test_ok1/doc/funcargs.txt

193 lines
6.0 KiB
Plaintext
Raw Normal View History

==============================================================
funcargs: creating and managing test function arguments
==============================================================
.. currentmodule:: pytest.plugin.pytest_python
.. _`funcarg mechanism`:
Test function arguments and factories
=================================================
A *funcarg* is the short name for "test function argument". Like
any other Python function a test function can receive one or multiple
arguments. When ``py.test`` prepares running a test function
it looks at the neccessary function arguments, locates and calls
factories which then provide the values to be passed to the function.
Basic funcarg example
-----------------------
Let's look at a simple self-contained example that you can put
into a test module::
# content of ./test_simplefactory.py
def pytest_funcarg__myfuncarg(request):
return 42
def test_function(myfuncarg):
assert myfuncarg == 17
Running the test looks like this::
$ py.test test_simplefactory.py
=========================== test session starts ============================
python: platform linux2 -- Python 2.6.2
test object 1: /home/hpk/hg/py/trunk/example/funcarg/test_simplefactory.py
test_simplefactory.py F
================================ FAILURES ==================================
______________________________ test_function _______________________________
myfuncarg = 42
def test_function(myfuncarg):
> assert myfuncarg == 17
E assert 42 == 17
test_simplefactory.py:6: AssertionError
======================== 1 failed in 0.11 seconds ==========================
This means that the test function was called with a ``myfuncarg`` value
of ``42`` and the assert fails accordingly. Here is how py.test
calls the test function:
1. py.test discovers the ``test_function`` because of the ``test_`` prefix.
The test function needs a function argument named ``myfuncarg``.
A matching factory function is discovered by looking for the
name ``pytest_funcarg__myfuncarg``.
2. ``pytest_funcarg__myfuncarg(request)`` is called and
returns the value for ``myfuncarg``.
3. ``test_function(42)`` call is executed.
Note that if you misspell a function argument or want
to use one that isn't available, you'll see an error
with a list of available function arguments. You can
also issue::
py.test --funcargs test_simplefactory.py
to see available function arguments (which you can also
think of as "resources").
.. _`contact possibilities`: ../contact.html
.. _`parametrizing tests, generalized`: http://tetamap.wordpress.com/2009/05/13/parametrizing-python-tests-generalized/
.. _`blog post about the monkeypatch funcarg`: http://tetamap.wordpress.com/2009/03/03/monkeypatching-in-unit-tests-done-right/
.. _`xUnit style`: xunit_setup.html
.. _`funcarg factory`:
.. _factory:
The funcarg **request** object
=============================================
Each funcarg factory receives a **request** object which is tied to a
specific test function call. A request object is passed to a funcarg
factory and provides access to test configuration and context:
``request.function``: python function object requesting the argument
``request.cls``: class object where the test function is defined in or None.
``request.module``: module object where the test function is defined in.
``request.config``: access to command line opts and general config
``request.param``: if exists was passed by a previous :py:meth:`~Metafunc.addcall`
.. _`useful caching and finalization helpers`:
.. automethod:: FuncargRequest.addfinalizer
.. automethod:: FuncargRequest.cached_setup
.. automethod:: FuncargRequest.applymarker
.. automethod:: FuncargRequest.getfuncargvalue
.. _`test generators`:
.. _`parametrizing-tests`:
Parametrizing multiple calls to a test function
===========================================================
You can parametrize multiple runs of the same test
function by adding new test function calls with different
function argument values. Let's look at a simple self-contained
example:
Basic generated test example
----------------------------
Let's consider this test module::
# content of ./test_example.py
def pytest_generate_tests(metafunc):
if "numiter" in metafunc.funcargnames:
for i in range(10):
metafunc.addcall(funcargs=dict(numiter=i))
def test_func(numiter):
assert numiter < 9
Running this::
$ py.test test_example.py
============================= test session starts ==========================
python: platform linux2 -- Python 2.6.2
test object 1: /home/hpk/hg/py/trunk/test_example.py
test_example.py .........F
================================ FAILURES ==================================
__________________________ test_func.test_func[9] __________________________
numiter = 9
def test_func(numiter):
> assert numiter < 9
E assert 9 < 9
/home/hpk/hg/py/trunk/test_example.py:10: AssertionError
Here is what happens in detail:
1. ``pytest_generate_tests(metafunc)`` hook is called once for each test
function. It adds ten new function calls with explicit function arguments.
2. **execute tests**: ``test_func(numiter)`` is called ten times with
ten different arguments.
.. _`metafunc object`:
The **metafunc** object
-------------------------------------------
metafunc objects are passed to the ``pytest_generate_tests`` hook.
They help to inspect a testfunction and to generate tests
according to test configuration or values specified
in the class or module where a test function is defined:
``metafunc.funcargnames``: set of required function arguments for given function
``metafunc.function``: underlying python test function
``metafunc.cls``: class object where the test function is defined in or None.
``metafunc.module``: the module object where the test function is defined in.
``metafunc.config``: access to command line opts and general config
.. automethod:: Metafunc.addcall(funcargs=None, id=_notexists, param=_notexists)