.. _paramexamples: Parametrizing tests ================================================= .. currentmodule:: _pytest.python py.test allows to easily parametrize test functions. For basic docs, see :ref:`parametrize-basics`. In the following we provide some examples using the builtin mechanisms. Generating parameters combinations, depending on command line ---------------------------------------------------------------------------- .. regendoc:wipe Let's say we want to execute a test with different computation parameters and the parameter range shall be determined by a command line argument. Let's first write a simple (do-nothing) computation test:: # content of test_compute.py def test_compute(param1): assert param1 < 4 Now we add a test configuration like this:: # content of conftest.py def pytest_addoption(parser): parser.addoption("--all", action="store_true", help="run all combinations") def pytest_generate_tests(metafunc): if 'param1' in metafunc.fixturenames: if metafunc.config.option.all: end = 5 else: end = 2 metafunc.parametrize("param1", range(end)) This means that we only run 2 tests if we do not pass ``--all``:: $ py.test -q test_compute.py .. We run only two computations, so we see two dots. let's run the full monty:: $ py.test -q --all ....F ================================= FAILURES ================================= _____________________________ test_compute[4] ______________________________ param1 = 4 def test_compute(param1): > assert param1 < 4 E assert 4 < 4 test_compute.py:3: AssertionError As expected when running the full range of ``param1`` values we'll get an error on the last one. A quick port of "testscenarios" ------------------------------------ .. _`test scenarios`: http://pypi.python.org/pypi/testscenarios/ Here is a quick port to run tests configured with `test scenarios`_, an add-on from Robert Collins for the standard unittest framework. We only have to work a bit to construct the correct arguments for pytest's :py:func:`Metafunc.parametrize`:: # content of test_scenarios.py def pytest_generate_tests(metafunc): idlist = [] argvalues = [] for scenario in metafunc.cls.scenarios: idlist.append(scenario[0]) items = scenario[1].items() argnames = [x[0] for x in items] argvalues.append(([x[1] for x in items])) metafunc.parametrize(argnames, argvalues, ids=idlist, scope="class") scenario1 = ('basic', {'attribute': 'value'}) scenario2 = ('advanced', {'attribute': 'value2'}) class TestSampleWithScenarios: scenarios = [scenario1, scenario2] def test_demo1(self, attribute): assert isinstance(attribute, str) def test_demo2(self, attribute): assert isinstance(attribute, str) this is a fully self-contained example which you can run with:: $ py.test test_scenarios.py =========================== test session starts ============================ platform linux2 -- Python 2.7.3 -- pytest-2.3.5 collected 4 items test_scenarios.py .... ========================= 4 passed in 0.01 seconds ========================= If you just collect tests you'll also nicely see 'advanced' and 'basic' as variants for the test function:: $ py.test --collectonly test_scenarios.py =========================== test session starts ============================ platform linux2 -- Python 2.7.3 -- pytest-2.3.5 collected 4 items ============================= in 0.01 seconds ============================= Note that we told ``metafunc.parametrize()`` that your scenario values should be considered class-scoped. With pytest-2.3 this leads to a resource-based ordering. Deferring the setup of parametrized resources --------------------------------------------------- .. regendoc:wipe The parametrization of test functions happens at collection time. It is a good idea to setup expensive resources like DB connections or subprocess only when the actual test is run. Here is a simple example how you can achieve that, first the actual test requiring a ``db`` object:: # content of test_backends.py import pytest def test_db_initialized(db): # a dummy test if db.__class__.__name__ == "DB2": pytest.fail("deliberately failing for demo purposes") We can now add a test configuration that generates two invocations of the ``test_db_initialized`` function and also implements a factory that creates a database object for the actual test invocations:: # content of conftest.py import pytest def pytest_generate_tests(metafunc): if 'db' in metafunc.fixturenames: metafunc.parametrize("db", ['d1', 'd2'], indirect=True) class DB1: "one database object" class DB2: "alternative database object" @pytest.fixture def db(request): if request.param == "d1": return DB1() elif request.param == "d2": return DB2() else: raise ValueError("invalid internal test config") Let's first see how it looks like at collection time:: $ py.test test_backends.py --collectonly =========================== test session starts ============================ platform linux2 -- Python 2.7.3 -- pytest-2.3.5 collected 2 items ============================= in 0.00 seconds ============================= And then when we run the test:: $ py.test -q test_backends.py .F ================================= FAILURES ================================= _________________________ test_db_initialized[d2] __________________________ db = def test_db_initialized(db): # a dummy test if db.__class__.__name__ == "DB2": > pytest.fail("deliberately failing for demo purposes") E Failed: deliberately failing for demo purposes test_backends.py:6: Failed The first invocation with ``db == "DB1"`` passed while the second with ``db == "DB2"`` failed. Our ``db`` fixture function has instantiated each of the DB values during the setup phase while the ``pytest_generate_tests`` generated two according calls to the ``test_db_initialized`` during the collection phase. .. regendoc:wipe Parametrizing test methods through per-class configuration -------------------------------------------------------------- .. _`unittest parameterizer`: http://code.google.com/p/unittest-ext/source/browse/trunk/params.py Here is an example ``pytest_generate_function`` function implementing a parametrization scheme similar to Michael Foord's `unittest parameterizer`_ but in a lot less code:: # content of ./test_parametrize.py import pytest def pytest_generate_tests(metafunc): # called once per each test function funcarglist = metafunc.cls.params[metafunc.function.__name__] argnames = list(funcarglist[0]) metafunc.parametrize(argnames, [[funcargs[name] for name in argnames] for funcargs in funcarglist]) class TestClass: # a map specifying multiple argument sets for a test method params = { 'test_equals': [dict(a=1, b=2), dict(a=3, b=3), ], 'test_zerodivision': [dict(a=1, b=0), ], } def test_equals(self, a, b): assert a == b def test_zerodivision(self, a, b): pytest.raises(ZeroDivisionError, "a/b") Our test generator looks up a class-level definition which specifies which argument sets to use for each test function. Let's run it:: $ py.test -q F.. ================================= FAILURES ================================= ________________________ TestClass.test_equals[1-2] ________________________ self = , a = 1, b = 2 def test_equals(self, a, b): > assert a == b E assert 1 == 2 test_parametrize.py:18: AssertionError Indirect parametrization with multiple fixtures -------------------------------------------------------------- Here is a stripped down real-life example of using parametrized testing for testing serialization of objects between different python interpreters. We define a ``test_basic_objects`` function which is to be run with different sets of arguments for its three arguments: * ``python1``: first python interpreter, run to pickle-dump an object to a file * ``python2``: second interpreter, run to pickle-load an object from a file * ``obj``: object to be dumped/loaded .. literalinclude:: multipython.py Running it results in some skips if we don't have all the python interpreters installed and otherwise runs all combinations (5 interpreters times 5 interpreters times 3 objects to serialize/deserialize):: . $ py.test -rs -q multipython.py ............sss............sss............sss............ssssssssssssssssss ========================= short test summary info ========================== SKIP [27] /home/hpk/p/pytest/doc/en/example/multipython.py:21: 'python2.8' not found Indirect parametrization of optional implementations/imports -------------------------------------------------------------------- If you want to compare the outcomes of several implementations of a given API, you can write test functions that receive the already imported implementations and get skipped in case the implementation is not importable/available. Let's say we have a "base" implementation and the other (possibly optimized ones) need to provide similar results:: # content of conftest.py import pytest @pytest.fixture(scope="session") def basemod(request): return pytest.importorskip("base") @pytest.fixture(scope="session", params=["opt1", "opt2"]) def optmod(request): return pytest.importorskip(request.param) And then a base implementation of a simple function:: # content of base.py def func1(): return 1 And an optimized version:: # content of opt1.py def func1(): return 1.0001 And finally a little test module:: # content of test_module.py def test_func1(basemod, optmod): assert round(basemod.func1(), 3) == round(optmod.func1(), 3) If you run this with reporting for skips enabled:: $ py.test -rs test_module.py =========================== test session starts ============================ platform linux2 -- Python 2.7.3 -- pytest-2.3.5 collected 2 items test_module.py .s ========================= short test summary info ========================== SKIP [1] /tmp/doc-exec-275/conftest.py:10: could not import 'opt2' =================== 1 passed, 1 skipped in 0.01 seconds ==================== You'll see that we don't have a ``opt2`` module and thus the second test run of our ``test_func1`` was skipped. A few notes: - the fixture functions in the ``conftest.py`` file are "session-scoped" because we don't need to import more than once - if you have multiple test functions and a skipped import, you will see the ``[1]`` count increasing in the report - you can put :ref:`@pytest.mark.parametrize <@pytest.mark.parametrize>` style parametrization on the test functions to parametrize input/output values as well.