792 lines
24 KiB
C
792 lines
24 KiB
C
/*
|
|
* Non-physical true random number generator based on timing jitter.
|
|
*
|
|
* Copyright Stephan Mueller <smueller@chronox.de>, 2014 - 2017
|
|
*
|
|
* Design
|
|
* ======
|
|
*
|
|
* See documentation in doc/ folder.
|
|
*
|
|
* Interface
|
|
* =========
|
|
*
|
|
* See documentation in doc/ folder.
|
|
*
|
|
* License
|
|
* =======
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, and the entire permission notice in its entirety,
|
|
* including the disclaimer of warranties.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote
|
|
* products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* ALTERNATIVELY, this product may be distributed under the terms of
|
|
* the GNU General Public License, in which case the provisions of the GPL2 are
|
|
* required INSTEAD OF the above restrictions. (This clause is
|
|
* necessary due to a potential bad interaction between the GPL and
|
|
* the restrictions contained in a BSD-style copyright.)
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
|
|
* WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
|
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
* USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
|
|
* DAMAGE.
|
|
*/
|
|
|
|
#undef _FORTIFY_SOURCE
|
|
#pragma GCC optimize ("O0")
|
|
|
|
#include "jitterentropy.h"
|
|
|
|
#ifndef CONFIG_CRYPTO_CPU_JITTERENTROPY_STAT
|
|
/* only check optimization in a compilation for real work */
|
|
#ifdef __OPTIMIZE__
|
|
#error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy-base.c."
|
|
#endif
|
|
#endif
|
|
|
|
#define MAJVERSION 2 /* API / ABI incompatible changes, functional changes that
|
|
* require consumer to be updated (as long as this number
|
|
* is zero, the API is not considered stable and can
|
|
* change without a bump of the major version) */
|
|
#define MINVERSION 1 /* API compatible, ABI may change, functional
|
|
* enhancements only, consumer can be left unchanged if
|
|
* enhancements are not considered */
|
|
#define PATCHLEVEL 0 /* API / ABI compatible, no functional changes, no
|
|
* enhancements, bug fixes only */
|
|
|
|
/**
|
|
* jent_version() - Return machine-usable version number of jent library
|
|
*
|
|
* The function returns a version number that is monotonic increasing
|
|
* for newer versions. The version numbers are multiples of 100. For example,
|
|
* version 1.2.3 is converted to 1020300 -- the last two digits are reserved
|
|
* for future use.
|
|
*
|
|
* The result of this function can be used in comparing the version number
|
|
* in a calling program if version-specific calls need to be make.
|
|
*
|
|
* Return: Version number of kcapi library
|
|
*/
|
|
JENT_PRIVATE_STATIC
|
|
unsigned int jent_version(void)
|
|
{
|
|
unsigned int version = 0;
|
|
|
|
version = MAJVERSION * 1000000;
|
|
version += MINVERSION * 10000;
|
|
version += PATCHLEVEL * 100;
|
|
|
|
return version;
|
|
}
|
|
|
|
/**
|
|
* Update of the loop count used for the next round of
|
|
* an entropy collection.
|
|
*
|
|
* Input:
|
|
* @ec entropy collector struct -- may be NULL
|
|
* @bits is the number of low bits of the timer to consider
|
|
* @min is the number of bits we shift the timer value to the right at
|
|
* the end to make sure we have a guaranteed minimum value
|
|
*
|
|
* @return Newly calculated loop counter
|
|
*/
|
|
static uint64_t jent_loop_shuffle(struct rand_data *ec,
|
|
unsigned int bits, unsigned int min)
|
|
{
|
|
uint64_t time = 0;
|
|
uint64_t shuffle = 0;
|
|
unsigned int i = 0;
|
|
unsigned int mask = (1<<bits) - 1;
|
|
|
|
jent_get_nstime(&time);
|
|
/*
|
|
* Mix the current state of the random number into the shuffle
|
|
* calculation to balance that shuffle a bit more.
|
|
*/
|
|
if (ec)
|
|
time ^= ec->data;
|
|
/*
|
|
* We fold the time value as much as possible to ensure that as many
|
|
* bits of the time stamp are included as possible.
|
|
*/
|
|
for (i = 0; (DATA_SIZE_BITS / bits) > i; i++) {
|
|
shuffle ^= time & mask;
|
|
time = time >> bits;
|
|
}
|
|
|
|
/*
|
|
* We add a lower boundary value to ensure we have a minimum
|
|
* RNG loop count.
|
|
*/
|
|
return (shuffle + (1<<min));
|
|
}
|
|
|
|
/***************************************************************************
|
|
* Noise sources
|
|
***************************************************************************/
|
|
|
|
/**
|
|
* CPU Jitter noise source -- this is the noise source based on the CPU
|
|
* execution time jitter
|
|
*
|
|
* This function injects the individual bits of the time value into the
|
|
* entropy pool using an LFSR.
|
|
*
|
|
* The code is deliberately inefficient with respect to the bit shifting
|
|
* and shall stay that way. This function is the root cause why the code
|
|
* shall be compiled without optimization. This function not only acts as
|
|
* folding operation, but this function's execution is used to measure
|
|
* the CPU execution time jitter. Any change to the loop in this function
|
|
* implies that careful retesting must be done.
|
|
*
|
|
* Input:
|
|
* @ec entropy collector struct -- may be NULL
|
|
* @time time stamp to be injected
|
|
* @loop_cnt if a value not equal to 0 is set, use the given value as number of
|
|
* loops to perform the folding
|
|
*
|
|
* Output:
|
|
* updated ec->data
|
|
*
|
|
* @return Number of loops the folding operation is performed
|
|
*/
|
|
static uint64_t jent_lfsr_time(struct rand_data *ec, uint64_t time,
|
|
uint64_t loop_cnt)
|
|
{
|
|
unsigned int i;
|
|
uint64_t j = 0;
|
|
uint64_t new = 0;
|
|
#define MAX_FOLD_LOOP_BIT 4
|
|
#define MIN_FOLD_LOOP_BIT 0
|
|
uint64_t fold_loop_cnt =
|
|
jent_loop_shuffle(ec, MAX_FOLD_LOOP_BIT, MIN_FOLD_LOOP_BIT);
|
|
|
|
/*
|
|
* testing purposes -- allow test app to set the counter, not
|
|
* needed during runtime
|
|
*/
|
|
if (loop_cnt)
|
|
fold_loop_cnt = loop_cnt;
|
|
for (j = 0; j < fold_loop_cnt; j++) {
|
|
new = ec->data;
|
|
for (i = 1; (DATA_SIZE_BITS) >= i; i++) {
|
|
uint64_t tmp = time << (DATA_SIZE_BITS - i);
|
|
|
|
tmp = tmp >> (DATA_SIZE_BITS - 1);
|
|
|
|
/*
|
|
* Fibonacci LSFR with polynomial of
|
|
* x^64 + x^61 + x^56 + x^31 + x^28 + x^23 + 1 which is
|
|
* primitive according to
|
|
* http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf
|
|
* (the shift values are the polynomial values minus one
|
|
* due to counting bits from 0 to 63). As the current
|
|
* position is always the LSB, the polynomial only needs
|
|
* to shift data in from the left without wrap.
|
|
*/
|
|
new ^= tmp;
|
|
new ^= ((new >> 63) & 1);
|
|
new ^= ((new >> 60) & 1);
|
|
new ^= ((new >> 55) & 1);
|
|
new ^= ((new >> 30) & 1);
|
|
new ^= ((new >> 27) & 1);
|
|
new ^= ((new >> 22) & 1);
|
|
new = rol64(new, 1);
|
|
}
|
|
}
|
|
ec->data = new;
|
|
|
|
return fold_loop_cnt;
|
|
}
|
|
|
|
/**
|
|
* Memory Access noise source -- this is a noise source based on variations in
|
|
* memory access times
|
|
*
|
|
* This function performs memory accesses which will add to the timing
|
|
* variations due to an unknown amount of CPU wait states that need to be
|
|
* added when accessing memory. The memory size should be larger than the L1
|
|
* caches as outlined in the documentation and the associated testing.
|
|
*
|
|
* The L1 cache has a very high bandwidth, albeit its access rate is usually
|
|
* slower than accessing CPU registers. Therefore, L1 accesses only add minimal
|
|
* variations as the CPU has hardly to wait. Starting with L2, significant
|
|
* variations are added because L2 typically does not belong to the CPU any more
|
|
* and therefore a wider range of CPU wait states is necessary for accesses.
|
|
* L3 and real memory accesses have even a wider range of wait states. However,
|
|
* to reliably access either L3 or memory, the ec->mem memory must be quite
|
|
* large which is usually not desirable.
|
|
*
|
|
* Input:
|
|
* @ec Reference to the entropy collector with the memory access data -- if
|
|
* the reference to the memory block to be accessed is NULL, this noise
|
|
* source is disabled
|
|
* @loop_cnt if a value not equal to 0 is set, use the given value as number of
|
|
* loops to perform the folding
|
|
*
|
|
* @return Number of memory access operations
|
|
*/
|
|
static unsigned int jent_memaccess(struct rand_data *ec, uint64_t loop_cnt)
|
|
{
|
|
unsigned int wrap = 0;
|
|
uint64_t i = 0;
|
|
#define MAX_ACC_LOOP_BIT 7
|
|
#define MIN_ACC_LOOP_BIT 0
|
|
uint64_t acc_loop_cnt =
|
|
jent_loop_shuffle(ec, MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
|
|
|
|
if (NULL == ec || NULL == ec->mem)
|
|
return 0;
|
|
wrap = ec->memblocksize * ec->memblocks;
|
|
|
|
/*
|
|
* testing purposes -- allow test app to set the counter, not
|
|
* needed during runtime
|
|
*/
|
|
if (loop_cnt)
|
|
acc_loop_cnt = loop_cnt;
|
|
|
|
for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
|
|
unsigned char *tmpval = ec->mem + ec->memlocation;
|
|
/*
|
|
* memory access: just add 1 to one byte,
|
|
* wrap at 255 -- memory access implies read
|
|
* from and write to memory location
|
|
*/
|
|
*tmpval = (*tmpval + 1) & 0xff;
|
|
/*
|
|
* Addition of memblocksize - 1 to pointer
|
|
* with wrap around logic to ensure that every
|
|
* memory location is hit evenly
|
|
*/
|
|
ec->memlocation = ec->memlocation + ec->memblocksize - 1;
|
|
ec->memlocation = ec->memlocation % wrap;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
/***************************************************************************
|
|
* Start of entropy processing logic
|
|
***************************************************************************/
|
|
|
|
/**
|
|
* Stuck test by checking the:
|
|
* 1st derivation of the jitter measurement (time delta)
|
|
* 2nd derivation of the jitter measurement (delta of time deltas)
|
|
* 3rd derivation of the jitter measurement (delta of delta of time deltas)
|
|
*
|
|
* All values must always be non-zero.
|
|
*
|
|
* Input:
|
|
* @ec Reference to entropy collector
|
|
* @current_delta Jitter time delta
|
|
*
|
|
* @return
|
|
* 0 jitter measurement not stuck (good bit)
|
|
* 1 jitter measurement stuck (reject bit)
|
|
*/
|
|
static int jent_stuck(struct rand_data *ec, uint64_t current_delta)
|
|
{
|
|
int64_t delta2 = ec->last_delta - current_delta;
|
|
int64_t delta3 = delta2 - ec->last_delta2;
|
|
|
|
ec->last_delta = current_delta;
|
|
ec->last_delta2 = delta2;
|
|
|
|
if (!current_delta || !delta2 || !delta3)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* This is the heart of the entropy generation: calculate time deltas and
|
|
* use the CPU jitter in the time deltas. The jitter is injected into the
|
|
* entropy pool.
|
|
*
|
|
* WARNING: ensure that ->prev_time is primed before using the output
|
|
* of this function! This can be done by calling this function
|
|
* and not using its result.
|
|
*
|
|
* Input:
|
|
* @entropy_collector Reference to entropy collector
|
|
*
|
|
* @return: result of stuck test
|
|
*/
|
|
static int jent_measure_jitter(struct rand_data *ec)
|
|
{
|
|
uint64_t time = 0;
|
|
uint64_t current_delta = 0;
|
|
int stuck;
|
|
|
|
/* Invoke one noise source before time measurement to add variations */
|
|
jent_memaccess(ec, 0);
|
|
|
|
/*
|
|
* Get time stamp and calculate time delta to previous
|
|
* invocation to measure the timing variations
|
|
*/
|
|
jent_get_nstime(&time);
|
|
current_delta = time - ec->prev_time;
|
|
ec->prev_time = time;
|
|
|
|
/* Now call the next noise sources which also injects the data */
|
|
jent_lfsr_time(ec, current_delta, 0);
|
|
|
|
/* Check whether we have a stuck measurement. */
|
|
stuck = jent_stuck(ec, current_delta);
|
|
|
|
/*
|
|
* Rotate the data buffer by a prime number (any odd number would
|
|
* do) to ensure that every bit position of the input time stamp
|
|
* has an even chance of being merged with a bit position in the
|
|
* entropy pool. We do not use one here as the adjacent bits in
|
|
* successive time deltas may have some form of dependency. The
|
|
* chosen value of 7 implies that the low 7 bits of the next
|
|
* time delta value is concatenated with the current time delta.
|
|
*/
|
|
if (!stuck)
|
|
ec->data = rol64(ec->data, 7);
|
|
|
|
return stuck;
|
|
}
|
|
|
|
/**
|
|
* Shuffle the pool a bit by mixing some value with a bijective function (XOR)
|
|
* into the pool.
|
|
*
|
|
* The function generates a mixer value that depends on the bits set and the
|
|
* location of the set bits in the random number generated by the entropy
|
|
* source. Therefore, based on the generated random number, this mixer value
|
|
* can have 2**64 different values. That mixer value is initialized with the
|
|
* first two SHA-1 constants. After obtaining the mixer value, it is XORed into
|
|
* the random number.
|
|
*
|
|
* The mixer value is not assumed to contain any entropy. But due to the XOR
|
|
* operation, it can also not destroy any entropy present in the entropy pool.
|
|
*
|
|
* Input:
|
|
* @entropy_collector Reference to entropy collector
|
|
*/
|
|
static void jent_stir_pool(struct rand_data *entropy_collector)
|
|
{
|
|
/*
|
|
* to shut up GCC on 32 bit, we have to initialize the 64 variable
|
|
* with two 32 bit variables
|
|
*/
|
|
union c {
|
|
uint64_t uint64;
|
|
uint32_t uint32[2];
|
|
};
|
|
/*
|
|
* This constant is derived from the first two 32 bit initialization
|
|
* vectors of SHA-1 as defined in FIPS 180-4 section 5.3.1
|
|
*/
|
|
union c constant;
|
|
/*
|
|
* The start value of the mixer variable is derived from the third
|
|
* and fourth 32 bit initialization vector of SHA-1 as defined in
|
|
* FIPS 180-4 section 5.3.1
|
|
*/
|
|
union c mixer;
|
|
unsigned int i = 0;
|
|
|
|
/* Ensure that the function implements a constant time operation. */
|
|
union c throw_away;
|
|
|
|
/*
|
|
* Store the SHA-1 constants in reverse order to make up the 64 bit
|
|
* value -- this applies to a little endian system, on a big endian
|
|
* system, it reverses as expected. But this really does not matter
|
|
* as we do not rely on the specific numbers. We just pick the SHA-1
|
|
* constants as they have a good mix of bit set and unset.
|
|
*/
|
|
constant.uint32[1] = 0x67452301;
|
|
constant.uint32[0] = 0xefcdab89;
|
|
mixer.uint32[1] = 0x98badcfe;
|
|
mixer.uint32[0] = 0x10325476;
|
|
|
|
for (i = 0; i < DATA_SIZE_BITS; i++) {
|
|
/*
|
|
* get the i-th bit of the input random number and only XOR
|
|
* the constant into the mixer value when that bit is set
|
|
*/
|
|
if ((entropy_collector->data >> i) & 1)
|
|
mixer.uint64 ^= constant.uint64;
|
|
else
|
|
throw_away.uint64 ^= constant.uint64;
|
|
mixer.uint64 = rol64(mixer.uint64, 1);
|
|
}
|
|
entropy_collector->data ^= mixer.uint64;
|
|
}
|
|
|
|
/**
|
|
* Generator of one 64 bit random number
|
|
* Function fills rand_data->data
|
|
*
|
|
* Input:
|
|
* @ec Reference to entropy collector
|
|
*/
|
|
static void jent_gen_entropy(struct rand_data *ec)
|
|
{
|
|
unsigned int k = 0;
|
|
|
|
/* priming of the ->prev_time value */
|
|
jent_measure_jitter(ec);
|
|
|
|
while (1) {
|
|
/* If a stuck measurement is received, repeat measurement */
|
|
if (jent_measure_jitter(ec))
|
|
continue;
|
|
|
|
/*
|
|
* We multiply the loop value with ->osr to obtain the
|
|
* oversampling rate requested by the caller
|
|
*/
|
|
if (++k >= (DATA_SIZE_BITS * ec->osr))
|
|
break;
|
|
}
|
|
if (ec->stir)
|
|
jent_stir_pool(ec);
|
|
}
|
|
|
|
/**
|
|
* The continuous test required by FIPS 140-2 -- the function automatically
|
|
* primes the test if needed.
|
|
*
|
|
* Return:
|
|
* 0 if FIPS test passed
|
|
* < 0 if FIPS test failed
|
|
*/
|
|
static int jent_fips_test(struct rand_data *ec)
|
|
{
|
|
if (ec->fips_enabled == -1)
|
|
return 0;
|
|
|
|
if (ec->fips_enabled == 0) {
|
|
if (!jent_fips_enabled()) {
|
|
ec->fips_enabled = -1;
|
|
return 0;
|
|
} else
|
|
ec->fips_enabled = 1;
|
|
}
|
|
|
|
/* prime the FIPS test */
|
|
if (!ec->old_data) {
|
|
ec->old_data = ec->data;
|
|
jent_gen_entropy(ec);
|
|
}
|
|
|
|
if (ec->data == ec->old_data)
|
|
return -1;
|
|
|
|
ec->old_data = ec->data;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Entry function: Obtain entropy for the caller.
|
|
*
|
|
* This function invokes the entropy gathering logic as often to generate
|
|
* as many bytes as requested by the caller. The entropy gathering logic
|
|
* creates 64 bit per invocation.
|
|
*
|
|
* This function truncates the last 64 bit entropy value output to the exact
|
|
* size specified by the caller.
|
|
*
|
|
* Input:
|
|
* @ec Reference to entropy collector
|
|
* @data pointer to buffer for storing random data -- buffer must already
|
|
* exist
|
|
* @len size of the buffer, specifying also the requested number of random
|
|
* in bytes
|
|
*
|
|
* @return number of bytes returned when request is fulfilled or an error
|
|
*
|
|
* The following error codes can occur:
|
|
* -1 entropy_collector is NULL
|
|
* -2 FIPS test failed
|
|
*/
|
|
JENT_PRIVATE_STATIC
|
|
ssize_t jent_read_entropy(struct rand_data *ec, char *data, size_t len)
|
|
{
|
|
char *p = data;
|
|
size_t orig_len = len;
|
|
|
|
if (NULL == ec)
|
|
return -1;
|
|
|
|
while (0 < len) {
|
|
size_t tocopy;
|
|
|
|
jent_gen_entropy(ec);
|
|
if (jent_fips_test(ec))
|
|
return -2;
|
|
|
|
if ((DATA_SIZE_BITS / 8) < len)
|
|
tocopy = (DATA_SIZE_BITS / 8);
|
|
else
|
|
tocopy = len;
|
|
memcpy(p, &ec->data, tocopy);
|
|
|
|
len -= tocopy;
|
|
p += tocopy;
|
|
}
|
|
|
|
/*
|
|
* To be on the safe side, we generate one more round of entropy
|
|
* which we do not give out to the caller. That round shall ensure
|
|
* that in case the calling application crashes, memory dumps, pages
|
|
* out, or due to the CPU Jitter RNG lingering in memory for long
|
|
* time without being moved and an attacker cracks the application,
|
|
* all he reads in the entropy pool is a value that is NEVER EVER
|
|
* being used for anything. Thus, he does NOT see the previous value
|
|
* that was returned to the caller for cryptographic purposes.
|
|
*/
|
|
/*
|
|
* If we use secured memory, do not use that precaution as the secure
|
|
* memory protects the entropy pool. Moreover, note that using this
|
|
* call reduces the speed of the RNG by up to half
|
|
*/
|
|
#ifndef CONFIG_CRYPTO_CPU_JITTERENTROPY_SECURE_MEMORY
|
|
jent_gen_entropy(ec);
|
|
#endif
|
|
return orig_len;
|
|
}
|
|
|
|
/***************************************************************************
|
|
* Initialization logic
|
|
***************************************************************************/
|
|
|
|
JENT_PRIVATE_STATIC
|
|
struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
|
|
unsigned int flags)
|
|
{
|
|
struct rand_data *entropy_collector;
|
|
|
|
entropy_collector = jent_zalloc(sizeof(struct rand_data));
|
|
if (NULL == entropy_collector)
|
|
return NULL;
|
|
|
|
if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
|
|
/* Allocate memory for adding variations based on memory
|
|
* access
|
|
*/
|
|
entropy_collector->mem =
|
|
(unsigned char *)jent_zalloc(JENT_MEMORY_SIZE);
|
|
if (NULL == entropy_collector->mem) {
|
|
jent_zfree(entropy_collector, sizeof(struct rand_data));
|
|
return NULL;
|
|
}
|
|
entropy_collector->memblocksize = JENT_MEMORY_BLOCKSIZE;
|
|
entropy_collector->memblocks = JENT_MEMORY_BLOCKS;
|
|
entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
|
|
}
|
|
|
|
/* verify and set the oversampling rate */
|
|
if (0 == osr)
|
|
osr = 1; /* minimum sampling rate is 1 */
|
|
entropy_collector->osr = osr;
|
|
|
|
entropy_collector->stir = 1;
|
|
if (flags & JENT_DISABLE_STIR)
|
|
entropy_collector->stir = 0;
|
|
if (flags & JENT_DISABLE_UNBIAS)
|
|
entropy_collector->disable_unbias = 1;
|
|
|
|
/* fill the data pad with non-zero values */
|
|
jent_gen_entropy(entropy_collector);
|
|
|
|
return entropy_collector;
|
|
}
|
|
|
|
JENT_PRIVATE_STATIC
|
|
void jent_entropy_collector_free(struct rand_data *entropy_collector)
|
|
{
|
|
if (NULL != entropy_collector) {
|
|
if (NULL != entropy_collector->mem) {
|
|
jent_zfree(entropy_collector->mem, JENT_MEMORY_SIZE);
|
|
entropy_collector->mem = NULL;
|
|
}
|
|
jent_zfree(entropy_collector, sizeof(struct rand_data));
|
|
}
|
|
}
|
|
|
|
JENT_PRIVATE_STATIC
|
|
int jent_entropy_init(void)
|
|
{
|
|
int i;
|
|
uint64_t delta_sum = 0;
|
|
uint64_t old_delta = 0;
|
|
int time_backwards = 0;
|
|
int count_mod = 0;
|
|
int count_stuck = 0;
|
|
struct rand_data ec;
|
|
|
|
memset(&ec, 0, sizeof(ec));
|
|
|
|
/* We could perform statistical tests here, but the problem is
|
|
* that we only have a few loop counts to do testing. These
|
|
* loop counts may show some slight skew and we produce
|
|
* false positives.
|
|
*
|
|
* Moreover, only old systems show potentially problematic
|
|
* jitter entropy that could potentially be caught here. But
|
|
* the RNG is intended for hardware that is available or widely
|
|
* used, but not old systems that are long out of favor. Thus,
|
|
* no statistical tests.
|
|
*/
|
|
|
|
/*
|
|
* We could add a check for system capabilities such as clock_getres or
|
|
* check for CONFIG_X86_TSC, but it does not make much sense as the
|
|
* following sanity checks verify that we have a high-resolution
|
|
* timer.
|
|
*/
|
|
/*
|
|
* TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
|
|
* definitely too little.
|
|
*/
|
|
#define TESTLOOPCOUNT 300
|
|
#define CLEARCACHE 100
|
|
for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
|
|
uint64_t time = 0;
|
|
uint64_t time2 = 0;
|
|
uint64_t delta = 0;
|
|
unsigned int lowdelta = 0;
|
|
int stuck;
|
|
|
|
/* Invoke core entropy collection logic */
|
|
jent_get_nstime(&time);
|
|
ec.prev_time = time;
|
|
jent_lfsr_time(&ec, time, 0);
|
|
jent_get_nstime(&time2);
|
|
|
|
/* test whether timer works */
|
|
if (!time || !time2)
|
|
return ENOTIME;
|
|
delta = time2 - time;
|
|
/*
|
|
* test whether timer is fine grained enough to provide
|
|
* delta even when called shortly after each other -- this
|
|
* implies that we also have a high resolution timer
|
|
*/
|
|
if (!delta)
|
|
return ECOARSETIME;
|
|
|
|
stuck = jent_stuck(&ec, delta);
|
|
|
|
/*
|
|
* up to here we did not modify any variable that will be
|
|
* evaluated later, but we already performed some work. Thus we
|
|
* already have had an impact on the caches, branch prediction,
|
|
* etc. with the goal to clear it to get the worst case
|
|
* measurements.
|
|
*/
|
|
if (CLEARCACHE > i)
|
|
continue;
|
|
|
|
if (stuck)
|
|
count_stuck++;
|
|
|
|
/* test whether we have an increasing timer */
|
|
if (!(time2 > time))
|
|
time_backwards++;
|
|
|
|
/* use 32 bit value to ensure compilation on 32 bit arches */
|
|
lowdelta = time2 - time;
|
|
if (!(lowdelta % 100))
|
|
count_mod++;
|
|
|
|
/*
|
|
* ensure that we have a varying delta timer which is necessary
|
|
* for the calculation of entropy -- perform this check
|
|
* only after the first loop is executed as we need to prime
|
|
* the old_data value
|
|
*/
|
|
if (delta > old_delta)
|
|
delta_sum += (delta - old_delta);
|
|
else
|
|
delta_sum += (old_delta - delta);
|
|
old_delta = delta;
|
|
}
|
|
|
|
/*
|
|
* we allow up to three times the time running backwards.
|
|
* CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
|
|
* if such an operation just happens to interfere with our test, it
|
|
* should not fail. The value of 3 should cover the NTP case being
|
|
* performed during our test run.
|
|
*/
|
|
if (3 < time_backwards)
|
|
return ENOMONOTONIC;
|
|
|
|
/*
|
|
* Variations of deltas of time must on average be larger
|
|
* than 1 to ensure the entropy estimation
|
|
* implied with 1 is preserved
|
|
*/
|
|
if ((delta_sum) <= 1)
|
|
return EMINVARVAR;
|
|
|
|
/*
|
|
* Ensure that we have variations in the time stamp below 10 for at least
|
|
* 10% of all checks -- on some platforms, the counter increments in
|
|
* multiples of 100, but not always
|
|
*/
|
|
if ((TESTLOOPCOUNT/10 * 9) < count_mod)
|
|
return ECOARSETIME;
|
|
|
|
/*
|
|
* If we have more than 90% stuck results, then this Jitter RNG is
|
|
* likely to not work well.
|
|
*/
|
|
if (JENT_STUCK_INIT_THRES(TESTLOOPCOUNT) < count_stuck)
|
|
return ESTUCK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/***************************************************************************
|
|
* Statistical test logic not compiled for regular operation
|
|
***************************************************************************/
|
|
|
|
#ifdef CONFIG_CRYPTO_CPU_JITTERENTROPY_STAT
|
|
/*
|
|
* Statistical test: return the time duration for the folding operation. If min
|
|
* is set, perform the given number of LFSR ops. Otherwise, allow the
|
|
* loop count shuffling to define the number of LFSR ops.
|
|
*/
|
|
JENT_PRIVATE_STATIC
|
|
uint64_t jent_lfsr_var_stat(struct rand_data *ec, unsigned int min)
|
|
{
|
|
uint64_t time = 0;
|
|
uint64_t time2 = 0;
|
|
|
|
jent_get_nstime(&time);
|
|
jent_memaccess(ec, min);
|
|
jent_lfsr_time(ec, time, min);
|
|
jent_get_nstime(&time2);
|
|
return ((time2 - time));
|
|
}
|
|
#endif /* CONFIG_CRYPTO_CPU_JITTERENTROPY_STAT */
|