test_ok1/doc/en/example/parametrize.rst

617 lines
21 KiB
ReStructuredText

.. _paramexamples:
Parametrizing tests
=================================================
.. currentmodule:: _pytest.python
``pytest`` allows to easily parametrize test functions.
For basic docs, see :ref:`parametrize-basics`.
In the following we provide some examples using
the builtin mechanisms.
Generating parameters combinations, depending on command line
----------------------------------------------------------------------------
.. regendoc:wipe
Let's say we want to execute a test with different computation
parameters and the parameter range shall be determined by a command
line argument. Let's first write a simple (do-nothing) computation test::
# content of test_compute.py
def test_compute(param1):
assert param1 < 4
Now we add a test configuration like this::
# content of conftest.py
def pytest_addoption(parser):
parser.addoption("--all", action="store_true",
help="run all combinations")
def pytest_generate_tests(metafunc):
if 'param1' in metafunc.fixturenames:
if metafunc.config.getoption('all'):
end = 5
else:
end = 2
metafunc.parametrize("param1", range(end))
This means that we only run 2 tests if we do not pass ``--all``:
.. code-block:: pytest
$ pytest -q test_compute.py
.. [100%]
2 passed in 0.12 seconds
We run only two computations, so we see two dots.
let's run the full monty:
.. code-block:: pytest
$ pytest -q --all
....F [100%]
================================= FAILURES =================================
_____________________________ test_compute[4] ______________________________
param1 = 4
def test_compute(param1):
> assert param1 < 4
E assert 4 < 4
test_compute.py:3: AssertionError
1 failed, 4 passed in 0.12 seconds
As expected when running the full range of ``param1`` values
we'll get an error on the last one.
Different options for test IDs
------------------------------------
pytest will build a string that is the test ID for each set of values in a
parametrized test. These IDs can be used with ``-k`` to select specific cases
to run, and they will also identify the specific case when one is failing.
Running pytest with ``--collect-only`` will show the generated IDs.
Numbers, strings, booleans and None will have their usual string representation
used in the test ID. For other objects, pytest will make a string based on
the argument name::
# content of test_time.py
import pytest
from datetime import datetime, timedelta
testdata = [
(datetime(2001, 12, 12), datetime(2001, 12, 11), timedelta(1)),
(datetime(2001, 12, 11), datetime(2001, 12, 12), timedelta(-1)),
]
@pytest.mark.parametrize("a,b,expected", testdata)
def test_timedistance_v0(a, b, expected):
diff = a - b
assert diff == expected
@pytest.mark.parametrize("a,b,expected", testdata, ids=["forward", "backward"])
def test_timedistance_v1(a, b, expected):
diff = a - b
assert diff == expected
def idfn(val):
if isinstance(val, (datetime,)):
# note this wouldn't show any hours/minutes/seconds
return val.strftime('%Y%m%d')
@pytest.mark.parametrize("a,b,expected", testdata, ids=idfn)
def test_timedistance_v2(a, b, expected):
diff = a - b
assert diff == expected
@pytest.mark.parametrize("a,b,expected", [
pytest.param(datetime(2001, 12, 12), datetime(2001, 12, 11),
timedelta(1), id='forward'),
pytest.param(datetime(2001, 12, 11), datetime(2001, 12, 12),
timedelta(-1), id='backward'),
])
def test_timedistance_v3(a, b, expected):
diff = a - b
assert diff == expected
In ``test_timedistance_v0``, we let pytest generate the test IDs.
In ``test_timedistance_v1``, we specified ``ids`` as a list of strings which were
used as the test IDs. These are succinct, but can be a pain to maintain.
In ``test_timedistance_v2``, we specified ``ids`` as a function that can generate a
string representation to make part of the test ID. So our ``datetime`` values use the
label generated by ``idfn``, but because we didn't generate a label for ``timedelta``
objects, they are still using the default pytest representation:
.. code-block:: pytest
$ pytest test_time.py --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 8 items
<Module test_time.py>
<Function test_timedistance_v0[a0-b0-expected0]>
<Function test_timedistance_v0[a1-b1-expected1]>
<Function test_timedistance_v1[forward]>
<Function test_timedistance_v1[backward]>
<Function test_timedistance_v2[20011212-20011211-expected0]>
<Function test_timedistance_v2[20011211-20011212-expected1]>
<Function test_timedistance_v3[forward]>
<Function test_timedistance_v3[backward]>
======================= no tests ran in 0.12 seconds =======================
In ``test_timedistance_v3``, we used ``pytest.param`` to specify the test IDs
together with the actual data, instead of listing them separately.
A quick port of "testscenarios"
------------------------------------
.. _`test scenarios`: https://pypi.org/project/testscenarios/
Here is a quick port to run tests configured with `test scenarios`_,
an add-on from Robert Collins for the standard unittest framework. We
only have to work a bit to construct the correct arguments for pytest's
:py:func:`Metafunc.parametrize`::
# content of test_scenarios.py
def pytest_generate_tests(metafunc):
idlist = []
argvalues = []
for scenario in metafunc.cls.scenarios:
idlist.append(scenario[0])
items = scenario[1].items()
argnames = [x[0] for x in items]
argvalues.append(([x[1] for x in items]))
metafunc.parametrize(argnames, argvalues, ids=idlist, scope="class")
scenario1 = ('basic', {'attribute': 'value'})
scenario2 = ('advanced', {'attribute': 'value2'})
class TestSampleWithScenarios(object):
scenarios = [scenario1, scenario2]
def test_demo1(self, attribute):
assert isinstance(attribute, str)
def test_demo2(self, attribute):
assert isinstance(attribute, str)
this is a fully self-contained example which you can run with:
.. code-block:: pytest
$ pytest test_scenarios.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 4 items
test_scenarios.py .... [100%]
========================= 4 passed in 0.12 seconds =========================
If you just collect tests you'll also nicely see 'advanced' and 'basic' as variants for the test function:
.. code-block:: pytest
$ pytest --collect-only test_scenarios.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 4 items
<Module test_scenarios.py>
<Class TestSampleWithScenarios>
<Function test_demo1[basic]>
<Function test_demo2[basic]>
<Function test_demo1[advanced]>
<Function test_demo2[advanced]>
======================= no tests ran in 0.12 seconds =======================
Note that we told ``metafunc.parametrize()`` that your scenario values
should be considered class-scoped. With pytest-2.3 this leads to a
resource-based ordering.
Deferring the setup of parametrized resources
---------------------------------------------------
.. regendoc:wipe
The parametrization of test functions happens at collection
time. It is a good idea to setup expensive resources like DB
connections or subprocess only when the actual test is run.
Here is a simple example how you can achieve that, first
the actual test requiring a ``db`` object::
# content of test_backends.py
import pytest
def test_db_initialized(db):
# a dummy test
if db.__class__.__name__ == "DB2":
pytest.fail("deliberately failing for demo purposes")
We can now add a test configuration that generates two invocations of
the ``test_db_initialized`` function and also implements a factory that
creates a database object for the actual test invocations::
# content of conftest.py
import pytest
def pytest_generate_tests(metafunc):
if 'db' in metafunc.fixturenames:
metafunc.parametrize("db", ['d1', 'd2'], indirect=True)
class DB1(object):
"one database object"
class DB2(object):
"alternative database object"
@pytest.fixture
def db(request):
if request.param == "d1":
return DB1()
elif request.param == "d2":
return DB2()
else:
raise ValueError("invalid internal test config")
Let's first see how it looks like at collection time:
.. code-block:: pytest
$ pytest test_backends.py --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items
<Module test_backends.py>
<Function test_db_initialized[d1]>
<Function test_db_initialized[d2]>
======================= no tests ran in 0.12 seconds =======================
And then when we run the test:
.. code-block:: pytest
$ pytest -q test_backends.py
.F [100%]
================================= FAILURES =================================
_________________________ test_db_initialized[d2] __________________________
db = <conftest.DB2 object at 0xdeadbeef>
def test_db_initialized(db):
# a dummy test
if db.__class__.__name__ == "DB2":
> pytest.fail("deliberately failing for demo purposes")
E Failed: deliberately failing for demo purposes
test_backends.py:6: Failed
1 failed, 1 passed in 0.12 seconds
The first invocation with ``db == "DB1"`` passed while the second with ``db == "DB2"`` failed. Our ``db`` fixture function has instantiated each of the DB values during the setup phase while the ``pytest_generate_tests`` generated two according calls to the ``test_db_initialized`` during the collection phase.
.. regendoc:wipe
Apply indirect on particular arguments
---------------------------------------------------
Very often parametrization uses more than one argument name. There is opportunity to apply ``indirect``
parameter on particular arguments. It can be done by passing list or tuple of
arguments' names to ``indirect``. In the example below there is a function ``test_indirect`` which uses
two fixtures: ``x`` and ``y``. Here we give to indirect the list, which contains the name of the
fixture ``x``. The indirect parameter will be applied to this argument only, and the value ``a``
will be passed to respective fixture function::
# content of test_indirect_list.py
import pytest
@pytest.fixture(scope='function')
def x(request):
return request.param * 3
@pytest.fixture(scope='function')
def y(request):
return request.param * 2
@pytest.mark.parametrize('x, y', [('a', 'b')], indirect=['x'])
def test_indirect(x,y):
assert x == 'aaa'
assert y == 'b'
The result of this test will be successful:
.. code-block:: pytest
$ pytest test_indirect_list.py --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item
<Module test_indirect_list.py>
<Function test_indirect[a-b]>
======================= no tests ran in 0.12 seconds =======================
.. regendoc:wipe
Parametrizing test methods through per-class configuration
--------------------------------------------------------------
.. _`unittest parametrizer`: https://github.com/testing-cabal/unittest-ext/blob/master/params.py
Here is an example ``pytest_generate_tests`` function implementing a
parametrization scheme similar to Michael Foord's `unittest
parametrizer`_ but in a lot less code::
# content of ./test_parametrize.py
import pytest
def pytest_generate_tests(metafunc):
# called once per each test function
funcarglist = metafunc.cls.params[metafunc.function.__name__]
argnames = sorted(funcarglist[0])
metafunc.parametrize(argnames, [[funcargs[name] for name in argnames]
for funcargs in funcarglist])
class TestClass(object):
# a map specifying multiple argument sets for a test method
params = {
'test_equals': [dict(a=1, b=2), dict(a=3, b=3), ],
'test_zerodivision': [dict(a=1, b=0), ],
}
def test_equals(self, a, b):
assert a == b
def test_zerodivision(self, a, b):
with pytest.raises(ZeroDivisionError):
a / b
Our test generator looks up a class-level definition which specifies which
argument sets to use for each test function. Let's run it:
.. code-block:: pytest
$ pytest -q
F.. [100%]
================================= FAILURES =================================
________________________ TestClass.test_equals[1-2] ________________________
self = <test_parametrize.TestClass object at 0xdeadbeef>, a = 1, b = 2
def test_equals(self, a, b):
> assert a == b
E assert 1 == 2
test_parametrize.py:18: AssertionError
1 failed, 2 passed in 0.12 seconds
Indirect parametrization with multiple fixtures
--------------------------------------------------------------
Here is a stripped down real-life example of using parametrized
testing for testing serialization of objects between different python
interpreters. We define a ``test_basic_objects`` function which
is to be run with different sets of arguments for its three arguments:
* ``python1``: first python interpreter, run to pickle-dump an object to a file
* ``python2``: second interpreter, run to pickle-load an object from a file
* ``obj``: object to be dumped/loaded
.. literalinclude:: multipython.py
Running it results in some skips if we don't have all the python interpreters installed and otherwise runs all combinations (5 interpreters times 5 interpreters times 3 objects to serialize/deserialize):
.. code-block:: pytest
. $ pytest -rs -q multipython.py
...sss...sssssssss...sss... [100%]
========================= short test summary info ==========================
SKIPPED [15] $REGENDOC_TMPDIR/CWD/multipython.py:31: 'python3.4' not found
12 passed, 15 skipped in 0.12 seconds
Indirect parametrization of optional implementations/imports
--------------------------------------------------------------------
If you want to compare the outcomes of several implementations of a given
API, you can write test functions that receive the already imported implementations
and get skipped in case the implementation is not importable/available. Let's
say we have a "base" implementation and the other (possibly optimized ones)
need to provide similar results::
# content of conftest.py
import pytest
@pytest.fixture(scope="session")
def basemod(request):
return pytest.importorskip("base")
@pytest.fixture(scope="session", params=["opt1", "opt2"])
def optmod(request):
return pytest.importorskip(request.param)
And then a base implementation of a simple function::
# content of base.py
def func1():
return 1
And an optimized version::
# content of opt1.py
def func1():
return 1.0001
And finally a little test module::
# content of test_module.py
def test_func1(basemod, optmod):
assert round(basemod.func1(), 3) == round(optmod.func1(), 3)
If you run this with reporting for skips enabled:
.. code-block:: pytest
$ pytest -rs test_module.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items
test_module.py .s [100%]
========================= short test summary info ==========================
SKIPPED [1] $REGENDOC_TMPDIR/conftest.py:11: could not import 'opt2': No module named 'opt2'
=================== 1 passed, 1 skipped in 0.12 seconds ====================
You'll see that we don't have an ``opt2`` module and thus the second test run
of our ``test_func1`` was skipped. A few notes:
- the fixture functions in the ``conftest.py`` file are "session-scoped" because we
don't need to import more than once
- if you have multiple test functions and a skipped import, you will see
the ``[1]`` count increasing in the report
- you can put :ref:`@pytest.mark.parametrize <@pytest.mark.parametrize>` style
parametrization on the test functions to parametrize input/output
values as well.
Set marks or test ID for individual parametrized test
--------------------------------------------------------------------
Use ``pytest.param`` to apply marks or set test ID to individual parametrized test.
For example:
.. code-block:: python
# content of test_pytest_param_example.py
import pytest
@pytest.mark.parametrize(
"test_input,expected",
[
("3+5", 8),
pytest.param("1+7", 8, marks=pytest.mark.basic),
pytest.param("2+4", 6, marks=pytest.mark.basic, id="basic_2+4"),
pytest.param(
"6*9", 42, marks=[pytest.mark.basic, pytest.mark.xfail], id="basic_6*9"
),
],
)
def test_eval(test_input, expected):
assert eval(test_input) == expected
In this example, we have 4 parametrized tests. Except for the first test,
we mark the rest three parametrized tests with the custom marker ``basic``,
and for the fourth test we also use the built-in mark ``xfail`` to indicate this
test is expected to fail. For explicitness, we set test ids for some tests.
Then run ``pytest`` with verbose mode and with only the ``basic`` marker:
.. code-block:: pytest
$ pytest -v -m basic
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 17 items / 14 deselected / 3 selected
test_pytest_param_example.py::test_eval[1+7-8] PASSED [ 33%]
test_pytest_param_example.py::test_eval[basic_2+4] PASSED [ 66%]
test_pytest_param_example.py::test_eval[basic_6*9] XFAIL [100%]
============ 2 passed, 14 deselected, 1 xfailed in 0.12 seconds ============
As the result:
- Four tests were collected
- One test was deselected because it doesn't have the ``basic`` mark.
- Three tests with the ``basic`` mark was selected.
- The test ``test_eval[1+7-8]`` passed, but the name is autogenerated and confusing.
- The test ``test_eval[basic_2+4]`` passed.
- The test ``test_eval[basic_6*9]`` was expected to fail and did fail.
.. _`parametrizing_conditional_raising`:
Parametrizing conditional raising
--------------------------------------------------------------------
Use :func:`pytest.raises` with the
:ref:`pytest.mark.parametrize ref` decorator to write parametrized tests
in which some tests raise exceptions and others do not.
It is helpful to define a no-op context manager ``does_not_raise`` to serve
as a complement to ``raises``. For example::
from contextlib import contextmanager
import pytest
@contextmanager
def does_not_raise():
yield
@pytest.mark.parametrize('example_input,expectation', [
(3, does_not_raise()),
(2, does_not_raise()),
(1, does_not_raise()),
(0, pytest.raises(ZeroDivisionError)),
])
def test_division(example_input, expectation):
"""Test how much I know division."""
with expectation:
assert (6 / example_input) is not None
In the example above, the first three test cases should run unexceptionally,
while the fourth should raise ``ZeroDivisionError``.
If you're only supporting Python 3.7+, you can simply use ``nullcontext``
to define ``does_not_raise``::
from contextlib import nullcontext as does_not_raise
Or, if you're supporting Python 3.3+ you can use::
from contextlib import ExitStack as does_not_raise
Or, if desired, you can ``pip install contextlib2`` and use::
from contextlib2 import ExitStack as does_not_raise