test_ok1/doc/en/fixture.rst

1320 lines
44 KiB
ReStructuredText

.. _fixture:
.. _fixtures:
.. _`fixture functions`:
pytest fixtures: explicit, modular, scalable
========================================================
.. currentmodule:: _pytest.python
.. _`xUnit`: http://en.wikipedia.org/wiki/XUnit
.. _`purpose of test fixtures`: http://en.wikipedia.org/wiki/Test_fixture#Software
.. _`Dependency injection`: http://en.wikipedia.org/wiki/Dependency_injection
The `purpose of test fixtures`_ is to provide a fixed baseline
upon which tests can reliably and repeatedly execute. pytest fixtures
offer dramatic improvements over the classic xUnit style of setup/teardown
functions:
* fixtures have explicit names and are activated by declaring their use
from test functions, modules, classes or whole projects.
* fixtures are implemented in a modular manner, as each fixture name
triggers a *fixture function* which can itself use other fixtures.
* fixture management scales from simple unit to complex
functional testing, allowing to parametrize fixtures and tests according
to configuration and component options, or to re-use fixtures
across function, class, module or whole test session scopes.
In addition, pytest continues to support :ref:`xunitsetup`. You can mix
both styles, moving incrementally from classic to new style, as you
prefer. You can also start out from existing :ref:`unittest.TestCase
style <unittest.TestCase>` or :ref:`nose based <nosestyle>` projects.
.. _`funcargs`:
.. _`funcarg mechanism`:
.. _`fixture function`:
.. _`@pytest.fixture`:
.. _`pytest.fixture`:
Fixtures as Function arguments
-----------------------------------------
Test functions can receive fixture objects by naming them as an input
argument. For each argument name, a fixture function with that name provides
the fixture object. Fixture functions are registered by marking them with
:py:func:`@pytest.fixture <_pytest.python.fixture>`. Let's look at a simple
self-contained test module containing a fixture and a test function
using it::
# content of ./test_smtpsimple.py
import pytest
@pytest.fixture
def smtp_connection():
import smtplib
return smtplib.SMTP("smtp.gmail.com", 587, timeout=5)
def test_ehlo(smtp_connection):
response, msg = smtp_connection.ehlo()
assert response == 250
assert 0 # for demo purposes
Here, the ``test_ehlo`` needs the ``smtp_connection`` fixture value. pytest
will discover and call the :py:func:`@pytest.fixture <_pytest.python.fixture>`
marked ``smtp_connection`` fixture function. Running the test looks like this:
.. code-block:: pytest
$ pytest test_smtpsimple.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-5.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item
test_smtpsimple.py F [100%]
================================= FAILURES =================================
________________________________ test_ehlo _________________________________
smtp_connection = <smtplib.SMTP object at 0xdeadbeef>
def test_ehlo(smtp_connection):
response, msg = smtp_connection.ehlo()
assert response == 250
> assert 0 # for demo purposes
E assert 0
test_smtpsimple.py:11: AssertionError
========================= 1 failed in 0.12 seconds =========================
In the failure traceback we see that the test function was called with a
``smtp_connection`` argument, the ``smtplib.SMTP()`` instance created by the fixture
function. The test function fails on our deliberate ``assert 0``. Here is
the exact protocol used by ``pytest`` to call the test function this way:
1. pytest :ref:`finds <test discovery>` the ``test_ehlo`` because
of the ``test_`` prefix. The test function needs a function argument
named ``smtp_connection``. A matching fixture function is discovered by
looking for a fixture-marked function named ``smtp_connection``.
2. ``smtp_connection()`` is called to create an instance.
3. ``test_ehlo(<smtp_connection instance>)`` is called and fails in the last
line of the test function.
Note that if you misspell a function argument or want
to use one that isn't available, you'll see an error
with a list of available function arguments.
.. note::
You can always issue:
.. code-block:: bash
pytest --fixtures test_simplefactory.py
to see available fixtures (fixtures with leading ``_`` are only shown if you add the ``-v`` option).
Fixtures: a prime example of dependency injection
---------------------------------------------------
Fixtures allow test functions to easily receive and work
against specific pre-initialized application objects without having
to care about import/setup/cleanup details.
It's a prime example of `dependency injection`_ where fixture
functions take the role of the *injector* and test functions are the
*consumers* of fixture objects.
.. _`conftest.py`:
.. _`conftest`:
``conftest.py``: sharing fixture functions
------------------------------------------
If during implementing your tests you realize that you
want to use a fixture function from multiple test files you can move it
to a ``conftest.py`` file.
You don't need to import the fixture you want to use in a test, it
automatically gets discovered by pytest. The discovery of
fixture functions starts at test classes, then test modules, then
``conftest.py`` files and finally builtin and third party plugins.
You can also use the ``conftest.py`` file to implement
:ref:`local per-directory plugins <conftest.py plugins>`.
Sharing test data
-----------------
If you want to make test data from files available to your tests, a good way
to do this is by loading these data in a fixture for use by your tests.
This makes use of the automatic caching mechanisms of pytest.
Another good approach is by adding the data files in the ``tests`` folder.
There are also community plugins available to help managing this aspect of
testing, e.g. `pytest-datadir <https://pypi.org/project/pytest-datadir/>`__
and `pytest-datafiles <https://pypi.org/project/pytest-datafiles/>`__.
.. _smtpshared:
Scope: sharing a fixture instance across tests in a class, module or session
----------------------------------------------------------------------------
.. regendoc:wipe
Fixtures requiring network access depend on connectivity and are
usually time-expensive to create. Extending the previous example, we
can add a ``scope="module"`` parameter to the
:py:func:`@pytest.fixture <_pytest.python.fixture>` invocation
to cause the decorated ``smtp_connection`` fixture function to only be invoked
once per test *module* (the default is to invoke once per test *function*).
Multiple test functions in a test module will thus
each receive the same ``smtp_connection`` fixture instance, thus saving time.
Possible values for ``scope`` are: ``function``, ``class``, ``module``, ``package`` or ``session``.
The next example puts the fixture function into a separate ``conftest.py`` file
so that tests from multiple test modules in the directory can
access the fixture function::
# content of conftest.py
import pytest
import smtplib
@pytest.fixture(scope="module")
def smtp_connection():
return smtplib.SMTP("smtp.gmail.com", 587, timeout=5)
The name of the fixture again is ``smtp_connection`` and you can access its
result by listing the name ``smtp_connection`` as an input parameter in any
test or fixture function (in or below the directory where ``conftest.py`` is
located)::
# content of test_module.py
def test_ehlo(smtp_connection):
response, msg = smtp_connection.ehlo()
assert response == 250
assert b"smtp.gmail.com" in msg
assert 0 # for demo purposes
def test_noop(smtp_connection):
response, msg = smtp_connection.noop()
assert response == 250
assert 0 # for demo purposes
We deliberately insert failing ``assert 0`` statements in order to
inspect what is going on and can now run the tests:
.. code-block:: pytest
$ pytest test_module.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-5.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 2 items
test_module.py FF [100%]
================================= FAILURES =================================
________________________________ test_ehlo _________________________________
smtp_connection = <smtplib.SMTP object at 0xdeadbeef>
def test_ehlo(smtp_connection):
response, msg = smtp_connection.ehlo()
assert response == 250
assert b"smtp.gmail.com" in msg
> assert 0 # for demo purposes
E assert 0
test_module.py:6: AssertionError
________________________________ test_noop _________________________________
smtp_connection = <smtplib.SMTP object at 0xdeadbeef>
def test_noop(smtp_connection):
response, msg = smtp_connection.noop()
assert response == 250
> assert 0 # for demo purposes
E assert 0
test_module.py:11: AssertionError
========================= 2 failed in 0.12 seconds =========================
You see the two ``assert 0`` failing and more importantly you can also see
that the same (module-scoped) ``smtp_connection`` object was passed into the
two test functions because pytest shows the incoming argument values in the
traceback. As a result, the two test functions using ``smtp_connection`` run
as quick as a single one because they reuse the same instance.
If you decide that you rather want to have a session-scoped ``smtp_connection``
instance, you can simply declare it:
.. code-block:: python
@pytest.fixture(scope="session")
def smtp_connection():
# the returned fixture value will be shared for
# all tests needing it
...
Finally, the ``class`` scope will invoke the fixture once per test *class*.
.. note::
Pytest will only cache one instance of a fixture at a time.
This means that when using a parametrized fixture, pytest may invoke a fixture more than once in the given scope.
``package`` scope (experimental)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In pytest 3.7 the ``package`` scope has been introduced. Package-scoped fixtures
are finalized when the last test of a *package* finishes.
.. warning::
This functionality is considered **experimental** and may be removed in future
versions if hidden corner-cases or serious problems with this functionality
are discovered after it gets more usage in the wild.
Use this new feature sparingly and please make sure to report any issues you find.
Order: Higher-scoped fixtures are instantiated first
----------------------------------------------------
Within a function request for features, fixture of higher-scopes (such as ``session``) are instantiated first than
lower-scoped fixtures (such as ``function`` or ``class``). The relative order of fixtures of same scope follows
the declared order in the test function and honours dependencies between fixtures. Autouse fixtures will be
instantiated before explicitly used fixtures.
Consider the code below:
.. literalinclude:: example/fixtures/test_fixtures_order.py
The fixtures requested by ``test_foo`` will be instantiated in the following order:
1. ``s1``: is the highest-scoped fixture (``session``).
2. ``m1``: is the second highest-scoped fixture (``module``).
3. ``a1``: is a ``function``-scoped ``autouse`` fixture: it will be instantiated before other fixtures
within the same scope.
4. ``f3``: is a ``function``-scoped fixture, required by ``f1``: it needs to be instantiated at this point
5. ``f1``: is the first ``function``-scoped fixture in ``test_foo`` parameter list.
6. ``f2``: is the last ``function``-scoped fixture in ``test_foo`` parameter list.
.. _`finalization`:
Fixture finalization / executing teardown code
-------------------------------------------------------------
pytest supports execution of fixture specific finalization code
when the fixture goes out of scope. By using a ``yield`` statement instead of ``return``, all
the code after the *yield* statement serves as the teardown code:
.. code-block:: python
# content of conftest.py
import smtplib
import pytest
@pytest.fixture(scope="module")
def smtp_connection():
smtp_connection = smtplib.SMTP("smtp.gmail.com", 587, timeout=5)
yield smtp_connection # provide the fixture value
print("teardown smtp")
smtp_connection.close()
The ``print`` and ``smtp.close()`` statements will execute when the last test in
the module has finished execution, regardless of the exception status of the
tests.
Let's execute it:
.. code-block:: pytest
$ pytest -s -q --tb=no
FFteardown smtp
2 failed in 0.12 seconds
We see that the ``smtp_connection`` instance is finalized after the two
tests finished execution. Note that if we decorated our fixture
function with ``scope='function'`` then fixture setup and cleanup would
occur around each single test. In either case the test
module itself does not need to change or know about these details
of fixture setup.
Note that we can also seamlessly use the ``yield`` syntax with ``with`` statements:
.. code-block:: python
# content of test_yield2.py
import smtplib
import pytest
@pytest.fixture(scope="module")
def smtp_connection():
with smtplib.SMTP("smtp.gmail.com", 587, timeout=5) as smtp_connection:
yield smtp_connection # provide the fixture value
The ``smtp_connection`` connection will be closed after the test finished
execution because the ``smtp_connection`` object automatically closes when
the ``with`` statement ends.
Using the contextlib.ExitStack context manager finalizers will always be called
regardless if the fixture *setup* code raises an exception. This is handy to properly
close all resources created by a fixture even if one of them fails to be created/acquired:
.. code-block:: python
# content of test_yield3.py
import contextlib
import pytest
@contextlib.contextmanager
def connect(port):
... # create connection
yield
... # close connection
@pytest.fixture
def equipments():
with contextlib.ExitStack() as stack:
yield [stack.enter_context(connect(port)) for port in ("C1", "C3", "C28")]
In the example above, if ``"C28"`` fails with an exception, ``"C1"`` and ``"C3"`` will still
be properly closed.
Note that if an exception happens during the *setup* code (before the ``yield`` keyword), the
*teardown* code (after the ``yield``) will not be called.
An alternative option for executing *teardown* code is to
make use of the ``addfinalizer`` method of the `request-context`_ object to register
finalization functions.
Here's the ``smtp_connection`` fixture changed to use ``addfinalizer`` for cleanup:
.. code-block:: python
# content of conftest.py
import smtplib
import pytest
@pytest.fixture(scope="module")
def smtp_connection(request):
smtp_connection = smtplib.SMTP("smtp.gmail.com", 587, timeout=5)
def fin():
print("teardown smtp_connection")
smtp_connection.close()
request.addfinalizer(fin)
return smtp_connection # provide the fixture value
Here's the ``equipments`` fixture changed to use ``addfinalizer`` for cleanup:
.. code-block:: python
# content of test_yield3.py
import contextlib
import functools
import pytest
@contextlib.contextmanager
def connect(port):
... # create connection
yield
... # close connection
@pytest.fixture
def equipments(request):
r = []
for port in ("C1", "C3", "C28"):
cm = connect(port)
equip = cm.__enter__()
request.addfinalizer(functools.partial(cm.__exit__, None, None, None))
r.append(equip)
return r
Both ``yield`` and ``addfinalizer`` methods work similarly by calling their code after the test
ends. Of course, if an exception happens before the finalize function is registered then it
will not be executed.
.. _`request-context`:
Fixtures can introspect the requesting test context
-------------------------------------------------------------
Fixture functions can accept the :py:class:`request <FixtureRequest>` object
to introspect the "requesting" test function, class or module context.
Further extending the previous ``smtp_connection`` fixture example, let's
read an optional server URL from the test module which uses our fixture::
# content of conftest.py
import pytest
import smtplib
@pytest.fixture(scope="module")
def smtp_connection(request):
server = getattr(request.module, "smtpserver", "smtp.gmail.com")
smtp_connection = smtplib.SMTP(server, 587, timeout=5)
yield smtp_connection
print("finalizing %s (%s)" % (smtp_connection, server))
smtp_connection.close()
We use the ``request.module`` attribute to optionally obtain an
``smtpserver`` attribute from the test module. If we just execute
again, nothing much has changed:
.. code-block:: pytest
$ pytest -s -q --tb=no
FFfinalizing <smtplib.SMTP object at 0xdeadbeef> (smtp.gmail.com)
2 failed in 0.12 seconds
Let's quickly create another test module that actually sets the
server URL in its module namespace::
# content of test_anothersmtp.py
smtpserver = "mail.python.org" # will be read by smtp fixture
def test_showhelo(smtp_connection):
assert 0, smtp_connection.helo()
Running it:
.. code-block:: pytest
$ pytest -qq --tb=short test_anothersmtp.py
F [100%]
================================= FAILURES =================================
______________________________ test_showhelo _______________________________
test_anothersmtp.py:5: in test_showhelo
assert 0, smtp_connection.helo()
E AssertionError: (250, b'mail.python.org')
E assert 0
------------------------- Captured stdout teardown -------------------------
finalizing <smtplib.SMTP object at 0xdeadbeef> (mail.python.org)
voila! The ``smtp_connection`` fixture function picked up our mail server name
from the module namespace.
.. _`fixture-factory`:
Factories as fixtures
-------------------------------------------------------------
The "factory as fixture" pattern can help in situations where the result
of a fixture is needed multiple times in a single test. Instead of returning
data directly, the fixture instead returns a function which generates the data.
This function can then be called multiple times in the test.
Factories can have parameters as needed::
@pytest.fixture
def make_customer_record():
def _make_customer_record(name):
return {
"name": name,
"orders": []
}
return _make_customer_record
def test_customer_records(make_customer_record):
customer_1 = make_customer_record("Lisa")
customer_2 = make_customer_record("Mike")
customer_3 = make_customer_record("Meredith")
If the data created by the factory requires managing, the fixture can take care of that::
@pytest.fixture
def make_customer_record():
created_records = []
def _make_customer_record(name):
record = models.Customer(name=name, orders=[])
created_records.append(record)
return record
yield _make_customer_record
for record in created_records:
record.destroy()
def test_customer_records(make_customer_record):
customer_1 = make_customer_record("Lisa")
customer_2 = make_customer_record("Mike")
customer_3 = make_customer_record("Meredith")
.. _`fixture-parametrize`:
Parametrizing fixtures
-----------------------------------------------------------------
Fixture functions can be parametrized in which case they will be called
multiple times, each time executing the set of dependent tests, i. e. the
tests that depend on this fixture. Test functions usually do not need
to be aware of their re-running. Fixture parametrization helps to
write exhaustive functional tests for components which themselves can be
configured in multiple ways.
Extending the previous example, we can flag the fixture to create two
``smtp_connection`` fixture instances which will cause all tests using the fixture
to run twice. The fixture function gets access to each parameter
through the special :py:class:`request <FixtureRequest>` object::
# content of conftest.py
import pytest
import smtplib
@pytest.fixture(scope="module",
params=["smtp.gmail.com", "mail.python.org"])
def smtp_connection(request):
smtp_connection = smtplib.SMTP(request.param, 587, timeout=5)
yield smtp_connection
print("finalizing %s" % smtp_connection)
smtp_connection.close()
The main change is the declaration of ``params`` with
:py:func:`@pytest.fixture <_pytest.python.fixture>`, a list of values
for each of which the fixture function will execute and can access
a value via ``request.param``. No test function code needs to change.
So let's just do another run:
.. code-block:: pytest
$ pytest -q test_module.py
FFFF [100%]
================================= FAILURES =================================
________________________ test_ehlo[smtp.gmail.com] _________________________
smtp_connection = <smtplib.SMTP object at 0xdeadbeef>
def test_ehlo(smtp_connection):
response, msg = smtp_connection.ehlo()
assert response == 250
assert b"smtp.gmail.com" in msg
> assert 0 # for demo purposes
E assert 0
test_module.py:6: AssertionError
________________________ test_noop[smtp.gmail.com] _________________________
smtp_connection = <smtplib.SMTP object at 0xdeadbeef>
def test_noop(smtp_connection):
response, msg = smtp_connection.noop()
assert response == 250
> assert 0 # for demo purposes
E assert 0
test_module.py:11: AssertionError
________________________ test_ehlo[mail.python.org] ________________________
smtp_connection = <smtplib.SMTP object at 0xdeadbeef>
def test_ehlo(smtp_connection):
response, msg = smtp_connection.ehlo()
assert response == 250
> assert b"smtp.gmail.com" in msg
E AssertionError: assert b'smtp.gmail.com' in b'mail.python.org\nPIPELINING\nSIZE 51200000\nETRN\nSTARTTLS\nAUTH DIGEST-MD5 NTLM CRAM-MD5\nENHANCEDSTATUSCODES\n8BITMIME\nDSN\nSMTPUTF8\nCHUNKING'
test_module.py:5: AssertionError
-------------------------- Captured stdout setup ---------------------------
finalizing <smtplib.SMTP object at 0xdeadbeef>
________________________ test_noop[mail.python.org] ________________________
smtp_connection = <smtplib.SMTP object at 0xdeadbeef>
def test_noop(smtp_connection):
response, msg = smtp_connection.noop()
assert response == 250
> assert 0 # for demo purposes
E assert 0
test_module.py:11: AssertionError
------------------------- Captured stdout teardown -------------------------
finalizing <smtplib.SMTP object at 0xdeadbeef>
4 failed in 0.12 seconds
We see that our two test functions each ran twice, against the different
``smtp_connection`` instances. Note also, that with the ``mail.python.org``
connection the second test fails in ``test_ehlo`` because a
different server string is expected than what arrived.
pytest will build a string that is the test ID for each fixture value
in a parametrized fixture, e.g. ``test_ehlo[smtp.gmail.com]`` and
``test_ehlo[mail.python.org]`` in the above examples. These IDs can
be used with ``-k`` to select specific cases to run, and they will
also identify the specific case when one is failing. Running pytest
with ``--collect-only`` will show the generated IDs.
Numbers, strings, booleans and None will have their usual string
representation used in the test ID. For other objects, pytest will
make a string based on the argument name. It is possible to customise
the string used in a test ID for a certain fixture value by using the
``ids`` keyword argument::
# content of test_ids.py
import pytest
@pytest.fixture(params=[0, 1], ids=["spam", "ham"])
def a(request):
return request.param
def test_a(a):
pass
def idfn(fixture_value):
if fixture_value == 0:
return "eggs"
else:
return None
@pytest.fixture(params=[0, 1], ids=idfn)
def b(request):
return request.param
def test_b(b):
pass
The above shows how ``ids`` can be either a list of strings to use or
a function which will be called with the fixture value and then
has to return a string to use. In the latter case if the function
return ``None`` then pytest's auto-generated ID will be used.
Running the above tests results in the following test IDs being used:
.. code-block:: pytest
$ pytest --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-5.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 10 items
<Module test_anothersmtp.py>
<Function test_showhelo[smtp.gmail.com]>
<Function test_showhelo[mail.python.org]>
<Module test_ids.py>
<Function test_a[spam]>
<Function test_a[ham]>
<Function test_b[eggs]>
<Function test_b[1]>
<Module test_module.py>
<Function test_ehlo[smtp.gmail.com]>
<Function test_noop[smtp.gmail.com]>
<Function test_ehlo[mail.python.org]>
<Function test_noop[mail.python.org]>
======================= no tests ran in 0.12 seconds =======================
.. _`fixture-parametrize-marks`:
Using marks with parametrized fixtures
--------------------------------------
:func:`pytest.param` can be used to apply marks in values sets of parametrized fixtures in the same way
that they can be used with :ref:`@pytest.mark.parametrize <@pytest.mark.parametrize>`.
Example::
# content of test_fixture_marks.py
import pytest
@pytest.fixture(params=[0, 1, pytest.param(2, marks=pytest.mark.skip)])
def data_set(request):
return request.param
def test_data(data_set):
pass
Running this test will *skip* the invocation of ``data_set`` with value ``2``:
.. code-block:: pytest
$ pytest test_fixture_marks.py -v
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-5.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 3 items
test_fixture_marks.py::test_data[0] PASSED [ 33%]
test_fixture_marks.py::test_data[1] PASSED [ 66%]
test_fixture_marks.py::test_data[2] SKIPPED [100%]
=================== 2 passed, 1 skipped in 0.12 seconds ====================
.. _`interdependent fixtures`:
Modularity: using fixtures from a fixture function
----------------------------------------------------------
You can not only use fixtures in test functions but fixture functions
can use other fixtures themselves. This contributes to a modular design
of your fixtures and allows re-use of framework-specific fixtures across
many projects. As a simple example, we can extend the previous example
and instantiate an object ``app`` where we stick the already defined
``smtp_connection`` resource into it::
# content of test_appsetup.py
import pytest
class App(object):
def __init__(self, smtp_connection):
self.smtp_connection = smtp_connection
@pytest.fixture(scope="module")
def app(smtp_connection):
return App(smtp_connection)
def test_smtp_connection_exists(app):
assert app.smtp_connection
Here we declare an ``app`` fixture which receives the previously defined
``smtp_connection`` fixture and instantiates an ``App`` object with it. Let's run it:
.. code-block:: pytest
$ pytest -v test_appsetup.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-5.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 2 items
test_appsetup.py::test_smtp_connection_exists[smtp.gmail.com] PASSED [ 50%]
test_appsetup.py::test_smtp_connection_exists[mail.python.org] PASSED [100%]
========================= 2 passed in 0.12 seconds =========================
Due to the parametrization of ``smtp_connection``, the test will run twice with two
different ``App`` instances and respective smtp servers. There is no
need for the ``app`` fixture to be aware of the ``smtp_connection``
parametrization because pytest will fully analyse the fixture dependency graph.
Note that the ``app`` fixture has a scope of ``module`` and uses a
module-scoped ``smtp_connection`` fixture. The example would still work if
``smtp_connection`` was cached on a ``session`` scope: it is fine for fixtures to use
"broader" scoped fixtures but not the other way round:
A session-scoped fixture could not use a module-scoped one in a
meaningful way.
.. _`automatic per-resource grouping`:
Automatic grouping of tests by fixture instances
----------------------------------------------------------
.. regendoc: wipe
pytest minimizes the number of active fixtures during test runs.
If you have a parametrized fixture, then all the tests using it will
first execute with one instance and then finalizers are called
before the next fixture instance is created. Among other things,
this eases testing of applications which create and use global state.
The following example uses two parametrized fixtures, one of which is
scoped on a per-module basis, and all the functions perform ``print`` calls
to show the setup/teardown flow::
# content of test_module.py
import pytest
@pytest.fixture(scope="module", params=["mod1", "mod2"])
def modarg(request):
param = request.param
print(" SETUP modarg %s" % param)
yield param
print(" TEARDOWN modarg %s" % param)
@pytest.fixture(scope="function", params=[1,2])
def otherarg(request):
param = request.param
print(" SETUP otherarg %s" % param)
yield param
print(" TEARDOWN otherarg %s" % param)
def test_0(otherarg):
print(" RUN test0 with otherarg %s" % otherarg)
def test_1(modarg):
print(" RUN test1 with modarg %s" % modarg)
def test_2(otherarg, modarg):
print(" RUN test2 with otherarg %s and modarg %s" % (otherarg, modarg))
Let's run the tests in verbose mode and with looking at the print-output:
.. code-block:: pytest
$ pytest -v -s test_module.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-5.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_PREFIX/bin/python
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collecting ... collected 8 items
test_module.py::test_0[1] SETUP otherarg 1
RUN test0 with otherarg 1
PASSED TEARDOWN otherarg 1
test_module.py::test_0[2] SETUP otherarg 2
RUN test0 with otherarg 2
PASSED TEARDOWN otherarg 2
test_module.py::test_1[mod1] SETUP modarg mod1
RUN test1 with modarg mod1
PASSED
test_module.py::test_2[mod1-1] SETUP otherarg 1
RUN test2 with otherarg 1 and modarg mod1
PASSED TEARDOWN otherarg 1
test_module.py::test_2[mod1-2] SETUP otherarg 2
RUN test2 with otherarg 2 and modarg mod1
PASSED TEARDOWN otherarg 2
test_module.py::test_1[mod2] TEARDOWN modarg mod1
SETUP modarg mod2
RUN test1 with modarg mod2
PASSED
test_module.py::test_2[mod2-1] SETUP otherarg 1
RUN test2 with otherarg 1 and modarg mod2
PASSED TEARDOWN otherarg 1
test_module.py::test_2[mod2-2] SETUP otherarg 2
RUN test2 with otherarg 2 and modarg mod2
PASSED TEARDOWN otherarg 2
TEARDOWN modarg mod2
========================= 8 passed in 0.12 seconds =========================
You can see that the parametrized module-scoped ``modarg`` resource caused an
ordering of test execution that lead to the fewest possible "active" resources.
The finalizer for the ``mod1`` parametrized resource was executed before the
``mod2`` resource was setup.
In particular notice that test_0 is completely independent and finishes first.
Then test_1 is executed with ``mod1``, then test_2 with ``mod1``, then test_1
with ``mod2`` and finally test_2 with ``mod2``.
The ``otherarg`` parametrized resource (having function scope) was set up before
and teared down after every test that used it.
.. _`usefixtures`:
Using fixtures from classes, modules or projects
----------------------------------------------------------------------
.. regendoc:wipe
Sometimes test functions do not directly need access to a fixture object.
For example, tests may require to operate with an empty directory as the
current working directory but otherwise do not care for the concrete
directory. Here is how you can use the standard `tempfile
<http://docs.python.org/library/tempfile.html>`_ and pytest fixtures to
achieve it. We separate the creation of the fixture into a conftest.py
file::
# content of conftest.py
import pytest
import tempfile
import os
@pytest.fixture()
def cleandir():
newpath = tempfile.mkdtemp()
os.chdir(newpath)
and declare its use in a test module via a ``usefixtures`` marker::
# content of test_setenv.py
import os
import pytest
@pytest.mark.usefixtures("cleandir")
class TestDirectoryInit(object):
def test_cwd_starts_empty(self):
assert os.listdir(os.getcwd()) == []
with open("myfile", "w") as f:
f.write("hello")
def test_cwd_again_starts_empty(self):
assert os.listdir(os.getcwd()) == []
Due to the ``usefixtures`` marker, the ``cleandir`` fixture
will be required for the execution of each test method, just as if
you specified a "cleandir" function argument to each of them. Let's run it
to verify our fixture is activated and the tests pass:
.. code-block:: pytest
$ pytest -q
.. [100%]
2 passed in 0.12 seconds
You can specify multiple fixtures like this:
.. code-block:: python
@pytest.mark.usefixtures("cleandir", "anotherfixture")
def test():
...
and you may specify fixture usage at the test module level, using
a generic feature of the mark mechanism:
.. code-block:: python
pytestmark = pytest.mark.usefixtures("cleandir")
Note that the assigned variable *must* be called ``pytestmark``, assigning e.g.
``foomark`` will not activate the fixtures.
It is also possible to put fixtures required by all tests in your project
into an ini-file:
.. code-block:: ini
# content of pytest.ini
[pytest]
usefixtures = cleandir
.. warning::
Note this mark has no effect in **fixture functions**. For example,
this **will not work as expected**:
.. code-block:: python
@pytest.mark.usefixtures("my_other_fixture")
@pytest.fixture
def my_fixture_that_sadly_wont_use_my_other_fixture():
...
Currently this will not generate any error or warning, but this is intended
to be handled by `#3664 <https://github.com/pytest-dev/pytest/issues/3664>`_.
.. _`autouse`:
.. _`autouse fixtures`:
Autouse fixtures (xUnit setup on steroids)
----------------------------------------------------------------------
.. regendoc:wipe
Occasionally, you may want to have fixtures get invoked automatically
without declaring a function argument explicitly or a `usefixtures`_ decorator.
As a practical example, suppose we have a database fixture which has a
begin/rollback/commit architecture and we want to automatically surround
each test method by a transaction and a rollback. Here is a dummy
self-contained implementation of this idea::
# content of test_db_transact.py
import pytest
class DB(object):
def __init__(self):
self.intransaction = []
def begin(self, name):
self.intransaction.append(name)
def rollback(self):
self.intransaction.pop()
@pytest.fixture(scope="module")
def db():
return DB()
class TestClass(object):
@pytest.fixture(autouse=True)
def transact(self, request, db):
db.begin(request.function.__name__)
yield
db.rollback()
def test_method1(self, db):
assert db.intransaction == ["test_method1"]
def test_method2(self, db):
assert db.intransaction == ["test_method2"]
The class-level ``transact`` fixture is marked with *autouse=true*
which implies that all test methods in the class will use this fixture
without a need to state it in the test function signature or with a
class-level ``usefixtures`` decorator.
If we run it, we get two passing tests:
.. code-block:: pytest
$ pytest -q
.. [100%]
2 passed in 0.12 seconds
Here is how autouse fixtures work in other scopes:
- autouse fixtures obey the ``scope=`` keyword-argument: if an autouse fixture
has ``scope='session'`` it will only be run once, no matter where it is
defined. ``scope='class'`` means it will be run once per class, etc.
- if an autouse fixture is defined in a test module, all its test
functions automatically use it.
- if an autouse fixture is defined in a conftest.py file then all tests in
all test modules below its directory will invoke the fixture.
- lastly, and **please use that with care**: if you define an autouse
fixture in a plugin, it will be invoked for all tests in all projects
where the plugin is installed. This can be useful if a fixture only
anyway works in the presence of certain settings e. g. in the ini-file. Such
a global fixture should always quickly determine if it should do
any work and avoid otherwise expensive imports or computation.
Note that the above ``transact`` fixture may very well be a fixture that
you want to make available in your project without having it generally
active. The canonical way to do that is to put the transact definition
into a conftest.py file **without** using ``autouse``::
# content of conftest.py
@pytest.fixture
def transact(request, db):
db.begin()
yield
db.rollback()
and then e.g. have a TestClass using it by declaring the need::
@pytest.mark.usefixtures("transact")
class TestClass(object):
def test_method1(self):
...
All test methods in this TestClass will use the transaction fixture while
other test classes or functions in the module will not use it unless
they also add a ``transact`` reference.
Overriding fixtures on various levels
-------------------------------------
In relatively large test suite, you most likely need to ``override`` a ``global`` or ``root`` fixture with a ``locally``
defined one, keeping the test code readable and maintainable.
Override a fixture on a folder (conftest) level
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Given the tests file structure is:
::
tests/
__init__.py
conftest.py
# content of tests/conftest.py
import pytest
@pytest.fixture
def username():
return 'username'
test_something.py
# content of tests/test_something.py
def test_username(username):
assert username == 'username'
subfolder/
__init__.py
conftest.py
# content of tests/subfolder/conftest.py
import pytest
@pytest.fixture
def username(username):
return 'overridden-' + username
test_something.py
# content of tests/subfolder/test_something.py
def test_username(username):
assert username == 'overridden-username'
As you can see, a fixture with the same name can be overridden for certain test folder level.
Note that the ``base`` or ``super`` fixture can be accessed from the ``overriding``
fixture easily - used in the example above.
Override a fixture on a test module level
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Given the tests file structure is:
::
tests/
__init__.py
conftest.py
# content of tests/conftest.py
import pytest
@pytest.fixture
def username():
return 'username'
test_something.py
# content of tests/test_something.py
import pytest
@pytest.fixture
def username(username):
return 'overridden-' + username
def test_username(username):
assert username == 'overridden-username'
test_something_else.py
# content of tests/test_something_else.py
import pytest
@pytest.fixture
def username(username):
return 'overridden-else-' + username
def test_username(username):
assert username == 'overridden-else-username'
In the example above, a fixture with the same name can be overridden for certain test module.
Override a fixture with direct test parametrization
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Given the tests file structure is:
::
tests/
__init__.py
conftest.py
# content of tests/conftest.py
import pytest
@pytest.fixture
def username():
return 'username'
@pytest.fixture
def other_username(username):
return 'other-' + username
test_something.py
# content of tests/test_something.py
import pytest
@pytest.mark.parametrize('username', ['directly-overridden-username'])
def test_username(username):
assert username == 'directly-overridden-username'
@pytest.mark.parametrize('username', ['directly-overridden-username-other'])
def test_username_other(other_username):
assert other_username == 'other-directly-overridden-username-other'
In the example above, a fixture value is overridden by the test parameter value. Note that the value of the fixture
can be overridden this way even if the test doesn't use it directly (doesn't mention it in the function prototype).
Override a parametrized fixture with non-parametrized one and vice versa
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Given the tests file structure is:
::
tests/
__init__.py
conftest.py
# content of tests/conftest.py
import pytest
@pytest.fixture(params=['one', 'two', 'three'])
def parametrized_username(request):
return request.param
@pytest.fixture
def non_parametrized_username(request):
return 'username'
test_something.py
# content of tests/test_something.py
import pytest
@pytest.fixture
def parametrized_username():
return 'overridden-username'
@pytest.fixture(params=['one', 'two', 'three'])
def non_parametrized_username(request):
return request.param
def test_username(parametrized_username):
assert parametrized_username == 'overridden-username'
def test_parametrized_username(non_parametrized_username):
assert non_parametrized_username in ['one', 'two', 'three']
test_something_else.py
# content of tests/test_something_else.py
def test_username(parametrized_username):
assert parametrized_username in ['one', 'two', 'three']
def test_username(non_parametrized_username):
assert non_parametrized_username == 'username'
In the example above, a parametrized fixture is overridden with a non-parametrized version, and
a non-parametrized fixture is overridden with a parametrized version for certain test module.
The same applies for the test folder level obviously.