cfitsio/putcoluj.c

1967 lines
68 KiB
C

/* This file, putcoluj.c, contains routines that write data elements to */
/* a FITS image or table, with unsigned long datatype. */
/* The FITSIO software was written by William Pence at the High Energy */
/* Astrophysic Science Archive Research Center (HEASARC) at the NASA */
/* Goddard Space Flight Center. */
#include <limits.h>
#include <string.h>
#include <stdlib.h>
#include "fitsio2.h"
/*--------------------------------------------------------------------------*/
int ffppruj( fitsfile *fptr, /* I - FITS file pointer */
long group, /* I - group to write(1 = 1st group) */
LONGLONG firstelem, /* I - first vector element to write(1 = 1st) */
LONGLONG nelem, /* I - number of values to write */
unsigned long *array, /* I - array of values that are written */
int *status) /* IO - error status */
/*
Write an array of values to the primary array. Data conversion
and scaling will be performed if necessary (e.g, if the datatype of
the FITS array is not the same as the array being written).
*/
{
long row;
unsigned long nullvalue;
/*
the primary array is represented as a binary table:
each group of the primary array is a row in the table,
where the first column contains the group parameters
and the second column contains the image itself.
*/
if (fits_is_compressed_image(fptr, status))
{
/* this is a compressed image in a binary table */
fits_write_compressed_pixels(fptr, TULONG, firstelem, nelem,
0, array, &nullvalue, status);
return(*status);
}
row=maxvalue(1,group);
ffpcluj(fptr, 2, row, firstelem, nelem, array, status);
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffppnuj( fitsfile *fptr, /* I - FITS file pointer */
long group, /* I - group to write(1 = 1st group) */
LONGLONG firstelem, /* I - first vector element to write(1 = 1st) */
LONGLONG nelem, /* I - number of values to write */
unsigned long *array, /* I - array of values that are written */
unsigned long nulval, /* I - undefined pixel value */
int *status) /* IO - error status */
/*
Write an array of values to the primary array. Data conversion
and scaling will be performed if necessary (e.g, if the datatype of the
FITS array is not the same as the array being written). Any array values
that are equal to the value of nulval will be replaced with the null
pixel value that is appropriate for this column.
*/
{
long row;
unsigned long nullvalue;
/*
the primary array is represented as a binary table:
each group of the primary array is a row in the table,
where the first column contains the group parameters
and the second column contains the image itself.
*/
if (fits_is_compressed_image(fptr, status))
{
/* this is a compressed image in a binary table */
nullvalue = nulval; /* set local variable */
fits_write_compressed_pixels(fptr, TULONG, firstelem, nelem,
1, array, &nullvalue, status);
return(*status);
}
row=maxvalue(1,group);
ffpcnuj(fptr, 2, row, firstelem, nelem, array, nulval, status);
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffp2duj(fitsfile *fptr, /* I - FITS file pointer */
long group, /* I - group to write(1 = 1st group) */
LONGLONG ncols, /* I - number of pixels in each row of array */
LONGLONG naxis1, /* I - FITS image NAXIS1 value */
LONGLONG naxis2, /* I - FITS image NAXIS2 value */
unsigned long *array, /* I - array to be written */
int *status) /* IO - error status */
/*
Write an entire 2-D array of values to the primary array. Data conversion
and scaling will be performed if necessary (e.g, if the datatype of the
FITS array is not the same as the array being written).
*/
{
/* call the 3D writing routine, with the 3rd dimension = 1 */
ffp3duj(fptr, group, ncols, naxis2, naxis1, naxis2, 1, array, status);
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffp3duj(fitsfile *fptr, /* I - FITS file pointer */
long group, /* I - group to write(1 = 1st group) */
LONGLONG ncols, /* I - number of pixels in each row of array */
LONGLONG nrows, /* I - number of rows in each plane of array */
LONGLONG naxis1, /* I - FITS image NAXIS1 value */
LONGLONG naxis2, /* I - FITS image NAXIS2 value */
LONGLONG naxis3, /* I - FITS image NAXIS3 value */
unsigned long *array, /* I - array to be written */
int *status) /* IO - error status */
/*
Write an entire 3-D cube of values to the primary array. Data conversion
and scaling will be performed if necessary (e.g, if the datatype of the
FITS array is not the same as the array being written).
*/
{
long tablerow, ii, jj;
long fpixel[3]= {1,1,1}, lpixel[3];
LONGLONG nfits, narray;
/*
the primary array is represented as a binary table:
each group of the primary array is a row in the table,
where the first column contains the group parameters
and the second column contains the image itself.
*/
if (fits_is_compressed_image(fptr, status))
{
/* this is a compressed image in a binary table */
lpixel[0] = (long) ncols;
lpixel[1] = (long) nrows;
lpixel[2] = (long) naxis3;
fits_write_compressed_img(fptr, TULONG, fpixel, lpixel,
0, array, NULL, status);
return(*status);
}
tablerow=maxvalue(1,group);
if (ncols == naxis1 && nrows == naxis2) /* arrays have same size? */
{
/* all the image pixels are contiguous, so write all at once */
ffpcluj(fptr, 2, tablerow, 1L, naxis1 * naxis2 * naxis3, array, status);
return(*status);
}
if (ncols < naxis1 || nrows < naxis2)
return(*status = BAD_DIMEN);
nfits = 1; /* next pixel in FITS image to write to */
narray = 0; /* next pixel in input array to be written */
/* loop over naxis3 planes in the data cube */
for (jj = 0; jj < naxis3; jj++)
{
/* loop over the naxis2 rows in the FITS image, */
/* writing naxis1 pixels to each row */
for (ii = 0; ii < naxis2; ii++)
{
if (ffpcluj(fptr, 2, tablerow, nfits, naxis1,&array[narray],status) > 0)
return(*status);
nfits += naxis1;
narray += ncols;
}
narray += (nrows - naxis2) * ncols;
}
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffpssuj(fitsfile *fptr, /* I - FITS file pointer */
long group, /* I - group to write(1 = 1st group) */
long naxis, /* I - number of data axes in array */
long *naxes, /* I - size of each FITS axis */
long *fpixel, /* I - 1st pixel in each axis to write (1=1st) */
long *lpixel, /* I - last pixel in each axis to write */
unsigned long *array, /* I - array to be written */
int *status) /* IO - error status */
/*
Write a subsection of pixels to the primary array or image.
A subsection is defined to be any contiguous rectangular
array of pixels within the n-dimensional FITS data file.
Data conversion and scaling will be performed if necessary
(e.g, if the datatype of the FITS array is not the same as
the array being written).
*/
{
long tablerow;
LONGLONG fpix[7], dimen[7], astart, pstart;
LONGLONG off2, off3, off4, off5, off6, off7;
LONGLONG st10, st20, st30, st40, st50, st60, st70;
LONGLONG st1, st2, st3, st4, st5, st6, st7;
long ii, i1, i2, i3, i4, i5, i6, i7, irange[7];
if (*status > 0)
return(*status);
if (fits_is_compressed_image(fptr, status))
{
/* this is a compressed image in a binary table */
fits_write_compressed_img(fptr, TULONG, fpixel, lpixel,
0, array, NULL, status);
return(*status);
}
if (naxis < 1 || naxis > 7)
return(*status = BAD_DIMEN);
tablerow=maxvalue(1,group);
/* calculate the size and number of loops to perform in each dimension */
for (ii = 0; ii < 7; ii++)
{
fpix[ii]=1;
irange[ii]=1;
dimen[ii]=1;
}
for (ii = 0; ii < naxis; ii++)
{
fpix[ii]=fpixel[ii];
irange[ii]=lpixel[ii]-fpixel[ii]+1;
dimen[ii]=naxes[ii];
}
i1=irange[0];
/* compute the pixel offset between each dimension */
off2 = dimen[0];
off3 = off2 * dimen[1];
off4 = off3 * dimen[2];
off5 = off4 * dimen[3];
off6 = off5 * dimen[4];
off7 = off6 * dimen[5];
st10 = fpix[0];
st20 = (fpix[1] - 1) * off2;
st30 = (fpix[2] - 1) * off3;
st40 = (fpix[3] - 1) * off4;
st50 = (fpix[4] - 1) * off5;
st60 = (fpix[5] - 1) * off6;
st70 = (fpix[6] - 1) * off7;
/* store the initial offset in each dimension */
st1 = st10;
st2 = st20;
st3 = st30;
st4 = st40;
st5 = st50;
st6 = st60;
st7 = st70;
astart = 0;
for (i7 = 0; i7 < irange[6]; i7++)
{
for (i6 = 0; i6 < irange[5]; i6++)
{
for (i5 = 0; i5 < irange[4]; i5++)
{
for (i4 = 0; i4 < irange[3]; i4++)
{
for (i3 = 0; i3 < irange[2]; i3++)
{
pstart = st1 + st2 + st3 + st4 + st5 + st6 + st7;
for (i2 = 0; i2 < irange[1]; i2++)
{
if (ffpcluj(fptr, 2, tablerow, pstart, i1, &array[astart],
status) > 0)
return(*status);
astart += i1;
pstart += off2;
}
st2 = st20;
st3 = st3+off3;
}
st3 = st30;
st4 = st4+off4;
}
st4 = st40;
st5 = st5+off5;
}
st5 = st50;
st6 = st6+off6;
}
st6 = st60;
st7 = st7+off7;
}
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffpgpuj( fitsfile *fptr, /* I - FITS file pointer */
long group, /* I - group to write(1 = 1st group) */
long firstelem, /* I - first vector element to write(1 = 1st) */
long nelem, /* I - number of values to write */
unsigned long *array, /* I - array of values that are written */
int *status) /* IO - error status */
/*
Write an array of group parameters to the primary array. Data conversion
and scaling will be performed if necessary (e.g, if the datatype of
the FITS array is not the same as the array being written).
*/
{
long row;
/*
the primary array is represented as a binary table:
each group of the primary array is a row in the table,
where the first column contains the group parameters
and the second column contains the image itself.
*/
row=maxvalue(1,group);
ffpcluj(fptr, 1L, row, firstelem, nelem, array, status);
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffpcluj( fitsfile *fptr, /* I - FITS file pointer */
int colnum, /* I - number of column to write (1 = 1st col) */
LONGLONG firstrow, /* I - first row to write (1 = 1st row) */
LONGLONG firstelem, /* I - first vector element to write (1 = 1st) */
LONGLONG nelem, /* I - number of values to write */
unsigned long *array, /* I - array of values to write */
int *status) /* IO - error status */
/*
Write an array of values to a column in the current FITS HDU.
The column number may refer to a real column in an ASCII or binary table,
or it may refer to a virtual column in a 1 or more grouped FITS primary
array. FITSIO treats a primary array as a binary table
with 2 vector columns: the first column contains the group parameters (often
with length = 0) and the second column contains the array of image pixels.
Each row of the table represents a group in the case of multigroup FITS
images.
The input array of values will be converted to the datatype of the column
and will be inverse-scaled by the FITS TSCALn and TZEROn values if necessary.
*/
{
int tcode, maxelem, hdutype;
long twidth, incre;
long ntodo;
LONGLONG repeat, startpos, elemnum, wrtptr, rowlen, rownum, remain, next, tnull;
double scale, zero;
char tform[20], cform[20];
char message[FLEN_ERRMSG];
char snull[20]; /* the FITS null value */
double cbuff[DBUFFSIZE / sizeof(double)]; /* align cbuff on word boundary */
void *buffer;
if (*status > 0) /* inherit input status value if > 0 */
return(*status);
buffer = cbuff;
/*---------------------------------------------------*/
/* Check input and get parameters about the column: */
/*---------------------------------------------------*/
if (ffgcprll( fptr, colnum, firstrow, firstelem, nelem, 1, &scale, &zero,
tform, &twidth, &tcode, &maxelem, &startpos, &elemnum, &incre,
&repeat, &rowlen, &hdutype, &tnull, snull, status) > 0)
return(*status);
if (tcode == TSTRING)
ffcfmt(tform, cform); /* derive C format for writing strings */
/*---------------------------------------------------------------------*/
/* Now write the pixels to the FITS column. */
/* First call the ffXXfYY routine to (1) convert the datatype */
/* if necessary, and (2) scale the values by the FITS TSCALn and */
/* TZEROn linear scaling parameters into a temporary buffer. */
/*---------------------------------------------------------------------*/
remain = nelem; /* remaining number of values to write */
next = 0; /* next element in array to be written */
rownum = 0; /* row number, relative to firstrow */
while (remain)
{
/* limit the number of pixels to process a one time to the number that
will fit in the buffer space or to the number of pixels that remain
in the current vector, which ever is smaller.
*/
ntodo = (long) minvalue(remain, maxelem);
ntodo = (long) minvalue(ntodo, (repeat - elemnum));
wrtptr = startpos + ((LONGLONG)rownum * rowlen) + (elemnum * incre);
ffmbyt(fptr, wrtptr, IGNORE_EOF, status); /* move to write position */
switch (tcode)
{
case (TLONG):
ffu4fi4(&array[next], ntodo, scale, zero,
(INT32BIT *) buffer, status);
ffpi4b(fptr, ntodo, incre, (INT32BIT *) buffer, status);
break;
case (TLONGLONG):
ffu4fi8(&array[next], ntodo, scale, zero,
(LONGLONG *) buffer, status);
ffpi8b(fptr, ntodo, incre, (long *) buffer, status);
break;
case (TBYTE):
ffu4fi1(&array[next], ntodo, scale, zero,
(unsigned char *) buffer, status);
ffpi1b(fptr, ntodo, incre, (unsigned char *) buffer, status);
break;
case (TSHORT):
ffu4fi2(&array[next], ntodo, scale, zero,
(short *) buffer, status);
ffpi2b(fptr, ntodo, incre, (short *) buffer, status);
break;
case (TFLOAT):
ffu4fr4(&array[next], ntodo, scale, zero,
(float *) buffer, status);
ffpr4b(fptr, ntodo, incre, (float *) buffer, status);
break;
case (TDOUBLE):
ffu4fr8(&array[next], ntodo, scale, zero,
(double *) buffer, status);
ffpr8b(fptr, ntodo, incre, (double *) buffer, status);
break;
case (TSTRING): /* numerical column in an ASCII table */
if (cform[1] != 's') /* "%s" format is a string */
{
ffu4fstr(&array[next], ntodo, scale, zero, cform,
twidth, (char *) buffer, status);
if (incre == twidth) /* contiguous bytes */
ffpbyt(fptr, ntodo * twidth, buffer, status);
else
ffpbytoff(fptr, twidth, ntodo, incre - twidth, buffer,
status);
break;
}
/* can't write to string column, so fall thru to default: */
default: /* error trap */
snprintf(message,FLEN_ERRMSG,
"Cannot write numbers to column %d which has format %s",
colnum,tform);
ffpmsg(message);
if (hdutype == ASCII_TBL)
return(*status = BAD_ATABLE_FORMAT);
else
return(*status = BAD_BTABLE_FORMAT);
} /* End of switch block */
/*-------------------------*/
/* Check for fatal error */
/*-------------------------*/
if (*status > 0) /* test for error during previous write operation */
{
snprintf(message,FLEN_ERRMSG,
"Error writing elements %.0f thru %.0f of input data array (ffpcluj).",
(double) (next+1), (double) (next+ntodo));
ffpmsg(message);
return(*status);
}
/*--------------------------------------------*/
/* increment the counters for the next loop */
/*--------------------------------------------*/
remain -= ntodo;
if (remain)
{
next += ntodo;
elemnum += ntodo;
if (elemnum == repeat) /* completed a row; start on next row */
{
elemnum = 0;
rownum++;
}
}
} /* End of main while Loop */
/*--------------------------------*/
/* check for numerical overflow */
/*--------------------------------*/
if (*status == OVERFLOW_ERR)
{
ffpmsg(
"Numerical overflow during type conversion while writing FITS data.");
*status = NUM_OVERFLOW;
}
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffpcnuj( fitsfile *fptr, /* I - FITS file pointer */
int colnum, /* I - number of column to write (1 = 1st col) */
LONGLONG firstrow, /* I - first row to write (1 = 1st row) */
LONGLONG firstelem, /* I - first vector element to write (1 = 1st) */
LONGLONG nelem, /* I - number of values to write */
unsigned long *array, /* I - array of values to write */
unsigned long nulvalue, /* I - value used to flag undefined pixels */
int *status) /* IO - error status */
/*
Write an array of elements to the specified column of a table. Any input
pixels equal to the value of nulvalue will be replaced by the appropriate
null value in the output FITS file.
The input array of values will be converted to the datatype of the column
and will be inverse-scaled by the FITS TSCALn and TZEROn values if necessary
*/
{
tcolumn *colptr;
LONGLONG ngood = 0, nbad = 0, ii;
LONGLONG repeat, first, fstelm, fstrow;
int tcode, overflow = 0;
if (*status > 0)
return(*status);
/* reset position to the correct HDU if necessary */
if (fptr->HDUposition != (fptr->Fptr)->curhdu)
{
ffmahd(fptr, (fptr->HDUposition) + 1, NULL, status);
}
else if ((fptr->Fptr)->datastart == DATA_UNDEFINED)
{
if ( ffrdef(fptr, status) > 0) /* rescan header */
return(*status);
}
colptr = (fptr->Fptr)->tableptr; /* point to first column */
colptr += (colnum - 1); /* offset to correct column structure */
tcode = colptr->tdatatype;
if (tcode > 0)
repeat = colptr->trepeat; /* repeat count for this column */
else
repeat = firstelem -1 + nelem; /* variable length arrays */
/* if variable length array, first write the whole input vector,
then go back and fill in the nulls */
if (tcode < 0) {
if (ffpcluj(fptr, colnum, firstrow, firstelem, nelem, array, status) > 0) {
if (*status == NUM_OVERFLOW)
{
/* ignore overflows, which are possibly the null pixel values */
/* overflow = 1; */
*status = 0;
} else {
return(*status);
}
}
}
/* absolute element number in the column */
first = (firstrow - 1) * repeat + firstelem;
for (ii = 0; ii < nelem; ii++)
{
if (array[ii] != nulvalue) /* is this a good pixel? */
{
if (nbad) /* write previous string of bad pixels */
{
fstelm = ii - nbad + first; /* absolute element number */
fstrow = (fstelm - 1) / repeat + 1; /* starting row number */
fstelm = fstelm - (fstrow - 1) * repeat; /* relative number */
if (ffpclu(fptr, colnum, fstrow, fstelm, nbad, status) > 0)
return(*status);
nbad=0;
}
ngood = ngood +1; /* the consecutive number of good pixels */
}
else
{
if (ngood) /* write previous string of good pixels */
{
fstelm = ii - ngood + first; /* absolute element number */
fstrow = (fstelm - 1) / repeat + 1; /* starting row number */
fstelm = fstelm - (fstrow - 1) * repeat; /* relative number */
if (tcode > 0) { /* variable length arrays have already been written */
if (ffpcluj(fptr, colnum, fstrow, fstelm, ngood, &array[ii-ngood],
status) > 0) {
if (*status == NUM_OVERFLOW)
{
overflow = 1;
*status = 0;
} else {
return(*status);
}
}
}
ngood=0;
}
nbad = nbad +1; /* the consecutive number of bad pixels */
}
}
/* finished loop; now just write the last set of pixels */
if (ngood) /* write last string of good pixels */
{
fstelm = ii - ngood + first; /* absolute element number */
fstrow = (fstelm - 1) / repeat + 1; /* starting row number */
fstelm = fstelm - (fstrow - 1) * repeat; /* relative number */
if (tcode > 0) { /* variable length arrays have already been written */
ffpcluj(fptr, colnum, fstrow, fstelm, ngood, &array[ii-ngood], status);
}
}
else if (nbad) /* write last string of bad pixels */
{
fstelm = ii - nbad + first; /* absolute element number */
fstrow = (fstelm - 1) / repeat + 1; /* starting row number */
fstelm = fstelm - (fstrow - 1) * repeat; /* relative number */
ffpclu(fptr, colnum, fstrow, fstelm, nbad, status);
}
if (*status <= 0) {
if (overflow) {
*status = NUM_OVERFLOW;
}
}
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffu4fi1(unsigned long *input, /* I - array of values to be converted */
long ntodo, /* I - number of elements in the array */
double scale, /* I - FITS TSCALn or BSCALE value */
double zero, /* I - FITS TZEROn or BZERO value */
unsigned char *output, /* O - output array of converted values */
int *status) /* IO - error status */
/*
Copy input to output prior to writing output to a FITS file.
Do datatype conversion and scaling if required.
*/
{
long ii;
double dvalue;
if (scale == 1. && zero == 0.)
{
for (ii = 0; ii < ntodo; ii++)
{
if (input[ii] > UCHAR_MAX)
{
*status = OVERFLOW_ERR;
output[ii] = UCHAR_MAX;
}
else
output[ii] = (unsigned char) input[ii];
}
}
else
{
for (ii = 0; ii < ntodo; ii++)
{
dvalue = (input[ii] - zero) / scale;
if (dvalue < DUCHAR_MIN)
{
*status = OVERFLOW_ERR;
output[ii] = 0;
}
else if (dvalue > DUCHAR_MAX)
{
*status = OVERFLOW_ERR;
output[ii] = UCHAR_MAX;
}
else
output[ii] = (unsigned char) (dvalue + .5);
}
}
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffu4fi2(unsigned long *input, /* I - array of values to be converted */
long ntodo, /* I - number of elements in the array */
double scale, /* I - FITS TSCALn or BSCALE value */
double zero, /* I - FITS TZEROn or BZERO value */
short *output, /* O - output array of converted values */
int *status) /* IO - error status */
/*
Copy input to output prior to writing output to a FITS file.
Do datatype conversion and scaling if required.
*/
{
long ii;
double dvalue;
if (scale == 1. && zero == 0.)
{
for (ii = 0; ii < ntodo; ii++)
{
if (input[ii] > SHRT_MAX)
{
*status = OVERFLOW_ERR;
output[ii] = SHRT_MAX;
}
else
output[ii] = (short) input[ii];
}
}
else
{
for (ii = 0; ii < ntodo; ii++)
{
dvalue = (input[ii] - zero) / scale;
if (dvalue < DSHRT_MIN)
{
*status = OVERFLOW_ERR;
output[ii] = SHRT_MIN;
}
else if (dvalue > DSHRT_MAX)
{
*status = OVERFLOW_ERR;
output[ii] = SHRT_MAX;
}
else
{
if (dvalue >= 0)
output[ii] = (short) (dvalue + .5);
else
output[ii] = (short) (dvalue - .5);
}
}
}
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffu4fi4(unsigned long *input, /* I - array of values to be converted */
long ntodo, /* I - number of elements in the array */
double scale, /* I - FITS TSCALn or BSCALE value */
double zero, /* I - FITS TZEROn or BZERO value */
INT32BIT *output, /* O - output array of converted values */
int *status) /* IO - error status */
/*
Copy input to output prior to writing output to a FITS file.
Do datatype conversion and scaling if required
*/
{
long ii;
double dvalue;
if (scale == 1. && zero == 2147483648. && sizeof(long) == 4)
{
/* Instead of subtracting 2147483648, it is more efficient */
/* to just flip the sign bit with the XOR operator */
for (ii = 0; ii < ntodo; ii++)
output[ii] = ( *(long *) &input[ii] ) ^ 0x80000000;
}
else if (scale == 1. && zero == 0.)
{
for (ii = 0; ii < ntodo; ii++)
{
if (input[ii] > INT32_MAX)
{
*status = OVERFLOW_ERR;
output[ii] = INT32_MAX;
}
else
output[ii] = input[ii];
}
}
else
{
for (ii = 0; ii < ntodo; ii++)
{
dvalue = (input[ii] - zero) / scale;
if (dvalue < DINT_MIN)
{
*status = OVERFLOW_ERR;
output[ii] = INT32_MIN;
}
else if (dvalue > DINT_MAX)
{
*status = OVERFLOW_ERR;
output[ii] = INT32_MAX;
}
else
{
if (dvalue >= 0)
output[ii] = (INT32BIT) (dvalue + .5);
else
output[ii] = (INT32BIT) (dvalue - .5);
}
}
}
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffu4fi8(unsigned long *input, /* I - array of values to be converted */
long ntodo, /* I - number of elements in the array */
double scale, /* I - FITS TSCALn or BSCALE value */
double zero, /* I - FITS TZEROn or BZERO value */
LONGLONG *output, /* O - output array of converted values */
int *status) /* IO - error status */
/*
Copy input to output prior to writing output to a FITS file.
Do datatype conversion and scaling if required
*/
{
long ii;
double dvalue;
if (scale == 1. && zero == 9223372036854775808.)
{
/* Writing to unsigned long long column. */
/* Instead of subtracting 9223372036854775808, it is more efficient */
/* and more precise to just flip the sign bit with the XOR operator */
/* no need to check range limits because all unsigned long values */
/* are valid ULONGLONG values. */
for (ii = 0; ii < ntodo; ii++) {
output[ii] = ((LONGLONG) input[ii]) ^ 0x8000000000000000;
}
}
else if (scale == 1. && zero == 0.)
{
for (ii = 0; ii < ntodo; ii++)
output[ii] = input[ii];
}
else
{
for (ii = 0; ii < ntodo; ii++)
{
dvalue = (input[ii] - zero) / scale;
if (dvalue < DLONGLONG_MIN)
{
*status = OVERFLOW_ERR;
output[ii] = LONGLONG_MIN;
}
else if (dvalue > DLONGLONG_MAX)
{
*status = OVERFLOW_ERR;
output[ii] = LONGLONG_MAX;
}
else
{
if (dvalue >= 0)
output[ii] = (LONGLONG) (dvalue + .5);
else
output[ii] = (LONGLONG) (dvalue - .5);
}
}
}
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffu4fr4(unsigned long *input, /* I - array of values to be converted */
long ntodo, /* I - number of elements in the array */
double scale, /* I - FITS TSCALn or BSCALE value */
double zero, /* I - FITS TZEROn or BZERO value */
float *output, /* O - output array of converted values */
int *status) /* IO - error status */
/*
Copy input to output prior to writing output to a FITS file.
Do datatype conversion and scaling if required.
*/
{
long ii;
if (scale == 1. && zero == 0.)
{
for (ii = 0; ii < ntodo; ii++)
output[ii] = (float) input[ii];
}
else
{
for (ii = 0; ii < ntodo; ii++)
output[ii] = (float) ((input[ii] - zero) / scale);
}
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffu4fr8(unsigned long *input, /* I - array of values to be converted */
long ntodo, /* I - number of elements in the array */
double scale, /* I - FITS TSCALn or BSCALE value */
double zero, /* I - FITS TZEROn or BZERO value */
double *output, /* O - output array of converted values */
int *status) /* IO - error status */
/*
Copy input to output prior to writing output to a FITS file.
Do datatype conversion and scaling if required.
*/
{
long ii;
if (scale == 1. && zero == 0.)
{
for (ii = 0; ii < ntodo; ii++)
output[ii] = (double) input[ii];
}
else
{
for (ii = 0; ii < ntodo; ii++)
output[ii] = (input[ii] - zero) / scale;
}
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffu4fstr(unsigned long *input, /* I - array of values to be converted */
long ntodo, /* I - number of elements in the array */
double scale, /* I - FITS TSCALn or BSCALE value */
double zero, /* I - FITS TZEROn or BZERO value */
char *cform, /* I - format for output string values */
long twidth, /* I - width of each field, in chars */
char *output, /* O - output array of converted values */
int *status) /* IO - error status */
/*
Copy input to output prior to writing output to a FITS file.
Do scaling if required.
*/
{
long ii;
double dvalue;
char *cptr;
cptr = output;
if (scale == 1. && zero == 0.)
{
for (ii = 0; ii < ntodo; ii++)
{
sprintf(output, cform, (double) input[ii]);
output += twidth;
if (*output) /* if this char != \0, then overflow occurred */
*status = OVERFLOW_ERR;
}
}
else
{
for (ii = 0; ii < ntodo; ii++)
{
dvalue = (input[ii] - zero) / scale;
sprintf(output, cform, dvalue);
output += twidth;
if (*output) /* if this char != \0, then overflow occurred */
*status = OVERFLOW_ERR;
}
}
/* replace any commas with periods (e.g., in French locale) */
while ((cptr = strchr(cptr, ','))) *cptr = '.';
return(*status);
}
/* ======================================================================== */
/* the following routines support the 'unsigned long long' data type */
/* ======================================================================== */
/*--------------------------------------------------------------------------*/
int ffpprujj( fitsfile *fptr, /* I - FITS file pointer */
long group, /* I - group to write(1 = 1st group) */
LONGLONG firstelem, /* I - first vector element to write(1 = 1st) */
LONGLONG nelem, /* I - number of values to write */
ULONGLONG *array, /* I - array of values that are written */
int *status) /* IO - error status */
/*
Write an array of values to the primary array. Data conversion
and scaling will be performed if necessary (e.g, if the datatype of
the FITS array is not the same as the array being written).
*/
{
long row;
unsigned long nullvalue;
/*
the primary array is represented as a binary table:
each group of the primary array is a row in the table,
where the first column contains the group parameters
and the second column contains the image itself.
*/
if (fits_is_compressed_image(fptr, status))
{
/* this is a compressed image in a binary table */
ffpmsg("writing TULONGLONG to compressed image is not supported");
return(*status = DATA_COMPRESSION_ERR);
}
row=maxvalue(1,group);
ffpclujj(fptr, 2, row, firstelem, nelem, array, status);
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffppnujj( fitsfile *fptr, /* I - FITS file pointer */
long group, /* I - group to write(1 = 1st group) */
LONGLONG firstelem, /* I - first vector element to write(1 = 1st) */
LONGLONG nelem, /* I - number of values to write */
ULONGLONG *array, /* I - array of values that are written */
ULONGLONG nulval, /* I - undefined pixel value */
int *status) /* IO - error status */
/*
Write an array of values to the primary array. Data conversion
and scaling will be performed if necessary (e.g, if the datatype of the
FITS array is not the same as the array being written). Any array values
that are equal to the value of nulval will be replaced with the null
pixel value that is appropriate for this column.
*/
{
long row;
/*
the primary array is represented as a binary table:
each group of the primary array is a row in the table,
where the first column contains the group parameters
and the second column contains the image itself.
*/
if (fits_is_compressed_image(fptr, status))
{
/* this is a compressed image in a binary table */
ffpmsg("writing TULONGLONG to compressed image is not supported");
return(*status = DATA_COMPRESSION_ERR);
}
row=maxvalue(1,group);
ffpcnujj(fptr, 2, row, firstelem, nelem, array, nulval, status);
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffp2dujj(fitsfile *fptr, /* I - FITS file pointer */
long group, /* I - group to write(1 = 1st group) */
LONGLONG ncols, /* I - number of pixels in each row of array */
LONGLONG naxis1, /* I - FITS image NAXIS1 value */
LONGLONG naxis2, /* I - FITS image NAXIS2 value */
ULONGLONG *array, /* I - array to be written */
int *status) /* IO - error status */
/*
Write an entire 2-D array of values to the primary array. Data conversion
and scaling will be performed if necessary (e.g, if the datatype of the
FITS array is not the same as the array being written).
*/
{
/* call the 3D writing routine, with the 3rd dimension = 1 */
ffp3dujj(fptr, group, ncols, naxis2, naxis1, naxis2, 1, array, status);
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffp3dujj(fitsfile *fptr, /* I - FITS file pointer */
long group, /* I - group to write(1 = 1st group) */
LONGLONG ncols, /* I - number of pixels in each row of array */
LONGLONG nrows, /* I - number of rows in each plane of array */
LONGLONG naxis1, /* I - FITS image NAXIS1 value */
LONGLONG naxis2, /* I - FITS image NAXIS2 value */
LONGLONG naxis3, /* I - FITS image NAXIS3 value */
ULONGLONG *array, /* I - array to be written */
int *status) /* IO - error status */
/*
Write an entire 3-D cube of values to the primary array. Data conversion
and scaling will be performed if necessary (e.g, if the datatype of the
FITS array is not the same as the array being written).
*/
{
long tablerow, ii, jj;
long fpixel[3]= {1,1,1}, lpixel[3];
LONGLONG nfits, narray;
/*
the primary array is represented as a binary table:
each group of the primary array is a row in the table,
where the first column contains the group parameters
and the second column contains the image itself.
*/
if (fits_is_compressed_image(fptr, status))
{
/* this is a compressed image in a binary table */
ffpmsg("writing TULONGLONG to compressed image is not supported");
return(*status = DATA_COMPRESSION_ERR);
}
tablerow=maxvalue(1,group);
if (ncols == naxis1 && nrows == naxis2) /* arrays have same size? */
{
/* all the image pixels are contiguous, so write all at once */
ffpclujj(fptr, 2, tablerow, 1L, naxis1 * naxis2 * naxis3, array, status);
return(*status);
}
if (ncols < naxis1 || nrows < naxis2)
return(*status = BAD_DIMEN);
nfits = 1; /* next pixel in FITS image to write to */
narray = 0; /* next pixel in input array to be written */
/* loop over naxis3 planes in the data cube */
for (jj = 0; jj < naxis3; jj++)
{
/* loop over the naxis2 rows in the FITS image, */
/* writing naxis1 pixels to each row */
for (ii = 0; ii < naxis2; ii++)
{
if (ffpclujj(fptr, 2, tablerow, nfits, naxis1,&array[narray],status) > 0)
return(*status);
nfits += naxis1;
narray += ncols;
}
narray += (nrows - naxis2) * ncols;
}
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffpssujj(fitsfile *fptr, /* I - FITS file pointer */
long group, /* I - group to write(1 = 1st group) */
long naxis, /* I - number of data axes in array */
long *naxes, /* I - size of each FITS axis */
long *fpixel, /* I - 1st pixel in each axis to write (1=1st) */
long *lpixel, /* I - last pixel in each axis to write */
ULONGLONG *array, /* I - array to be written */
int *status) /* IO - error status */
/*
Write a subsection of pixels to the primary array or image.
A subsection is defined to be any contiguous rectangular
array of pixels within the n-dimensional FITS data file.
Data conversion and scaling will be performed if necessary
(e.g, if the datatype of the FITS array is not the same as
the array being written).
*/
{
long tablerow;
LONGLONG fpix[7], dimen[7], astart, pstart;
LONGLONG off2, off3, off4, off5, off6, off7;
LONGLONG st10, st20, st30, st40, st50, st60, st70;
LONGLONG st1, st2, st3, st4, st5, st6, st7;
long ii, i1, i2, i3, i4, i5, i6, i7, irange[7];
if (*status > 0)
return(*status);
if (fits_is_compressed_image(fptr, status))
{
/* this is a compressed image in a binary table */
ffpmsg("writing TULONGLONG to compressed image is not supported");
return(*status = DATA_COMPRESSION_ERR);
}
if (naxis < 1 || naxis > 7)
return(*status = BAD_DIMEN);
tablerow=maxvalue(1,group);
/* calculate the size and number of loops to perform in each dimension */
for (ii = 0; ii < 7; ii++)
{
fpix[ii]=1;
irange[ii]=1;
dimen[ii]=1;
}
for (ii = 0; ii < naxis; ii++)
{
fpix[ii]=fpixel[ii];
irange[ii]=lpixel[ii]-fpixel[ii]+1;
dimen[ii]=naxes[ii];
}
i1=irange[0];
/* compute the pixel offset between each dimension */
off2 = dimen[0];
off3 = off2 * dimen[1];
off4 = off3 * dimen[2];
off5 = off4 * dimen[3];
off6 = off5 * dimen[4];
off7 = off6 * dimen[5];
st10 = fpix[0];
st20 = (fpix[1] - 1) * off2;
st30 = (fpix[2] - 1) * off3;
st40 = (fpix[3] - 1) * off4;
st50 = (fpix[4] - 1) * off5;
st60 = (fpix[5] - 1) * off6;
st70 = (fpix[6] - 1) * off7;
/* store the initial offset in each dimension */
st1 = st10;
st2 = st20;
st3 = st30;
st4 = st40;
st5 = st50;
st6 = st60;
st7 = st70;
astart = 0;
for (i7 = 0; i7 < irange[6]; i7++)
{
for (i6 = 0; i6 < irange[5]; i6++)
{
for (i5 = 0; i5 < irange[4]; i5++)
{
for (i4 = 0; i4 < irange[3]; i4++)
{
for (i3 = 0; i3 < irange[2]; i3++)
{
pstart = st1 + st2 + st3 + st4 + st5 + st6 + st7;
for (i2 = 0; i2 < irange[1]; i2++)
{
if (ffpclujj(fptr, 2, tablerow, pstart, i1, &array[astart],
status) > 0)
return(*status);
astart += i1;
pstart += off2;
}
st2 = st20;
st3 = st3+off3;
}
st3 = st30;
st4 = st4+off4;
}
st4 = st40;
st5 = st5+off5;
}
st5 = st50;
st6 = st6+off6;
}
st6 = st60;
st7 = st7+off7;
}
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffpgpujj( fitsfile *fptr, /* I - FITS file pointer */
long group, /* I - group to write(1 = 1st group) */
long firstelem, /* I - first vector element to write(1 = 1st) */
long nelem, /* I - number of values to write */
ULONGLONG *array, /* I - array of values that are written */
int *status) /* IO - error status */
/*
Write an array of group parameters to the primary array. Data conversion
and scaling will be performed if necessary (e.g, if the datatype of
the FITS array is not the same as the array being written).
*/
{
long row;
/*
the primary array is represented as a binary table:
each group of the primary array is a row in the table,
where the first column contains the group parameters
and the second column contains the image itself.
*/
row=maxvalue(1,group);
ffpclujj(fptr, 1L, row, firstelem, nelem, array, status);
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffpclujj( fitsfile *fptr, /* I - FITS file pointer */
int colnum, /* I - number of column to write (1 = 1st col) */
LONGLONG firstrow, /* I - first row to write (1 = 1st row) */
LONGLONG firstelem, /* I - first vector element to write (1 = 1st) */
LONGLONG nelem, /* I - number of values to write */
ULONGLONG *array, /* I - array of values to write */
int *status) /* IO - error status */
/*
Write an array of values to a column in the current FITS HDU.
The column number may refer to a real column in an ASCII or binary table,
or it may refer to a virtual column in a 1 or more grouped FITS primary
array. FITSIO treats a primary array as a binary table
with 2 vector columns: the first column contains the group parameters (often
with length = 0) and the second column contains the array of image pixels.
Each row of the table represents a group in the case of multigroup FITS
images.
The input array of values will be converted to the datatype of the column
and will be inverse-scaled by the FITS TSCALn and TZEROn values if necessary.
*/
{
int tcode, maxelem, hdutype;
long twidth, incre;
long ntodo;
LONGLONG repeat, startpos, elemnum, wrtptr, rowlen, rownum, remain, next, tnull;
double scale, zero;
char tform[20], cform[20];
char message[FLEN_ERRMSG];
char snull[20]; /* the FITS null value */
double cbuff[DBUFFSIZE / sizeof(double)]; /* align cbuff on word boundary */
void *buffer;
if (*status > 0) /* inherit input status value if > 0 */
return(*status);
buffer = cbuff;
/*---------------------------------------------------*/
/* Check input and get parameters about the column: */
/*---------------------------------------------------*/
if (ffgcprll( fptr, colnum, firstrow, firstelem, nelem, 1, &scale, &zero,
tform, &twidth, &tcode, &maxelem, &startpos, &elemnum, &incre,
&repeat, &rowlen, &hdutype, &tnull, snull, status) > 0)
return(*status);
if (tcode == TSTRING)
ffcfmt(tform, cform); /* derive C format for writing strings */
/*---------------------------------------------------------------------*/
/* Now write the pixels to the FITS column. */
/* First call the ffXXfYY routine to (1) convert the datatype */
/* if necessary, and (2) scale the values by the FITS TSCALn and */
/* TZEROn linear scaling parameters into a temporary buffer. */
/*---------------------------------------------------------------------*/
remain = nelem; /* remaining number of values to write */
next = 0; /* next element in array to be written */
rownum = 0; /* row number, relative to firstrow */
while (remain)
{
/* limit the number of pixels to process a one time to the number that
will fit in the buffer space or to the number of pixels that remain
in the current vector, which ever is smaller.
*/
ntodo = (long) minvalue(remain, maxelem);
ntodo = (long) minvalue(ntodo, (repeat - elemnum));
wrtptr = startpos + ((LONGLONG)rownum * rowlen) + (elemnum * incre);
ffmbyt(fptr, wrtptr, IGNORE_EOF, status); /* move to write position */
switch (tcode)
{
case (TLONGLONG):
ffu8fi8(&array[next], ntodo, scale, zero,
(LONGLONG *) buffer, status);
ffpi8b(fptr, ntodo, incre, (long *) buffer, status);
break;
case (TLONG):
ffu8fi4(&array[next], ntodo, scale, zero,
(INT32BIT *) buffer, status);
ffpi4b(fptr, ntodo, incre, (INT32BIT *) buffer, status);
break;
case (TBYTE):
ffu8fi1(&array[next], ntodo, scale, zero,
(unsigned char *) buffer, status);
ffpi1b(fptr, ntodo, incre, (unsigned char *) buffer, status);
break;
case (TSHORT):
ffu8fi2(&array[next], ntodo, scale, zero,
(short *) buffer, status);
ffpi2b(fptr, ntodo, incre, (short *) buffer, status);
break;
case (TFLOAT):
ffu8fr4(&array[next], ntodo, scale, zero,
(float *) buffer, status);
ffpr4b(fptr, ntodo, incre, (float *) buffer, status);
break;
case (TDOUBLE):
ffu8fr8(&array[next], ntodo, scale, zero,
(double *) buffer, status);
ffpr8b(fptr, ntodo, incre, (double *) buffer, status);
break;
case (TSTRING): /* numerical column in an ASCII table */
if (cform[1] != 's') /* "%s" format is a string */
{
ffu8fstr(&array[next], ntodo, scale, zero, cform,
twidth, (char *) buffer, status);
if (incre == twidth) /* contiguous bytes */
ffpbyt(fptr, ntodo * twidth, buffer, status);
else
ffpbytoff(fptr, twidth, ntodo, incre - twidth, buffer,
status);
break;
}
/* can't write to string column, so fall thru to default: */
default: /* error trap */
snprintf(message, FLEN_ERRMSG,
"Cannot write numbers to column %d which has format %s",
colnum,tform);
ffpmsg(message);
if (hdutype == ASCII_TBL)
return(*status = BAD_ATABLE_FORMAT);
else
return(*status = BAD_BTABLE_FORMAT);
} /* End of switch block */
/*-------------------------*/
/* Check for fatal error */
/*-------------------------*/
if (*status > 0) /* test for error during previous write operation */
{
snprintf(message, FLEN_ERRMSG,
"Error writing elements %.0f thru %.0f of input data array (ffpcluj).",
(double) (next+1), (double) (next+ntodo));
ffpmsg(message);
return(*status);
}
/*--------------------------------------------*/
/* increment the counters for the next loop */
/*--------------------------------------------*/
remain -= ntodo;
if (remain)
{
next += ntodo;
elemnum += ntodo;
if (elemnum == repeat) /* completed a row; start on next row */
{
elemnum = 0;
rownum++;
}
}
} /* End of main while Loop */
/*--------------------------------*/
/* check for numerical overflow */
/*--------------------------------*/
if (*status == OVERFLOW_ERR)
{
ffpmsg(
"Numerical overflow during type conversion while writing FITS data.");
*status = NUM_OVERFLOW;
}
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffpcnujj( fitsfile *fptr, /* I - FITS file pointer */
int colnum, /* I - number of column to write (1 = 1st col) */
LONGLONG firstrow, /* I - first row to write (1 = 1st row) */
LONGLONG firstelem, /* I - first vector element to write (1 = 1st) */
LONGLONG nelem, /* I - number of values to write */
ULONGLONG *array, /* I - array of values to write */
ULONGLONG nulvalue, /* I - value used to flag undefined pixels */
int *status) /* IO - error status */
/*
Write an array of elements to the specified column of a table. Any input
pixels equal to the value of nulvalue will be replaced by the appropriate
null value in the output FITS file.
The input array of values will be converted to the datatype of the column
and will be inverse-scaled by the FITS TSCALn and TZEROn values if necessary
*/
{
tcolumn *colptr;
LONGLONG ngood = 0, nbad = 0, ii;
LONGLONG repeat, first, fstelm, fstrow;
int tcode, overflow = 0;
if (*status > 0)
return(*status);
/* reset position to the correct HDU if necessary */
if (fptr->HDUposition != (fptr->Fptr)->curhdu)
{
ffmahd(fptr, (fptr->HDUposition) + 1, NULL, status);
}
else if ((fptr->Fptr)->datastart == DATA_UNDEFINED)
{
if ( ffrdef(fptr, status) > 0) /* rescan header */
return(*status);
}
colptr = (fptr->Fptr)->tableptr; /* point to first column */
colptr += (colnum - 1); /* offset to correct column structure */
tcode = colptr->tdatatype;
if (tcode > 0)
repeat = colptr->trepeat; /* repeat count for this column */
else
repeat = firstelem -1 + nelem; /* variable length arrays */
/* if variable length array, first write the whole input vector,
then go back and fill in the nulls */
if (tcode < 0) {
if (ffpclujj(fptr, colnum, firstrow, firstelem, nelem, array, status) > 0) {
if (*status == NUM_OVERFLOW)
{
/* ignore overflows, which are possibly the null pixel values */
/* overflow = 1; */
*status = 0;
} else {
return(*status);
}
}
}
/* absolute element number in the column */
first = (firstrow - 1) * repeat + firstelem;
for (ii = 0; ii < nelem; ii++)
{
if (array[ii] != nulvalue) /* is this a good pixel? */
{
if (nbad) /* write previous string of bad pixels */
{
fstelm = ii - nbad + first; /* absolute element number */
fstrow = (fstelm - 1) / repeat + 1; /* starting row number */
fstelm = fstelm - (fstrow - 1) * repeat; /* relative number */
if (ffpclu(fptr, colnum, fstrow, fstelm, nbad, status) > 0)
return(*status);
nbad=0;
}
ngood = ngood +1; /* the consecutive number of good pixels */
}
else
{
if (ngood) /* write previous string of good pixels */
{
fstelm = ii - ngood + first; /* absolute element number */
fstrow = (fstelm - 1) / repeat + 1; /* starting row number */
fstelm = fstelm - (fstrow - 1) * repeat; /* relative number */
if (tcode > 0) { /* variable length arrays have already been written */
if (ffpclujj(fptr, colnum, fstrow, fstelm, ngood, &array[ii-ngood],
status) > 0) {
if (*status == NUM_OVERFLOW)
{
overflow = 1;
*status = 0;
} else {
return(*status);
}
}
}
ngood=0;
}
nbad = nbad +1; /* the consecutive number of bad pixels */
}
}
/* finished loop; now just write the last set of pixels */
if (ngood) /* write last string of good pixels */
{
fstelm = ii - ngood + first; /* absolute element number */
fstrow = (fstelm - 1) / repeat + 1; /* starting row number */
fstelm = fstelm - (fstrow - 1) * repeat; /* relative number */
if (tcode > 0) { /* variable length arrays have already been written */
ffpclujj(fptr, colnum, fstrow, fstelm, ngood, &array[ii-ngood], status);
}
}
else if (nbad) /* write last string of bad pixels */
{
fstelm = ii - nbad + first; /* absolute element number */
fstrow = (fstelm - 1) / repeat + 1; /* starting row number */
fstelm = fstelm - (fstrow - 1) * repeat; /* relative number */
ffpclu(fptr, colnum, fstrow, fstelm, nbad, status);
}
if (*status <= 0) {
if (overflow) {
*status = NUM_OVERFLOW;
}
}
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffu8fi1(ULONGLONG *input, /* I - array of values to be converted */
long ntodo, /* I - number of elements in the array */
double scale, /* I - FITS TSCALn or BSCALE value */
double zero, /* I - FITS TZEROn or BZERO value */
unsigned char *output, /* O - output array of converted values */
int *status) /* IO - error status */
/*
Copy input to output prior to writing output to a FITS file.
Do datatype conversion and scaling if required.
*/
{
long ii;
double dvalue;
if (scale == 1. && zero == 0.)
{
for (ii = 0; ii < ntodo; ii++)
{
if (input[ii] > UCHAR_MAX)
{
*status = OVERFLOW_ERR;
output[ii] = UCHAR_MAX;
}
else
output[ii] = (unsigned char) input[ii];
}
}
else
{
for (ii = 0; ii < ntodo; ii++)
{
dvalue = (input[ii] - zero) / scale;
if (dvalue < DUCHAR_MIN)
{
*status = OVERFLOW_ERR;
output[ii] = 0;
}
else if (dvalue > DUCHAR_MAX)
{
*status = OVERFLOW_ERR;
output[ii] = UCHAR_MAX;
}
else
output[ii] = (unsigned char) (dvalue + .5);
}
}
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffu8fi2(ULONGLONG *input, /* I - array of values to be converted */
long ntodo, /* I - number of elements in the array */
double scale, /* I - FITS TSCALn or BSCALE value */
double zero, /* I - FITS TZEROn or BZERO value */
short *output, /* O - output array of converted values */
int *status) /* IO - error status */
/*
Copy input to output prior to writing output to a FITS file.
Do datatype conversion and scaling if required.
*/
{
long ii;
double dvalue;
if (scale == 1. && zero == 0.)
{
for (ii = 0; ii < ntodo; ii++)
{
if (input[ii] > SHRT_MAX)
{
*status = OVERFLOW_ERR;
output[ii] = SHRT_MAX;
}
else
output[ii] = (short) input[ii];
}
}
else
{
for (ii = 0; ii < ntodo; ii++)
{
dvalue = (input[ii] - zero) / scale;
if (dvalue < DSHRT_MIN)
{
*status = OVERFLOW_ERR;
output[ii] = SHRT_MIN;
}
else if (dvalue > DSHRT_MAX)
{
*status = OVERFLOW_ERR;
output[ii] = SHRT_MAX;
}
else
{
if (dvalue >= 0)
output[ii] = (short) (dvalue + .5);
else
output[ii] = (short) (dvalue - .5);
}
}
}
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffu8fi4(ULONGLONG *input, /* I - array of values to be converted */
long ntodo, /* I - number of elements in the array */
double scale, /* I - FITS TSCALn or BSCALE value */
double zero, /* I - FITS TZEROn or BZERO value */
INT32BIT *output, /* O - output array of converted values */
int *status) /* IO - error status */
/*
Copy input to output prior to writing output to a FITS file.
Do datatype conversion and scaling if required
*/
{
long ii;
double dvalue;
if (scale == 1. && zero == 0.)
{
for (ii = 0; ii < ntodo; ii++)
{
if (input[ii] > INT32_MAX)
{
*status = OVERFLOW_ERR;
output[ii] = INT32_MAX;
}
else
output[ii] = input[ii];
}
}
else
{
for (ii = 0; ii < ntodo; ii++)
{
dvalue = (input[ii] - zero) / scale;
if (dvalue < DINT_MIN)
{
*status = OVERFLOW_ERR;
output[ii] = INT32_MIN;
}
else if (dvalue > DINT_MAX)
{
*status = OVERFLOW_ERR;
output[ii] = INT32_MAX;
}
else
{
if (dvalue >= 0)
output[ii] = (INT32BIT) (dvalue + .5);
else
output[ii] = (INT32BIT) (dvalue - .5);
}
}
}
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffu8fi8(ULONGLONG *input, /* I - array of values to be converted */
long ntodo, /* I - number of elements in the array */
double scale, /* I - FITS TSCALn or BSCALE value */
double zero, /* I - FITS TZEROn or BZERO value */
LONGLONG *output, /* O - output array of converted values */
int *status) /* IO - error status */
/*
Copy input to output prior to writing output to a FITS file.
Do datatype conversion and scaling if required
*/
{
long ii;
double dvalue;
if (scale == 1. && zero == 9223372036854775808.)
{
/* Writing to unsigned long long column. */
/* Instead of subtracting 9223372036854775808, it is more efficient */
/* and more precise to just flip the sign bit with the XOR operator */
/* no need to check range limits because all input values */
/* are valid ULONGLONG values. */
for (ii = 0; ii < ntodo; ii++) {
output[ii] = ((LONGLONG) input[ii]) ^ 0x8000000000000000;
}
}
else if (scale == 1. && zero == 0.)
{
for (ii = 0; ii < ntodo; ii++) {
if (input[ii] > LONGLONG_MAX)
{
*status = OVERFLOW_ERR;
output[ii] = LONGLONG_MAX;
}
else
{
output[ii] = input[ii];
}
}
}
else
{
for (ii = 0; ii < ntodo; ii++)
{
dvalue = (input[ii] - zero) / scale;
if (dvalue < DLONGLONG_MIN)
{
*status = OVERFLOW_ERR;
output[ii] = LONGLONG_MIN;
}
else if (dvalue > DLONGLONG_MAX)
{
*status = OVERFLOW_ERR;
output[ii] = LONGLONG_MAX;
}
else
{
if (dvalue >= 0)
output[ii] = (LONGLONG) (dvalue + .5);
else
output[ii] = (LONGLONG) (dvalue - .5);
}
}
}
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffu8fr4(ULONGLONG *input , /* I - array of values to be converted */
long ntodo, /* I - number of elements in the array */
double scale, /* I - FITS TSCALn or BSCALE value */
double zero, /* I - FITS TZEROn or BZERO value */
float *output, /* O - output array of converted values */
int *status) /* IO - error status */
/*
Copy input to output prior to writing output to a FITS file.
Do datatype conversion and scaling if required.
*/
{
long ii;
if (scale == 1. && zero == 0.)
{
for (ii = 0; ii < ntodo; ii++)
output[ii] = (float) input[ii];
}
else
{
for (ii = 0; ii < ntodo; ii++)
output[ii] = (float) ((input[ii] - zero) / scale);
}
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffu8fr8(ULONGLONG *input, /* I - array of values to be converted */
long ntodo, /* I - number of elements in the array */
double scale, /* I - FITS TSCALn or BSCALE value */
double zero, /* I - FITS TZEROn or BZERO value */
double *output, /* O - output array of converted values */
int *status) /* IO - error status */
/*
Copy input to output prior to writing output to a FITS file.
Do datatype conversion and scaling if required.
*/
{
long ii;
if (scale == 1. && zero == 0.)
{
for (ii = 0; ii < ntodo; ii++)
output[ii] = (double) input[ii];
}
else
{
for (ii = 0; ii < ntodo; ii++)
output[ii] = (input[ii] - zero) / scale;
}
return(*status);
}
/*--------------------------------------------------------------------------*/
int ffu8fstr(ULONGLONG *input, /* I - array of values to be converted */
long ntodo, /* I - number of elements in the array */
double scale, /* I - FITS TSCALn or BSCALE value */
double zero, /* I - FITS TZEROn or BZERO value */
char *cform, /* I - format for output string values */
long twidth, /* I - width of each field, in chars */
char *output, /* O - output array of converted values */
int *status) /* IO - error status */
/*
Copy input to output prior to writing output to a FITS file.
Do scaling if required.
*/
{
long ii;
double dvalue;
char *cptr;
cptr = output;
if (scale == 1. && zero == 0.)
{
for (ii = 0; ii < ntodo; ii++)
{
sprintf(output, cform, (double) input[ii]);
output += twidth;
if (*output) /* if this char != \0, then overflow occurred */
*status = OVERFLOW_ERR;
}
}
else
{
for (ii = 0; ii < ntodo; ii++)
{
dvalue = (input[ii] - zero) / scale;
sprintf(output, cform, dvalue);
output += twidth;
if (*output) /* if this char != \0, then overflow occurred */
*status = OVERFLOW_ERR;
}
}
/* replace any commas with periods (e.g., in French locale) */
while ((cptr = strchr(cptr, ','))) *cptr = '.';
return(*status);
}