test_ok1/doc/en/funcargs.txt

761 lines
26 KiB
Plaintext

.. _resources:
.. _`funcargs`:
.. _`funcarg mechanism`:
=======================================================
funcargs: resource injection and parametrization
=======================================================
.. note::
pytest-2.3 introduces major refinements to the original funcarg
mechanism introduced to pytest-2.0. While the old way
remains fully supported, it is recommended to use the refined
mechanisms. See also the `compatibility notes`_ and the detailed
:ref:`reasoning for the new funcarg and setup functions <funcargcompare>`.
.. _`Dependency injection`: http://en.wikipedia.org/wiki/Dependency_injection
Introduction
====================
py.test supports the injection of objects into test and setup functions
and flexibly control their life cycle in relation to the overall test
execution. Moreover, you can run a test function multiple times
injecting different objects.
The basic mechanism for injecting objects is called the *funcarg
mechanism* because objects are **injected** when a test or setup
function states it as an **argument**. The injected argument is
created by a call to a registered **funcarg factory**. This approach is
an example of `Dependency Injection`_ and helps to de-couple test code
from the setup of required objects: at test writing time you do not need
to care for the details of where and how your required resources are
constructed, if they are shared on a per-class, module or session basis,
or if your test function is invoked multiple times with differently
configured resource instances.
When a test function is invoked multiple times with different arguments we
speak of **parametrized testing**. This is useful if you want to test
e.g. against different database backends or want to write a parametrized
test function, checking that certain inputs lead to certain outputs.
You can parametrize funcarg factories, parametrize test function
arguments or even implement your own parametrization scheme through a
plugin hook.
pytest additionally offers powerful xunit-style :ref:`setup functions <setup
functions>` for the cases where you need to create implicit test state
that is not passed explicitely to test functions.
Concretely, there are three main means of funcarg management:
* a `@pytest.factory`_ marker to define resource factories,
their scoping and parametrization. Factories can themselves
receive resources through their function arguments, easing
the setup of `interdependent resources`_. Factories can use
the special `testcontext`_ object to access details from where
the factory or setup function is called and for registering finalizers.
* a `@pytest.mark.parametrize`_ marker for executing test functions
multiple times with different argument sets,
* a `pytest_generate_tests`_ plugin hook marker for implementing
your parametrization for a test function which may depend on
command line options, class/module attributes etc.
Apart from making it easy to manage your own test resources
pytest also comes with some :ref:`builtinresources` which
you can use without defining them yourself. Third-party plugins
offer yet more domain-specific funcarg resources (for example the
`pytest-django plugin <http://pypi.python.org/pypi/pytest-django>`_) so
that after plugin installation you can simply use them in
your test and setup functions. This all contributes to high
re-useability of test resource management and goes far beyond what can
be done with the classical xUnit style approach which encodes resource
setup statically into the test source code, leading to duplicate and
hard-to change fixtures.
.. _`@pytest.factory`:
``@pytest.factory``: Creating parametrized, scoped resources
=====================================================================
Basic funcarg injection example
-----------------------------------------------------------
Let's look at a simple self-contained test module using a factory
and a funcarg::
# content of ./test_simplefactory.py
import pytest
@pytest.factory()
def myfuncarg():
return 42
def test_function(myfuncarg):
assert myfuncarg == 17
Here, the ``test_function`` needs an object named ``myfuncarg`` and thus
py.test will discover and call the ``@pytest.factory`` marked ``myfuncarg``
factory function. Running the tests looks like this::
$ py.test test_simplefactory.py
=========================== test session starts ============================
platform linux2 -- Python 2.7.3 -- pytest-2.3.0.dev8
plugins: xdist, bugzilla, cache, oejskit, cli, pep8, cov
collecting ... collected 1 items
test_simplefactory.py F
================================= FAILURES =================================
______________________________ test_function _______________________________
myfuncarg = 42
def test_function(myfuncarg):
> assert myfuncarg == 17
E assert 42 == 17
test_simplefactory.py:8: AssertionError
========================= 1 failed in 0.02 seconds =========================
This shows that the test function was called with a ``myfuncarg``
argument value of ``42`` and the assert fails as expected. Here is
how py.test comes to call the test function this way:
1. py.test :ref:`finds <test discovery>` the ``test_function`` because
of the ``test_`` prefix. The test function needs a function argument
named ``myfuncarg``. A matching factory function is discovered by
looking for a factory function named ``myfuncarg``.
2. ``myfuncarg()`` is called to create a value ``42``.
3. ``test_function(42)`` is now called and results in the above
reported exception because of the assertion mismatch.
Note that if you misspell a function argument or want
to use one that isn't available, you'll see an error
with a list of available function arguments.
.. Note::
You can always issue::
py.test --funcargs test_simplefactory.py
to see available function arguments.
Location independency of funcarg factories
----------------------------------------------------
If during implementing your tests you realize that you
want to use a factory from multiple test files you can move it
to a :ref:`conftest.py <conftest.py>` file or even separately installable
:ref:`plugins <plugins>` without changing test code. The discovery of
funcarg factories starts at test classes, then test modules, then
``conftest.py`` files and finally builtin and 3-rd party plugins.
Creating and using a session-shared funcarg
-----------------------------------------------------------------
.. regendoc:wipe
.. versionadded:: 2.3
The `@pytest.factory`_ marker allows to
* mark a function as a factory for resources, useable by test and setup
functions
* define parameters in order to run tests multiple times with
different resource instances
* declare a scope which determines the level of caching, i.e. how often
the factory will be called. Valid scopes are ``session``, ``module``,
``class`` and ``function``.
Here is a simple example of a factory creating a shared ``smtplib.SMTP``
connection resource which test functions then may use across the whole
test session::
# content of conftest.py
import pytest
import smtplib
@pytest.factory(scope="session")
def smtp(testcontext):
return smtplib.SMTP("merlinux.eu")
The name of the factory is ``smtp`` (the factory function name)
and you can access its result by listing the name ``smtp`` as
an input parameter in any test or setup function::
# content of test_module.py
def test_ehlo(smtp):
response = smtp.ehlo()
assert response[0] == 250
assert "merlinux" in response[1]
assert 0 # for demo purposes
def test_noop(smtp):
response = smtp.noop()
assert response[0] == 250
assert 0 # for demo purposes
We deliberately insert failing ``assert 0`` statements in order to
inspect what is going on and can now run the tests::
$ py.test -q test_module.py
collecting ... collected 2 items
FF
================================= FAILURES =================================
________________________________ test_ehlo _________________________________
smtp = <smtplib.SMTP instance at 0x25e7b48>
def test_ehlo(smtp):
response = smtp.ehlo()
assert response[0] == 250
assert "merlinux" in response[1]
> assert 0 # for demo purposes
E assert 0
test_module.py:5: AssertionError
________________________________ test_noop _________________________________
smtp = <smtplib.SMTP instance at 0x25e7b48>
def test_noop(smtp):
response = smtp.noop()
assert response[0] == 250
> assert 0 # for demo purposes
E assert 0
test_module.py:10: AssertionError
2 failed in 0.20 seconds
you see the two ``assert 0`` failing and can also see that
the same (session-scoped) object was passed into the two test functions.
Parametrizing a session-shared funcarg resource
-----------------------------------------------------------------
Extending the previous example, we can flag the factory to create
two ``smtp`` values which will cause all tests using it to
run twice with two different values. The factory function gets
access to each parameter through the special `testcontext`_ object::
# content of conftest.py
import pytest
import smtplib
@pytest.factory(scope="session",
params=["merlinux.eu", "mail.python.org"])
def smtp(testcontext):
return smtplib.SMTP(testcontext.param)
The main change is the definition of a ``params`` list in the
``factory``-marker and the ``testcontext.param`` access within the
factory function. No test function code needs to change.
So let's just do another run::
$ py.test -q
collecting ... collected 4 items
FFFF
================================= FAILURES =================================
__________________________ test_ehlo[merlinux.eu] __________________________
smtp = <smtplib.SMTP instance at 0x2960050>
def test_ehlo(smtp):
response = smtp.ehlo()
assert response[0] == 250
assert "merlinux" in response[1]
> assert 0 # for demo purposes
E assert 0
test_module.py:5: AssertionError
__________________________ test_noop[merlinux.eu] __________________________
smtp = <smtplib.SMTP instance at 0x2960050>
def test_noop(smtp):
response = smtp.noop()
assert response[0] == 250
> assert 0 # for demo purposes
E assert 0
test_module.py:10: AssertionError
________________________ test_ehlo[mail.python.org] ________________________
smtp = <smtplib.SMTP instance at 0x296a128>
def test_ehlo(smtp):
response = smtp.ehlo()
assert response[0] == 250
> assert "merlinux" in response[1]
E assert 'merlinux' in 'mail.python.org\nSIZE 10240000\nETRN\nSTARTTLS\nENHANCEDSTATUSCODES\n8BITMIME\nDSN'
test_module.py:4: AssertionError
________________________ test_noop[mail.python.org] ________________________
smtp = <smtplib.SMTP instance at 0x296a128>
def test_noop(smtp):
response = smtp.noop()
assert response[0] == 250
> assert 0 # for demo purposes
E assert 0
test_module.py:10: AssertionError
4 failed in 6.00 seconds
We get four failures because we are running the two tests twice with
different ``smtp`` instantiations as defined on the factory.
Note that with the ``mail.python.org`` connection the second test
fails in ``test_ehlo`` because it expects a specific server string.
Adding a finalizer to the parametrized resource
--------------------------------------------------------
Further extending the ``smtp`` example, we now want to properly
close a smtp server connection after the last test using it
has been run. We can do this by calling the ``testcontext.addfinalizer()``
helper::
# content of conftest.py
import pytest
import smtplib
@pytest.factory(scope="session",
params=["merlinux.eu", "mail.python.org"])
def smtp(testcontext):
smtp = smtplib.SMTP(testcontext.param)
def fin():
print ("finalizing %s" % smtp)
smtp.close()
testcontext.addfinalizer(fin)
return smtp
We also add a print call and then run py.test without the default
output capturing and disabled traceback reporting::
$ py.test -s -q --tb=no
collecting ... collected 4 items
FFFF
4 failed in 5.62 seconds
finalizing <smtplib.SMTP instance at 0x2d60368>
finalizing <smtplib.SMTP instance at 0x2d68e60>
We see that the two ``smtp`` instances are finalized appropriately.
Looking at test collection without running tests
------------------------------------------------------
You can also look at what tests pytest collects without running them::
$ py.test --collectonly
=========================== test session starts ============================
platform linux2 -- Python 2.7.3 -- pytest-2.3.0.dev8
plugins: xdist, bugzilla, cache, oejskit, cli, pep8, cov
collecting ... collected 4 items
<Module 'test_module.py'>
<Function 'test_ehlo[merlinux.eu]'>
<Function 'test_noop[merlinux.eu]'>
<Function 'test_ehlo[mail.python.org]'>
<Function 'test_noop[mail.python.org]'>
============================= in 0.02 seconds =============================
Note that pytest orders your test run by resource usage, minimizing
the number of active resources at any given time.
.. _`interdependent resources`:
Interdepdendent resources
----------------------------------------------------------
You can not only use funcargs in test functions but also in their factories
themselves. Extending the previous example we can instantiate another
object ``app`` and stick the ``smtp`` resource into it like this::
# content of test_appsetup.py
import pytest
class App:
def __init__(self, smtp):
self.smtp = smtp
@pytest.factory(scope="module")
def app(smtp):
return App(smtp)
def test_exists(app):
assert app.smtp
Here we define the factory local to the test module and make it access
the ``smtp`` resource by listing it as an input parameter. Let's run this::
$ py.test -v test_appsetup.py
=========================== test session starts ============================
platform linux2 -- Python 2.7.3 -- pytest-2.3.0.dev8 -- /home/hpk/venv/1/bin/python
cachedir: /home/hpk/tmp/doc-exec-414/.cache
plugins: xdist, bugzilla, cache, oejskit, cli, pep8, cov
collecting ... collected 2 items
test_appsetup.py:12: test_exists[merlinux.eu] PASSED
test_appsetup.py:12: test_exists[mail.python.org] PASSED
========================= 2 passed in 5.37 seconds =========================
Due to the parametrization of ``smtp`` the test will run twice with two
different ``App`` instances and respective smtp servers. There is no
need for the ``app`` factory to be aware of the parametrization. Note
that the ``app`` factory has a scope of ``module`` whereas it uses the
session-scoped ``smtp`` object: it is fine for factories to use
"broader" scoped resources but not the other way round. A
session-scoped resource could not use a module-scoped resource in a
meaningful way.
.. _`automatic per-resource grouping`:
Grouping tests by resource parameters
----------------------------------------------------------
.. regendoc: wipe
pytest minimizes the number of active resources during test runs.
If you have a parametrized resource, then all the tests using one
resource instance will execute one after another. Then any finalizers
are called for that resource instance and then the next parametrized
resource instance is created and its tests are run. Among other things,
this eases testing of applications which create and use global state.
The following example uses two parametrized funcargs, one of which is
scoped on a per-module basis, and all the functions perform ``print`` call s
to show the flow of calls::
# content of test_module.py
import pytest
@pytest.factory(scope="module", params=["mod1", "mod2"])
def modarg(testcontext):
param = testcontext.param
print "create", param
def fin():
print "fin", param
testcontext.addfinalizer(fin)
return param
@pytest.factory(scope="function", params=[1,2])
def otherarg(testcontext):
return testcontext.param
def test_0(otherarg):
print " test0", otherarg
def test_1(modarg):
print " test1", modarg
def test_2(otherarg, modarg):
print " test2", otherarg, modarg
Let's run the tests in verbose mode and with looking at the print-output::
$ py.test -v -s test_module.py
=========================== test session starts ============================
platform linux2 -- Python 2.7.3 -- pytest-2.3.0.dev8 -- /home/hpk/venv/1/bin/python
cachedir: /home/hpk/tmp/doc-exec-414/.cache
plugins: xdist, bugzilla, cache, oejskit, cli, pep8, cov
collecting ... collected 8 items
test_module.py:16: test_0[1] PASSED
test_module.py:16: test_0[2] PASSED
test_module.py:18: test_1[mod1] PASSED
test_module.py:20: test_2[1-mod1] PASSED
test_module.py:20: test_2[2-mod1] PASSED
test_module.py:18: test_1[mod2] PASSED
test_module.py:20: test_2[1-mod2] PASSED
test_module.py:20: test_2[2-mod2] PASSED
========================= 8 passed in 0.02 seconds =========================
test0 1
test0 2
create mod1
test1 mod1
test2 1 mod1
test2 2 mod1
fin mod1
create mod2
test1 mod2
test2 1 mod2
test2 2 mod2
fin mod2
You can see that the parametrized module-scoped ``modarg`` resource caused
a re-ordering of test execution. The finalizer for the ``mod1`` parametrized
resource was executed before the ``mod2`` resource was setup.
.. currentmodule:: _pytest.python
.. _`testcontext`:
``testcontext``: interacting with test context
---------------------------------------------------
The ``testcontext`` object may be used by `@pytest.factory`_ or
:ref:`@pytest.setup <setup>` marked functions. It contains
information relating to the test context within which the marked
function executes. Moreover, you can call
``testcontext.addfinalizer(myfinalizer)`` in order to trigger a call to
``myfinalizer`` after the last test in the test context has executed.
If passed to a parametrized factory ``testcontext.param`` will contain a
parameter (one value out of the ``params`` list specified with the
`@pytest.factory`_ marker).
.. autoclass:: _pytest.python.TestContext()
:members:
.. _`test generators`:
.. _`parametrizing-tests`:
.. _`parametrized test functions`:
Parametrizing test functions
==========================================================================
While the `@pytest.factory`_ decorator allows to define parametrization
of funcarg resources at the factory-level, there are also means to
define parametrization at test functions directly:
* `@pytest.mark.parametrize`_ to provide multiple argument sets
for a particular test function or class.
* `pytest_generate_tests`_ to implement your own custom parametrization
scheme or extensions.
.. _`@pytest.mark.parametrize`:
``@pytest.mark.parametrize``: parametrizing test functions
---------------------------------------------------------------------
.. regendoc: wipe
.. versionadded:: 2.2
The builtin ``pytest.mark.parametrize`` decorator enables
parametrization of arguments for a test function. Here is a typical example
of a test function that wants check for expected output given a certain input::
# content of test_expectation.py
import pytest
@pytest.mark.parametrize(("input", "expected"), [
("3+5", 8),
("2+4", 6),
("6*9", 42),
])
def test_eval(input, expected):
assert eval(input) == expected
The ``@parametrize`` decorator defines three different argument sets for the
two ``(input, output)`` arguments of ``test_eval`` function so the latter
will be run three times::
$ py.test -q
collecting ... collected 13 items
....F........
================================= FAILURES =================================
____________________________ test_eval[6*9-42] _____________________________
input = '6*9', expected = 42
@pytest.mark.parametrize(("input", "expected"), [
("3+5", 8),
("2+4", 6),
("6*9", 42),
])
def test_eval(input, expected):
> assert eval(input) == expected
E assert 54 == 42
E + where 54 = eval('6*9')
test_expectation.py:8: AssertionError
1 failed, 12 passed in 5.76 seconds
As expected only one pair of input/output values fails the simple test function.
As usual you can see the ``input`` and ``output`` values in the traceback.
Note that there are various ways how you can mark groups of functions,
see :ref:`mark`.
.. _`pytest_generate_tests`:
Basic ``pytest_generate_tests`` example
---------------------------------------------
.. XXX
> line 598 "Basic ``pytest_generate_tests`` example" - I think this is
> not a very basic example! I think it is copied from parametrize.txt
> page, where it might make more sense. Here is what I would consider a
> basic example.
>
> # code
> def isSquare(n):
> n = n ** 0.5
> return int(n) == n
>
> # test file
> def pytest_generate_tests(metafunc):
> squares = [1, 4, 9, 16, 25, 36, 49]
> for n in range(1, 50):
> expected = n in squares
> if metafunc.function.__name__ == 'test_isSquare':
> metafunc.addcall(id=n, funcargs=dict(n=n,
> expected=expected))
>
>
> def test_isSquare(n, expected):
> assert isSquare(n) == expected
.. XXX
consider adding more examples, also mixed (factory-parametrized/test-function-parametrized, see mail from Brianna)
The ``pytest_generate_tests`` hook is typically used if you want
to go beyond what ``@pytest.mark.parametrize`` offers. For example,
let's say we want to execute a test with different computation
parameters and the parameter range shall be determined by a command
line argument. Let's first write a simple (do-nothing) computation test::
# content of test_compute.py
def test_compute(param1):
assert param1 < 4
Now we add a ``conftest.py`` file containing the addition of a
command line option and the generation of tests depending on
that option::
# content of conftest.py
def pytest_addoption(parser):
parser.addoption("--all", action="store_true",
help="run all combinations")
def pytest_generate_tests(metafunc):
if 'param1' in metafunc.funcargnames:
if metafunc.config.option.all:
end = 5
else:
end = 2
metafunc.parametrize("param1", range(end))
This means that we only run two tests if no option is passed::
$ py.test -q test_compute.py
collecting ... collected 2 items
..
2 passed in 0.02 seconds
And we run five tests if we add the ``--all`` option::
$ py.test -q --all
collecting ... collected 5 items
....F
================================= FAILURES =================================
_____________________________ test_compute[4] ______________________________
param1 = 4
def test_compute(param1):
> assert param1 < 4
E assert 4 < 4
test_compute.py:3: AssertionError
1 failed, 4 passed in 0.03 seconds
As expected when running the full range of ``param1`` values
we'll get an error on the last one.
You might want to look at :ref:`more parametrization examples <paramexamples>`.
.. _`metafunc object`:
The **metafunc** object
-------------------------------------------
metafunc objects are passed to the ``pytest_generate_tests`` hook.
They help to inspect a testfunction and to generate tests
according to test configuration or values specified
in the class or module where a test function is defined:
``metafunc.funcargnames``: set of required function arguments for given function
``metafunc.function``: underlying python test function
``metafunc.cls``: class object where the test function is defined in or None.
``metafunc.module``: the module object where the test function is defined in.
``metafunc.config``: access to command line opts and general config
.. automethod:: Metafunc.parametrize
.. automethod:: Metafunc.addcall(funcargs=None,id=_notexists,param=_notexists)
.. regendoc:wipe
.. _`compatibility notes`:
.. _`funcargscompat`:
Compatibility notes
============================================================
**Funcargs** were originally introduced to pytest-2.0. In pytest-2.3
the mechanism was extended and refined:
* previously funcarg factories were specified with a special
``pytest_funcarg__NAME`` prefix instead of using the
``@pytest.factory`` decorator.
* Factories received a `request`_ object which managed caching through
``request.cached_setup()`` calls and allowed using other funcargs via
``request.getfuncargvalue()`` calls. These intricate APIs made it hard
to do proper parametrization and implement resource caching. The
new ``@pytest.factory`` decorator allows to simply declare the scope
and let pytest figure things out for you.
* if you used parametrization and funcarg factories which made use of
``request.cached_setup()`` it is recommeneded to invest a few minutes
and simplify your funcarg factory code to use the `@pytest.factory`_
decorator instead. This will also allow to take advantage of
the `automatic per-resource grouping`_ of tests.
.. note::
Throughout the pytest documents the ``pytest_funcarg__NAME`` way of
defining a funcarg factory is often termed "old-style". Their
use remains fully supported and existing code using it should run
unmodified.
.. _request:
The request object passed to old-style factories
-----------------------------------------------------------------
Old-style funcarg factory definitions can receive a :py:class:`~_pytest.python.FuncargRequest` object which
provides methods to manage caching and finalization in the context of the
test invocation as well as several attributes of the the underlying test item.