
/**
* Read this element as a null-terminated string.
*
* Does *not* convert other types to a string; requires that the JSON type of the element was
* an actual string.
*
* @return The string value.
* @exception simdjson_error(INCORRECT_TYPE) if the JSON element is not a string.
*/
inline operator std::string_view() const noexcept(false);
/**
* Read this element as an unsigned integer.
*
* @return The integer value.
* @exception simdjson_error(INCORRECT_TYPE) if the JSON element is not an integer
* @exception simdjson_error(NUMBER_OUT_OF_RANGE) if the integer doesn't fit in 64 bits or is negative
*/
inline operator uint64_t() const noexcept(false);
/**
* Read this element as an signed integer.
*
* @return The integer value.
* @exception simdjson_error(INCORRECT_TYPE) if the JSON element is not an integer
* @exception simdjson_error(NUMBER_OUT_OF_RANGE) if the integer doesn't fit in 64 bits
*/
inline operator int64_t() const noexcept(false);
/**
* Read this element as an double.
*
* @return The double value.
* @exception simdjson_error(INCORRECT_TYPE) if the JSON element is not a number
* @exception simdjson_error(NUMBER_OUT_OF_RANGE) if the integer doesn't fit in 64 bits or is negative
*/
inline operator double() const noexcept(false);
/**
* Read this element as a JSON array.
*
* @return The JSON array.
* @exception simdjson_error(INCORRECT_TYPE) if the JSON element is not an array
*/
inline operator array() const noexcept(false);
/**
* Read this element as a JSON object (key/value pairs).
*
* @return The JSON object.
* @exception simdjson_error(INCORRECT_TYPE) if the JSON element is not an object
*/
inline operator object() const noexcept(false);
/**
* Iterate over each element in this array.
*
* @return The beginning of the iteration.
* @exception simdjson_error(INCORRECT_TYPE) if the JSON element is not an array
*/
inline dom::array::iterator begin() const noexcept(false);
/**
* Iterate over each element in this array.
*
* @return The end of the iteration.
* @exception simdjson_error(INCORRECT_TYPE) if the JSON element is not an array
*/
inline dom::array::iterator end() const noexcept(false);
#endif // SIMDJSON_EXCEPTIONS
/**
* Get the value associated with the given key.
*
* The key will be matched against **unescaped** JSON:
*
* dom::parser parser;
* parser.parse(R"({ "a\n": 1 })")["a\n"].get<uint64_t>().value == 1
* parser.parse(R"({ "a\n": 1 })")["a\\n"].get<uint64_t>().error == NO_SUCH_FIELD
*
* @return The value associated with this field, or:
* - NO_SUCH_FIELD if the field does not exist in the object
* - INCORRECT_TYPE if this is not an object
*/
inline simdjson_result<element> operator[](const std::string_view &key) const noexcept;
/**
* Get the value associated with the given key.
*
* The key will be matched against **unescaped** JSON:
*
* dom::parser parser;
* parser.parse(R"({ "a\n": 1 })")["a\n"].get<uint64_t>().value == 1
* parser.parse(R"({ "a\n": 1 })")["a\\n"].get<uint64_t>().error == NO_SUCH_FIELD
*
* @return The value associated with this field, or:
* - NO_SUCH_FIELD if the field does not exist in the object
* - INCORRECT_TYPE if this is not an object
*/
inline simdjson_result<element> operator[](const char *key) const noexcept;
/**
* Get the value associated with the given JSON pointer.
*
* dom::parser parser;
* element doc = parser.parse(R"({ "foo": { "a": [ 10, 20, 30 ] }})");
* doc.at("/foo/a/1") == 20
* doc.at("/")["foo"]["a"].at(1) == 20
* doc.at("")["foo"]["a"].at(1) == 20
*
* @return The value associated with the given JSON pointer, or:
* - NO_SUCH_FIELD if a field does not exist in an object
* - INDEX_OUT_OF_BOUNDS if an array index is larger than an array length
* - INCORRECT_TYPE if a non-integer is used to access an array
* - INVALID_JSON_POINTER if the JSON pointer is invalid and cannot be parsed
*/
inline simdjson_result<element> at(const std::string_view &json_pointer) const noexcept;
/**
* Get the value at the given index.
*
* @return The value at the given index, or:
* - INDEX_OUT_OF_BOUNDS if the array index is larger than an array length
*/
inline simdjson_result<element> at(size_t index) const noexcept;
/**
* Get the value associated with the given key.
*
* The key will be matched against **unescaped** JSON:
*
* dom::parser parser;
* parser.parse(R"({ "a\n": 1 })")["a\n"].get<uint64_t>().value == 1
* parser.parse(R"({ "a\n": 1 })")["a\\n"].get<uint64_t>().error == NO_SUCH_FIELD
*
* @return The value associated with this field, or:
* - NO_SUCH_FIELD if the field does not exist in the object
*/
inline simdjson_result<element> at_key(const std::string_view &key) const noexcept;
/**
* Get the value associated with the given key in a case-insensitive manner.
*
* Note: The key will be matched against **unescaped** JSON.
*
* @return The value associated with this field, or:
* - NO_SUCH_FIELD if the field does not exist in the object
*/
inline simdjson_result<element> at_key_case_insensitive(const std::string_view &key) const noexcept;
/** @private for debugging. Prints out the root element. */
inline bool dump_raw_tape(std::ostream &out) const noexcept;
private:
really_inline element(const document *doc, size_t json_index) noexcept;
friend class document;
friend class object;
friend class array;
friend struct simdjson_result<element>;
template<typename T>
friend class simdjson::minify;
};
/**
* Key/value pair in an object.
*/
class key_value_pair {
public:
std::string_view key;
element value;
private:
really_inline key_value_pair(const std::string_view &_key, element _value) noexcept;
friend class object;
};
/**
* A persistent document parser.
*
* The parser is designed to be reused, holding the internal buffers necessary to do parsing,
* as well as memory for a single document. The parsed document is overwritten on each parse.
*
* This class cannot be copied, only moved, to avoid unintended allocations.
*
* @note This is not thread safe: one parser cannot produce two documents at the same time!
*/
class parser {
public:
/**
* Create a JSON parser.
*
* The new parser will have zero capacity.
*
* @param max_capacity The maximum document length the parser can automatically handle. The parser
* will allocate more capacity on an as needed basis (when it sees documents too big to handle)
* up to this amount. The parser still starts with zero capacity no matter what this number is:
* to allocate an initial capacity, call allocate() after constructing the parser.
* Defaults to SIMDJSON_MAXSIZE_BYTES (the largest single document simdjson can process).
*/
really_inline parser(size_t max_capacity = SIMDJSON_MAXSIZE_BYTES) noexcept;
/**
* Take another parser's buffers and state.
*
* @param other The parser to take. Its capacity is zeroed.
*/
parser(parser &&other) = default;
parser(const parser &) = delete; ///< @private Disallow copying
/**
* Take another parser's buffers and state.
*
* @param other The parser to take. Its capacity is zeroed.
*/
parser &operator=(parser &&other) = default;
parser &operator=(const parser &) = delete; ///< @private Disallow copying
/** Deallocate the JSON parser. */
~parser()=default;
/**
* Load a JSON document from a file and return a reference to it.
*
* dom::parser parser;
* const element doc = parser.load("jsonexamples/twitter.json");
*
* ### IMPORTANT: Document Lifetime
*
* The JSON document still lives in the parser: this is the most efficient way to parse JSON
* documents because it reuses the same buffers, but you *must* use the document before you
* destroy the parser or call parse() again.
*
* ### Parser Capacity
*
* If the parser's current capacity is less than the file length, it will allocate enough capacity
* to handle it (up to max_capacity).
*
* @param path The path to load.
* @return The document, or an error:
* - IO_ERROR if there was an error opening or reading the file.
* - MEMALLOC if the parser does not have enough capacity and memory allocation fails.
* - CAPACITY if the parser does not have enough capacity and len > max_capacity.
* - other json errors if parsing fails.
*/
inline simdjson_result<element> load(const std::string &path) noexcept;
/**
* Parse a JSON document and return a temporary reference to it.
*
* dom::parser parser;
* element doc = parser.parse(buf, len);
*
* ### IMPORTANT: Document Lifetime
*
* The JSON document still lives in the parser: this is the most efficient way to parse JSON
* documents because it reuses the same buffers, but you *must* use the document before you
* destroy the parser or call parse() again.
*
* ### REQUIRED: Buffer Padding
*
* The buffer must have at least SIMDJSON_PADDING extra allocated bytes. It does not matter what
* those bytes are initialized to, as long as they are allocated.
*
* If realloc_if_needed is true, it is assumed that the buffer does *not* have enough padding,
* and it is copied into an enlarged temporary buffer before parsing.
*
* ### Parser Capacity
*
* If the parser's current capacity is less than len, it will allocate enough capacity
* to handle it (up to max_capacity).
*
* @param buf The JSON to parse. Must have at least len + SIMDJSON_PADDING allocated bytes, unless
* realloc_if_needed is true.
* @param len The length of the JSON.
* @param realloc_if_needed Whether to reallocate and enlarge the JSON buffer to add padding.
* @return The document, or an error:
* - MEMALLOC if realloc_if_needed is true or the parser does not have enough capacity,
* and memory allocation fails.
* - CAPACITY if the parser does not have enough capacity and len > max_capacity.
* - other json errors if parsing fails.
*/
inline simdjson_result<element> parse(const uint8_t *buf, size_t len, bool realloc_if_needed = true) noexcept;
/** @overload parse(const uint8_t *buf, size_t len, bool realloc_if_needed) */
really_inline simdjson_result<element> parse(const char *buf, size_t len, bool realloc_if_needed = true) noexcept;
/** @overload parse(const uint8_t *buf, size_t len, bool realloc_if_needed) */
really_inline simdjson_result<element> parse(const std::string &s) noexcept;
/** @overload parse(const uint8_t *buf, size_t len, bool realloc_if_needed) */
really_inline simdjson_result<element> parse(const padded_string &s) noexcept;
/** @private We do not want to allow implicit conversion from C string to std::string. */
really_inline simdjson_result<element> parse(const char *buf) noexcept = delete;
/**
* Load a file containing many JSON documents.
*
* dom::parser parser;
* for (const element doc : parser.load_many(path)) {
* cout << std::string(doc["title"]) << endl;
* }
*
* ### Format
*
* The file must contain a series of one or more JSON documents, concatenated into a single
* buffer, separated by whitespace. It effectively parses until it has a fully valid document,
* then starts parsing the next document at that point. (It does this with more parallelism and
* lookahead than you might think, though.)
*
* documents that consist of an object or array may omit the whitespace between them, concatenating
* with no separator. documents that consist of a single primitive (i.e. documents that are not
* arrays or objects) MUST be separated with whitespace.
*
* ### Error Handling
*
* All errors are returned during iteration: if there is a global error such as memory allocation,
* it will be yielded as the first result. Iteration always stops after the first error.
*
* As with all other simdjson methods, non-exception error handling is readily available through
* the same interface, requiring you to check the error before using the document:
*
* dom::parser parser;
* for (auto [doc, error] : parser.load_many(path)) {
* if (error) { cerr << error << endl; exit(1); }
* cout << std::string(doc["title"]) << endl;
* }
*
* ### Threads
*
* When compiled with SIMDJSON_THREADS_ENABLED, this method will use a single thread under the
* hood to do some lookahead.
*
* ### Parser Capacity
*
* If the parser's current capacity is less than batch_size, it will allocate enough capacity
* to handle it (up to max_capacity).
*
* @param s The concatenated JSON to parse. Must have at least len + SIMDJSON_PADDING allocated bytes.
* @param batch_size The batch size to use. MUST be larger than the largest document. The sweet
* spot is cache-related: small enough to fit in cache, yet big enough to
* parse as many documents as possible in one tight loop.
* Defaults to 10MB, which has been a reasonable sweet spot in our tests.
* @return The stream. If there is an error, it will be returned during iteration. An empty input
* will yield 0 documents rather than an EMPTY error. Errors:
* - IO_ERROR if there was an error opening or reading the file.
* - MEMALLOC if the parser does not have enough capacity and memory allocation fails.
* - CAPACITY if the parser does not have enough capacity and batch_size > max_capacity.
* - other json errors if parsing fails.
*/
inline document_stream load_many(const std::string &path, size_t batch_size = DEFAULT_BATCH_SIZE) noexcept;
/**
* Parse a buffer containing many JSON documents.
*
* dom::parser parser;
* for (const element doc : parser.parse_many(buf, len)) {
* cout << std::string(doc["title"]) << endl;
* }
*
* ### Format
*
* The buffer must contain a series of one or more JSON documents, concatenated into a single
* buffer, separated by whitespace. It effectively parses until it has a fully valid document,
* then starts parsing the next document at that point. (It does this with more parallelism and
* lookahead than you might think, though.)
*
* documents that consist of an object or array may omit the whitespace between them, concatenating
* with no separator. documents that consist of a single primitive (i.e. documents that are not
* arrays or objects) MUST be separated with whitespace.
*
* ### Error Handling
*
* All errors are returned during iteration: if there is a global error such as memory allocation,
* it will be yielded as the first result. Iteration always stops after the first error.
*
* As with all other simdjson methods, non-exception error handling is readily available through
* the same interface, requiring you to check the error before using the document:
*
* dom::parser parser;
* for (auto [doc, error] : parser.parse_many(buf, len)) {
* if (error) { cerr << error << endl; exit(1); }
* cout << std::string(doc["title"]) << endl;
* }
*
* ### REQUIRED: Buffer Padding
*
* The buffer must have at least SIMDJSON_PADDING extra allocated bytes. It does not matter what
* those bytes are initialized to, as long as they are allocated.
*
* ### Threads
*
* When compiled with SIMDJSON_THREADS_ENABLED, this method will use a single thread under the
* hood to do some lookahead.
*
* ### Parser Capacity
*
* If the parser's current capacity is less than batch_size, it will allocate enough capacity
* to handle it (up to max_capacity).
*
* @param buf The concatenated JSON to parse. Must have at least len + SIMDJSON_PADDING allocated bytes.
* @param len The length of the concatenated JSON.
* @param batch_size The batch size to use. MUST be larger than the largest document. The sweet
* spot is cache-related: small enough to fit in cache, yet big enough to
* parse as many documents as possible in one tight loop.
* Defaults to 10MB, which has been a reasonable sweet spot in our tests.
* @return The stream. If there is an error, it will be returned during iteration. An empty input
* will yield 0 documents rather than an EMPTY error. Errors:
* - MEMALLOC if the parser does not have enough capacity and memory allocation fails
* - CAPACITY if the parser does not have enough capacity and batch_size > max_capacity.
* - other json errors if parsing fails.
*/
inline document_stream parse_many(const uint8_t *buf, size_t len, size_t batch_size = DEFAULT_BATCH_SIZE) noexcept;
/** @overload parse_many(const uint8_t *buf, size_t len, size_t batch_size) */
inline document_stream parse_many(const char *buf, size_t len, size_t batch_size = DEFAULT_BATCH_SIZE) noexcept;
/** @overload parse_many(const uint8_t *buf, size_t len, size_t batch_size) */
inline document_stream parse_many(const std::string &s, size_t batch_size = DEFAULT_BATCH_SIZE) noexcept;
/** @overload parse_many(const uint8_t *buf, size_t len, size_t batch_size) */
inline document_stream parse_many(const padded_string &s, size_t batch_size = DEFAULT_BATCH_SIZE) noexcept;
/** @private We do not want to allow implicit conversion from C string to std::string. */
really_inline simdjson_result<element> parse_many(const char *buf, size_t batch_size = DEFAULT_BATCH_SIZE) noexcept = delete;
/**
* Ensure this parser has enough memory to process JSON documents up to `capacity` bytes in length
* and `max_depth` depth.
*
* @param capacity The new capacity.
* @param max_depth The new max_depth. Defaults to DEFAULT_MAX_DEPTH.
* @return The error, if there is one.
*/
WARN_UNUSED inline error_code allocate(size_t capacity, size_t max_depth = DEFAULT_MAX_DEPTH) noexcept;
/**
* @private deprecated because it returns bool instead of error_code, which is our standard for
* failures. Use allocate() instead.
*
* Ensure this parser has enough memory to process JSON documents up to `capacity` bytes in length
* and `max_depth` depth.
*
* @param capacity The new capacity.
* @param max_depth The new max_depth. Defaults to DEFAULT_MAX_DEPTH.
* @return true if successful, false if allocation failed.
*/
[[deprecated("Use allocate() instead.")]]
WARN_UNUSED inline bool allocate_capacity(size_t capacity, size_t max_depth = DEFAULT_MAX_DEPTH) noexcept;
/**
* The largest document this parser can support without reallocating.
*
* @return Current capacity, in bytes.
*/
really_inline size_t capacity() const noexcept;
/**
* The largest document this parser can automatically support.
*
* The parser may reallocate internal buffers as needed up to this amount.
*
* @return Maximum capacity, in bytes.
*/
really_inline size_t max_capacity() const noexcept;
/**
* The maximum level of nested object and arrays supported by this parser.
*
* @return Maximum depth, in bytes.
*/
really_inline size_t max_depth() const noexcept;
/**
* Set max_capacity. This is the largest document this parser can automatically support.
*
* The parser may reallocate internal buffers as needed up to this amount.
*
* This call will not allocate or deallocate, even if capacity is currently above max_capacity.
*
* @param max_capacity The new maximum capacity, in bytes.
*/
really_inline void set_max_capacity(size_t max_capacity) noexcept;
/** @private Use the new DOM API instead */
class Iterator;
/** @private Use simdjson_error instead */
using InvalidJSON [[deprecated("Use simdjson_error instead")]] = simdjson_error;
/** @private Next location to write to in the tape */
uint32_t current_loc{0};
/** @private Number of structural indices passed from stage 1 to stage 2 */
uint32_t n_structural_indexes{0};
/** @private Structural indices passed from stage 1 to stage 2 */
std::unique_ptr<uint32_t[]> structural_indexes;
/** @private Tape location of each open { or [ */
std::unique_ptr<uint32_t[]> containing_scope_offset;
#ifdef SIMDJSON_USE_COMPUTED_GOTO
/** @private Return address of each open { or [ */
std::unique_ptr<void*[]> ret_address;
#else
/** @private Return address of each open { or [ */
std::unique_ptr<char[]> ret_address;
#endif
/** @private Next write location in the string buf for stage 2 parsing */
uint8_t *current_string_buf_loc;
/** @private Use `if (parser.parse(...).error())` instead */
bool valid{false};
/** @private Use `parser.parse(...).error()` instead */
error_code error{UNINITIALIZED};
/** @private Use `parser.parse(...).value()` instead */
document doc;
/** @private returns true if the document parsed was valid */
[[deprecated("Use the result of parser.parse() instead")]]
inline bool is_valid() const noexcept;
/**
* @private return an error code corresponding to the last parsing attempt, see
* simdjson.h will return UNITIALIZED if no parsing was attempted
*/
[[deprecated("Use the result of parser.parse() instead")]]
inline int get_error_code() const noexcept;
/** @private return the string equivalent of "get_error_code" */
[[deprecated("Use error_message() on the result of parser.parse() instead, or cout << error")]]
inline std::string get_error_message() const noexcept;
/** @private */
[[deprecated("Use cout << on the result of parser.parse() instead")]]
inline bool print_json(std::ostream &os) const noexcept;
/** @private Private and deprecated: use `parser.parse(...).doc.dump_raw_tape()` instead */
inline bool dump_raw_tape(std::ostream &os) const noexcept;
//
// Parser callbacks: these are internal!
//
/** @private this should be called when parsing (right before writing the tapes) */
inline void init_stage2() noexcept;
really_inline error_code on_error(error_code new_error_code) noexcept; ///< @private
really_inline error_code on_success(error_code success_code) noexcept; ///< @private
really_inline bool on_start_document(uint32_t depth) noexcept; ///< @private
really_inline bool on_start_object(uint32_t depth) noexcept; ///< @private
really_inline bool on_start_array(uint32_t depth) noexcept; ///< @private
// TODO we're not checking this bool
really_inline bool on_end_document(uint32_t depth) noexcept; ///< @private
really_inline bool on_end_object(uint32_t depth) noexcept; ///< @private
really_inline bool on_end_array(uint32_t depth) noexcept; ///< @private
really_inline bool on_true_atom() noexcept; ///< @private
really_inline bool on_false_atom() noexcept; ///< @private
really_inline bool on_null_atom() noexcept; ///< @private
really_inline uint8_t *on_start_string() noexcept; ///< @private
really_inline bool on_end_string(uint8_t *dst) noexcept; ///< @private
really_inline bool on_number_s64(int64_t value) noexcept; ///< @private
really_inline bool on_number_u64(uint64_t value) noexcept; ///< @private
really_inline bool on_number_double(double value) noexcept; ///< @private
private:
/**
* The maximum document length this parser will automatically support.
*
* The parser will not be automatically allocated above this amount.
*/
size_t _max_capacity;
/**
* The maximum document length this parser supports.
*
* Buffers are large enough to handle any document up to this length.
*/
size_t _capacity{0};
/**
* The maximum depth (number of nested objects and arrays) supported by this parser.
*
* Defaults to DEFAULT_MAX_DEPTH.
*/
size_t _max_depth{0};
/**
* The loaded buffer (reused each time load() is called)
*/
std::unique_ptr<char[], decltype(&aligned_free_char)> loaded_bytes;
/** Capacity of loaded_bytes buffer. */
size_t _loaded_bytes_capacity{0};
// all nodes are stored on the doc.tape using a 64-bit word.
//
// strings, double and ints are stored as
// a 64-bit word with a pointer to the actual value
//
//
//
// for objects or arrays, store [ or { at the beginning and } and ] at the
// end. For the openings ([ or {), we annotate them with a reference to the
// location on the doc.tape of the end, and for then closings (} and ]), we
// annotate them with a reference to the location of the opening
//
//
inline void write_tape(uint64_t val, internal::tape_type t) noexcept;
inline void annotate_previous_loc(uint32_t saved_loc, uint64_t val) noexcept;
/**
* Ensure we have enough capacity to handle at least desired_capacity bytes,
* and auto-allocate if not.
*/
inline error_code ensure_capacity(size_t desired_capacity) noexcept;
/** Read the file into loaded_bytes */
inline simdjson_result<size_t> read_file(const std::string &path) noexcept;
friend class parser::Iterator;
friend class document_stream;
}; // class parser
} // namespace simdjson::dom
namespace simdjson {
/**
* Minifies a JSON element or document, printing the smallest possible valid JSON.
*
* dom::parser parser;
* element doc = parser.parse(" [ 1 , 2 , 3 ] "_padded);
* cout << minify(doc) << endl; // prints [1,2,3]
*
*/
template<typename T>
class minify {
public:
/**
* Create a new minifier.
*
* @param _value The document or element to minify.
*/
inline minify(const T &_value) noexcept : value{_value} {}
/**
* Minify JSON to a string.
*/
inline operator std::string() const noexcept { std::stringstream s; s << *this; return s.str(); }
/**
* Minify JSON to an output stream.
*/
inline std::ostream& print(std::ostream& out);
private:
const T &value;
};
/**
* Minify JSON to an output stream.
*
* @param out The output stream.
* @param formatter The minifier.
* @throw if there is an error with the underlying output stream. simdjson itself will not throw.
*/
template<typename T>
inline std::ostream& operator<<(std::ostream& out, minify<T> formatter) { return formatter.print(out); }
namespace dom {
// << operators need to be in the same namespace as the class being output, so C++ can find them
// automatically
/**
* Print JSON to an output stream.
*
* By default, the value will be printed minified.
*
* @param out The output stream.
* @param value The value to print.
* @throw if there is an error with the underlying output stream. simdjson itself will not throw.
*/
inline std::ostream& operator<<(std::ostream& out, const element &value) { return out << minify(value); };
/**
* Print JSON to an output stream.
*
* By default, the value will be printed minified.
*
* @param out The output stream.
* @param value The value to print.
* @throw if there is an error with the underlying output stream. simdjson itself will not throw.
*/
inline std::ostream& operator<<(std::ostream& out, const array &value) { return out << minify(value); }
/**
* Print JSON to an output stream.
*
* By default, the value will be printed minified.
*
* @param out The output stream.
* @param value The value to print.
* @throw if there is an error with the underlying output stream. simdjson itself will not throw.
*/
inline std::ostream& operator<<(std::ostream& out, const object &value) { return out << minify(value); }
/**
* Print JSON to an output stream.
*
* By default, the value will be printed minified.
*
* @param out The output stream.
* @param value The value to print.
* @throw if there is an error with the underlying output stream. simdjson itself will not throw.
*/
inline std::ostream& operator<<(std::ostream& out, const key_value_pair &value) { return out << minify(value); }
/**
* Print element type to an output stream.
*
* @param out The output stream.
* @param value The value to print.
* @throw if there is an error with the underlying output stream. simdjson itself will not throw.
*/
inline std::ostream& operator<<(std::ostream& out, element_type type) {
switch (type) {
case element_type::ARRAY:
return out << "array";
case element_type::OBJECT:
return out << "object";
case element_type::INT64:
return out << "int64_t";
case element_type::UINT64:
return out << "uint64_t";
case element_type::DOUBLE:
return out << "double";
case element_type::STRING:
return out << "string";
case element_type::BOOL:
return out << "bool";
case element_type::NULL_VALUE:
return out << "null";
default:
abort();
}
}
} // namespace dom
#if SIMDJSON_EXCEPTIONS
/**
* Print JSON to an output stream.
*
* By default, the value will be printed minified.
*
* @param out The output stream.
* @param value The value to print.
* @throw simdjson_error if the result being printed has an error. If there is an error with the
* underlying output stream, that error will be propagated (simdjson_error will not be
* thrown).
*/
inline std::ostream& operator<<(std::ostream& out, const simdjson_result<dom::element> &value) noexcept(false) { return out << minify(value); }
/**
* Print JSON to an output stream.
*
* By default, the value will be printed minified.
*
* @param out The output stream.
* @param value The value to print.
* @throw simdjson_error if the result being printed has an error. If there is an error with the
* underlying output stream, that error will be propagated (simdjson_error will not be
* thrown).
*/
inline std::ostream& operator<<(std::ostream& out, const simdjson_result<dom::array> &value) noexcept(false) { return out << minify(value); }
/**
* Print JSON to an output stream.
*
* By default, the value will be printed minified.
*
* @param out The output stream.
* @param value The value to print.
* @throw simdjson_error if the result being printed has an error. If there is an error with the
* underlying output stream, that error will be propagated (simdjson_error will not be
* thrown).
*/
inline std::ostream& operator<<(std::ostream& out, const simdjson_result<dom::object> &value) noexcept(false) { return out << minify(value); }
#endif
/** The result of a JSON navigation that may fail. */
template<>
struct simdjson_result<dom::element> : public internal::simdjson_result_base<dom::element> {
public:
really_inline simdjson_result() noexcept; ///< @private
really_inline simdjson_result(dom::element &&value) noexcept; ///< @private
really_inline simdjson_result(error_code error) noexcept; ///< @private
inline simdjson_result<dom::element_type> type() const noexcept;
inline simdjson_result<bool> is_null() const noexcept;
template<typename T>
inline simdjson_result<bool> is() const noexcept;
template<typename T>
inline simdjson_result<T> get() const noexcept;
inline simdjson_result<dom::element> operator[](const std::string_view &key) const noexcept;
inline simdjson_result<dom::element> operator[](const char *key) const noexcept;
inline simdjson_result<dom::element> at(const std::string_view &json_pointer) const noexcept;
inline simdjson_result<dom::element> at(size_t index) const noexcept;
inline simdjson_result<dom::element> at_key(const std::string_view &key) const noexcept;
inline simdjson_result<dom::element> at_key_case_insensitive(const std::string_view &key) const noexcept;
#if SIMDJSON_EXCEPTIONS
inline operator bool() const noexcept(false);
inline explicit operator const char*() const noexcept(false);
inline operator std::string_view() const noexcept(false);
inline operator uint64_t() const noexcept(false);
inline operator int64_t() const noexcept(false);
inline operator double() const noexcept(false);
inline operator dom::array() const noexcept(false);
inline operator dom::object() const noexcept(false);
inline dom::array::iterator begin() const noexcept(false);
inline dom::array::iterator end() const noexcept(false);
#endif // SIMDJSON_EXCEPTIONS
};
/** The result of a JSON conversion that may fail. */
template<>
struct simdjson_result<dom::array> : public internal::simdjson_result_base<dom::array> {
public:
really_inline simdjson_result() noexcept; ///< @private
really_inline simdjson_result(dom::array value) noexcept; ///< @private
really_inline simdjson_result(error_code error) noexcept; ///< @private
inline simdjson_result<dom::element> at(const std::string_view &json_pointer) const noexcept;
inline simdjson_result<dom::element> at(size_t index) const noexcept;
#if SIMDJSON_EXCEPTIONS
inline dom::array::iterator begin() const noexcept(false);
inline dom::array::iterator end() const noexcept(false);
#endif // SIMDJSON_EXCEPTIONS
};
/** The result of a JSON conversion that may fail. */
template<>
struct simdjson_result<dom::object> : public internal::simdjson_result_base<dom::object> {
public:
really_inline simdjson_result() noexcept; ///< @private
really_inline simdjson_result(dom::object value) noexcept; ///< @private
really_inline simdjson_result(error_code error) noexcept; ///< @private
inline simdjson_result<dom::element> operator[](const std::string_view &key) const noexcept;
inline simdjson_result<dom::element> operator[](const char *key) const noexcept;
inline simdjson_result<dom::element> at(const std::string_view &json_pointer) const noexcept;
inline simdjson_result<dom::element> at_key(const std::string_view &key) const noexcept;
inline simdjson_result<dom::element> at_key_case_insensitive(const std::string_view &key) const noexcept;
#if SIMDJSON_EXCEPTIONS
inline dom::object::iterator begin() const noexcept(false);
inline dom::object::iterator end() const noexcept(false);
#endif // SIMDJSON_EXCEPTIONS
};
} // namespace simdjson
#endif // SIMDJSON_DOCUMENT_H
/* end file include/simdjson/simdjson.h */
namespace simdjson {
/**
* An implementation of simdjson for a particular CPU architecture.
*
* Also used to maintain the currently active implementation. The active implementation is
* automatically initialized on first use to the most advanced implementation supported by the host.
*/
class implementation {
public:
/**
* The name of this implementation.
*
* const implementation *impl = simdjson::active_implementation;
* cout << "simdjson is optimized for " << impl->name() << "(" << impl->description() << ")" << endl;
*
* @return the name of the implementation, e.g. "haswell", "westmere", "arm64"
*/
virtual const std::string &name() const { return _name; }
/**
* The description of this implementation.
*
* const implementation *impl = simdjson::active_implementation;
* cout << "simdjson is optimized for " << impl->name() << "(" << impl->description() << ")" << endl;
*
* @return the name of the implementation, e.g. "haswell", "westmere", "arm64"
*/
virtual const std::string &description() const { return _description; }
/**
* @private For internal implementation use
*
* The instruction sets this implementation is compiled against.
*
* @return a mask of all required `instruction_set` values
*/
virtual uint32_t required_instruction_sets() const { return _required_instruction_sets; };
/**
* @private For internal implementation use
*
* Run a full document parse (ensure_capacity, stage1 and stage2).
*
* Overridden by each implementation.
*
* @param buf the json document to parse. *MUST* be allocated up to len + SIMDJSON_PADDING bytes.
* @param len the length of the json document.
* @param parser the parser with the buffers to use. *MUST* have allocated up to at least len capacity.
* @return the error code, or SUCCESS if there was no error.
*/
WARN_UNUSED virtual error_code parse(const uint8_t *buf, size_t len, dom::parser &parser) const noexcept = 0;
/**
* @private For internal implementation use
*
* Run a full document parse (ensure_capacity, stage1 and stage2).
*
* Overridden by each implementation.
*
* @param buf the json document to parse. *MUST* be allocated up to len + SIMDJSON_PADDING bytes.
* @param len the length of the json document.
* @param dst the buffer to write the minified document to. *MUST* be allocated up to len + SIMDJSON_PADDING bytes.
* @param dst_len the number of bytes written. Output only.
* @return the error code, or SUCCESS if there was no error.
*/
WARN_UNUSED virtual error_code minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept = 0;
/**
* @private For internal implementation use
*
* Stage 1 of the document parser.
*
* Overridden by each implementation.
*
* @param buf the json document to parse. *MUST* be allocated up to len + SIMDJSON_PADDING bytes.
* @param len the length of the json document.
* @param parser the parser with the buffers to use. *MUST* have allocated up to at least len capacity.
* @param streaming whether this is being called by parser::parse_many.
* @return the error code, or SUCCESS if there was no error.
*/
WARN_UNUSED virtual error_code stage1(const uint8_t *buf, size_t len, dom::parser &parser, bool streaming) const noexcept = 0;
/**
* @private For internal implementation use
*
* Stage 2 of the document parser.
*
* Overridden by each implementation.
*
* @param buf the json document to parse. *MUST* be allocated up to len + SIMDJSON_PADDING bytes.
* @param len the length of the json document.
* @param parser the parser with the buffers to use. *MUST* have allocated up to at least len capacity.
* @return the error code, or SUCCESS if there was no error.
*/
WARN_UNUSED virtual error_code stage2(const uint8_t *buf, size_t len, dom::parser &parser) const noexcept = 0;
/**
* @private For internal implementation use
*
* Stage 2 of the document parser for parser::parse_many.
*
* Overridden by each implementation.
*
* @param buf the json document to parse. *MUST* be allocated up to len + SIMDJSON_PADDING bytes.
* @param len the length of the json document.
* @param parser the parser with the buffers to use. *MUST* have allocated up to at least len capacity.
* @param next_json the next structural index. Start this at 0 the first time, and it will be updated to the next value to pass each time.
* @return the error code, SUCCESS if there was no error, or SUCCESS_AND_HAS_MORE if there was no error and stage2 can be called again.
*/
WARN_UNUSED virtual error_code stage2(const uint8_t *buf, size_t len, dom::parser &parser, size_t &next_json) const noexcept = 0;
protected:
/** @private Construct an implementation with the given name and description. For subclasses. */
really_inline implementation(
std::string_view name,
std::string_view description,
uint32_t required_instruction_sets
) :
_name(name),
_description(description),
_required_instruction_sets(required_instruction_sets)
{
}
private:
/**
* The name of this implementation.
*/
const std::string _name;
/**
* The description of this implementation.
*/
const std::string _description;
/**
* Instruction sets required for this implementation.
*/
const uint32_t _required_instruction_sets;
};
/** @private */
namespace internal {
/**
* The list of available implementations compiled into simdjson.
*/
class available_implementation_list {
public:
/** Get the list of available implementations compiled into simdjson */
really_inline available_implementation_list() {}
/** Number of implementations */
size_t size() const noexcept;
/** STL const begin() iterator */
const implementation * const *begin() const noexcept;
/** STL const end() iterator */
const implementation * const *end() const noexcept;
/**
* Get the implementation with the given name.
*
* Case sensitive.
*
* const implementation *impl = simdjson::available_implementations["westmere"];
* if (!impl) { exit(1); }
* simdjson::active_implementation = impl;
*
* @param name the implementation to find, e.g. "westmere", "haswell", "arm64"
* @return the implementation, or nullptr if the parse failed.
*/
const implementation * operator[](const std::string_view &name) const noexcept {
for (const implementation * impl : *this) {
if (impl->name() == name) { return impl; }
}
return nullptr;
}
/**
* Detect the most advanced implementation supported by the current host.
*
* This is used to initialize the implementation on startup.
*
* const implementation *impl = simdjson::available_implementation::detect_best_supported();
* simdjson::active_implementation = impl;
*
* @return the most advanced supported implementation for the current host, or an
* implementation that returns UNSUPPORTED_ARCHITECTURE if there is no supported
* implementation. Will never return nullptr.
*/
const implementation *detect_best_supported() const noexcept;
};
/**
* @private Detects best supported implementation on first use, and sets it
*/
class detect_best_supported_implementation_on_first_use final : public implementation {
public:
const std::string &name() const noexcept final { return set_best()->name(); }
const std::string &description() const noexcept final { return set_best()->description(); }
uint32_t required_instruction_sets() const noexcept final { return set_best()->required_instruction_sets(); }
WARN_UNUSED error_code parse(const uint8_t *buf, size_t len, dom::parser &parser) const noexcept final {
return set_best()->parse(buf, len, parser);
}
WARN_UNUSED error_code minify(const uint8_t *buf, size_t len, uint8_t *dst, size_t &dst_len) const noexcept final {
return set_best()->minify(buf, len, dst, dst_len);
}
WARN_UNUSED error_code stage1(const uint8_t *buf, size_t len, dom::parser &parser, bool streaming) const noexcept final {
return set_best()->stage1(buf, len, parser, streaming);
}
WARN_UNUSED error_code stage2(const uint8_t *buf, size_t len, dom::parser &parser) const noexcept final {
return set_best()->stage2(buf, len, parser);
}
WARN_UNUSED error_code stage2(const uint8_t *buf, size_t len, dom::parser &parser, size_t &next_json) const noexcept final {
return set_best()->stage2(buf, len, parser, next_json);
}
really_inline detect_best_supported_implementation_on_first_use() noexcept : implementation("best_supported_detector", "Detects the best supported implementation and sets it", 0) {}
private:
const implementation *set_best() const noexcept;
};
inline const detect_best_supported_implementation_on_first_use detect_best_supported_implementation_on_first_use_singleton;
template<typename T>
class atomic_ptr {
public:
atomic_ptr(T *_ptr) : ptr{_ptr} {}
operator const T*() const { return ptr.load(); }
const T& operator*() const { return *ptr; }
const T* operator->() const { return ptr.load(); }
operator T*() { return ptr.load(); }
T& operator*() { return *ptr; }
T* operator->() { return ptr.load(); }
T* operator=(T *_ptr) { return ptr = _ptr; }
private:
std::atomic<T*> ptr;
};
} // namespace [simdjson::]internal
/**
* The list of available implementations compiled into simdjson.
*/
inline const internal::available_implementation_list available_implementations;
/**
* The active implementation.
*
* Automatically initialized on first use to the most advanced implementation supported by this hardware.
*
* @hideinitializer
*/
inline internal::atomic_ptr<const implementation> active_implementation = &internal::detect_best_supported_implementation_on_first_use_singleton;
} // namespace simdjson
#endif // SIMDJSON_IMPLEMENTATION_H
/* end file include/simdjson/simdjson.h */
/* begin file include/simdjson/document_stream.h */
#ifndef SIMDJSON_DOCUMENT_STREAM_H
#define SIMDJSON_DOCUMENT_STREAM_H
#include <thread>
namespace simdjson::dom {
/**
* A forward-only stream of documents.
*
* Produced by parser::parse_many.
*
*/
class document_stream {
public:
really_inline ~document_stream() noexcept;
/**
* An iterator through a forward-only stream of documents.
*/
class iterator {
public:
/**
* Get the current document (or error).
*/
really_inline simdjson_result<element> operator*() noexcept;
/**
* Advance to the next document.
*/
inline iterator& operator++() noexcept;
/**
* Check if we're at the end yet.
* @param other the end iterator to compare to.
*/
really_inline bool operator!=(const iterator &other) const noexcept;
private:
iterator(document_stream& stream, bool finished) noexcept;
/** The document_stream we're iterating through. */
document_stream& stream;
/** Whether we're finished or not. */
bool finished;
friend class document_stream;
};
/**
* Start iterating the documents in the stream.
*/
really_inline iterator begin() noexcept;
/**
* The end of the stream, for iterator comparison purposes.
*/
really_inline iterator end() noexcept;
private:
document_stream &operator=(const document_stream &) = delete; // Disallow copying
document_stream(document_stream &other) = delete; // Disallow copying
really_inline document_stream(dom::parser &parser, const uint8_t *buf, size_t len, size_t batch_size, error_code error = SUCCESS) noexcept;
/**
* Parse the next document found in the buffer previously given to document_stream.
*
* The content should be a valid JSON document encoded as UTF-8. If there is a
* UTF-8 BOM, the caller is responsible for omitting it, UTF-8 BOM are
* discouraged.
*
* You do NOT need to pre-allocate a parser. This function takes care of
* pre-allocating a capacity defined by the batch_size defined when creating the
* document_stream object.
*
* The function returns simdjson::SUCCESS_AND_HAS_MORE (an integer = 1) in case
* of success and indicates that the buffer still contains more data to be parsed,
* meaning this function can be called again to return the next JSON document
* after this one.
*
* The function returns simdjson::SUCCESS (as integer = 0) in case of success
* and indicates that the buffer has successfully been parsed to the end.
* Every document it contained has been parsed without error.
*
* The function returns an error code from simdjson/simdjson.h in case of failure
* such as simdjson::CAPACITY, simdjson::MEMALLOC, simdjson::DEPTH_ERROR and so forth;
* the simdjson::error_message function converts these error codes into a string).
*
* You can also check validity by calling parser.is_valid(). The same parser can
* and should be reused for the other documents in the buffer. */
inline error_code json_parse() noexcept;
/**
* Returns the location (index) of where the next document should be in the
* buffer.
* Can be used for debugging, it tells the user the position of the end of the
* last
* valid JSON document parsed
*/
inline size_t get_current_buffer_loc() const { return current_buffer_loc; }
/**
* Returns the total amount of complete documents parsed by the document_stream,
* in the current buffer, at the given time.
*/
inline size_t get_n_parsed_docs() const { return n_parsed_docs; }
/**
* Returns the total amount of data (in bytes) parsed by the document_stream,
* in the current buffer, at the given time.
*/
inline size_t get_n_bytes_parsed() const { return n_bytes_parsed; }
inline const uint8_t *buf() const { return _buf + buf_start; }
inline void advance(size_t offset) { buf_start += offset; }
inline size_t remaining() const { return _len - buf_start; }
dom::parser &parser;
const uint8_t *_buf;
const size_t _len;
size_t _batch_size; // this is actually variable!
size_t buf_start{0};
size_t next_json{0};
bool load_next_batch{true};
size_t current_buffer_loc{0};
#ifdef SIMDJSON_THREADS_ENABLED
size_t last_json_buffer_loc{0};
#endif
size_t n_parsed_docs{0};
size_t n_bytes_parsed{0};
error_code error{SUCCESS_AND_HAS_MORE};
#ifdef SIMDJSON_THREADS_ENABLED
error_code stage1_is_ok_thread{SUCCESS};
std::thread stage_1_thread;
dom::parser parser_thread;
#endif
friend class dom::parser;
}; // class document_stream
} // end of namespace simdjson::dom
#endif // SIMDJSON_DOCUMENT_STREAM_H
/* end file include/simdjson/document_stream.h */
// Deprecated API
/* begin file include/simdjson/jsonparser.h */
// TODO Remove this -- deprecated API and files
#ifndef SIMDJSON_JSONPARSER_H
#define SIMDJSON_JSONPARSER_H
/* begin file include/simdjson/parsedjson.h */
// TODO Remove this -- deprecated API and files
#ifndef SIMDJSON_PARSEDJSON_H
#define SIMDJSON_PARSEDJSON_H
namespace simdjson {
/**
* @deprecated Use `dom::parser` instead.
*/
using ParsedJson [[deprecated("Use dom::parser instead")]] = dom::parser;
} // namespace simdjson
#endif
/* end file include/simdjson/parsedjson.h */
/* begin file include/simdjson/jsonioutil.h */
#ifndef SIMDJSON_JSONIOUTIL_H
#define SIMDJSON_JSONIOUTIL_H
#include <exception>
#include <fstream>
#include <iostream>
#include <sstream>
#include <stdexcept>
#include <string>
namespace simdjson {
#if SIMDJSON_EXCEPTIONS
[[deprecated("Use padded_string::load() instead")]]
inline padded_string get_corpus(const char *path) {
return padded_string::load(path);
}
#endif // SIMDJSON_EXCEPTIONS
} // namespace simdjson
#endif // SIMDJSON_JSONIOUTIL_H
/* end file include/simdjson/jsonioutil.h */
namespace simdjson {
//
// C API (json_parse and build_parsed_json) declarations
//
[[deprecated("Use parser.parse() instead")]]
inline int json_parse(const uint8_t *buf, size_t len, dom::parser &parser, bool realloc_if_needed = true) noexcept {
error_code code = parser.parse(buf, len, realloc_if_needed).error();
// The deprecated json_parse API is a signal that the user plans to *use* the error code / valid
// bits in the parser instead of heeding the result code. The normal parser unsets those in
// anticipation of making the error code ephemeral.
// Here we put the code back into the parser, until we've removed this method.
parser.valid = code == SUCCESS;
parser.error = code;
return code;
}
[[deprecated("Use parser.parse() instead")]]
inline int json_parse(const char *buf, size_t len, dom::parser &parser, bool realloc_if_needed = true) noexcept {
error_code code = parser.parse(buf, len, realloc_if_needed).error();
// The deprecated json_parse API is a signal that the user plans to *use* the error code / valid
// bits in the parser instead of heeding the result code. The normal parser unsets those in
// anticipation of making the error code ephemeral.
// Here we put the code back into the parser, until we've removed this method.
parser.valid = code == SUCCESS;
parser.error = code;
return code;
}
[[deprecated("Use parser.parse() instead")]]
inline int json_parse(const std::string &s, dom::parser &parser, bool realloc_if_needed = true) noexcept {
error_code code = parser.parse(s.data(), s.length(), realloc_if_needed).error();
// The deprecated json_parse API is a signal that the user plans to *use* the error code / valid
// bits in the parser instead of heeding the result code. The normal parser unsets those in
// anticipation of making the error code ephemeral.
// Here we put the code back into the parser, until we've removed this method.
parser.valid = code == SUCCESS;
parser.error = code;
return code;
}
[[deprecated("Use parser.parse() instead")]]
inline int json_parse(const padded_string &s, dom::parser &parser) noexcept {
error_code code = parser.parse(s).error();
// The deprecated json_parse API is a signal that the user plans to *use* the error code / valid
// bits in the parser instead of heeding the result code. The normal parser unsets those in
// anticipation of making the error code ephemeral.
// Here we put the code back into the parser, until we've removed this method.
parser.valid = code == SUCCESS;
parser.error = code;
return code;
}
[[deprecated("Use parser.parse() instead")]]
WARN_UNUSED inline dom::parser build_parsed_json(const uint8_t *buf, size_t len, bool realloc_if_needed = true) noexcept {
dom::parser parser;
error_code code = parser.parse(buf, len, realloc_if_needed).error();
// The deprecated json_parse API is a signal that the user plans to *use* the error code / valid
// bits in the parser instead of heeding the result code. The normal parser unsets those in
// anticipation of making the error code ephemeral.
// Here we put the code back into the parser, until we've removed this method.
parser.valid = code == SUCCESS;
parser.error = code;
return parser;
}
[[deprecated("Use parser.parse() instead")]]
WARN_UNUSED inline dom::parser build_parsed_json(const char *buf, size_t len, bool realloc_if_needed = true) noexcept {
dom::parser parser;
error_code code = parser.parse(buf, len, realloc_if_needed).error();
// The deprecated json_parse API is a signal that the user plans to *use* the error code / valid
// bits in the parser instead of heeding the result code. The normal parser unsets those in
// anticipation of making the error code ephemeral.
// Here we put the code back into the parser, until we've removed this method.
parser.valid = code == SUCCESS;
parser.error = code;
return parser;
}
[[deprecated("Use parser.parse() instead")]]
WARN_UNUSED inline dom::parser build_parsed_json(const std::string &s, bool realloc_if_needed = true) noexcept {
dom::parser parser;
error_code code = parser.parse(s.data(), s.length(), realloc_if_needed).error();
// The deprecated json_parse API is a signal that the user plans to *use* the error code / valid
// bits in the parser instead of heeding the result code. The normal parser unsets those in
// anticipation of making the error code ephemeral.
// Here we put the code back into the parser, until we've removed this method.
parser.valid = code == SUCCESS;
parser.error = code;
return parser;
}
[[deprecated("Use parser.parse() instead")]]
WARN_UNUSED inline dom::parser build_parsed_json(const padded_string &s) noexcept {
dom::parser parser;
error_code code = parser.parse(s).error();
// The deprecated json_parse API is a signal that the user plans to *use* the error code / valid
// bits in the parser instead of heeding the result code. The normal parser unsets those in
// anticipation of making the error code ephemeral.
// Here we put the code back into the parser, until we've removed this method.
parser.valid = code == SUCCESS;
parser.error = code;
return parser;
}
/** @private We do not want to allow implicit conversion from C string to std::string. */
int json_parse(const char *buf, dom::parser &parser) noexcept = delete;
/** @private We do not want to allow implicit conversion from C string to std::string. */
dom::parser build_parsed_json(const char *buf) noexcept = delete;
} // namespace simdjson
#endif
/* end file include/simdjson/jsonioutil.h */
/* begin file include/simdjson/parsedjson_iterator.h */
// TODO Remove this -- deprecated API and files
#ifndef SIMDJSON_PARSEDJSON_ITERATOR_H
#define SIMDJSON_PARSEDJSON_ITERATOR_H
#include <cstring>
#include <string>
#include <iostream>
#include <iterator>
#include <limits>
#include <stdexcept>
/* begin file include/simdjson/internal/jsonformatutils.h */
#ifndef SIMDJSON_INTERNAL_JSONFORMATUTILS_H
#define SIMDJSON_INTERNAL_JSONFORMATUTILS_H
#include <iomanip>
#include <iostream>
#include <sstream>
namespace simdjson::internal {
class escape_json_string;
inline std::ostream& operator<<(std::ostream& out, const escape_json_string &str);
class escape_json_string {
public:
escape_json_string(std::string_view _str) noexcept : str{_str} {}
operator std::string() const noexcept { std::stringstream s; s << *this; return s.str(); }
private:
std::string_view str;
friend std::ostream& operator<<(std::ostream& out, const escape_json_string &unescaped);
};
inline std::ostream& operator<<(std::ostream& out, const escape_json_string &unescaped) {
for (size_t i=0; i<unescaped.str.length(); i++) {
switch (unescaped.str[i]) {
case '\b':
out << "\\b";
break;
case '\f':
out << "\\f";
break;
case '\n':
out << "\\n";
break;
case '\r':
out << "\\r";
break;
case '\"':
out << "\\\"";
break;
case '\t':
out << "\\t";
break;
case '\\':
out << "\\\\";
break;
default:
if ((unsigned char)unescaped.str[i] <= 0x1F) {
// TODO can this be done once at the beginning, or will it mess up << char?
std::ios::fmtflags f(out.flags());
out << "\\u" << std::hex << std::setw(4) << std::setfill('0') << static_cast<int>(unescaped.str[i]);
out.flags(f);
} else {
out << unescaped.str[i];
}
}
}
return out;
}
} // namespace simdjson::internal
#endif // SIMDJSON_INTERNAL_JSONFORMATUTILS_H
/* end file include/simdjson/internal/jsonformatutils.h */
namespace simdjson {
class [[deprecated("Use the new DOM navigation API instead (see doc/usage.md)")]] dom::parser::Iterator {
public:
inline Iterator(const dom::parser &parser) noexcept(false);
inline Iterator(const Iterator &o) noexcept;
inline ~Iterator() noexcept;
inline bool is_ok() const;
// useful for debugging purposes
inline size_t get_tape_location() const;
// useful for debugging purposes
inline size_t get_tape_length() const;
// returns the current depth (start at 1 with 0 reserved for the fictitious
// root node)
inline size_t get_depth() const;
// A scope is a series of nodes at the same depth, typically it is either an
// object ({) or an array ([). The root node has type 'r'.
inline uint8_t get_scope_type() const;
// move forward in document order
inline bool move_forward();
// retrieve the character code of what we're looking at:
// [{"slutfn are the possibilities
inline uint8_t get_type() const {
return current_type; // short functions should be inlined!
}
// get the int64_t value at this node; valid only if get_type is "l"
inline int64_t get_integer() const {
if (location + 1 >= tape_length) {
return 0; // default value in case of error
}
return static_cast<int64_t>(doc.tape[location + 1]);
}
// get the value as uint64; valid only if if get_type is "u"
inline uint64_t get_unsigned_integer() const {
if (location + 1 >= tape_length) {
return 0; // default value in case of error
}
return doc.tape[location + 1];
}
// get the string value at this node (NULL ended); valid only if get_type is "
// note that tabs, and line endings are escaped in the returned value (see
// print_with_escapes) return value is valid UTF-8, it may contain NULL chars
// within the string: get_string_length determines the true string length.
inline const char *get_string() const {
return reinterpret_cast<const char *>(
doc.string_buf.get() + (current_val & internal::JSON_VALUE_MASK) + sizeof(uint32_t));
}
// return the length of the string in bytes
inline uint32_t get_string_length() const {
uint32_t answer;
memcpy(&answer,
reinterpret_cast<const char *>(doc.string_buf.get() +
(current_val & internal::JSON_VALUE_MASK)),
sizeof(uint32_t));
return answer;
}
// get the double value at this node; valid only if
// get_type() is "d"
inline double get_double() const {
if (location + 1 >= tape_length) {
return std::numeric_limits<double>::quiet_NaN(); // default value in
// case of error
}
double answer;
memcpy(&answer, &doc.tape[location + 1], sizeof(answer));
return answer;
}
inline bool is_object_or_array() const { return is_object() || is_array(); }
inline bool is_object() const { return get_type() == '{'; }
inline bool is_array() const { return get_type() == '['; }
inline bool is_string() const { return get_type() == '"'; }
// Returns true if the current type of node is an signed integer.
// You can get its value with `get_integer()`.
inline bool is_integer() const { return get_type() == 'l'; }
// Returns true if the current type of node is an unsigned integer.
// You can get its value with `get_unsigned_integer()`.
//
// NOTE:
// Only a large value, which is out of range of a 64-bit signed integer, is
// represented internally as an unsigned node. On the other hand, a typical
// positive integer, such as 1, 42, or 1000000, is as a signed node.
// Be aware this function returns false for a signed node.
inline bool is_unsigned_integer() const { return get_type() == 'u'; }
inline bool is_double() const { return get_type() == 'd'; }
inline bool is_number() const {
return is_integer() || is_unsigned_integer() || is_double();
}
inline bool is_true() const { return get_type() == 't'; }
inline bool is_false() const { return get_type() == 'f'; }
inline bool is_null() const { return get_type() == 'n'; }
static bool is_object_or_array(uint8_t type) {
return ((type == '[') || (type == '{'));
}
// when at {, go one level deep, looking for a given key
// if successful, we are left pointing at the value,
// if not, we are still pointing at the object ({)
// (in case of repeated keys, this only finds the first one).
// We seek the key using C's strcmp so if your JSON strings contain
// NULL chars, this would trigger a false positive: if you expect that
// to be the case, take extra precautions.
// Furthermore, we do the comparison character-by-character
// without taking into account Unicode equivalence.
inline bool move_to_key(const char *key);
// as above, but case insensitive lookup (strcmpi instead of strcmp)
inline bool move_to_key_insensitive(const char *key);
// when at {, go one level deep, looking for a given key
// if successful, we are left pointing at the value,
// if not, we are still pointing at the object ({)
// (in case of repeated keys, this only finds the first one).
// The string we search for can contain NULL values.
// Furthermore, we do the comparison character-by-character
// without taking into account Unicode equivalence.
inline bool move_to_key(const char *key, uint32_t length);
// when at a key location within an object, this moves to the accompanying
// value (located next to it). This is equivalent but much faster than
// calling "next()".
inline void move_to_value();
// when at [, go one level deep, and advance to the given index.
// if successful, we are left pointing at the value,
// if not, we are still pointing at the array ([)
inline bool move_to_index(uint32_t index);
// Moves the iterator to the value corresponding to the json pointer.
// Always search from the root of the document.
// if successful, we are left pointing at the value,
// if not, we are still pointing the same value we were pointing before the
// call. The json pointer follows the rfc6901 standard's syntax:
// https://tools.ietf.org/html/rfc6901 However, the standard says "If a
// referenced member name is not unique in an object, the member that is
// referenced is undefined, and evaluation fails". Here we just return the
// first corresponding value. The length parameter is the length of the
// jsonpointer string ('pointer').
inline bool move_to(const char *pointer, uint32_t length);
// Moves the iterator to the value corresponding to the json pointer.
// Always search from the root of the document.
// if successful, we are left pointing at the value,
// if not, we are still pointing the same value we were pointing before the
// call. The json pointer implementation follows the rfc6901 standard's
// syntax: https://tools.ietf.org/html/rfc6901 However, the standard says
// "If a referenced member name is not unique in an object, the member that
// is referenced is undefined, and evaluation fails". Here we just return
// the first corresponding value.
inline bool move_to(const std::string &pointer) {
return move_to(pointer.c_str(), pointer.length());
}
private:
// Almost the same as move_to(), except it searches from the current
// position. The pointer's syntax is identical, though that case is not
// handled by the rfc6901 standard. The '/' is still required at the
// beginning. However, contrary to move_to(), the URI Fragment Identifier
// Representation is not supported here. Also, in case of failure, we are
// left pointing at the closest value it could reach. For these reasons it
// is private. It exists because it is used by move_to().
inline bool relative_move_to(const char *pointer, uint32_t length);
public:
// throughout return true if we can do the navigation, false
// otherwise
// Withing a given scope (series of nodes at the same depth within either an
// array or an object), we move forward.
// Thus, given [true, null, {"a":1}, [1,2]], we would visit true, null, {
// and [. At the object ({) or at the array ([), you can issue a "down" to
// visit their content. valid if we're not at the end of a scope (returns
// true).
inline bool next();
// Within a given scope (series of nodes at the same depth within either an
// array or an object), we move backward.
// Thus, given [true, null, {"a":1}, [1,2]], we would visit ], }, null, true
// when starting at the end of the scope. At the object ({) or at the array
// ([), you can issue a "down" to visit their content.
// Performance warning: This function is implemented by starting again
// from the beginning of the scope and scanning forward. You should expect
// it to be relatively slow.
inline bool prev();
// Moves back to either the containing array or object (type { or [) from
// within a contained scope.
// Valid unless we are at the first level of the document
inline bool up();
// Valid if we're at a [ or { and it starts a non-empty scope; moves us to
// start of that deeper scope if it not empty. Thus, given [true, null,
// {"a":1}, [1,2]], if we are at the { node, we would move to the "a" node.
inline bool down();
// move us to the start of our current scope,
// a scope is a series of nodes at the same level
inline void to_start_scope();
inline void rewind() {
while (up())
;
}
// void to_end_scope(); // move us to
// the start of our current scope; always succeeds
// print the node we are currently pointing at
inline bool print(std::ostream &os, bool escape_strings = true) const;
typedef struct {
size_t start_of_scope;
uint8_t scope_type;
} scopeindex_t;
private:
const document &doc;
size_t max_depth;
size_t depth;
size_t location; // our current location on a tape
size_t tape_length;
uint8_t current_type;
uint64_t current_val;
scopeindex_t *depth_index;
};
} // namespace simdjson
#endif
/* end file include/simdjson/internal/jsonformatutils.h */
// Inline functions
/* begin file include/simdjson/inline/document.h */
#ifndef SIMDJSON_INLINE_DOCUMENT_H
#define SIMDJSON_INLINE_DOCUMENT_H
// Inline implementations go in here.
#include <iostream>
#include <climits>
#include <cctype>
namespace simdjson {
//
// simdjson_result<dom::element> inline implementation
//
really_inline simdjson_result<dom::element>::simdjson_result() noexcept
: internal::simdjson_result_base<dom::element>() {}
really_inline simdjson_result<dom::element>::simdjson_result(dom::element &&value) noexcept
: internal::simdjson_result_base<dom::element>(std::forward<dom::element>(value)) {}
really_inline simdjson_result<dom::element>::simdjson_result(error_code error) noexcept
: internal::simdjson_result_base<dom::element>(error) {}
inline simdjson_result<dom::element_type> simdjson_result<dom::element>::type() const noexcept {
if (error()) { return error(); }
return first.type();
}
inline simdjson_result<bool> simdjson_result<dom::element>::is_null() const noexcept {
if (error()) { return error(); }
return first.is_null();
}
template<typename T>
inline simdjson_result<bool> simdjson_result<dom::element>::is() const noexcept {
if (error()) { return error(); }
return first.is<T>();
}
template<typename T>
inline simdjson_result<T> simdjson_result<dom::element>::get() const noexcept {
if (error()) { return error(); }
return first.get<T>();
}
inline simdjson_result<dom::element> simdjson_result<dom::element>::operator[](const std::string_view &key) const noexcept {
if (error()) { return error(); }
return first[key];
}
inline simdjson_result<dom::element> simdjson_result<dom::element>::operator[](const char *key) const noexcept {
if (error()) { return error(); }
return first[key];
}
inline simdjson_result<dom::element> simdjson_result<dom::element>::at(const std::string_view &json_pointer) const noexcept {
if (error()) { return error(); }
return first.at(json_pointer);
}
inline simdjson_result<dom::element> simdjson_result<dom::element>::at(size_t index) const noexcept {
if (error()) { return error(); }
return first.at(index);
}
inline simdjson_result<dom::element> simdjson_result<dom::element>::at_key(const std::string_view &key) const noexcept {
if (error()) { return error(); }
return first.at_key(key);
}
inline simdjson_result<dom::element> simdjson_result<dom::element>::at_key_case_insensitive(const std::string_view &key) const noexcept {
if (error()) { return error(); }
return first.at_key_case_insensitive(key);
}
#if SIMDJSON_EXCEPTIONS
inline simdjson_result<dom::element>::operator bool() const noexcept(false) {
return get<bool>();
}
inline simdjson_result<dom::element>::operator const char *() const noexcept(false) {
return get<const char *>();
}
inline simdjson_result<dom::element>::operator std::string_view() const noexcept(false) {
return get<std::string_view>();
}
inline simdjson_result<dom::element>::operator uint64_t() const noexcept(false) {
return get<uint64_t>();
}
inline simdjson_result<dom::element>::operator int64_t() const noexcept(false) {
return get<int64_t>();
}
inline simdjson_result<dom::element>::operator double() const noexcept(false) {
return get<double>();
}
inline simdjson_result<dom::element>::operator dom::array() const noexcept(false) {
return get<dom::array>();
}
inline simdjson_result<dom::element>::operator dom::object() const noexcept(false) {
return get<dom::object>();
}
inline dom::array::iterator simdjson_result<dom::element>::begin() const noexcept(false) {
if (error()) { throw simdjson_error(error()); }
return first.begin();
}
inline dom::array::iterator simdjson_result<dom::element>::end() const noexcept(false) {
if (error()) { throw simdjson_error(error()); }
return first.end();
}
#endif
//
// simdjson_result<dom::array> inline implementation
//
really_inline simdjson_result<dom::array>::simdjson_result() noexcept
: internal::simdjson_result_base<dom::array>() {}
really_inline simdjson_result<dom::array>::simdjson_result(dom::array value) noexcept
: internal::simdjson_result_base<dom::array>(std::forward<dom::array>(value)) {}
really_inline simdjson_result<dom::array>::simdjson_result(error_code error) noexcept
: internal::simdjson_result_base<dom::array>(error) {}
#if SIMDJSON_EXCEPTIONS
inline dom::array::iterator simdjson_result<dom::array>::begin() const noexcept(false) {
if (error()) { throw simdjson_error(error()); }
return first.begin();
}
inline dom::array::iterator simdjson_result<dom::array>::end() const noexcept(false) {
if (error()) { throw simdjson_error(error()); }
return first.end();
}
#endif // SIMDJSON_EXCEPTIONS
inline simdjson_result<dom::element> simdjson_result<dom::array>::at(const std::string_view &json_pointer) const noexcept {
if (error()) { return error(); }
return first.at(json_pointer);
}
inline simdjson_result<dom::element> simdjson_result<dom::array>::at(size_t index) const noexcept {
if (error()) { return error(); }
return first.at(index);
}
//
// simdjson_result<dom::object> inline implementation
//
really_inline simdjson_result<dom::object>::simdjson_result() noexcept
: internal::simdjson_result_base<dom::object>() {}
really_inline simdjson_result<dom::object>::simdjson_result(dom::object value) noexcept
: internal::simdjson_result_base<dom::object>(std::forward<dom::object>(value)) {}
really_inline simdjson_result<dom::object>::simdjson_result(error_code error) noexcept
: internal::simdjson_result_base<dom::object>(error) {}
inline simdjson_result<dom::element> simdjson_result<dom::object>::operator[](const std::string_view &key) const noexcept {
if (error()) { return error(); }
return first[key];
}
inline simdjson_result<dom::element> simdjson_result<dom::object>::operator[](const char *key) const noexcept {
if (error()) { return error(); }
return first[key];
}
inline simdjson_result<dom::element> simdjson_result<dom::object>::at(const std::string_view &json_pointer) const noexcept {
if (error()) { return error(); }
return first.at(json_pointer);
}
inline simdjson_result<dom::element> simdjson_result<dom::object>::at_key(const std::string_view &key) const noexcept {
if (error()) { return error(); }
return first.at_key(key);
}
inline simdjson_result<dom::element> simdjson_result<dom::object>::at_key_case_insensitive(const std::string_view &key) const noexcept {
if (error()) { return error(); }
return first.at_key_case_insensitive(key);
}
#if SIMDJSON_EXCEPTIONS
inline dom::object::iterator simdjson_result<dom::object>::begin() const noexcept(false) {
if (error()) { throw simdjson_error(error()); }
return first.begin();
}
inline dom::object::iterator simdjson_result<dom::object>::end() const noexcept(false) {
if (error()) { throw simdjson_error(error()); }
return first.end();
}
#endif // SIMDJSON_EXCEPTIONS
} // namespace simdjson
namespace simdjson::dom {
//
// document inline implementation
//
inline element document::root() const noexcept {
return element(this, 1);
}
//#define REPORT_ERROR(CODE, MESSAGE) ((std::cerr << MESSAGE << std::endl), CODE)
#define REPORT_ERROR(CODE, MESSAGE) (CODE)
#define RETURN_ERROR(CODE, MESSAGE) return REPORT_ERROR((CODE), (MESSAGE));
WARN_UNUSED
inline error_code document::allocate(size_t capacity) noexcept {
if (capacity == 0) {
string_buf.reset();
tape.reset();
return SUCCESS;
}
// a pathological input like "[[[[..." would generate len tape elements, so
// need a capacity of at least len + 1, but it is also possible to do
// worse with "[7,7,7,7,6,7,7,7,6,7,7,6,[7,7,7,7,6,7,7,7,6,7,7,6,7,7,7,7,7,7,6"
//where len + 1 tape elements are
// generated, see issue https://github.com/lemire/simdjson/issues/345
size_t tape_capacity = ROUNDUP_N(capacity + 2, 64);
// a document with only zero-length strings... could have len/3 string
// and we would need len/3 * 5 bytes on the string buffer
size_t string_capacity = ROUNDUP_N(5 * capacity / 3 + 32, 64);
string_buf.reset( new (std::nothrow) uint8_t[string_capacity]);
tape.reset(new (std::nothrow) uint64_t[tape_capacity]);
return string_buf && tape ? SUCCESS : MEMALLOC;
}
inline bool document::dump_raw_tape(std::ostream &os) const noexcept {
uint32_t string_length;
size_t tape_idx = 0;
uint64_t tape_val = tape[tape_idx];
uint8_t type = (tape_val >> 56);
os << tape_idx << " : " << type;
tape_idx++;
size_t how_many = 0;
if (type == 'r') {
how_many = tape_val & internal::JSON_VALUE_MASK;
} else {
// Error: no starting root node?
return false;
}
os << "\t// pointing to " << how_many << " (right after last node)\n";
uint64_t payload;
for (; tape_idx < how_many; tape_idx++) {
os << tape_idx << " : ";
tape_val = tape[tape_idx];
payload = tape_val & internal::JSON_VALUE_MASK;
type = (tape_val >> 56);
switch (type) {
case '"': // we have a string
os << "string \"";
memcpy(&string_length, string_buf.get() + payload, sizeof(uint32_t));
os << internal::escape_json_string(std::string_view(
(const char *)(string_buf.get() + payload + sizeof(uint32_t)),
string_length
));
os << '"';
os << '\n';
break;
case 'l': // we have a long int
if (tape_idx + 1 >= how_many) {
return false;
}
os << "integer " << static_cast<int64_t>(tape[++tape_idx]) << "\n";
break;
case 'u': // we have a long uint
if (tape_idx + 1 >= how_many) {
return false;
}
os << "unsigned integer " << tape[++tape_idx] << "\n";
break;
case 'd': // we have a double
os << "float ";
if (tape_idx + 1 >= how_many) {
return false;
}
double answer;
memcpy(&answer, &tape[++tape_idx], sizeof(answer));
os << answer << '\n';
break;
case 'n': // we have a null
os << "null\n";
break;
case 't': // we have a true
os << "true\n";
break;
case 'f': // we have a false
os << "false\n";
break;
case '{': // we have an object
os << "{\t// pointing to next tape location " << payload
<< " (first node after the scope) \n";
break;
case '}': // we end an object
os << "}\t// pointing to previous tape location " << payload
<< " (start of the scope) \n";
break;
case '[': // we start an array
os << "[\t// pointing to next tape location " << payload
<< " (first node after the scope) \n";
break;
case ']': // we end an array
os << "]\t// pointing to previous tape location " << payload
<< " (start of the scope) \n";
break;
case 'r': // we start and end with the root node
// should we be hitting the root node?
return false;
default:
return false;
}
}
tape_val = tape[tape_idx];
payload = tape_val & internal::JSON_VALUE_MASK;
type = (tape_val >> 56);
os << tape_idx << " : " << type << "\t// pointing to " << payload
<< " (start root)\n";
return true;
}
//
// parser inline implementation
//
really_inline parser::parser(size_t max_capacity) noexcept
: _max_capacity{max_capacity}, loaded_bytes(nullptr, &aligned_free_char) {}
inline bool parser::is_valid() const noexcept { return valid; }
inline int parser::get_error_code() const noexcept { return error; }
inline std::string parser::get_error_message() const noexcept { return error_message(error); }
inline bool parser::print_json(std::ostream &os) const noexcept {
if (!valid) { return false; }
os << doc.root();
return true;
}
inline bool parser::dump_raw_tape(std::ostream &os) const noexcept {
return valid ? doc.dump_raw_tape(os) : false;
}
inline simdjson_result<size_t> parser::read_file(const std::string &path) noexcept {
// Open the file
std::FILE *fp = std::fopen(path.c_str(), "rb");
if (fp == nullptr) {
return IO_ERROR;
}
// Get the file size
if(std::fseek(fp, 0, SEEK_END) < 0) {
std::fclose(fp);
return IO_ERROR;
}
long len = std::ftell(fp);
if((len < 0) || (len == LONG_MAX)) {
std::fclose(fp);
return IO_ERROR;
}
// Make sure we have enough capacity to load the file
if (_loaded_bytes_capacity < size_t(len)) {
loaded_bytes.reset( internal::allocate_padded_buffer(len) );
if (!loaded_bytes) {
std::fclose(fp);
return MEMALLOC;
}
_loaded_bytes_capacity = len;
}
// Read the string
std::rewind(fp);
size_t bytes_read = std::fread(loaded_bytes.get(), 1, len, fp);
if (std::fclose(fp) != 0 || bytes_read != size_t(len)) {
return IO_ERROR;
}
return bytes_read;
}
inline simdjson_result<element> parser::load(const std::string &path) noexcept {
auto [len, code] = read_file(path);
if (code) { return code; }
return parse(loaded_bytes.get(), len, false);
}
inline document_stream parser::load_many(const std::string &path, size_t batch_size) noexcept {
auto [len, code] = read_file(path);
return document_stream(*this, (const uint8_t*)loaded_bytes.get(), len, batch_size, code);
}
inline simdjson_result<element> parser::parse(const uint8_t *buf, size_t len, bool realloc_if_needed) noexcept {
error_code code = ensure_capacity(len);
if (code) { return code; }
if (realloc_if_needed) {
const uint8_t *tmp_buf = buf;
buf = (uint8_t *)internal::allocate_padded_buffer(len);
if (buf == nullptr)
return MEMALLOC;
memcpy((void *)buf, tmp_buf, len);
}
code = simdjson::active_implementation->parse(buf, len, *this);
if (realloc_if_needed) {
aligned_free((void *)buf); // must free before we exit
}
if (code) { return code; }
// We're indicating validity via the simdjson_result<element>, so set the parse state back to invalid
valid = false;
error = UNINITIALIZED;
return doc.root();
}
really_inline simdjson_result<element> parser::parse(const char *buf, size_t len, bool realloc_if_needed) noexcept {
return parse((const uint8_t *)buf, len, realloc_if_needed);
}
really_inline simdjson_result<element> parser::parse(const std::string &s) noexcept {
return parse(s.data(), s.length(), s.capacity() - s.length() < SIMDJSON_PADDING);
}
really_inline simdjson_result<element> parser::parse(const padded_string &s) noexcept {
return parse(s.data(), s.length(), false);
}
inline document_stream parser::parse_many(const uint8_t *buf, size_t len, size_t batch_size) noexcept {
return document_stream(*this, buf, len, batch_size);
}
inline document_stream parser::parse_many(const char *buf, size_t len, size_t batch_size) noexcept {
return parse_many((const uint8_t *)buf, len, batch_size);
}
inline document_stream parser::parse_many(const std::string &s, size_t batch_size) noexcept {
return parse_many(s.data(), s.length(), batch_size);
}
inline document_stream parser::parse_many(const padded_string &s, size_t batch_size) noexcept {
return parse_many(s.data(), s.length(), batch_size);
}
really_inline size_t parser::capacity() const noexcept {
return _capacity;
}
really_inline size_t parser::max_capacity() const noexcept {
return _max_capacity;
}
really_inline size_t parser::max_depth() const noexcept {
return _max_depth;
}
WARN_UNUSED
inline error_code parser::allocate(size_t capacity, size_t max_depth) noexcept {
//
// If capacity has changed, reallocate capacity-based buffers
//
if (_capacity != capacity) {
// Set capacity to 0 until we finish, in case there's an error
_capacity = 0;
//
// Reallocate the document
//
error_code err = doc.allocate(capacity);
if (err) { return err; }
//
// Don't allocate 0 bytes, just return.
//
if (capacity == 0) {
structural_indexes.reset();
return SUCCESS;
}
//
// Initialize stage 1 output
//
uint32_t max_structures = ROUNDUP_N(capacity, 64) + 2 + 7;
structural_indexes.reset( new (std::nothrow) uint32_t[max_structures] ); // TODO realloc
if (!structural_indexes) {
return MEMALLOC;
}
_capacity = capacity;
//
// If capacity hasn't changed, but the document was taken, allocate a new document.
//
} else if (!doc.tape) {
error_code err = doc.allocate(capacity);
if (err) { return err; }
}
//
// If max_depth has changed, reallocate those buffers
//
if (max_depth != _max_depth) {
_max_depth = 0;
if (max_depth == 0) {
ret_address.reset();
containing_scope_offset.reset();
return SUCCESS;
}
//
// Initialize stage 2 state
//
containing_scope_offset.reset(new (std::nothrow) uint32_t[max_depth]); // TODO realloc
#ifdef SIMDJSON_USE_COMPUTED_GOTO
ret_address.reset(new (std::nothrow) void *[max_depth]);
#else
ret_address.reset(new (std::nothrow) char[max_depth]);
#endif
if (!ret_address || !containing_scope_offset) {
// Could not allocate memory
return MEMALLOC;
}
_max_depth = max_depth;
}
return SUCCESS;
}
WARN_UNUSED
inline bool parser::allocate_capacity(size_t capacity, size_t max_depth) noexcept {
return !allocate(capacity, max_depth);
}
really_inline void parser::set_max_capacity(size_t max_capacity) noexcept {
_max_capacity = max_capacity;
}
inline error_code parser::ensure_capacity(size_t desired_capacity) noexcept {
// If we don't have enough capacity, (try to) automatically bump it.
// If the document was taken, reallocate that too.
// Both in one if statement to minimize unlikely branching.
if (unlikely(desired_capacity > capacity() || !doc.tape)) {
if (desired_capacity > max_capacity()) {
return error = CAPACITY;
}
return allocate(desired_capacity, _max_depth > 0 ? _max_depth : DEFAULT_MAX_DEPTH);
}
return SUCCESS;
}
//
// array inline implementation
//
really_inline array::array() noexcept : internal::tape_ref() {}
really_inline array::array(const document *_doc, size_t _json_index) noexcept : internal::tape_ref(_doc, _json_index) {}
inline array::iterator array::begin() const noexcept {
return iterator(doc, json_index + 1);
}
inline array::iterator array::end() const noexcept {
return iterator(doc, after_element() - 1);
}
inline simdjson_result<element> array::at(const std::string_view &json_pointer) const noexcept {
// - means "the append position" or "the element after the end of the array"
// We don't support this, because we're returning a real element, not a position.
if (json_pointer == "-") { return INDEX_OUT_OF_BOUNDS; }
// Read the array index
size_t array_index = 0;
size_t i;
for (i = 0; i < json_pointer.length() && json_pointer[i] != '/'; i++) {
uint8_t digit = uint8_t(json_pointer[i]) - '0';
// Check for non-digit in array index. If it's there, we're trying to get a field in an object
if (digit > 9) { return INCORRECT_TYPE; }
array_index = array_index*10 + digit;
}
// 0 followed by other digits is invalid
if (i > 1 && json_pointer[0] == '0') { RETURN_ERROR(INVALID_JSON_POINTER, "JSON pointer array index has other characters after 0"); }
// Empty string is invalid; so is a "/" with no digits before it
if (i == 0) { RETURN_ERROR(INVALID_JSON_POINTER, "Empty string in JSON pointer array index"); }
// Get the child
auto child = array(doc, json_index).at(array_index);
// If there is a /, we're not done yet, call recursively.
if (i < json_pointer.length()) {
child = child.at(json_pointer.substr(i+1));
}
return child;
}
inline simdjson_result<element> array::at(size_t index) const noexcept {
size_t i=0;
for (auto element : *this) {
if (i == index) { return element; }
i++;
}
return INDEX_OUT_OF_BOUNDS;
}
//
// array::iterator inline implementation
//
really_inline array::iterator::iterator(const document *_doc, size_t _json_index) noexcept : internal::tape_ref(_doc, _json_index) { }
inline element array::iterator::operator*() const noexcept {
return element(doc, json_index);
}
inline bool array::iterator::operator!=(const array::iterator& other) const noexcept {
return json_index != other.json_index;
}
inline void array::iterator::operator++() noexcept {
json_index = after_element();
}
//
// object inline implementation
//
really_inline object::object() noexcept : internal::tape_ref() {}
really_inline object::object(const document *_doc, size_t _json_index) noexcept : internal::tape_ref(_doc, _json_index) { };
inline object::iterator object::begin() const noexcept {
return iterator(doc, json_index + 1);
}
inline object::iterator object::end() const noexcept {
return iterator(doc, after_element() - 1);
}
inline simdjson_result<element> object::operator[](const std::string_view &key) const noexcept {
return at_key(key);
}
inline simdjson_result<element> object::operator[](const char *key) const noexcept {
return at_key(key);
}
inline simdjson_result<element> object::at(const std::string_view &json_pointer) const noexcept {
size_t slash = json_pointer.find('/');
std::string_view key = json_pointer.substr(0, slash);
// Grab the child with the given key
simdjson_result<element> child;
// If there is an escape character in the key, unescape it and then get the child.
size_t escape = key.find('~');
if (escape != std::string_view::npos) {
// Unescape the key
std::string unescaped(key);
do {
switch (unescaped[escape+1]) {
case '0':
unescaped.replace(escape, 2, "~");
break;
case '1':
unescaped.replace(escape, 2, "/");
break;
default:
RETURN_ERROR(INVALID_JSON_POINTER, "Unexpected ~ escape character in JSON pointer");
}
escape = unescaped.find('~', escape+1);
} while (escape != std::string::npos);
child = at_key(unescaped);
} else {
child = at_key(key);
}
// If there is a /, we have to recurse and look up more of the path
if (slash != std::string_view::npos) {
child = child.at(json_pointer.substr(slash+1));
}
return child;
}
inline simdjson_result<element> object::at_key(const std::string_view &key) const noexcept {
iterator end_field = end();
for (iterator field = begin(); field != end_field; ++field) {
if (key == field.key()) {
return field.value();
}
}
return NO_SUCH_FIELD;
}
// In case you wonder why we need this, please see
// https://github.com/simdjson/simdjson/issues/323
// People do seek keys in a case-insensitive manner.
inline simdjson_result<element> object::at_key_case_insensitive(const std::string_view &key) const noexcept {
iterator end_field = end();
for (iterator field = begin(); field != end_field; ++field) {
auto field_key = field.key();
if (key.length() == field_key.length()) {
bool equal = true;
for (size_t i=0; i<field_key.length(); i++) {
equal = equal && std::tolower(key[i]) != std::tolower(field_key[i]);
}
if (equal) { return field.value(); }
}
}
return NO_SUCH_FIELD;
}
//
// object::iterator inline implementation
//
really_inline object::iterator::iterator(const document *_doc, size_t _json_index) noexcept : internal::tape_ref(_doc, _json_index) { }
inline const key_value_pair object::iterator::operator*() const noexcept {
return key_value_pair(key(), value());
}
inline bool object::iterator::operator!=(const object::iterator& other) const noexcept {
return json_index != other.json_index;
}
inline void object::iterator::operator++() noexcept {
json_index++;
json_index = after_element();
}
inline std::string_view object::iterator::key() const noexcept {
size_t string_buf_index = tape_value();
uint32_t len;
memcpy(&len, &doc->string_buf[string_buf_index], sizeof(len));
return std::string_view(
reinterpret_cast<const char *>(&doc->string_buf[string_buf_index + sizeof(uint32_t)]),
len
);
}
inline const char* object::iterator::key_c_str() const noexcept {
return reinterpret_cast<const char *>(&doc->string_buf[tape_value() + sizeof(uint32_t)]);
}
inline element object::iterator::value() const noexcept {
return element(doc, json_index + 1);
}
//
// key_value_pair inline implementation
//
inline key_value_pair::key_value_pair(const std::string_view &_key, element _value) noexcept :
key(_key), value(_value) {}
//
// element inline implementation
//
really_inline element::element() noexcept : internal::tape_ref() {}
really_inline element::element(const document *_doc, size_t _json_index) noexcept : internal::tape_ref(_doc, _json_index) { }
inline element_type element::type() const noexcept {
switch (tape_ref_type()) {
case internal::tape_type::START_ARRAY:
return element_type::ARRAY;
case internal::tape_type::START_OBJECT:
return element_type::OBJECT;
case internal::tape_type::INT64:
return element_type::INT64;
case internal::tape_type::UINT64:
return element_type::UINT64;
case internal::tape_type::DOUBLE:
return element_type::DOUBLE;
case internal::tape_type::STRING:
return element_type::STRING;
case internal::tape_type::TRUE_VALUE:
case internal::tape_type::FALSE_VALUE:
return element_type::BOOL;
case internal::tape_type::NULL_VALUE:
return element_type::NULL_VALUE;
case internal::tape_type::ROOT:
case internal::tape_type::END_ARRAY:
case internal::tape_type::END_OBJECT:
default:
abort();
}
}
really_inline bool element::is_null() const noexcept {
return tape_ref_type() == internal::tape_type::NULL_VALUE;
}
template<>
inline simdjson_result<bool> element::get<bool>() const noexcept {
switch (tape_ref_type()) {
case internal::tape_type::TRUE_VALUE:
return true;
case internal::tape_type::FALSE_VALUE:
return false;
default:
return INCORRECT_TYPE;
}
}
template<>
inline simdjson_result<const char *> element::get<const char *>() const noexcept {
switch (tape_ref_type()) {
case internal::tape_type::STRING: {
size_t string_buf_index = tape_value();
return reinterpret_cast<const char *>(&doc->string_buf[string_buf_index + sizeof(uint32_t)]);
}
default:
return INCORRECT_TYPE;
}
}
template<>
inline simdjson_result<std::string_view> element::get<std::string_view>() const noexcept {
switch (tape_ref_type()) {
case internal::tape_type::STRING:
return get_string_view();
default:
return INCORRECT_TYPE;
}
}
template<>
inline simdjson_result<uint64_t> element::get<uint64_t>() const noexcept {
switch (tape_ref_type()) {
case internal::tape_type::UINT64:
return next_tape_value<uint64_t>();
case internal::tape_type::INT64: {
int64_t result = next_tape_value<int64_t>();
if (result < 0) {
return NUMBER_OUT_OF_RANGE;
}
return static_cast<uint64_t>(result);
}
default:
return INCORRECT_TYPE;
}
}
template<>
inline simdjson_result<int64_t> element::get<int64_t>() const noexcept {
switch (tape_ref_type()) {
case internal::tape_type::UINT64: {
uint64_t result = next_tape_value<uint64_t>();
// Wrapping max in parens to handle Windows issue: https://stackoverflow.com/questions/11544073/how-do-i-deal-with-the-max-macro-in-windows-h-colliding-with-max-in-std
if (result > (std::numeric_limits<int64_t>::max)()) {
return NUMBER_OUT_OF_RANGE;
}
return static_cast<int64_t>(result);
}
case internal::tape_type::INT64:
return next_tape_value<int64_t>();
default:
return INCORRECT_TYPE;
}
}
template<>
inline simdjson_result<double> element::get<double>() const noexcept {
switch (tape_ref_type()) {
case internal::tape_type::UINT64:
return next_tape_value<uint64_t>();
case internal::tape_type::INT64: {
return next_tape_value<int64_t>();
int64_t result = tape_value();
if (result < 0) {
return NUMBER_OUT_OF_RANGE;
}
return double(result);
}
case internal::tape_type::DOUBLE:
return next_tape_value<double>();
default:
return INCORRECT_TYPE;
}
}
template<>
inline simdjson_result<array> element::get<array>() const noexcept {
switch (tape_ref_type()) {
case internal::tape_type::START_ARRAY:
return array(doc, json_index);
default:
return INCORRECT_TYPE;
}
}
template<>
inline simdjson_result<object> element::get<object>() const noexcept {
switch (tape_ref_type()) {
case internal::tape_type::START_OBJECT:
return object(doc, json_index);
default:
return INCORRECT_TYPE;
}
}
template<typename T>
really_inline bool element::is() const noexcept {
auto result = get<T>();
return !result.error();
}
#if SIMDJSON_EXCEPTIONS
inline element::operator bool() const noexcept(false) { return get<bool>(); }
inline element::operator const char*() const noexcept(false) { return get<const char *>(); }
inline element::operator std::string_view() const noexcept(false) { return get<std::string_view>(); }
inline element::operator uint64_t() const noexcept(false) { return get<uint64_t>(); }
inline element::operator int64_t() const noexcept(false) { return get<int64_t>(); }
inline element::operator double() const noexcept(false) { return get<double>(); }
inline element::operator array() const noexcept(false) { return get<array>(); }
inline element::operator object() const noexcept(false) { return get<object>(); }
inline array::iterator element::begin() const noexcept(false) {
return get<array>().begin();
}
inline array::iterator element::end() const noexcept(false) {
return get<array>().end();
}
#endif
inline simdjson_result<element> element::operator[](const std::string_view &key) const noexcept {
return at_key(key);
}
inline simdjson_result<element> element::operator[](const char *key) const noexcept {
return at_key(key);
}
inline simdjson_result<element> element::at(const std::string_view &json_pointer) const noexcept {
switch (tape_ref_type()) {
case internal::tape_type::START_OBJECT:
return object(doc, json_index).at(json_pointer);
case internal::tape_type::START_ARRAY:
return array(doc, json_index).at(json_pointer);
default:
return INCORRECT_TYPE;
}
}
inline simdjson_result<element> element::at(size_t index) const noexcept {
return get<array>().at(index);
}
inline simdjson_result<element> element::at_key(const std::string_view &key) const noexcept {
return get<object>().at_key(key);
}
inline simdjson_result<element> element::at_key_case_insensitive(const std::string_view &key) const noexcept {
return get<object>().at_key_case_insensitive(key);
}
inline bool element::dump_raw_tape(std::ostream &out) const noexcept {
return doc->dump_raw_tape(out);
}
} // namespace simdjson::dom
namespace simdjson {
//
// minify inline implementation
//
template<>
inline std::ostream& minify<dom::element>::print(std::ostream& out) {
using tape_type=internal::tape_type;
size_t depth = 0;
constexpr size_t MAX_DEPTH = 16;
bool is_object[MAX_DEPTH];
is_object[0] = false;
bool after_value = false;
internal::tape_ref iter(value);
do {
// print commas after each value
if (after_value) {
out << ",";
}
// If we are in an object, print the next key and :, and skip to the next value.
if (is_object[depth]) {
out << '"' << internal::escape_json_string(iter.get_string_view()) << "\":";
iter.json_index++;
}
switch (iter.tape_ref_type()) {
// Arrays
case tape_type::START_ARRAY: {
// If we're too deep, we need to recurse to go deeper.
depth++;
if (unlikely(depth >= MAX_DEPTH)) {
out << minify<dom::array>(dom::array(iter.doc, iter.json_index));
iter.json_index = iter.tape_value() - 1; // Jump to the ]
depth--;
break;
}
// Output start [
out << '[';
iter.json_index++;
// Handle empty [] (we don't want to come back around and print commas)
if (iter.tape_ref_type() == tape_type::END_ARRAY) {
out << ']';
depth--;
break;
}
is_object[depth] = false;
after_value = false;
continue;
}
// Objects
case tape_type::START_OBJECT: {
// If we're too deep, we need to recurse to go deeper.
depth++;
if (unlikely(depth >= MAX_DEPTH)) {
out << minify<dom::object>(dom::object(iter.doc, iter.json_index));
iter.json_index = iter.tape_value() - 1; // Jump to the }
depth--;
break;
}
// Output start {
out << '{';
iter.json_index++;
// Handle empty {} (we don't want to come back around and print commas)
if (iter.tape_ref_type() == tape_type::END_OBJECT) {
out << '}';
depth--;
break;
}
is_object[depth] = true;
after_value = false;
continue;
}
// Scalars
case tape_type::STRING:
out << '"' << internal::escape_json_string(iter.get_string_view()) << '"';
break;
case tape_type::INT64:
out << iter.next_tape_value<int64_t>();
iter.json_index++; // numbers take up 2 spots, so we need to increment extra
break;
case tape_type::UINT64:
out << iter.next_tape_value<uint64_t>();
iter.json_index++; // numbers take up 2 spots, so we need to increment extra
break;
case tape_type::DOUBLE:
out << iter.next_tape_value<double>();
iter.json_index++; // numbers take up 2 spots, so we need to increment extra
break;
case tape_type::TRUE_VALUE:
out << "true";
break;
case tape_type::FALSE_VALUE:
out << "false";
break;
case tape_type::NULL_VALUE:
out << "null";
break;
// These are impossible
case tape_type::END_ARRAY:
case tape_type::END_OBJECT:
case tape_type::ROOT:
abort();
}
iter.json_index++;
after_value = true;
// Handle multiple ends in a row
while (depth != 0 && (iter.tape_ref_type() == tape_type::END_ARRAY || iter.tape_ref_type() == tape_type::END_OBJECT)) {
out << char(iter.tape_ref_type());
depth--;
iter.json_index++;
}
// Stop when we're at depth 0
} while (depth != 0);
return out;
}
template<>
inline std::ostream& minify<dom::object>::print(std::ostream& out) {
out << '{';
auto pair = value.begin();
auto end = value.end();
if (pair != end) {
out << minify<dom::key_value_pair>(*pair);
for (++pair; pair != end; ++pair) {
out << "," << minify<dom::key_value_pair>(*pair);
}
}
return out << '}';
}
template<>
inline std::ostream& minify<dom::array>::print(std::ostream& out) {
out << '[';
auto iter = value.begin();
auto end = value.end();
if (iter != end) {
out << minify<dom::element>(*iter);
for (++iter; iter != end; ++iter) {
out << "," << minify<dom::element>(*iter);
}
}
return out << ']';
}
template<>
inline std::ostream& minify<dom::key_value_pair>::print(std::ostream& out) {
return out << '"' << internal::escape_json_string(value.key) << "\":" << value.value;
}
#if SIMDJSON_EXCEPTIONS
template<>
inline std::ostream& minify<simdjson_result<dom::element>>::print(std::ostream& out) {
if (value.error()) { throw simdjson_error(value.error()); }
return out << minify<dom::element>(value.first);
}
template<>
inline std::ostream& minify<simdjson_result<dom::array>>::print(std::ostream& out) {
if (value.error()) { throw simdjson_error(value.error()); }
return out << minify<dom::array>(value.first);
}
template<>
inline std::ostream& minify<simdjson_result<dom::object>>::print(std::ostream& out) {
if (value.error()) { throw simdjson_error(value.error()); }
return out << minify<dom::object>(value.first);
}
#endif
} // namespace simdjson
namespace simdjson::internal {
//
// tape_ref inline implementation
//
really_inline tape_ref::tape_ref() noexcept : doc{nullptr}, json_index{0} {}
really_inline tape_ref::tape_ref(const document *_doc, size_t _json_index) noexcept : doc{_doc}, json_index{_json_index} {}
inline size_t tape_ref::after_element() const noexcept {
switch (tape_ref_type()) {
case tape_type::START_ARRAY:
case tape_type::START_OBJECT:
return tape_value();
case tape_type::UINT64:
case tape_type::INT64:
case tape_type::DOUBLE:
return json_index + 2;
default:
return json_index + 1;
}
}
really_inline tape_type tape_ref::tape_ref_type() const noexcept {
return static_cast<tape_type>(doc->tape[json_index] >> 56);
}
really_inline uint64_t internal::tape_ref::tape_value() const noexcept {
return doc->tape[json_index] & internal::JSON_VALUE_MASK;
}
template<typename T>
really_inline T tape_ref::next_tape_value() const noexcept {
static_assert(sizeof(T) == sizeof(uint64_t));
return *reinterpret_cast<const T*>(&doc->tape[json_index + 1]);
}
inline std::string_view internal::tape_ref::get_string_view() const noexcept {
size_t string_buf_index = tape_value();
uint32_t len;
memcpy(&len, &doc->string_buf[string_buf_index], sizeof(len));
return std::string_view(
reinterpret_cast<const char *>(&doc->string_buf[string_buf_index + sizeof(uint32_t)]),
len
);
}
} // namespace simdjson::internal
#endif // SIMDJSON_INLINE_DOCUMENT_H
/* end file include/simdjson/inline/document.h */
/* begin file include/simdjson/inline/document_stream.h */
#ifndef SIMDJSON_INLINE_DOCUMENT_STREAM_H
#define SIMDJSON_INLINE_DOCUMENT_STREAM_H
#include <algorithm>
#include <limits>
#include <stdexcept>
#include <thread>
namespace simdjson::internal {
/**
* This algorithm is used to quickly identify the buffer position of
* the last JSON document inside the current batch.
*
* It does its work by finding the last pair of structural characters
* that represent the end followed by the start of a document.
*
* Simply put, we iterate over the structural characters, starting from
* the end. We consider that we found the end of a JSON document when the
* first element of the pair is NOT one of these characters: '{' '[' ';' ','
* and when the second element is NOT one of these characters: '}' '}' ';' ','.
*
* This simple comparison works most of the time, but it does not cover cases
* where the batch's structural indexes contain a perfect amount of documents.
* In such a case, we do not have access to the structural index which follows
* the last document, therefore, we do not have access to the second element in
* the pair, and means that we cannot identify the last document. To fix this
* issue, we keep a count of the open and closed curly/square braces we found
* while searching for the pair. When we find a pair AND the count of open and
* closed curly/square braces is the same, we know that we just passed a
* complete
* document, therefore the last json buffer location is the end of the batch
* */
inline size_t find_last_json_buf_idx(const uint8_t *buf, size_t size, const dom::parser &parser) {
// this function can be generally useful
if (parser.n_structural_indexes == 0)
return 0;
auto last_i = parser.n_structural_indexes - 1;
if (parser.structural_indexes[last_i] == size) {
if (last_i == 0)
return 0;
last_i = parser.n_structural_indexes - 2;
}
auto arr_cnt = 0;
auto obj_cnt = 0;
for (auto i = last_i; i > 0; i--) {
auto idxb = parser.structural_indexes[i];
switch (buf[idxb]) {
case ':':
case ',':
continue;
case '}':
obj_cnt--;
continue;
case ']':
arr_cnt--;
continue;
case '{':
obj_cnt++;
break;
case '[':
arr_cnt++;
break;
}
auto idxa = parser.structural_indexes[i - 1];
switch (buf[idxa]) {
case '{':
case '[':
case ':':
case ',':
continue;
}
if (!arr_cnt && !obj_cnt) {
return last_i + 1;
}
return i;
}
return 0;
}
// returns true if the provided byte value is an ASCII character
static inline bool is_ascii(char c) {
return ((unsigned char)c) <= 127;
}
// if the string ends with UTF-8 values, backtrack
// up to the first ASCII character. May return 0.
static inline size_t trimmed_length_safe_utf8(const char * c, size_t len) {
while ((len > 0) and (not is_ascii(c[len - 1]))) {
len--;
}
return len;
}
} // namespace simdjson::internal
namespace simdjson::dom {
really_inline document_stream::document_stream(
dom::parser &_parser,
const uint8_t *buf,
size_t len,
size_t batch_size,
error_code _error
) noexcept : parser{_parser}, _buf{buf}, _len{len}, _batch_size(batch_size), error{_error} {
if (!error) { error = json_parse(); }
}
inline document_stream::~document_stream() noexcept {
#ifdef SIMDJSON_THREADS_ENABLED
if (stage_1_thread.joinable()) {
stage_1_thread.join();
}
#endif
}
really_inline document_stream::iterator document_stream::begin() noexcept {
return iterator(*this, false);
}
really_inline document_stream::iterator document_stream::end() noexcept {
return iterator(*this, true);
}
really_inline document_stream::iterator::iterator(document_stream& _stream, bool is_end) noexcept
: stream{_stream}, finished{is_end} {
}
really_inline simdjson_result<element> document_stream::iterator::operator*() noexcept {
error_code err = stream.error == SUCCESS_AND_HAS_MORE ? SUCCESS : stream.error;
if (err) { return err; }
return stream.parser.doc.root();
}
really_inline document_stream::iterator& document_stream::iterator::operator++() noexcept {
if (stream.error == SUCCESS_AND_HAS_MORE) {
stream.error = stream.json_parse();
} else {
finished = true;
}
return *this;
}
really_inline bool document_stream::iterator::operator!=(const document_stream::iterator &other) const noexcept {
return finished != other.finished;
}
#ifdef SIMDJSON_THREADS_ENABLED
// threaded version of json_parse
// todo: simplify this code further
inline error_code document_stream::json_parse() noexcept {
error = parser.ensure_capacity(_batch_size);
if (error) { return error; }
error = parser_thread.ensure_capacity(_batch_size);
if (error) { return error; }
if (unlikely(load_next_batch)) {
// First time loading
if (!stage_1_thread.joinable()) {
_batch_size = (std::min)(_batch_size, remaining());
_batch_size = internal::trimmed_length_safe_utf8((const char *)buf(), _batch_size);
if (_batch_size == 0) {
return simdjson::UTF8_ERROR;
}
auto stage1_is_ok = error_code(simdjson::active_implementation->stage1(buf(), _batch_size, parser, true));
if (stage1_is_ok != simdjson::SUCCESS) {
return stage1_is_ok;
}
size_t last_index = internal::find_last_json_buf_idx(buf(), _batch_size, parser);
if (last_index == 0) {
if (parser.n_structural_indexes == 0) {
return simdjson::EMPTY;
}
} else {
parser.n_structural_indexes = last_index + 1;
}
}
// the second thread is running or done.
else {
stage_1_thread.join();
if (stage1_is_ok_thread != simdjson::SUCCESS) {
return stage1_is_ok_thread;
}
std::swap(parser.structural_indexes, parser_thread.structural_indexes);
parser.n_structural_indexes = parser_thread.n_structural_indexes;
advance(last_json_buffer_loc);
n_bytes_parsed += last_json_buffer_loc;
}
// let us decide whether we will start a new thread
if (remaining() - _batch_size > 0) {
last_json_buffer_loc =
parser.structural_indexes[internal::find_last_json_buf_idx(buf(), _batch_size, parser)];
_batch_size = (std::min)(_batch_size, remaining() - last_json_buffer_loc);
if (_batch_size > 0) {
_batch_size = internal::trimmed_length_safe_utf8(
(const char *)(buf() + last_json_buffer_loc), _batch_size);
if (_batch_size == 0) {
return simdjson::UTF8_ERROR;
}
// let us capture read-only variables
const uint8_t *const b = buf() + last_json_buffer_loc;
const size_t bs = _batch_size;
// we call the thread on a lambda that will update
// this->stage1_is_ok_thread
// there is only one thread that may write to this value
stage_1_thread = std::thread([this, b, bs] {
this->stage1_is_ok_thread = error_code(simdjson::active_implementation->stage1(b, bs, this->parser_thread, true));
});
}
}
next_json = 0;
load_next_batch = false;
} // load_next_batch
error_code res = simdjson::active_implementation->stage2(buf(), remaining(), parser, next_json);
if (res == simdjson::SUCCESS_AND_HAS_MORE) {
n_parsed_docs++;
current_buffer_loc = parser.structural_indexes[next_json];
load_next_batch = (current_buffer_loc == last_json_buffer_loc);
} else if (res == simdjson::SUCCESS) {
n_parsed_docs++;
if (remaining() > _batch_size) {
current_buffer_loc = parser.structural_indexes[next_json - 1];
load_next_batch = true;
res = simdjson::SUCCESS_AND_HAS_MORE;
}
}
return res;
}
#else // SIMDJSON_THREADS_ENABLED
// single-threaded version of json_parse
inline error_code document_stream::json_parse() noexcept {
error = parser.ensure_capacity(_batch_size);
if (error) { return error; }
if (unlikely(load_next_batch)) {
advance(current_buffer_loc);
n_bytes_parsed += current_buffer_loc;
_batch_size = (std::min)(_batch_size, remaining());
_batch_size = internal::trimmed_length_safe_utf8((const char *)buf(), _batch_size);
auto stage1_is_ok = (error_code)simdjson::active_implementation->stage1(buf(), _batch_size, parser, true);
if (stage1_is_ok != simdjson::SUCCESS) {
return stage1_is_ok;
}
size_t last_index = internal::find_last_json_buf_idx(buf(), _batch_size, parser);
if (last_index == 0) {
if (parser.n_structural_indexes == 0) {
return EMPTY;
}
} else {
parser.n_structural_indexes = last_index + 1;
}
load_next_batch = false;
} // load_next_batch
error_code res = simdjson::active_implementation->stage2(buf(), remaining(), parser, next_json);
if (likely(res == simdjson::SUCCESS_AND_HAS_MORE)) {
n_parsed_docs++;
current_buffer_loc = parser.structural_indexes[next_json];
} else if (res == simdjson::SUCCESS) {
n_parsed_docs++;
if (remaining() > _batch_size) {
current_buffer_loc = parser.structural_indexes[next_json - 1];
next_json = 1;
load_next_batch = true;
res = simdjson::SUCCESS_AND_HAS_MORE;
}
}
return res;
}
#endif // SIMDJSON_THREADS_ENABLED
} // namespace simdjson::dom
#endif // SIMDJSON_INLINE_DOCUMENT_STREAM_H
/* end file include/simdjson/inline/document_stream.h */
/* begin file include/simdjson/inline/error.h */
#ifndef SIMDJSON_INLINE_ERROR_H
#define SIMDJSON_INLINE_ERROR_H
#include <string>
namespace simdjson::internal {
// We store the error code so we can validate the error message is associated with the right code
struct error_code_info {
error_code code;
std::string message;
};
// These MUST match the codes in error_code. We check this constraint in basictests.
inline const error_code_info error_codes[] {
{ SUCCESS, "No error" },
{ SUCCESS_AND_HAS_MORE, "No error and buffer still has more data" },
{ CAPACITY, "This parser can't support a document that big" },
{ MEMALLOC, "Error allocating memory, we're most likely out of memory" },
{ TAPE_ERROR, "Something went wrong while writing to the tape" },
{ DEPTH_ERROR, "The JSON document was too deep (too many nested objects and arrays)" },
{ STRING_ERROR, "Problem while parsing a string" },
{ T_ATOM_ERROR, "Problem while parsing an atom starting with the letter 't'" },
{ F_ATOM_ERROR, "Problem while parsing an atom starting with the letter 'f'" },
{ N_ATOM_ERROR, "Problem while parsing an atom starting with the letter 'n'" },
{ NUMBER_ERROR, "Problem while parsing a number" },
{ UTF8_ERROR, "The input is not valid UTF-8" },
{ UNINITIALIZED, "Uninitialized" },
{ EMPTY, "Empty: no JSON found" },
{ UNESCAPED_CHARS, "Within strings, some characters must be escaped, we found unescaped characters" },
{ UNCLOSED_STRING, "A string is opened, but never closed." },
{ UNSUPPORTED_ARCHITECTURE, "simdjson does not have an implementation supported by this CPU architecture (perhaps it's a non-SIMD CPU?)." },
{ INCORRECT_TYPE, "The JSON element does not have the requested type." },
{ NUMBER_OUT_OF_RANGE, "The JSON number is too large or too small to fit within the requested type." },
{ INDEX_OUT_OF_BOUNDS, "Attempted to access an element of a JSON array that is beyond its length." },
{ NO_SUCH_FIELD, "The JSON field referenced does not exist in this object." },
{ IO_ERROR, "Error reading the file." },
{ INVALID_JSON_POINTER, "Invalid JSON pointer syntax." },
{ INVALID_URI_FRAGMENT, "Invalid URI fragment syntax." },
{ UNEXPECTED_ERROR, "Unexpected error, consider reporting this problem as you may have found a bug in simdjson" }
}; // error_messages[]
} // namespace simdjson::internal
namespace simdjson {
inline const char *error_message(error_code error) noexcept {
// If you're using error_code, we're trusting you got it from the enum.
return internal::error_codes[int(error)].message.c_str();
}
inline const std::string &error_message(int error) noexcept {
if (error < 0 || error >= error_code::NUM_ERROR_CODES) {
return internal::error_codes[UNEXPECTED_ERROR].message;
}
return internal::error_codes[error].message;
}
inline std::ostream& operator<<(std::ostream& out, error_code error) noexcept {
return out << error_message(error);
}
namespace internal {
//
// internal::simdjson_result_base<T> inline implementation
//
template<typename T>
really_inline void simdjson_result_base<T>::tie(T &value, error_code &error) && noexcept {
// on the clang compiler that comes with current macOS (Apple clang version 11.0.0),
// tie(width, error) = size["w"].get<uint64_t>();
// fails with "error: no viable overloaded '='""
value = std::forward<simdjson_result_base<T>>(*this).first;
error = this->second;
}
template<typename T>
really_inline error_code simdjson_result_base<T>::error() const noexcept {
return this->second;
}
#if SIMDJSON_EXCEPTIONS
template<typename T>
really_inline T& simdjson_result_base<T>::value() noexcept(false) {
if (error()) { throw simdjson_error(error()); }
return this->first;
};
template<typename T>
really_inline T&& simdjson_result_base<T>::take_value() && noexcept(false) {
if (error()) { throw simdjson_error(error()); }
return std::forward<T>(this->first);
};
template<typename T>
really_inline simdjson_result_base<T>::operator T&&() && noexcept(false) {
return std::forward<simdjson_result_base<T>>(*this).take_value();
}
#endif // SIMDJSON_EXCEPTIONS
template<typename T>
really_inline simdjson_result_base<T>::simdjson_result_base(T &&value, error_code error) noexcept
: std::pair<T, error_code>(std::forward<T>(value), error) {}
template<typename T>
really_inline simdjson_result_base<T>::simdjson_result_base(error_code error) noexcept
: simdjson_result_base(T{}, error) {}
template<typename T>
really_inline simdjson_result_base<T>::simdjson_result_base(T &&value) noexcept
: simdjson_result_base(std::forward<T>(value), SUCCESS) {}
template<typename T>
really_inline simdjson_result_base<T>::simdjson_result_base() noexcept
: simdjson_result_base(T{}, UNINITIALIZED) {}
} // namespace internal
///
/// simdjson_result<T> inline implementation
///
template<typename T>
really_inline void simdjson_result<T>::tie(T &value, error_code &error) && noexcept {
std::forward<internal::simdjson_result_base<T>>(*this).tie(value, error);
}
template<typename T>
really_inline error_code simdjson_result<T>::error() const noexcept {
return internal::simdjson_result_base<T>::error();
}
#if SIMDJSON_EXCEPTIONS
template<typename T>
really_inline T& simdjson_result<T>::value() noexcept(false) {
return internal::simdjson_result_base<T>::value();
}
template<typename T>
really_inline T&& simdjson_result<T>::take_value() && noexcept(false) {
return std::forward<internal::simdjson_result_base<T>>(*this).take_value();
}
template<typename T>
really_inline simdjson_result<T>::operator T&&() && noexcept(false) {
return std::forward<internal::simdjson_result_base<T>>(*this).take_value();
}
#endif // SIMDJSON_EXCEPTIONS
template<typename T>
really_inline simdjson_result<T>::simdjson_result(T &&value, error_code error) noexcept
: internal::simdjson_result_base<T>(std::forward<T>(value), error) {}
template<typename T>
really_inline simdjson_result<T>::simdjson_result(error_code error) noexcept
: internal::simdjson_result_base<T>(error) {}
template<typename T>
really_inline simdjson_result<T>::simdjson_result(T &&value) noexcept
: internal::simdjson_result_base<T>(std::forward<T>(value)) {}
template<typename T>
really_inline simdjson_result<T>::simdjson_result() noexcept
: internal::simdjson_result_base<T>() {}
} // namespace simdjson
#endif // SIMDJSON_INLINE_ERROR_H
/* end file include/simdjson/inline/error.h */
/* begin file include/simdjson/inline/padded_string.h */
#ifndef SIMDJSON_INLINE_PADDED_STRING_H
#define SIMDJSON_INLINE_PADDED_STRING_H
#include <climits>
#include <cstring>
#include <memory>
#include <string>
namespace simdjson::internal {
// low-level function to allocate memory with padding so we can read past the
// "length" bytes safely. if you must provide a pointer to some data, create it
// with this function: length is the max. size in bytes of the string caller is
// responsible to free the memory (free(...))
inline char *allocate_padded_buffer(size_t length) noexcept {
// we could do a simple malloc
// return (char *) malloc(length + SIMDJSON_PADDING);
// However, we might as well align to cache lines...
size_t totalpaddedlength = length + SIMDJSON_PADDING;
char *padded_buffer = aligned_malloc_char(64, totalpaddedlength);
#ifndef NDEBUG
if (padded_buffer == nullptr) {
return nullptr;
}
#endif // NDEBUG
memset(padded_buffer + length, 0, totalpaddedlength - length);
return padded_buffer;
} // allocate_padded_buffer()
} // namespace simdjson::internal
namespace simdjson {
inline padded_string::padded_string() noexcept : viable_size(0), data_ptr(nullptr) {}
inline padded_string::padded_string(size_t length) noexcept
: viable_size(length), data_ptr(internal::allocate_padded_buffer(length)) {
if (data_ptr != nullptr)
data_ptr[length] = '\0'; // easier when you need a c_str
}
inline padded_string::padded_string(const char *data, size_t length) noexcept
: viable_size(length), data_ptr(internal::allocate_padded_buffer(length)) {
if ((data != nullptr) and (data_ptr != nullptr)) {
memcpy(data_ptr, data, length);
data_ptr[length] = '\0'; // easier when you need a c_str
}
}
// note: do not pass std::string arguments by value
inline padded_string::padded_string(const std::string & str_ ) noexcept
: viable_size(str_.size()), data_ptr(internal::allocate_padded_buffer(str_.size())) {
if (data_ptr != nullptr) {
memcpy(data_ptr, str_.data(), str_.size());
data_ptr[str_.size()] = '\0'; // easier when you need a c_str
}
}
// note: do pass std::string_view arguments by value
inline padded_string::padded_string(std::string_view sv_) noexcept
: viable_size(sv_.size()), data_ptr(internal::allocate_padded_buffer(sv_.size())) {
if (data_ptr != nullptr) {
memcpy(data_ptr, sv_.data(), sv_.size());
data_ptr[sv_.size()] = '\0'; // easier when you need a c_str
}
}
inline padded_string::padded_string(padded_string &&o) noexcept
: viable_size(o.viable_size), data_ptr(o.data_ptr) {
o.data_ptr = nullptr; // we take ownership
}
inline padded_string &padded_string::operator=(padded_string &&o) noexcept {
aligned_free_char(data_ptr);
data_ptr = o.data_ptr;
viable_size = o.viable_size;
o.data_ptr = nullptr; // we take ownership
o.viable_size = 0;
return *this;
}
inline void padded_string::swap(padded_string &o) noexcept {
size_t tmp_viable_size = viable_size;
char *tmp_data_ptr = data_ptr;
viable_size = o.viable_size;
data_ptr = o.data_ptr;
o.data_ptr = tmp_data_ptr;
o.viable_size = tmp_viable_size;
}
inline padded_string::~padded_string() noexcept {
aligned_free_char(data_ptr);
}
inline size_t padded_string::size() const noexcept { return viable_size; }
inline size_t padded_string::length() const noexcept { return viable_size; }
inline const char *padded_string::data() const noexcept { return data_ptr; }
inline char *padded_string::data() noexcept { return data_ptr; }
inline padded_string::operator std::string_view() const { return std::string_view(data(), length()); }
inline simdjson_result<padded_string> padded_string::load(const std::string &filename) noexcept {
// Open the file
std::FILE *fp = std::fopen(filename.c_str(), "rb");
if (fp == nullptr) {
return IO_ERROR;
}
// Get the file size
if(std::fseek(fp, 0, SEEK_END) < 0) {
std::fclose(fp);
return IO_ERROR;
}
long llen = std::ftell(fp);
if((llen < 0) || (llen == LONG_MAX)) {
std::fclose(fp);
return IO_ERROR;
}
// Allocate the padded_string
size_t len = (size_t) llen;
padded_string s(len);
if (s.data() == nullptr) {
std::fclose(fp);
return MEMALLOC;
}
// Read the padded_string
std::rewind(fp);
size_t bytes_read = std::fread(s.data(), 1, len, fp);
if (std::fclose(fp) != 0 || bytes_read != len) {
return IO_ERROR;
}
return s;
}
} // namespace simdjson
#endif // SIMDJSON_INLINE_PADDED_STRING_H
/* end file include/simdjson/inline/padded_string.h */
/* begin file include/simdjson/inline/parsedjson_iterator.h */
#ifndef SIMDJSON_INLINE_PARSEDJSON_ITERATOR_H
#define SIMDJSON_INLINE_PARSEDJSON_ITERATOR_H
namespace simdjson {
// Because of template weirdness, the actual class definition is inline in the document class
WARN_UNUSED bool dom::parser::Iterator::is_ok() const {
return location < tape_length;
}
// useful for debugging purposes
size_t dom::parser::Iterator::get_tape_location() const {
return location;
}
// useful for debugging purposes
size_t dom::parser::Iterator::get_tape_length() const {
return tape_length;
}
// returns the current depth (start at 1 with 0 reserved for the fictitious root
// node)
size_t dom::parser::Iterator::get_depth() const {
return depth;
}
// A scope is a series of nodes at the same depth, typically it is either an
// object ({) or an array ([). The root node has type 'r'.
uint8_t dom::parser::Iterator::get_scope_type() const {
return depth_index[depth].scope_type;
}
bool dom::parser::Iterator::move_forward() {
if (location + 1 >= tape_length) {
return false; // we are at the end!
}
if ((current_type == '[') || (current_type == '{')) {
// We are entering a new scope
depth++;
assert(depth < max_depth);
depth_index[depth].start_of_scope = location;
depth_index[depth].scope_type = current_type;
} else if ((current_type == ']') || (current_type == '}')) {
// Leaving a scope.
depth--;
} else if (is_number()) {
// these types use 2 locations on the tape, not just one.
location += 1;
}
location += 1;
current_val = doc.tape[location];
current_type = (current_val >> 56);
return true;
}
void dom::parser::Iterator::move_to_value() {
// assume that we are on a key, so move by 1.
location += 1;
current_val = doc.tape[location];
current_type = (current_val >> 56);
}
bool dom::parser::Iterator::move_to_key(const char *key) {
if (down()) {
do {
const bool right_key = (strcmp(get_string(), key) == 0);
move_to_value();
if (right_key) {
return true;
}
} while (next());
up();
}
return false;
}
bool dom::parser::Iterator::move_to_key_insensitive(
const char *key) {
if (down()) {
do {
const bool right_key = (simdjson_strcasecmp(get_string(), key) == 0);
move_to_value();
if (right_key) {
return true;
}
} while (next());
up();
}
return false;
}
bool dom::parser::Iterator::move_to_key(const char *key,
uint32_t length) {
if (down()) {
do {
bool right_key = ((get_string_length() == length) &&
(memcmp(get_string(), key, length) == 0));
move_to_value();
if (right_key) {
return true;
}
} while (next());
up();
}
return false;
}
bool dom::parser::Iterator::move_to_index(uint32_t index) {
if (down()) {
uint32_t i = 0;
for (; i < index; i++) {
if (!next()) {
break;
}
}
if (i == index) {
return true;
}
up();
}
return false;
}
bool dom::parser::Iterator::prev() {
size_t target_location = location;
to_start_scope();
size_t npos = location;
if (target_location == npos) {
return false; // we were already at the start
}
size_t oldnpos;
// we have that npos < target_location here
do {
oldnpos = npos;
if ((current_type == '[') || (current_type == '{')) {
// we need to jump
npos = (current_val & internal::JSON_VALUE_MASK);
} else {
npos = npos + ((current_type == 'd' || current_type == 'l') ? 2 : 1);
}
} while (npos < target_location);
location = oldnpos;
current_val = doc.tape[location];
current_type = current_val >> 56;
return true;
}
bool dom::parser::Iterator::up() {
if (depth == 1) {
return false; // don't allow moving back to root
}
to_start_scope();
// next we just move to the previous value
depth--;
location -= 1;
current_val = doc.tape[location];
current_type = (current_val >> 56);
return true;
}
bool dom::parser::Iterator::down() {
if (location + 1 >= tape_length) {
return false;
}
if ((current_type == '[') || (current_type == '{')) {
size_t npos = (current_val & internal::JSON_VALUE_MASK);
if (npos == location + 2) {
return false; // we have an empty scope
}
depth++;
assert(depth < max_depth);
location = location + 1;
depth_index[depth].start_of_scope = location;
depth_index[depth].scope_type = current_type;
current_val = doc.tape[location];
current_type = (current_val >> 56);
return true;
}
return false;
}
void dom::parser::Iterator::to_start_scope() {
location = depth_index[depth].start_of_scope;
current_val = doc.tape[location];
current_type = (current_val >> 56);
}
bool dom::parser::Iterator::next() {
size_t npos;
if ((current_type == '[') || (current_type == '{')) {
// we need to jump
npos = (current_val & internal::JSON_VALUE_MASK);
} else {
npos = location + (is_number() ? 2 : 1);
}
uint64_t next_val = doc.tape[npos];
uint8_t next_type = (next_val >> 56);
if ((next_type == ']') || (next_type == '}')) {
return false; // we reached the end of the scope
}
location = npos;
current_val = next_val;
current_type = next_type;
return true;
}
dom::parser::Iterator::Iterator(const dom::parser &pj) noexcept(false)
: doc(pj.doc), depth(0), location(0), tape_length(0) {
#if SIMDJSON_EXCEPTIONS
if (!pj.valid) { throw simdjson_error(pj.error); }
#else
if (!pj.valid) { abort(); }
#endif
max_depth = pj.max_depth();
depth_index = new scopeindex_t[max_depth + 1];
depth_index[0].start_of_scope = location;
current_val = doc.tape[location++];
current_type = (current_val >> 56);
depth_index[0].scope_type = current_type;
tape_length = current_val & internal::JSON_VALUE_MASK;
if (location < tape_length) {
// If we make it here, then depth_capacity must >=2, but the compiler
// may not know this.
current_val = doc.tape[location];
current_type = (current_val >> 56);
depth++;
assert(depth < max_depth);
depth_index[depth].start_of_scope = location;
depth_index[depth].scope_type = current_type;
}
}
dom::parser::Iterator::Iterator(
const dom::parser::Iterator &o) noexcept
: doc(o.doc), max_depth(o.depth), depth(o.depth), location(o.location),
tape_length(o.tape_length), current_type(o.current_type),
current_val(o.current_val) {
depth_index = new scopeindex_t[max_depth+1];
memcpy(depth_index, o.depth_index, (depth + 1) * sizeof(depth_index[0]));
}
dom::parser::Iterator::~Iterator() noexcept {
if (depth_index) { delete[] depth_index; }
}
bool dom::parser::Iterator::print(std::ostream &os, bool escape_strings) const {
if (!is_ok()) {
return false;
}
switch (current_type) {
case '"': // we have a string
os << '"';
if (escape_strings) {
os << internal::escape_json_string(std::string_view(get_string(), get_string_length()));
} else {
// was: os << get_string();, but given that we can include null chars, we
// have to do something crazier:
std::copy(get_string(), get_string() + get_string_length(), std::ostream_iterator<char>(os));
}
os << '"';
break;
case 'l': // we have a long int
os << get_integer();
break;
case 'u':
os << get_unsigned_integer();
break;
case 'd':
os << get_double();
break;
case 'n': // we have a null
os << "null";
break;
case 't': // we have a true
os << "true";
break;
case 'f': // we have a false
os << "false";
break;
case '{': // we have an object
case '}': // we end an object
case '[': // we start an array
case ']': // we end an array
os << static_cast<char>(current_type);
break;
default:
return false;
}
return true;
}
bool dom::parser::Iterator::move_to(const char *pointer,
uint32_t length) {
char *new_pointer = nullptr;
if (pointer[0] == '#') {
// Converting fragment representation to string representation
new_pointer = new char[length];
uint32_t new_length = 0;
for (uint32_t i = 1; i < length; i++) {
if (pointer[i] == '%' && pointer[i + 1] == 'x') {
#if __cpp_exceptions
try {
#endif
int fragment =
std::stoi(std::string(&pointer[i + 2], 2), nullptr, 16);
if (fragment == '\\' || fragment == '"' || (fragment <= 0x1F)) {
// escaping the character
new_pointer[new_length] = '\\';
new_length++;
}
new_pointer[new_length] = fragment;
i += 3;
#if __cpp_exceptions
} catch (std::invalid_argument &) {
delete[] new_pointer;
return false; // the fragment is invalid
}
#endif
} else {
new_pointer[new_length] = pointer[i];
}
new_length++;
}
length = new_length;
pointer = new_pointer;
}
// saving the current state
size_t depth_s = depth;
size_t location_s = location;
uint8_t current_type_s = current_type;
uint64_t current_val_s = current_val;
rewind(); // The json pointer is used from the root of the document.
bool found = relative_move_to(pointer, length);
delete[] new_pointer;
if (!found) {
// since the pointer has found nothing, we get back to the original
// position.
depth = depth_s;
location = location_s;
current_type = current_type_s;
current_val = current_val_s;
}
return found;
}
bool dom::parser::Iterator::relative_move_to(const char *pointer,
uint32_t length) {
if (length == 0) {
// returns the whole document
return true;
}
if (pointer[0] != '/') {
// '/' must be the first character
return false;
}
// finding the key in an object or the index in an array
std::string key_or_index;
uint32_t offset = 1;
// checking for the "-" case
if (is_array() && pointer[1] == '-') {
if (length != 2) {
// the pointer must be exactly "/-"
// there can't be anything more after '-' as an index
return false;
}
key_or_index = '-';
offset = length; // will skip the loop coming right after
}
// We either transform the first reference token to a valid json key
// or we make sure it is a valid index in an array.
for (; offset < length; offset++) {
if (pointer[offset] == '/') {
// beginning of the next key or index
break;
}
if (is_array() && (pointer[offset] < '0' || pointer[offset] > '9')) {
// the index of an array must be an integer
// we also make sure std::stoi won't discard whitespaces later
return false;
}
if (pointer[offset] == '~') {
// "~1" represents "/"
if (pointer[offset + 1] == '1') {
key_or_index += '/';
offset++;
continue;
}
// "~0" represents "~"
if (pointer[offset + 1] == '0') {
key_or_index += '~';
offset++;
continue;
}
}
if (pointer[offset] == '\\') {
if (pointer[offset + 1] == '\\' || pointer[offset + 1] == '"' ||
(pointer[offset + 1] <= 0x1F)) {
key_or_index += pointer[offset + 1];
offset++;
continue;
}
return false; // invalid escaped character
}
if (pointer[offset] == '\"') {
// unescaped quote character. this is an invalid case.
// lets do nothing and assume most pointers will be valid.
// it won't find any corresponding json key anyway.
// return false;
}
key_or_index += pointer[offset];
}
bool found = false;
if (is_object()) {
if (move_to_key(key_or_index.c_str(), key_or_index.length())) {
found = relative_move_to(pointer + offset, length - offset);
}
} else if (is_array()) {
if (key_or_index == "-") { // handling "-" case first
if (down()) {
while (next())
; // moving to the end of the array
// moving to the nonexistent value right after...
size_t npos;
if ((current_type == '[') || (current_type == '{')) {
// we need to jump
npos = (current_val & internal::JSON_VALUE_MASK);
} else {
npos =
location + ((current_type == 'd' || current_type == 'l') ? 2 : 1);
}
location = npos;
current_val = doc.tape[npos];
current_type = (current_val >> 56);
return true; // how could it fail ?
}
} else { // regular numeric index
// The index can't have a leading '0'
if (key_or_index[0] == '0' && key_or_index.length() > 1) {
return false;
}
// it cannot be empty
if (key_or_index.length() == 0) {
return false;
}
// we already checked the index contains only valid digits
uint32_t index = std::stoi(key_or_index);
if (move_to_index(index)) {
found = relative_move_to(pointer + offset, length - offset);
}
}
}
return found;
}
} // namespace simdjson
#endif // SIMDJSON_INLINE_PARSEDJSON_ITERATOR_H
/* end file include/simdjson/inline/parsedjson_iterator.h */
#endif // SIMDJSON_H
/* end file include/simdjson/inline/parsedjson_iterator.h */