.. _paramexamples: Parametrizing tests ================================================= .. currentmodule:: _pytest.python py.test allows to easily parametrize test functions. In the following we provide some examples using the builtin mechanisms. .. _parametrizemark: simple "decorator" parametrization of a test function ---------------------------------------------------------------------------- .. versionadded:: 2.2 The builtin ``parametrize`` marker allows you to easily write generic test functions that will be invoked with multiple input/output values:: # content of test_expectation.py import pytest @pytest.mark.parametrize(("input", "expected"), [ ("3+5", 8), ("2+4", 6), ("6*9", 42), ]) def test_eval(input, expected): assert eval(input) == expected Here we parametrize two arguments of the test function so that the test function is called three times. Let's run it:: $ py.test -q collecting ... collected 3 items ..F =================================== FAILURES =================================== ______________________________ test_eval[6*9-42] _______________________________ input = '6*9', expected = 42 @pytest.mark.parametrize(("input", "expected"), [ ("3+5", 8), ("2+4", 6), ("6*9", 42), ]) def test_eval(input, expected): > assert eval(input) == expected E assert 54 == 42 E + where 54 = eval('6*9') test_expectation.py:9: AssertionError 1 failed, 2 passed in 0.03 seconds As expected only one pair of input/output values fails the simple test function. Note that there are various ways how you can mark groups of functions, see :ref:`mark`. Generating parameters combinations, depending on command line ---------------------------------------------------------------------------- .. regendoc:wipe Let's say we want to execute a test with different computation parameters and the parameter range shall be determined by a command line argument. Let's first write a simple (do-nothing) computation test:: # content of test_compute.py def test_compute(param1): assert param1 < 4 Now we add a test configuration like this:: # content of conftest.py def pytest_addoption(parser): parser.addoption("--all", action="store_true", help="run all combinations") def pytest_generate_tests(metafunc): if 'param1' in metafunc.funcargnames: if metafunc.config.option.all: end = 5 else: end = 2 metafunc.parametrize("param1", range(end)) This means that we only run 2 tests if we do not pass ``--all``:: $ py.test -q test_compute.py collecting ... collected 2 items .. 2 passed in 0.02 seconds We run only two computations, so we see two dots. let's run the full monty:: $ py.test -q --all collecting ... collected 5 items ....F =================================== FAILURES =================================== _______________________________ test_compute[4] ________________________________ param1 = 4 def test_compute(param1): > assert param1 < 4 E assert 4 < 4 test_compute.py:3: AssertionError 1 failed, 4 passed in 0.03 seconds As expected when running the full range of ``param1`` values we'll get an error on the last one. a quick port of "testscenarios" ------------------------------------ .. _`test scenarios`: http://bazaar.launchpad.net/~lifeless/testscenarios/trunk/annotate/head%3A/doc/example.py Here is a quick port of to run tests configured with `test scenarios`_, an add-on from Robert Collins for the standard unittest framework. We only have to work a bit to construct the correct arguments for pytest's :py:func:`Metafunc.parametrize`:: # content of test_scenarios.py def pytest_generate_tests(metafunc): idlist = [] argvalues = [] for scenario in metafunc.cls.scenarios: idlist.append(scenario[0]) items = scenario[1].items() argnames = [x[0] for x in items] argvalues.append(([x[1] for x in items])) metafunc.parametrize(argnames, argvalues, ids=idlist) scenario1 = ('basic', {'attribute': 'value'}) scenario2 = ('advanced', {'attribute': 'value2'}) class TestSampleWithScenarios: scenarios = [scenario1, scenario2] def test_demo(self, attribute): assert isinstance(attribute, str) this is a fully self-contained example which you can run with:: $ py.test test_scenarios.py ============================= test session starts ============================== platform darwin -- Python 2.7.1 -- pytest-2.2.0.dev8 collecting ... collected 2 items test_scenarios.py .. =========================== 2 passed in 0.02 seconds =========================== If you just collect tests you'll also nicely see 'advanced' and 'basic' as variants for the test function:: $ py.test --collectonly test_scenarios.py ============================= test session starts ============================== platform darwin -- Python 2.7.1 -- pytest-2.2.0.dev8 collecting ... collected 2 items =============================== in 0.01 seconds =============================== Deferring the setup of parametrized resources --------------------------------------------------- .. regendoc:wipe The parametrization of test functions happens at collection time. It is a good idea to setup expensive resources like DB connections or subprocess only when the actual test is run. Here is a simple example how you can achieve that, first the actual test requiring a ``db`` object:: # content of test_backends.py import pytest def test_db_initialized(db): # a dummy test if db.__class__.__name__ == "DB2": pytest.fail("deliberately failing for demo purposes") We can now add a test configuration that generates two invocations of the ``test_db_initialized`` function and also implements a factory that creates a database object for the actual test invocations:: # content of conftest.py def pytest_generate_tests(metafunc): if 'db' in metafunc.funcargnames: metafunc.parametrize("db", ['d1', 'd2'], indirect=True) class DB1: "one database object" class DB2: "alternative database object" def pytest_funcarg__db(request): if request.param == "d1": return DB1() elif request.param == "d2": return DB2() else: raise ValueError("invalid internal test config") Let's first see how it looks like at collection time:: $ py.test test_backends.py --collectonly ============================= test session starts ============================== platform darwin -- Python 2.7.1 -- pytest-2.2.0.dev8 collecting ... collected 2 items =============================== in 0.01 seconds =============================== And then when we run the test:: $ py.test -q test_backends.py collecting ... collected 2 items .F =================================== FAILURES =================================== ___________________________ test_db_initialized[d2] ____________________________ db = def test_db_initialized(db): # a dummy test if db.__class__.__name__ == "DB2": > pytest.fail("deliberately failing for demo purposes") E Failed: deliberately failing for demo purposes test_backends.py:6: Failed 1 failed, 1 passed in 0.02 seconds The first invocation with ``db == "DB1"`` passed while the second with ``db == "DB2"`` failed. Our ``pytest_funcarg__db`` factory has instantiated each of the DB values during the setup phase while the ``pytest_generate_tests`` generated two according calls to the ``test_db_initialized`` during the collection phase. .. regendoc:wipe Parametrizing test methods through per-class configuration -------------------------------------------------------------- .. _`unittest parameterizer`: http://code.google.com/p/unittest-ext/source/browse/trunk/params.py Here is an example ``pytest_generate_function`` function implementing a parametrization scheme similar to Michael Foords `unittest parameterizer`_ but in a lot less code:: # content of ./test_parametrize.py import pytest def pytest_generate_tests(metafunc): # called once per each test function funcarglist = metafunc.cls.params[metafunc.function.__name__] argnames = list(funcarglist[0]) metafunc.parametrize(argnames, [[funcargs[name] for name in argnames] for funcargs in funcarglist]) class TestClass: # a map specifying multiple argument sets for a test method params = { 'test_equals': [dict(a=1, b=2), dict(a=3, b=3), ], 'test_zerodivision': [dict(a=1, b=0), ], } def test_equals(self, a, b): assert a == b def test_zerodivision(self, a, b): pytest.raises(ZeroDivisionError, "a/b") Our test generator looks up a class-level definition which specifies which argument sets to use for each test function. Let's run it:: $ py.test -q collecting ... collected 3 items F.. =================================== FAILURES =================================== __________________________ TestClass.test_equals[1-2] __________________________ self = , a = 1, b = 2 def test_equals(self, a, b): > assert a == b E assert 1 == 2 test_parametrize.py:18: AssertionError 1 failed, 2 passed in 0.03 seconds Checking serialization between Python interpreters -------------------------------------------------------------- Here is a stripped down real-life example of using parametrized testing for testing serialization, invoking different python interpreters. We define a ``test_basic_objects`` function which is to be run with different sets of arguments for its three arguments:: * ``python1``: first python interpreter, run to pickle-dump an object to a file * ``python2``: second interpreter, run to pickle-load an object from a file * ``obj``: object to be dumped/loaded .. literalinclude:: multipython.py Running it (with Python-2.4 through to Python2.7 installed):: . $ py.test -q multipython.py collecting ... collected 75 items ssssssssssssssssss.........ssssss.........ssssss.........ssssssssssssssssss 27 passed, 48 skipped in 4.87 seconds