simdjson/benchmark/benchmarker.h

483 lines
17 KiB
C++

#ifndef __BENCHMARKER_H
#define __BENCHMARKER_H
#include "event_counter.h"
#include <cassert>
#include <cctype>
#ifndef _MSC_VER
#include <dirent.h>
#include <unistd.h>
#endif
#include <cinttypes>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <chrono>
#include <cstring>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <vector>
#include "linux-perf-events.h"
#ifdef __linux__
#include <libgen.h>
#endif
#include "simdjson.h"
#include <functional>
using namespace simdjson;
using std::cerr;
using std::cout;
using std::endl;
using std::string;
using std::to_string;
using std::vector;
using std::ostream;
using std::ofstream;
using std::exception;
// Initialize "verbose" to go nowhere. We'll read options in main() and set to cout if verbose is true.
std::ofstream dev_null;
ostream *verbose_stream = &dev_null;
const size_t BYTES_PER_BLOCK = 64;
ostream& verbose() {
return *verbose_stream;
}
void exit_error(string message) {
cerr << message << endl;
exit(EXIT_FAILURE);
}
struct json_stats {
size_t bytes = 0;
size_t blocks = 0;
size_t structurals = 0;
size_t blocks_with_utf8 = 0;
size_t blocks_with_utf8_flipped = 0;
size_t blocks_with_escapes = 0;
size_t blocks_with_escapes_flipped = 0;
size_t blocks_with_0_structurals = 0;
size_t blocks_with_0_structurals_flipped = 0;
size_t blocks_with_1_structural = 0;
size_t blocks_with_1_structural_flipped = 0;
size_t blocks_with_8_structurals = 0;
size_t blocks_with_8_structurals_flipped = 0;
size_t blocks_with_16_structurals = 0;
size_t blocks_with_16_structurals_flipped = 0;
json_stats(const padded_string& json, const dom::parser& parser) {
bytes = json.size();
blocks = bytes / BYTES_PER_BLOCK;
if (bytes % BYTES_PER_BLOCK > 0) { blocks++; } // Account for remainder block
structurals = parser.n_structural_indexes-1;
// Calculate stats on blocks that will trigger utf-8 if statements / mispredictions
bool last_block_has_utf8 = false;
for (size_t block=0; block<blocks; block++) {
// Find utf-8 in the block
size_t block_start = block*BYTES_PER_BLOCK;
size_t block_end = block_start+BYTES_PER_BLOCK;
if (block_end > json.size()) { block_end = json.size(); }
bool block_has_utf8 = false;
for (size_t i=block_start; i<block_end; i++) {
if (json.data()[i] & 0x80) {
block_has_utf8 = true;
break;
}
}
if (block_has_utf8) {
blocks_with_utf8++;
}
if (block > 0 && last_block_has_utf8 != block_has_utf8) {
blocks_with_utf8_flipped++;
}
last_block_has_utf8 = block_has_utf8;
}
// Calculate stats on blocks that will trigger escape if statements / mispredictions
bool last_block_has_escapes = false;
for (size_t block=0; block<blocks; block++) {
// Find utf-8 in the block
size_t block_start = block*BYTES_PER_BLOCK;
size_t block_end = block_start+BYTES_PER_BLOCK;
if (block_end > json.size()) { block_end = json.size(); }
bool block_has_escapes = false;
for (size_t i=block_start; i<block_end; i++) {
if (json.data()[i] == '\\') {
block_has_escapes = true;
break;
}
}
if (block_has_escapes) {
blocks_with_escapes++;
}
if (block > 0 && last_block_has_escapes != block_has_escapes) {
blocks_with_escapes_flipped++;
}
last_block_has_escapes = block_has_escapes;
}
// Calculate stats on blocks that will trigger structural count if statements / mispredictions
bool last_block_has_0_structurals = false;
bool last_block_has_1_structural = false;
bool last_block_has_8_structurals = false;
bool last_block_has_16_structurals = false;
size_t structural=0;
for (size_t block=0; block<blocks; block++) {
// Count structurals in the block
int block_structurals=0;
while (structural < parser.n_structural_indexes && parser.structural_indexes[structural] < (block+1)*BYTES_PER_BLOCK) {
block_structurals++;
structural++;
}
bool block_has_0_structurals = block_structurals == 0;
if (block_has_0_structurals) {
blocks_with_0_structurals++;
}
if (block > 0 && last_block_has_0_structurals != block_has_0_structurals) {
blocks_with_0_structurals_flipped++;
}
last_block_has_0_structurals = block_has_0_structurals;
bool block_has_1_structural = block_structurals >= 1;
if (block_has_1_structural) {
blocks_with_1_structural++;
}
if (block > 0 && last_block_has_1_structural != block_has_1_structural) {
blocks_with_1_structural_flipped++;
}
last_block_has_1_structural = block_has_1_structural;
bool block_has_8_structurals = block_structurals >= 8;
if (block_has_8_structurals) {
blocks_with_8_structurals++;
}
if (block > 0 && last_block_has_8_structurals != block_has_8_structurals) {
blocks_with_8_structurals_flipped++;
}
last_block_has_8_structurals = block_has_8_structurals;
bool block_has_16_structurals = block_structurals >= 16;
if (block_has_16_structurals) {
blocks_with_16_structurals++;
}
if (block > 0 && last_block_has_16_structurals != block_has_16_structurals) {
blocks_with_16_structurals_flipped++;
}
last_block_has_16_structurals = block_has_16_structurals;
}
}
};
struct progress_bar {
int max_value;
int total_ticks;
double ticks_per_value;
int next_tick;
progress_bar(int _max_value, int _total_ticks) : max_value(_max_value), total_ticks(_total_ticks), ticks_per_value(double(_total_ticks)/_max_value), next_tick(0) {
fprintf(stderr, "[");
for (int i=0;i<total_ticks;i++) {
fprintf(stderr, " ");
}
fprintf(stderr, "]");
for (int i=0;i<total_ticks+1;i++) {
fprintf(stderr, "\b");
}
}
void print(int value) {
double ticks = value*ticks_per_value;
if (ticks >= total_ticks) {
ticks = total_ticks-1;
}
int tick;
for (tick=next_tick; tick <= ticks && tick <= total_ticks; tick++) {
fprintf(stderr, "=");
}
next_tick = tick;
}
void erase() const {
for (int i=0;i<next_tick+1;i++) {
fprintf(stderr, "\b");
}
for (int tick=0; tick<=total_ticks+2; tick++) {
fprintf(stderr, " ");
}
for (int tick=0; tick<=total_ticks+2; tick++) {
fprintf(stderr, "\b");
}
}
};
enum class BenchmarkStage {
ALL,
ALLOCATE,
STAGE1,
STAGE2
};
const char* benchmark_stage_name(BenchmarkStage stage) {
switch (stage) {
case BenchmarkStage::ALL: return "All";
case BenchmarkStage::ALLOCATE: return "Allocate";
case BenchmarkStage::STAGE1: return "Stage 1";
case BenchmarkStage::STAGE2: return "Stage 2";
default: return "Unknown";
}
}
struct benchmarker {
// JSON text from loading the file. Owns the memory.
padded_string json;
// JSON filename
const char *filename;
// Event collector that can be turned on to measure cycles, missed branches, etc.
event_collector& collector;
// Statistics about the JSON file independent of its speed (amount of utf-8, structurals, etc.).
// Loaded on first parse.
json_stats* stats;
// Speed and event summary for full parse (not including allocation)
event_aggregate all_stages;
// Speed and event summary for stage 1
event_aggregate stage1;
// Speed and event summary for stage 2
event_aggregate stage2;
// Speed and event summary for allocation
event_aggregate allocate_stage;
benchmarker(const char *_filename, event_collector& _collector)
: filename(_filename), collector(_collector), stats(NULL) {
verbose() << "[verbose] loading " << filename << endl;
simdjson::error_code error;
padded_string::load(filename).tie(this->json, error);
if (error) {
exit_error(string("Could not load the file ") + filename);
}
verbose() << "[verbose] loaded " << filename << endl;
}
~benchmarker() {
if (stats) {
delete stats;
}
}
const event_aggregate& operator[](BenchmarkStage stage) const {
switch (stage) {
case BenchmarkStage::ALL: return this->all_stages;
case BenchmarkStage::STAGE1: return this->stage1;
case BenchmarkStage::STAGE2: return this->stage2;
case BenchmarkStage::ALLOCATE: return this->allocate_stage;
default: exit_error("Unknown stage"); return this->all_stages;
}
}
int iterations() const {
return all_stages.iterations;
}
really_inline void run_iteration(bool stage1_only, bool hotbuffers=false) {
// Allocate dom::parser
collector.start();
dom::parser parser;
bool alloc_ok = parser.allocate_capacity(json.size());
event_count allocate_count = collector.end();
allocate_stage << allocate_count;
// Run it once to get hot buffers
if(hotbuffers) {
auto result = parser.parse((const uint8_t *)json.data(), json.size());
if (result.error()) {
exit_error(string("Failed to parse ") + filename + string(":") + error_message(result.error()));
}
}
if (!alloc_ok) {
exit_error(string("Unable to allocate_stage ") + to_string(json.size()) + " bytes for the JSON result.");
}
verbose() << "[verbose] allocated memory for parsed JSON " << endl;
// Stage 1 (find structurals)
collector.start();
error_code error = active_implementation->stage1((const uint8_t *)json.data(), json.size(), parser, false);
event_count stage1_count = collector.end();
stage1 << stage1_count;
if (error) {
exit_error(string("Failed to parse ") + filename + " during stage 1: " + error_message(error));
}
// Stage 2 (unified machine) and the rest
if (stage1_only) {
all_stages << stage1_count;
} else {
event_count stage2_count;
collector.start();
error = active_implementation->stage2((const uint8_t *)json.data(), json.size(), parser);
if (error) {
exit_error(string("Failed to parse ") + filename + " during stage 2 parsing " + error_message(error));
}
stage2_count = collector.end();
stage2 << stage2_count;
all_stages << allocate_count + stage1_count + stage2_count;
}
// Calculate stats the first time we parse
if (stats == NULL) {
if (stage1_only) { // we need stage 2 once
error = active_implementation->stage2((const uint8_t *)json.data(), json.size(), parser);
if (error) {
printf("Warning: failed to parse during stage 2. Unable to acquire statistics.\n");
}
}
stats = new json_stats(json, parser);
}
}
really_inline void run_iterations(size_t iterations, bool stage1_only, bool hotbuffers=false) {
for (size_t i = 0; i<iterations; i++) {
run_iteration(stage1_only, hotbuffers);
}
}
template<typename T>
void print_aggregate(const char* prefix, const T& stage) const {
printf("%s%-13s: %8.4f ns per block (%6.2f%%) - %8.4f ns per byte - %8.4f ns per structural - %8.3f GB/s\n",
prefix,
"Speed",
stage.elapsed_ns() / stats->blocks, // per block
100.0 * stage.elapsed_sec() / all_stages.elapsed_sec(), // %
stage.elapsed_ns() / stats->bytes, // per byte
stage.elapsed_ns() / stats->structurals, // per structural
(json.size() / 1000000000.0) / stage.elapsed_sec() // GB/s
);
if (collector.has_events()) {
printf("%s%-13s: %8.4f per block (%6.2f%%) - %8.4f per byte - %8.4f per structural - %8.3f GHz est. frequency\n",
prefix,
"Cycles",
stage.cycles() / stats->blocks,
100.0 * stage.cycles() / all_stages.cycles(),
stage.cycles() / stats->bytes,
stage.cycles() / stats->structurals,
(stage.cycles() / stage.elapsed_sec()) / 1000000000.0
);
printf("%s%-13s: %8.4f per block (%6.2f%%) - %8.4f per byte - %8.4f per structural - %8.3f per cycle\n",
prefix,
"Instructions",
stage.instructions() / stats->blocks,
100.0 * stage.instructions() / all_stages.instructions(),
stage.instructions() / stats->bytes,
stage.instructions() / stats->structurals,
stage.instructions() / stage.cycles()
);
// NOTE: removed cycles/miss because it is a somewhat misleading stat
printf("%s%-13s: %7.0f branch misses (%6.2f%%) - %.0f cache misses (%6.2f%%) - %.2f cache references\n",
prefix,
"Misses",
stage.branch_misses(),
100.0 * stage.branch_misses() / all_stages.branch_misses(),
stage.cache_misses(),
100.0 * stage.cache_misses() / all_stages.cache_misses(),
stage.cache_references()
);
}
}
void print(bool tabbed_output) const {
if (tabbed_output) {
char* filename_copy = (char*)malloc(strlen(filename)+1);
strcpy(filename_copy, filename);
#if defined(__linux__)
char* base = ::basename(filename_copy);
#else
char* base = filename_copy;
#endif
if (strlen(base) >= 5 && !strcmp(base+strlen(base)-5, ".json")) {
base[strlen(base)-5] = '\0';
}
double gb = json.size() / 1000000000.0;
if (collector.has_events()) {
printf("\"%s\"\t%f\t%f\t%f\t%f\t%f\t%f\t%f\n",
base,
allocate_stage.best.cycles() / json.size(),
stage1.best.cycles() / json.size(),
stage2.best.cycles() / json.size(),
all_stages.best.cycles() / json.size(),
gb / all_stages.best.elapsed_sec(),
gb / stage1.best.elapsed_sec(),
gb / stage2.best.elapsed_sec());
} else {
printf("\"%s\"\t\t\t\t\t%f\t%f\t%f\n",
base,
gb / all_stages.best.elapsed_sec(),
gb / stage1.best.elapsed_sec(),
gb / stage2.best.elapsed_sec());
}
free(filename_copy);
} else {
printf("\n");
printf("%s\n", filename);
printf("%s\n", string(strlen(filename), '=').c_str());
printf("%9zu blocks - %10zu bytes - %5zu structurals (%5.1f %%)\n", stats->bytes / BYTES_PER_BLOCK, stats->bytes, stats->structurals, 100.0 * stats->structurals / stats->bytes);
if (stats) {
printf("special blocks with: utf8 %9zu (%5.1f %%) - escape %9zu (%5.1f %%) - 0 structurals %9zu (%5.1f %%) - 1+ structurals %9zu (%5.1f %%) - 8+ structurals %9zu (%5.1f %%) - 16+ structurals %9zu (%5.1f %%)\n",
stats->blocks_with_utf8, 100.0 * stats->blocks_with_utf8 / stats->blocks,
stats->blocks_with_escapes, 100.0 * stats->blocks_with_escapes / stats->blocks,
stats->blocks_with_0_structurals, 100.0 * stats->blocks_with_0_structurals / stats->blocks,
stats->blocks_with_1_structural, 100.0 * stats->blocks_with_1_structural / stats->blocks,
stats->blocks_with_8_structurals, 100.0 * stats->blocks_with_8_structurals / stats->blocks,
stats->blocks_with_16_structurals, 100.0 * stats->blocks_with_16_structurals / stats->blocks);
printf("special block flips: utf8 %9zu (%5.1f %%) - escape %9zu (%5.1f %%) - 0 structurals %9zu (%5.1f %%) - 1+ structurals %9zu (%5.1f %%) - 8+ structurals %9zu (%5.1f %%) - 16+ structurals %9zu (%5.1f %%)\n",
stats->blocks_with_utf8_flipped, 100.0 * stats->blocks_with_utf8_flipped / stats->blocks,
stats->blocks_with_escapes_flipped, 100.0 * stats->blocks_with_escapes_flipped / stats->blocks,
stats->blocks_with_0_structurals_flipped, 100.0 * stats->blocks_with_0_structurals_flipped / stats->blocks,
stats->blocks_with_1_structural_flipped, 100.0 * stats->blocks_with_1_structural_flipped / stats->blocks,
stats->blocks_with_8_structurals_flipped, 100.0 * stats->blocks_with_8_structurals_flipped / stats->blocks,
stats->blocks_with_16_structurals_flipped, 100.0 * stats->blocks_with_16_structurals_flipped / stats->blocks);
}
printf("\n");
printf("All Stages\n");
print_aggregate("| " , all_stages.best);
// frequently, allocation is a tiny fraction of the running time so we omit it
if(allocate_stage.best.elapsed_sec() > 0.01 * all_stages.best.elapsed_sec()) {
printf("|- Allocation\n");
print_aggregate("| ", allocate_stage.best);
}
printf("|- Stage 1\n");
print_aggregate("| ", stage1.best);
printf("|- Stage 2\n");
print_aggregate("| ", stage2.best);
if (collector.has_events()) {
double freq1 = (stage1.best.cycles() / stage1.best.elapsed_sec()) / 1000000000.0;
double freq2 = (stage2.best.cycles() / stage2.best.elapsed_sec()) / 1000000000.0;
double freqall = (all_stages.best.cycles() / all_stages.best.elapsed_sec()) / 1000000000.0;
double freqmin = std::min(freq1, freq2);
double freqmax = std::max(freq1, freq2);
if((freqall < 0.95 * freqmin) or (freqall > 1.05 * freqmax)) {
printf("\nWarning: The processor frequency fluctuates in an expected way!!!\n"
"Expect the overall speed not to match stage 1 and stage 2 speeds.\n"
"Range for stage 1 and stage 2 : [%.3f GHz, %.3f GHz], overall: %.3f GHz.\n",
freqmin, freqmax, freqall);
}
}
}
}
};
#endif