The writing and reporting of assertions in tests ================================================== .. _`assert with the assert statement`: assert with the ``assert`` statement --------------------------------------------------------- ``py.test`` allows you to use the standard python ``assert`` for verifying expectations and values in Python tests. For example, you can write the following:: # content of test_assert1.py def f(): return 3 def test_function(): assert f() == 4 to assert that your function returns a certain value. If this assertion fails you will see the return value of the function call:: $ py.test test_assert1.py ============================= test session starts ============================== platform linux2 -- Python 2.6.6 -- pytest-2.1.0.dev6 collecting ... collected 1 items test_assert1.py F =================================== FAILURES =================================== ________________________________ test_function _________________________________ def test_function(): > assert f() == 4 E assert 3 == 4 E + where 3 = f() test_assert1.py:5: AssertionError =========================== 1 failed in 0.01 seconds =========================== py.test has support for showing the values of the most common subexpressions including calls, attributes, comparisons, and binary and unary operators. (See :ref:`tbreportdemo`). This allows you to use the idiomatic python constructs without boilerplate code while not losing introspection information. However, if you specify a message with the assertion like this:: assert a % 2 == 0, "value was odd, should be even" then no assertion introspection takes places at all and the message will be simply shown in the traceback. See :ref:`assert-details` for more information on assertion introspection. assertions about expected exceptions ------------------------------------------ In order to write assertions about raised exceptions, you can use ``pytest.raises`` as a context manager like this:: import pytest with pytest.raises(ZeroDivisionError): 1 / 0 and if you need to have access to the actual exception info you may use:: with pytest.raises(RuntimeError) as excinfo: def f(): f() f() # do checks related to excinfo.type, excinfo.value, excinfo.traceback If you want to write test code that works on Python2.4 as well, you may also use two other ways to test for an expected exception:: pytest.raises(ExpectedException, func, *args, **kwargs) pytest.raises(ExpectedException, "func(*args, **kwargs)") both of which execute the specified function with args and kwargs and asserts that the given ``ExpectedException`` is raised. The reporter will provide you with helpful output in case of failures such as *no exception* or *wrong exception*. .. _newreport: Making use of context-sensitive comparisons ------------------------------------------------- .. versionadded:: 2.0 py.test has rich support for providing context-sensitive information when it encounters comparisons. For example:: # content of test_assert2.py def test_set_comparison(): set1 = set("1308") set2 = set("8035") assert set1 == set2 if you run this module:: $ py.test test_assert2.py ============================= test session starts ============================== platform linux2 -- Python 2.6.6 -- pytest-2.1.0.dev6 collecting ... collected 1 items test_assert2.py F =================================== FAILURES =================================== _____________________________ test_set_comparison ______________________________ def test_set_comparison(): set1 = set("1308") set2 = set("8035") > assert set1 == set2 E assert set(['0', '1', '3', '8']) == set(['0', '3', '5', '8']) E Extra items in the left set: E '1' E Extra items in the right set: E '5' test_assert2.py:5: AssertionError =========================== 1 failed in 0.01 seconds =========================== Special comparisons are done for a number of cases: * comparing long strings: a context diff is shown * comparing long sequences: first failing indices * comparing dicts: different entries See the :ref:`reporting demo ` for many more examples. Defining your own assertion comparison ---------------------------------------------- It is possible to add your own detailed explanations by implementing the ``pytest_assertrepr_compare`` hook. .. autofunction:: _pytest.hookspec.pytest_assertrepr_compare As an example consider adding the following hook in a conftest.py which provides an alternative explanation for ``Foo`` objects:: # content of conftest.py from test_foocompare import Foo def pytest_assertrepr_compare(op, left, right): if isinstance(left, Foo) and isinstance(right, Foo) and op == "==": return ['Comparing Foo instances:', ' vals: %s != %s' % (left.val, right.val)] now, given this test module:: # content of test_foocompare.py class Foo: def __init__(self, val): self.val = val def test_compare(): f1 = Foo(1) f2 = Foo(2) assert f1 == f2 you can run the test module and get the custom output defined in the conftest file:: $ py.test -q test_foocompare.py collecting ... collected 1 items F =================================== FAILURES =================================== _________________________________ test_compare _________________________________ def test_compare(): f1 = Foo(1) f2 = Foo(2) > assert f1 == f2 E assert Comparing Foo instances: E vals: 1 != 2 test_foocompare.py:8: AssertionError 1 failed in 0.01 seconds .. _assert-details: .. _`assert introspection`: Advanced assertion introspection ---------------------------------- .. versionadded:: 2.1 Reporting details about a failing assertion is achieved either by rewriting assert statements before they are run or re-evaluating the assert expression and recording the intermediate values. Which technique is used depends on the location of the assert, py.test's configuration, and Python version being used to run py.test. Note that for assert statements with a manually provided message, i.e. ``assert expr, message``, no assertion introspection takes place and the manually provided message will be rendered in tracebacks. By default, if the Python version is greater than or equal to 2.6, py.test rewrites assert statements in test modules. Rewritten assert statements put introspection information into the assertion failure message. py.test only rewrites test modules directly discovered by its test collection process, so asserts in supporting modules which are not themselves test modules will not be rewritten. .. note:: py.test rewrites test modules on import. It does this by using an import hook to write a new pyc files. Most of the time this works transparently. However, if you are messing with import yourself, the import hook may interfere. If this is the case, simply use ``--assert=reinterp`` or ``--assert=plain``. Additionally, rewriting will fail silently if it cannot write new pycs, i.e. in a read-only filesystem or a zipfile. If an assert statement has not been rewritten or the Python version is less than 2.6, py.test falls back on assert reinterpretation. In assert reinterpretation, py.test walks the frame of the function containing the assert statement to discover sub-expression results of the failing assert statement. You can force py.test to always use assertion reinterpretation by passing the ``--assert=reinterp`` option. Assert reinterpretation has a caveat not present with assert rewriting: If evaluating the assert expression has side effects you may get a warning that the intermediate values could not be determined safely. A common example of this issue is an assertion which reads from a file:: assert f.read() != '...' If this assertion fails then the re-evaluation will probably succeed! This is because ``f.read()`` will return an empty string when it is called the second time during the re-evaluation. However, it is easy to rewrite the assertion and avoid any trouble:: content = f.read() assert content != '...' All assert introspection can be turned off by passing ``--assert=plain``. .. versionadded:: 2.1 Add assert rewriting as an alternate introspection technique. .. versionchanged:: 2.1 Introduce the ``--assert`` option. Deprecate ``--no-assert`` and ``--nomagic``.