551 lines
15 KiB
C
551 lines
15 KiB
C
/*
|
|
|
|
Copyright (c) 2007-2008 Michael G Schwern
|
|
|
|
This software originally derived from Paul Sheer's pivotal_gmtime_r.c.
|
|
|
|
The MIT License:
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
Programmers who have available to them 64-bit time values as a 'long
|
|
long' type can use localtime64_r() and gmtime64_r() which correctly
|
|
converts the time even on 32-bit systems. Whether you have 64-bit time
|
|
values will depend on the operating system.
|
|
|
|
Perl_localtime64_r() is a 64-bit equivalent of localtime_r().
|
|
|
|
Perl_gmtime64_r() is a 64-bit equivalent of gmtime_r().
|
|
|
|
*/
|
|
|
|
#include "EXTERN.h"
|
|
#define PERL_IN_TIME64_C
|
|
#include "perl.h"
|
|
#include "time64.h"
|
|
|
|
static const char days_in_month[2][12] = {
|
|
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
|
|
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
|
|
};
|
|
|
|
static const short julian_days_by_month[2][12] = {
|
|
{0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334},
|
|
{0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335},
|
|
};
|
|
|
|
static const short length_of_year[2] = { 365, 366 };
|
|
|
|
/* Number of days in a 400 year Gregorian cycle */
|
|
static const Year years_in_gregorian_cycle = 400;
|
|
static const int days_in_gregorian_cycle = (365 * 400) + 100 - 4 + 1;
|
|
|
|
/* 28 year calendar cycle between 2010 and 2037 */
|
|
#define SOLAR_CYCLE_LENGTH 28
|
|
static const short safe_years[SOLAR_CYCLE_LENGTH] = {
|
|
2016, 2017, 2018, 2019,
|
|
2020, 2021, 2022, 2023,
|
|
2024, 2025, 2026, 2027,
|
|
2028, 2029, 2030, 2031,
|
|
2032, 2033, 2034, 2035,
|
|
2036, 2037, 2010, 2011,
|
|
2012, 2013, 2014, 2015
|
|
};
|
|
|
|
/* Let's assume people are going to be looking for dates in the future.
|
|
Let's provide some cheats so you can skip ahead.
|
|
This has a 4x speed boost when near 2008.
|
|
*/
|
|
/* Number of days since epoch on Jan 1st, 2008 GMT */
|
|
#define CHEAT_DAYS (1199145600 / 24 / 60 / 60)
|
|
#define CHEAT_YEARS 108
|
|
|
|
#define IS_LEAP(n) ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0)
|
|
#undef WRAP /* some <termios.h> define this */
|
|
#define WRAP(a,b,m) ((a) = ((a) < 0 ) ? ((b)--, (a) + (m)) : (a))
|
|
|
|
#ifdef USE_SYSTEM_LOCALTIME
|
|
# define SHOULD_USE_SYSTEM_LOCALTIME(a) ( \
|
|
(a) <= SYSTEM_LOCALTIME_MAX && \
|
|
(a) >= SYSTEM_LOCALTIME_MIN \
|
|
)
|
|
#else
|
|
# define SHOULD_USE_SYSTEM_LOCALTIME(a) (0)
|
|
#endif
|
|
|
|
#ifdef USE_SYSTEM_GMTIME
|
|
# define SHOULD_USE_SYSTEM_GMTIME(a) ( \
|
|
(a) <= SYSTEM_GMTIME_MAX && \
|
|
(a) >= SYSTEM_GMTIME_MIN \
|
|
)
|
|
#else
|
|
# define SHOULD_USE_SYSTEM_GMTIME(a) (0)
|
|
#endif
|
|
|
|
/* Multi varadic macros are a C99 thing, alas */
|
|
#ifdef TIME_64_DEBUG
|
|
# define TIME64_TRACE(format) (fprintf(stderr, format))
|
|
# define TIME64_TRACE1(format, var1) (fprintf(stderr, format, var1))
|
|
# define TIME64_TRACE2(format, var1, var2) (fprintf(stderr, format, var1, var2))
|
|
# define TIME64_TRACE3(format, var1, var2, var3) (fprintf(stderr, format, var1, var2, var3))
|
|
#else
|
|
# define TIME64_TRACE(format) ((void)0)
|
|
# define TIME64_TRACE1(format, var1) ((void)0)
|
|
# define TIME64_TRACE2(format, var1, var2) ((void)0)
|
|
# define TIME64_TRACE3(format, var1, var2, var3) ((void)0)
|
|
#endif
|
|
|
|
static int S_is_exception_century(Year year)
|
|
{
|
|
const int is_exception = ((year % 100 == 0) && !(year % 400 == 0));
|
|
TIME64_TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no");
|
|
|
|
return(is_exception);
|
|
}
|
|
|
|
|
|
static Time64_T S_timegm64(const struct TM *date) {
|
|
int days = 0;
|
|
Time64_T seconds = 0;
|
|
|
|
if( date->tm_year > 70 ) {
|
|
Year year = 70;
|
|
while( year < date->tm_year ) {
|
|
days += length_of_year[IS_LEAP(year)];
|
|
year++;
|
|
}
|
|
}
|
|
else if ( date->tm_year < 70 ) {
|
|
Year year = 69;
|
|
do {
|
|
days -= length_of_year[IS_LEAP(year)];
|
|
year--;
|
|
} while( year >= date->tm_year );
|
|
}
|
|
|
|
days += julian_days_by_month[IS_LEAP(date->tm_year)][date->tm_mon];
|
|
days += date->tm_mday - 1;
|
|
|
|
/* Avoid overflowing the days integer */
|
|
seconds = days;
|
|
seconds = seconds * 60 * 60 * 24;
|
|
|
|
seconds += date->tm_hour * 60 * 60;
|
|
seconds += date->tm_min * 60;
|
|
seconds += date->tm_sec;
|
|
|
|
return(seconds);
|
|
}
|
|
|
|
|
|
#ifdef DEBUGGING
|
|
static int S_check_tm(const struct TM *tm)
|
|
{
|
|
/* Don't forget leap seconds */
|
|
assert(tm->tm_sec >= 0);
|
|
assert(tm->tm_sec <= 61);
|
|
|
|
assert(tm->tm_min >= 0);
|
|
assert(tm->tm_min <= 59);
|
|
|
|
assert(tm->tm_hour >= 0);
|
|
assert(tm->tm_hour <= 23);
|
|
|
|
assert(tm->tm_mday >= 1);
|
|
assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]);
|
|
|
|
assert(tm->tm_mon >= 0);
|
|
assert(tm->tm_mon <= 11);
|
|
|
|
assert(tm->tm_wday >= 0);
|
|
assert(tm->tm_wday <= 6);
|
|
|
|
assert(tm->tm_yday >= 0);
|
|
assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]);
|
|
|
|
#ifdef HAS_TM_TM_GMTOFF
|
|
assert(tm->tm_gmtoff >= -24 * 60 * 60);
|
|
assert(tm->tm_gmtoff <= 24 * 60 * 60);
|
|
#endif
|
|
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
|
|
/* The exceptional centuries without leap years cause the cycle to
|
|
shift by 16
|
|
*/
|
|
static Year S_cycle_offset(Year year)
|
|
{
|
|
const Year start_year = 2000;
|
|
Year year_diff = year - start_year;
|
|
Year exceptions;
|
|
|
|
if( year > start_year )
|
|
year_diff--;
|
|
|
|
exceptions = year_diff / 100;
|
|
exceptions -= year_diff / 400;
|
|
|
|
TIME64_TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n",
|
|
year, exceptions, year_diff);
|
|
|
|
return exceptions * 16;
|
|
}
|
|
|
|
/* For a given year after 2038, pick the latest possible matching
|
|
year in the 28 year calendar cycle.
|
|
|
|
A matching year...
|
|
1) Starts on the same day of the week.
|
|
2) Has the same leap year status.
|
|
|
|
This is so the calendars match up.
|
|
|
|
Also the previous year must match. When doing Jan 1st you might
|
|
wind up on Dec 31st the previous year when doing a -UTC time zone.
|
|
|
|
Finally, the next year must have the same start day of week. This
|
|
is for Dec 31st with a +UTC time zone.
|
|
It doesn't need the same leap year status since we only care about
|
|
January 1st.
|
|
*/
|
|
static int S_safe_year(Year year)
|
|
{
|
|
int safe_year;
|
|
Year year_cycle = year + S_cycle_offset(year);
|
|
|
|
/* Change non-leap xx00 years to an equivalent */
|
|
if( S_is_exception_century(year) )
|
|
year_cycle += 11;
|
|
|
|
/* Also xx01 years, since the previous year will be wrong */
|
|
if( S_is_exception_century(year - 1) )
|
|
year_cycle += 17;
|
|
|
|
year_cycle %= SOLAR_CYCLE_LENGTH;
|
|
if( year_cycle < 0 )
|
|
year_cycle = SOLAR_CYCLE_LENGTH + year_cycle;
|
|
|
|
assert( year_cycle >= 0 );
|
|
assert( year_cycle < SOLAR_CYCLE_LENGTH );
|
|
safe_year = safe_years[year_cycle];
|
|
|
|
assert(safe_year <= 2037 && safe_year >= 2010);
|
|
|
|
TIME64_TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n",
|
|
year, year_cycle, safe_year);
|
|
|
|
return safe_year;
|
|
}
|
|
|
|
|
|
static void S_copy_little_tm_to_big_TM(const struct tm *src, struct TM *dest) {
|
|
assert(src);
|
|
assert(dest);
|
|
#ifdef USE_TM64
|
|
dest->tm_sec = src->tm_sec;
|
|
dest->tm_min = src->tm_min;
|
|
dest->tm_hour = src->tm_hour;
|
|
dest->tm_mday = src->tm_mday;
|
|
dest->tm_mon = src->tm_mon;
|
|
dest->tm_year = (Year)src->tm_year;
|
|
dest->tm_wday = src->tm_wday;
|
|
dest->tm_yday = src->tm_yday;
|
|
dest->tm_isdst = src->tm_isdst;
|
|
|
|
# ifdef HAS_TM_TM_GMTOFF
|
|
dest->tm_gmtoff = src->tm_gmtoff;
|
|
# endif
|
|
|
|
# ifdef HAS_TM_TM_ZONE
|
|
dest->tm_zone = src->tm_zone;
|
|
# endif
|
|
|
|
#else
|
|
/* They're the same type */
|
|
memcpy(dest, src, sizeof(*dest));
|
|
#endif
|
|
}
|
|
|
|
|
|
#ifndef HAS_LOCALTIME_R
|
|
/* Simulate localtime_r() to the best of our ability */
|
|
static struct tm * S_localtime_r(const time_t *clock, struct tm *result) {
|
|
#ifdef __VMS
|
|
dTHX; /* the following is defined as Perl_my_localtime(aTHX_ ...) */
|
|
#endif
|
|
const struct tm * const static_result = localtime(clock);
|
|
|
|
assert(result != NULL);
|
|
|
|
if( static_result == NULL ) {
|
|
memset(result, 0, sizeof(*result));
|
|
return NULL;
|
|
}
|
|
else {
|
|
memcpy(result, static_result, sizeof(*result));
|
|
return result;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAS_GMTIME_R
|
|
/* Simulate gmtime_r() to the best of our ability */
|
|
static struct tm * S_gmtime_r(const time_t *clock, struct tm *result) {
|
|
#ifdef __VMS
|
|
dTHX; /* the following is defined as Perl_my_localtime(aTHX_ ...) */
|
|
#endif
|
|
const struct tm * const static_result = gmtime(clock);
|
|
|
|
assert(result != NULL);
|
|
|
|
if( static_result == NULL ) {
|
|
memset(result, 0, sizeof(*result));
|
|
return NULL;
|
|
}
|
|
else {
|
|
memcpy(result, static_result, sizeof(*result));
|
|
return result;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
struct TM *Perl_gmtime64_r (const Time64_T *in_time, struct TM *p)
|
|
{
|
|
int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday;
|
|
Time64_T v_tm_tday;
|
|
int leap;
|
|
Time64_T m;
|
|
Time64_T time = *in_time;
|
|
Year year = 70;
|
|
|
|
assert(p != NULL);
|
|
|
|
/* Use the system gmtime() if time_t is small enough */
|
|
if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) {
|
|
time_t safe_time = (time_t)*in_time;
|
|
struct tm safe_date;
|
|
GMTIME_R(&safe_time, &safe_date);
|
|
|
|
S_copy_little_tm_to_big_TM(&safe_date, p);
|
|
assert(S_check_tm(p));
|
|
|
|
return p;
|
|
}
|
|
|
|
#ifdef HAS_TM_TM_GMTOFF
|
|
p->tm_gmtoff = 0;
|
|
#endif
|
|
p->tm_isdst = 0;
|
|
|
|
#ifdef HAS_TM_TM_ZONE
|
|
p->tm_zone = (char *)"UTC";
|
|
#endif
|
|
|
|
v_tm_sec = (int)Perl_fmod(time, 60.0);
|
|
time = time >= 0 ? Perl_floor(time / 60.0) : Perl_ceil(time / 60.0);
|
|
v_tm_min = (int)Perl_fmod(time, 60.0);
|
|
time = time >= 0 ? Perl_floor(time / 60.0) : Perl_ceil(time / 60.0);
|
|
v_tm_hour = (int)Perl_fmod(time, 24.0);
|
|
time = time >= 0 ? Perl_floor(time / 24.0) : Perl_ceil(time / 24.0);
|
|
v_tm_tday = time;
|
|
|
|
WRAP (v_tm_sec, v_tm_min, 60);
|
|
WRAP (v_tm_min, v_tm_hour, 60);
|
|
WRAP (v_tm_hour, v_tm_tday, 24);
|
|
|
|
v_tm_wday = (int)Perl_fmod((v_tm_tday + 4.0), 7.0);
|
|
if (v_tm_wday < 0)
|
|
v_tm_wday += 7;
|
|
m = v_tm_tday;
|
|
|
|
if (m >= CHEAT_DAYS) {
|
|
year = CHEAT_YEARS;
|
|
m -= CHEAT_DAYS;
|
|
}
|
|
|
|
if (m >= 0) {
|
|
/* Gregorian cycles, this is huge optimization for distant times */
|
|
const int cycles = (int)Perl_floor(m / (Time64_T) days_in_gregorian_cycle);
|
|
if( cycles ) {
|
|
m -= (cycles * (Time64_T) days_in_gregorian_cycle);
|
|
year += (cycles * years_in_gregorian_cycle);
|
|
}
|
|
|
|
/* Years */
|
|
leap = IS_LEAP (year);
|
|
while (m >= (Time64_T) length_of_year[leap]) {
|
|
m -= (Time64_T) length_of_year[leap];
|
|
year++;
|
|
leap = IS_LEAP (year);
|
|
}
|
|
|
|
/* Months */
|
|
v_tm_mon = 0;
|
|
while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) {
|
|
m -= (Time64_T) days_in_month[leap][v_tm_mon];
|
|
v_tm_mon++;
|
|
}
|
|
} else {
|
|
int cycles;
|
|
|
|
year--;
|
|
|
|
/* Gregorian cycles */
|
|
cycles = (int)Perl_ceil((m / (Time64_T) days_in_gregorian_cycle) + 1);
|
|
if( cycles ) {
|
|
m -= (cycles * (Time64_T) days_in_gregorian_cycle);
|
|
year += (cycles * years_in_gregorian_cycle);
|
|
}
|
|
|
|
/* Years */
|
|
leap = IS_LEAP (year);
|
|
while (m < (Time64_T) -length_of_year[leap]) {
|
|
m += (Time64_T) length_of_year[leap];
|
|
year--;
|
|
leap = IS_LEAP (year);
|
|
}
|
|
|
|
/* Months */
|
|
v_tm_mon = 11;
|
|
while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) {
|
|
m += (Time64_T) days_in_month[leap][v_tm_mon];
|
|
v_tm_mon--;
|
|
}
|
|
m += (Time64_T) days_in_month[leap][v_tm_mon];
|
|
}
|
|
|
|
p->tm_year = year;
|
|
if( p->tm_year != year ) {
|
|
#ifdef EOVERFLOW
|
|
errno = EOVERFLOW;
|
|
#endif
|
|
return NULL;
|
|
}
|
|
|
|
/* At this point m is less than a year so casting to an int is safe */
|
|
p->tm_mday = (int) m + 1;
|
|
p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m;
|
|
p->tm_sec = v_tm_sec;
|
|
p->tm_min = v_tm_min;
|
|
p->tm_hour = v_tm_hour;
|
|
p->tm_mon = v_tm_mon;
|
|
p->tm_wday = v_tm_wday;
|
|
|
|
assert(S_check_tm(p));
|
|
|
|
return p;
|
|
}
|
|
|
|
|
|
struct TM *Perl_localtime64_r (const Time64_T *time, struct TM *local_tm)
|
|
{
|
|
time_t safe_time;
|
|
struct tm safe_date;
|
|
struct TM gm_tm;
|
|
Year orig_year;
|
|
int month_diff;
|
|
|
|
assert(local_tm != NULL);
|
|
|
|
/* Use the system localtime() if time_t is small enough */
|
|
if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) {
|
|
safe_time = (time_t)*time;
|
|
|
|
TIME64_TRACE1("Using system localtime for %lld\n", *time);
|
|
|
|
LOCALTIME_R(&safe_time, &safe_date);
|
|
|
|
S_copy_little_tm_to_big_TM(&safe_date, local_tm);
|
|
assert(S_check_tm(local_tm));
|
|
|
|
return local_tm;
|
|
}
|
|
|
|
if( Perl_gmtime64_r(time, &gm_tm) == NULL ) {
|
|
TIME64_TRACE1("gmtime64_r returned null for %lld\n", *time);
|
|
return NULL;
|
|
}
|
|
|
|
orig_year = gm_tm.tm_year;
|
|
|
|
if (gm_tm.tm_year > (2037 - 1900) ||
|
|
gm_tm.tm_year < (1970 - 1900)
|
|
)
|
|
{
|
|
TIME64_TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year);
|
|
gm_tm.tm_year = S_safe_year((Year)(gm_tm.tm_year + 1900)) - 1900;
|
|
}
|
|
|
|
safe_time = (time_t)S_timegm64(&gm_tm);
|
|
if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) {
|
|
TIME64_TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time);
|
|
return NULL;
|
|
}
|
|
|
|
S_copy_little_tm_to_big_TM(&safe_date, local_tm);
|
|
|
|
local_tm->tm_year = orig_year;
|
|
if( local_tm->tm_year != orig_year ) {
|
|
TIME64_TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n",
|
|
(Year)local_tm->tm_year, (Year)orig_year);
|
|
|
|
#ifdef EOVERFLOW
|
|
errno = EOVERFLOW;
|
|
#endif
|
|
return NULL;
|
|
}
|
|
|
|
|
|
month_diff = local_tm->tm_mon - gm_tm.tm_mon;
|
|
|
|
/* When localtime is Dec 31st previous year and
|
|
gmtime is Jan 1st next year.
|
|
*/
|
|
if( month_diff == 11 ) {
|
|
local_tm->tm_year--;
|
|
}
|
|
|
|
/* When localtime is Jan 1st, next year and
|
|
gmtime is Dec 31st, previous year.
|
|
*/
|
|
if( month_diff == -11 ) {
|
|
local_tm->tm_year++;
|
|
}
|
|
|
|
/* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st
|
|
in a non-leap xx00. There is one point in the cycle
|
|
we can't account for which the safe xx00 year is a leap
|
|
year. So we need to correct for Dec 31st coming out as
|
|
the 366th day of the year.
|
|
*/
|
|
if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 )
|
|
local_tm->tm_yday--;
|
|
|
|
assert(S_check_tm(local_tm));
|
|
|
|
return local_tm;
|
|
}
|