diff --git a/_pytest/python_api.py b/_pytest/python_api.py index 3dce7f6b4..4b428322a 100644 --- a/_pytest/python_api.py +++ b/_pytest/python_api.py @@ -31,6 +31,10 @@ class ApproxBase(object): or sequences of numbers. """ + # Tell numpy to use our `__eq__` operator instead of its when left side in a numpy array but right side is + # an instance of ApproxBase + __array_ufunc__ = None + def __init__(self, expected, rel=None, abs=None, nan_ok=False): self.expected = expected self.abs = abs @@ -89,7 +93,7 @@ class ApproxNumpy(ApproxBase): except: # noqa raise TypeError("cannot compare '{0}' to numpy.ndarray".format(actual)) - if actual.shape != self.expected.shape: + if not np.isscalar(self.expected) and actual.shape != self.expected.shape: return False return ApproxBase.__eq__(self, actual) @@ -100,8 +104,13 @@ class ApproxNumpy(ApproxBase): # We can be sure that `actual` is a numpy array, because it's # casted in `__eq__` before being passed to `ApproxBase.__eq__`, # which is the only method that calls this one. - for i in np.ndindex(self.expected.shape): - yield actual[i], self.expected[i] + + if np.isscalar(self.expected): + for i in np.ndindex(actual.shape): + yield actual[i], self.expected + else: + for i in np.ndindex(self.expected.shape): + yield actual[i], self.expected[i] class ApproxMapping(ApproxBase): @@ -189,6 +198,8 @@ class ApproxScalar(ApproxBase): Return true if the given value is equal to the expected value within the pre-specified tolerance. """ + if _is_numpy_array(actual): + return actual == ApproxNumpy(self.expected, self.abs, self.rel, self.nan_ok) # Short-circuit exact equality. if actual == self.expected: @@ -308,12 +319,18 @@ def approx(expected, rel=None, abs=None, nan_ok=False): >>> {'a': 0.1 + 0.2, 'b': 0.2 + 0.4} == approx({'a': 0.3, 'b': 0.6}) True - And ``numpy`` arrays:: + ``numpy`` arrays:: >>> import numpy as np # doctest: +SKIP >>> np.array([0.1, 0.2]) + np.array([0.2, 0.4]) == approx(np.array([0.3, 0.6])) # doctest: +SKIP True + And for a ``numpy`` array against a scalar:: + + >>> import numpy as np # doctest: +SKIP + >>> np.array([0.1, 0.2]) + np.array([0.2, 0.1]) == approx(0.3) # doctest: +SKIP + True + By default, ``approx`` considers numbers within a relative tolerance of ``1e-6`` (i.e. one part in a million) of its expected value to be equal. This treatment would lead to surprising results if the expected value was diff --git a/changelog/3312.feature b/changelog/3312.feature new file mode 100644 index 000000000..ffb4df8e9 --- /dev/null +++ b/changelog/3312.feature @@ -0,0 +1 @@ +``pytest.approx`` now accepts comparing a numpy array with a scalar. diff --git a/testing/python/approx.py b/testing/python/approx.py index 341e5fcff..b9d28aadb 100644 --- a/testing/python/approx.py +++ b/testing/python/approx.py @@ -391,3 +391,14 @@ class TestApprox(object): """ with pytest.raises(TypeError): op(1, approx(1, rel=1e-6, abs=1e-12)) + + def test_numpy_array_with_scalar(self): + np = pytest.importorskip('numpy') + + actual = np.array([1 + 1e-7, 1 - 1e-8]) + expected = 1.0 + + assert actual == approx(expected, rel=5e-7, abs=0) + assert actual != approx(expected, rel=5e-8, abs=0) + assert approx(expected, rel=5e-7, abs=0) == actual + assert approx(expected, rel=5e-8, abs=0) != actual