1081 lines
25 KiB
C
1081 lines
25 KiB
C
/* av.c
|
|
*
|
|
* Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
|
|
* 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
|
|
*
|
|
* You may distribute under the terms of either the GNU General Public
|
|
* License or the Artistic License, as specified in the README file.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* '...for the Entwives desired order, and plenty, and peace (by which they
|
|
* meant that things should remain where they had set them).' --Treebeard
|
|
*
|
|
* [p.476 of _The Lord of the Rings_, III/iv: "Treebeard"]
|
|
*/
|
|
|
|
/*
|
|
=head1 Array Manipulation Functions
|
|
*/
|
|
|
|
#include "EXTERN.h"
|
|
#define PERL_IN_AV_C
|
|
#include "perl.h"
|
|
|
|
void
|
|
Perl_av_reify(pTHX_ AV *av)
|
|
{
|
|
SSize_t key;
|
|
|
|
PERL_ARGS_ASSERT_AV_REIFY;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
if (AvREAL(av))
|
|
return;
|
|
#ifdef DEBUGGING
|
|
if (SvTIED_mg((const SV *)av, PERL_MAGIC_tied))
|
|
Perl_ck_warner_d(aTHX_ packWARN(WARN_DEBUGGING), "av_reify called on tied array");
|
|
#endif
|
|
key = AvMAX(av) + 1;
|
|
while (key > AvFILLp(av) + 1)
|
|
AvARRAY(av)[--key] = NULL;
|
|
while (key) {
|
|
SV * const sv = AvARRAY(av)[--key];
|
|
if (sv != &PL_sv_undef)
|
|
SvREFCNT_inc_simple_void(sv);
|
|
}
|
|
key = AvARRAY(av) - AvALLOC(av);
|
|
while (key)
|
|
AvALLOC(av)[--key] = NULL;
|
|
AvREIFY_off(av);
|
|
AvREAL_on(av);
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_extend
|
|
|
|
Pre-extend an array. The C<key> is the index to which the array should be
|
|
extended.
|
|
|
|
=cut
|
|
*/
|
|
|
|
void
|
|
Perl_av_extend(pTHX_ AV *av, SSize_t key)
|
|
{
|
|
MAGIC *mg;
|
|
|
|
PERL_ARGS_ASSERT_AV_EXTEND;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied);
|
|
if (mg) {
|
|
SV *arg1 = sv_newmortal();
|
|
sv_setiv(arg1, (IV)(key + 1));
|
|
Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(EXTEND), G_DISCARD, 1,
|
|
arg1);
|
|
return;
|
|
}
|
|
av_extend_guts(av,key,&AvMAX(av),&AvALLOC(av),&AvARRAY(av));
|
|
}
|
|
|
|
/* The guts of av_extend. *Not* for general use! */
|
|
void
|
|
Perl_av_extend_guts(pTHX_ AV *av, SSize_t key, SSize_t *maxp, SV ***allocp,
|
|
SV ***arrayp)
|
|
{
|
|
PERL_ARGS_ASSERT_AV_EXTEND_GUTS;
|
|
|
|
if (key < -1) /* -1 is legal */
|
|
Perl_croak(aTHX_
|
|
"panic: av_extend_guts() negative count (%" IVdf ")", (IV)key);
|
|
|
|
if (key > *maxp) {
|
|
SV** ary;
|
|
SSize_t tmp;
|
|
SSize_t newmax;
|
|
|
|
if (av && *allocp != *arrayp) {
|
|
ary = *allocp + AvFILLp(av) + 1;
|
|
tmp = *arrayp - *allocp;
|
|
Move(*arrayp, *allocp, AvFILLp(av)+1, SV*);
|
|
*maxp += tmp;
|
|
*arrayp = *allocp;
|
|
if (AvREAL(av)) {
|
|
while (tmp)
|
|
ary[--tmp] = NULL;
|
|
}
|
|
if (key > *maxp - 10) {
|
|
newmax = key + *maxp;
|
|
goto resize;
|
|
}
|
|
}
|
|
else {
|
|
if (*allocp) {
|
|
|
|
#ifdef Perl_safesysmalloc_size
|
|
/* Whilst it would be quite possible to move this logic around
|
|
(as I did in the SV code), so as to set AvMAX(av) early,
|
|
based on calling Perl_safesysmalloc_size() immediately after
|
|
allocation, I'm not convinced that it is a great idea here.
|
|
In an array we have to loop round setting everything to
|
|
NULL, which means writing to memory, potentially lots
|
|
of it, whereas for the SV buffer case we don't touch the
|
|
"bonus" memory. So there there is no cost in telling the
|
|
world about it, whereas here we have to do work before we can
|
|
tell the world about it, and that work involves writing to
|
|
memory that might never be read. So, I feel, better to keep
|
|
the current lazy system of only writing to it if our caller
|
|
has a need for more space. NWC */
|
|
newmax = Perl_safesysmalloc_size((void*)*allocp) /
|
|
sizeof(const SV *) - 1;
|
|
|
|
if (key <= newmax)
|
|
goto resized;
|
|
#endif
|
|
/* overflow-safe version of newmax = key + *maxp/5 */
|
|
newmax = *maxp / 5;
|
|
newmax = (key > SSize_t_MAX - newmax)
|
|
? SSize_t_MAX : key + newmax;
|
|
resize:
|
|
{
|
|
/* it should really be newmax+1 here, but if newmax
|
|
* happens to equal SSize_t_MAX, then newmax+1 is
|
|
* undefined. This means technically we croak one
|
|
* index lower than we should in theory; in practice
|
|
* its unlikely the system has SSize_t_MAX/sizeof(SV*)
|
|
* bytes to spare! */
|
|
MEM_WRAP_CHECK_s(newmax, SV*, "Out of memory during array extend");
|
|
}
|
|
#ifdef STRESS_REALLOC
|
|
{
|
|
SV ** const old_alloc = *allocp;
|
|
Newx(*allocp, newmax+1, SV*);
|
|
Copy(old_alloc, *allocp, *maxp + 1, SV*);
|
|
Safefree(old_alloc);
|
|
}
|
|
#else
|
|
Renew(*allocp,newmax+1, SV*);
|
|
#endif
|
|
#ifdef Perl_safesysmalloc_size
|
|
resized:
|
|
#endif
|
|
ary = *allocp + *maxp + 1;
|
|
tmp = newmax - *maxp;
|
|
if (av == PL_curstack) { /* Oops, grew stack (via av_store()?) */
|
|
PL_stack_sp = *allocp + (PL_stack_sp - PL_stack_base);
|
|
PL_stack_base = *allocp;
|
|
PL_stack_max = PL_stack_base + newmax;
|
|
}
|
|
}
|
|
else {
|
|
newmax = key < 3 ? 3 : key;
|
|
{
|
|
/* see comment above about newmax+1*/
|
|
MEM_WRAP_CHECK_s(newmax, SV*, "Out of memory during array extend");
|
|
}
|
|
Newx(*allocp, newmax+1, SV*);
|
|
ary = *allocp + 1;
|
|
tmp = newmax;
|
|
*allocp[0] = NULL; /* For the stacks */
|
|
}
|
|
if (av && AvREAL(av)) {
|
|
while (tmp)
|
|
ary[--tmp] = NULL;
|
|
}
|
|
|
|
*arrayp = *allocp;
|
|
*maxp = newmax;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_fetch
|
|
|
|
Returns the SV at the specified index in the array. The C<key> is the
|
|
index. If lval is true, you are guaranteed to get a real SV back (in case
|
|
it wasn't real before), which you can then modify. Check that the return
|
|
value is non-null before dereferencing it to a C<SV*>.
|
|
|
|
See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for
|
|
more information on how to use this function on tied arrays.
|
|
|
|
The rough perl equivalent is C<$myarray[$key]>.
|
|
|
|
=cut
|
|
*/
|
|
|
|
static bool
|
|
S_adjust_index(pTHX_ AV *av, const MAGIC *mg, SSize_t *keyp)
|
|
{
|
|
bool adjust_index = 1;
|
|
if (mg) {
|
|
/* Handle negative array indices 20020222 MJD */
|
|
SV * const ref = SvTIED_obj(MUTABLE_SV(av), mg);
|
|
SvGETMAGIC(ref);
|
|
if (SvROK(ref) && SvOBJECT(SvRV(ref))) {
|
|
SV * const * const negative_indices_glob =
|
|
hv_fetchs(SvSTASH(SvRV(ref)), NEGATIVE_INDICES_VAR, 0);
|
|
|
|
if (negative_indices_glob && isGV(*negative_indices_glob)
|
|
&& SvTRUE(GvSV(*negative_indices_glob)))
|
|
adjust_index = 0;
|
|
}
|
|
}
|
|
|
|
if (adjust_index) {
|
|
*keyp += AvFILL(av) + 1;
|
|
if (*keyp < 0)
|
|
return FALSE;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
SV**
|
|
Perl_av_fetch(pTHX_ AV *av, SSize_t key, I32 lval)
|
|
{
|
|
SSize_t neg;
|
|
SSize_t size;
|
|
|
|
PERL_ARGS_ASSERT_AV_FETCH;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
if (UNLIKELY(SvRMAGICAL(av))) {
|
|
const MAGIC * const tied_magic
|
|
= mg_find((const SV *)av, PERL_MAGIC_tied);
|
|
if (tied_magic || mg_find((const SV *)av, PERL_MAGIC_regdata)) {
|
|
SV *sv;
|
|
if (key < 0) {
|
|
if (!S_adjust_index(aTHX_ av, tied_magic, &key))
|
|
return NULL;
|
|
}
|
|
|
|
sv = sv_newmortal();
|
|
sv_upgrade(sv, SVt_PVLV);
|
|
mg_copy(MUTABLE_SV(av), sv, 0, key);
|
|
if (!tied_magic) /* for regdata, force leavesub to make copies */
|
|
SvTEMP_off(sv);
|
|
LvTYPE(sv) = 't';
|
|
LvTARG(sv) = sv; /* fake (SV**) */
|
|
return &(LvTARG(sv));
|
|
}
|
|
}
|
|
|
|
neg = (key < 0);
|
|
size = AvFILLp(av) + 1;
|
|
key += neg * size; /* handle negative index without using branch */
|
|
|
|
/* the cast from SSize_t to Size_t allows both (key < 0) and (key >= size)
|
|
* to be tested as a single condition */
|
|
if ((Size_t)key >= (Size_t)size) {
|
|
if (UNLIKELY(neg))
|
|
return NULL;
|
|
goto emptyness;
|
|
}
|
|
|
|
if (!AvARRAY(av)[key]) {
|
|
emptyness:
|
|
return lval ? av_store(av,key,newSV(0)) : NULL;
|
|
}
|
|
|
|
return &AvARRAY(av)[key];
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_store
|
|
|
|
Stores an SV in an array. The array index is specified as C<key>. The
|
|
return value will be C<NULL> if the operation failed or if the value did not
|
|
need to be actually stored within the array (as in the case of tied
|
|
arrays). Otherwise, it can be dereferenced
|
|
to get the C<SV*> that was stored
|
|
there (= C<val>)).
|
|
|
|
Note that the caller is responsible for suitably incrementing the reference
|
|
count of C<val> before the call, and decrementing it if the function
|
|
returned C<NULL>.
|
|
|
|
Approximate Perl equivalent: C<splice(@myarray, $key, 1, $val)>.
|
|
|
|
See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for
|
|
more information on how to use this function on tied arrays.
|
|
|
|
=cut
|
|
*/
|
|
|
|
SV**
|
|
Perl_av_store(pTHX_ AV *av, SSize_t key, SV *val)
|
|
{
|
|
SV** ary;
|
|
|
|
PERL_ARGS_ASSERT_AV_STORE;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
/* S_regclass relies on being able to pass in a NULL sv
|
|
(unicode_alternate may be NULL).
|
|
*/
|
|
|
|
if (SvRMAGICAL(av)) {
|
|
const MAGIC * const tied_magic = mg_find((const SV *)av, PERL_MAGIC_tied);
|
|
if (tied_magic) {
|
|
if (key < 0) {
|
|
if (!S_adjust_index(aTHX_ av, tied_magic, &key))
|
|
return 0;
|
|
}
|
|
if (val) {
|
|
mg_copy(MUTABLE_SV(av), val, 0, key);
|
|
}
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
if (key < 0) {
|
|
key += AvFILL(av) + 1;
|
|
if (key < 0)
|
|
return NULL;
|
|
}
|
|
|
|
if (SvREADONLY(av) && key >= AvFILL(av))
|
|
Perl_croak_no_modify();
|
|
|
|
if (!AvREAL(av) && AvREIFY(av))
|
|
av_reify(av);
|
|
if (key > AvMAX(av))
|
|
av_extend(av,key);
|
|
ary = AvARRAY(av);
|
|
if (AvFILLp(av) < key) {
|
|
if (!AvREAL(av)) {
|
|
if (av == PL_curstack && key > PL_stack_sp - PL_stack_base)
|
|
PL_stack_sp = PL_stack_base + key; /* XPUSH in disguise */
|
|
do {
|
|
ary[++AvFILLp(av)] = NULL;
|
|
} while (AvFILLp(av) < key);
|
|
}
|
|
AvFILLp(av) = key;
|
|
}
|
|
else if (AvREAL(av))
|
|
SvREFCNT_dec(ary[key]);
|
|
ary[key] = val;
|
|
if (SvSMAGICAL(av)) {
|
|
const MAGIC *mg = SvMAGIC(av);
|
|
bool set = TRUE;
|
|
for (; mg; mg = mg->mg_moremagic) {
|
|
if (!isUPPER(mg->mg_type)) continue;
|
|
if (val) {
|
|
sv_magic(val, MUTABLE_SV(av), toLOWER(mg->mg_type), 0, key);
|
|
}
|
|
if (PL_delaymagic && mg->mg_type == PERL_MAGIC_isa) {
|
|
PL_delaymagic |= DM_ARRAY_ISA;
|
|
set = FALSE;
|
|
}
|
|
}
|
|
if (set)
|
|
mg_set(MUTABLE_SV(av));
|
|
}
|
|
return &ary[key];
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_make
|
|
|
|
Creates a new AV and populates it with a list of SVs. The SVs are copied
|
|
into the array, so they may be freed after the call to C<av_make>. The new AV
|
|
will have a reference count of 1.
|
|
|
|
Perl equivalent: C<my @new_array = ($scalar1, $scalar2, $scalar3...);>
|
|
|
|
=cut
|
|
*/
|
|
|
|
AV *
|
|
Perl_av_make(pTHX_ SSize_t size, SV **strp)
|
|
{
|
|
AV * const av = MUTABLE_AV(newSV_type(SVt_PVAV));
|
|
/* sv_upgrade does AvREAL_only() */
|
|
PERL_ARGS_ASSERT_AV_MAKE;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
if (size) { /* "defined" was returning undef for size==0 anyway. */
|
|
SV** ary;
|
|
SSize_t i;
|
|
SSize_t orig_ix;
|
|
|
|
Newx(ary,size,SV*);
|
|
AvALLOC(av) = ary;
|
|
AvARRAY(av) = ary;
|
|
AvMAX(av) = size - 1;
|
|
AvFILLp(av) = -1;
|
|
/* avoid av being leaked if croak when calling magic below */
|
|
EXTEND_MORTAL(1);
|
|
PL_tmps_stack[++PL_tmps_ix] = (SV*)av;
|
|
orig_ix = PL_tmps_ix;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
assert (*strp);
|
|
|
|
/* Don't let sv_setsv swipe, since our source array might
|
|
have multiple references to the same temp scalar (e.g.
|
|
from a list slice) */
|
|
|
|
SvGETMAGIC(*strp); /* before newSV, in case it dies */
|
|
AvFILLp(av)++;
|
|
ary[i] = newSV(0);
|
|
sv_setsv_flags(ary[i], *strp,
|
|
SV_DO_COW_SVSETSV|SV_NOSTEAL);
|
|
strp++;
|
|
}
|
|
/* disarm av's leak guard */
|
|
if (LIKELY(PL_tmps_ix == orig_ix))
|
|
PL_tmps_ix--;
|
|
else
|
|
PL_tmps_stack[orig_ix] = &PL_sv_undef;
|
|
}
|
|
return av;
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_clear
|
|
|
|
Frees the all the elements of an array, leaving it empty.
|
|
The XS equivalent of C<@array = ()>. See also L</av_undef>.
|
|
|
|
Note that it is possible that the actions of a destructor called directly
|
|
or indirectly by freeing an element of the array could cause the reference
|
|
count of the array itself to be reduced (e.g. by deleting an entry in the
|
|
symbol table). So it is a possibility that the AV could have been freed
|
|
(or even reallocated) on return from the call unless you hold a reference
|
|
to it.
|
|
|
|
=cut
|
|
*/
|
|
|
|
void
|
|
Perl_av_clear(pTHX_ AV *av)
|
|
{
|
|
SSize_t extra;
|
|
bool real;
|
|
SSize_t orig_ix = 0;
|
|
|
|
PERL_ARGS_ASSERT_AV_CLEAR;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
#ifdef DEBUGGING
|
|
if (SvREFCNT(av) == 0) {
|
|
Perl_ck_warner_d(aTHX_ packWARN(WARN_DEBUGGING), "Attempt to clear deleted array");
|
|
}
|
|
#endif
|
|
|
|
if (SvREADONLY(av))
|
|
Perl_croak_no_modify();
|
|
|
|
/* Give any tie a chance to cleanup first */
|
|
if (SvRMAGICAL(av)) {
|
|
const MAGIC* const mg = SvMAGIC(av);
|
|
if (PL_delaymagic && mg && mg->mg_type == PERL_MAGIC_isa)
|
|
PL_delaymagic |= DM_ARRAY_ISA;
|
|
else
|
|
mg_clear(MUTABLE_SV(av));
|
|
}
|
|
|
|
if (AvMAX(av) < 0)
|
|
return;
|
|
|
|
if ((real = cBOOL(AvREAL(av)))) {
|
|
SV** const ary = AvARRAY(av);
|
|
SSize_t index = AvFILLp(av) + 1;
|
|
|
|
/* avoid av being freed when calling destructors below */
|
|
EXTEND_MORTAL(1);
|
|
PL_tmps_stack[++PL_tmps_ix] = SvREFCNT_inc_simple_NN(av);
|
|
orig_ix = PL_tmps_ix;
|
|
|
|
while (index) {
|
|
SV * const sv = ary[--index];
|
|
/* undef the slot before freeing the value, because a
|
|
* destructor might try to modify this array */
|
|
ary[index] = NULL;
|
|
SvREFCNT_dec(sv);
|
|
}
|
|
}
|
|
extra = AvARRAY(av) - AvALLOC(av);
|
|
if (extra) {
|
|
AvMAX(av) += extra;
|
|
AvARRAY(av) = AvALLOC(av);
|
|
}
|
|
AvFILLp(av) = -1;
|
|
if (real) {
|
|
/* disarm av's premature free guard */
|
|
if (LIKELY(PL_tmps_ix == orig_ix))
|
|
PL_tmps_ix--;
|
|
else
|
|
PL_tmps_stack[orig_ix] = &PL_sv_undef;
|
|
SvREFCNT_dec_NN(av);
|
|
}
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_undef
|
|
|
|
Undefines the array. The XS equivalent of C<undef(@array)>.
|
|
|
|
As well as freeing all the elements of the array (like C<av_clear()>), this
|
|
also frees the memory used by the av to store its list of scalars.
|
|
|
|
See L</av_clear> for a note about the array possibly being invalid on
|
|
return.
|
|
|
|
=cut
|
|
*/
|
|
|
|
void
|
|
Perl_av_undef(pTHX_ AV *av)
|
|
{
|
|
bool real;
|
|
SSize_t orig_ix = PL_tmps_ix; /* silence bogus warning about possible unitialized use */
|
|
|
|
PERL_ARGS_ASSERT_AV_UNDEF;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
/* Give any tie a chance to cleanup first */
|
|
if (SvTIED_mg((const SV *)av, PERL_MAGIC_tied))
|
|
av_fill(av, -1);
|
|
|
|
real = cBOOL(AvREAL(av));
|
|
if (real) {
|
|
SSize_t key = AvFILLp(av) + 1;
|
|
|
|
/* avoid av being freed when calling destructors below */
|
|
EXTEND_MORTAL(1);
|
|
PL_tmps_stack[++PL_tmps_ix] = SvREFCNT_inc_simple_NN(av);
|
|
orig_ix = PL_tmps_ix;
|
|
|
|
while (key)
|
|
SvREFCNT_dec(AvARRAY(av)[--key]);
|
|
}
|
|
|
|
Safefree(AvALLOC(av));
|
|
AvALLOC(av) = NULL;
|
|
AvARRAY(av) = NULL;
|
|
AvMAX(av) = AvFILLp(av) = -1;
|
|
|
|
if(SvRMAGICAL(av)) mg_clear(MUTABLE_SV(av));
|
|
if (real) {
|
|
/* disarm av's premature free guard */
|
|
if (LIKELY(PL_tmps_ix == orig_ix))
|
|
PL_tmps_ix--;
|
|
else
|
|
PL_tmps_stack[orig_ix] = &PL_sv_undef;
|
|
SvREFCNT_dec_NN(av);
|
|
}
|
|
}
|
|
|
|
/*
|
|
|
|
=for apidoc av_create_and_push
|
|
|
|
Push an SV onto the end of the array, creating the array if necessary.
|
|
A small internal helper function to remove a commonly duplicated idiom.
|
|
|
|
=cut
|
|
*/
|
|
|
|
void
|
|
Perl_av_create_and_push(pTHX_ AV **const avp, SV *const val)
|
|
{
|
|
PERL_ARGS_ASSERT_AV_CREATE_AND_PUSH;
|
|
|
|
if (!*avp)
|
|
*avp = newAV();
|
|
av_push(*avp, val);
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_push
|
|
|
|
Pushes an SV (transferring control of one reference count) onto the end of the
|
|
array. The array will grow automatically to accommodate the addition.
|
|
|
|
Perl equivalent: C<push @myarray, $val;>.
|
|
|
|
=cut
|
|
*/
|
|
|
|
void
|
|
Perl_av_push(pTHX_ AV *av, SV *val)
|
|
{
|
|
MAGIC *mg;
|
|
|
|
PERL_ARGS_ASSERT_AV_PUSH;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
if (SvREADONLY(av))
|
|
Perl_croak_no_modify();
|
|
|
|
if ((mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied))) {
|
|
Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(PUSH), G_DISCARD, 1,
|
|
val);
|
|
return;
|
|
}
|
|
av_store(av,AvFILLp(av)+1,val);
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_pop
|
|
|
|
Removes one SV from the end of the array, reducing its size by one and
|
|
returning the SV (transferring control of one reference count) to the
|
|
caller. Returns C<&PL_sv_undef> if the array is empty.
|
|
|
|
Perl equivalent: C<pop(@myarray);>
|
|
|
|
=cut
|
|
*/
|
|
|
|
SV *
|
|
Perl_av_pop(pTHX_ AV *av)
|
|
{
|
|
SV *retval;
|
|
MAGIC* mg;
|
|
|
|
PERL_ARGS_ASSERT_AV_POP;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
if (SvREADONLY(av))
|
|
Perl_croak_no_modify();
|
|
if ((mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied))) {
|
|
retval = Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(POP), 0, 0);
|
|
if (retval)
|
|
retval = newSVsv(retval);
|
|
return retval;
|
|
}
|
|
if (AvFILL(av) < 0)
|
|
return &PL_sv_undef;
|
|
retval = AvARRAY(av)[AvFILLp(av)];
|
|
AvARRAY(av)[AvFILLp(av)--] = NULL;
|
|
if (SvSMAGICAL(av))
|
|
mg_set(MUTABLE_SV(av));
|
|
return retval ? retval : &PL_sv_undef;
|
|
}
|
|
|
|
/*
|
|
|
|
=for apidoc av_create_and_unshift_one
|
|
|
|
Unshifts an SV onto the beginning of the array, creating the array if
|
|
necessary.
|
|
A small internal helper function to remove a commonly duplicated idiom.
|
|
|
|
=cut
|
|
*/
|
|
|
|
SV **
|
|
Perl_av_create_and_unshift_one(pTHX_ AV **const avp, SV *const val)
|
|
{
|
|
PERL_ARGS_ASSERT_AV_CREATE_AND_UNSHIFT_ONE;
|
|
|
|
if (!*avp)
|
|
*avp = newAV();
|
|
av_unshift(*avp, 1);
|
|
return av_store(*avp, 0, val);
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_unshift
|
|
|
|
Unshift the given number of C<undef> values onto the beginning of the
|
|
array. The array will grow automatically to accommodate the addition.
|
|
|
|
Perl equivalent: S<C<unshift @myarray, ((undef) x $num);>>
|
|
|
|
=cut
|
|
*/
|
|
|
|
void
|
|
Perl_av_unshift(pTHX_ AV *av, SSize_t num)
|
|
{
|
|
SSize_t i;
|
|
MAGIC* mg;
|
|
|
|
PERL_ARGS_ASSERT_AV_UNSHIFT;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
if (SvREADONLY(av))
|
|
Perl_croak_no_modify();
|
|
|
|
if ((mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied))) {
|
|
Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(UNSHIFT),
|
|
G_DISCARD | G_UNDEF_FILL, num);
|
|
return;
|
|
}
|
|
|
|
if (num <= 0)
|
|
return;
|
|
if (!AvREAL(av) && AvREIFY(av))
|
|
av_reify(av);
|
|
i = AvARRAY(av) - AvALLOC(av);
|
|
if (i) {
|
|
if (i > num)
|
|
i = num;
|
|
num -= i;
|
|
|
|
AvMAX(av) += i;
|
|
AvFILLp(av) += i;
|
|
AvARRAY(av) = AvARRAY(av) - i;
|
|
}
|
|
if (num) {
|
|
SV **ary;
|
|
const SSize_t i = AvFILLp(av);
|
|
/* Create extra elements */
|
|
const SSize_t slide = i > 0 ? i : 0;
|
|
num += slide;
|
|
av_extend(av, i + num);
|
|
AvFILLp(av) += num;
|
|
ary = AvARRAY(av);
|
|
Move(ary, ary + num, i + 1, SV*);
|
|
do {
|
|
ary[--num] = NULL;
|
|
} while (num);
|
|
/* Make extra elements into a buffer */
|
|
AvMAX(av) -= slide;
|
|
AvFILLp(av) -= slide;
|
|
AvARRAY(av) = AvARRAY(av) + slide;
|
|
}
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_shift
|
|
|
|
Removes one SV from the start of the array, reducing its size by one and
|
|
returning the SV (transferring control of one reference count) to the
|
|
caller. Returns C<&PL_sv_undef> if the array is empty.
|
|
|
|
Perl equivalent: C<shift(@myarray);>
|
|
|
|
=cut
|
|
*/
|
|
|
|
SV *
|
|
Perl_av_shift(pTHX_ AV *av)
|
|
{
|
|
SV *retval;
|
|
MAGIC* mg;
|
|
|
|
PERL_ARGS_ASSERT_AV_SHIFT;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
if (SvREADONLY(av))
|
|
Perl_croak_no_modify();
|
|
if ((mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied))) {
|
|
retval = Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(SHIFT), 0, 0);
|
|
if (retval)
|
|
retval = newSVsv(retval);
|
|
return retval;
|
|
}
|
|
if (AvFILL(av) < 0)
|
|
return &PL_sv_undef;
|
|
retval = *AvARRAY(av);
|
|
if (AvREAL(av))
|
|
*AvARRAY(av) = NULL;
|
|
AvARRAY(av) = AvARRAY(av) + 1;
|
|
AvMAX(av)--;
|
|
AvFILLp(av)--;
|
|
if (SvSMAGICAL(av))
|
|
mg_set(MUTABLE_SV(av));
|
|
return retval ? retval : &PL_sv_undef;
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_top_index
|
|
|
|
Returns the highest index in the array. The number of elements in the
|
|
array is S<C<av_top_index(av) + 1>>. Returns -1 if the array is empty.
|
|
|
|
The Perl equivalent for this is C<$#myarray>.
|
|
|
|
(A slightly shorter form is C<av_tindex>.)
|
|
|
|
=for apidoc av_len
|
|
|
|
Same as L</av_top_index>. Note that, unlike what the name implies, it returns
|
|
the highest index in the array, so to get the size of the array you need to use
|
|
S<C<av_len(av) + 1>>. This is unlike L</sv_len>, which returns what you would
|
|
expect.
|
|
|
|
=cut
|
|
*/
|
|
|
|
SSize_t
|
|
Perl_av_len(pTHX_ AV *av)
|
|
{
|
|
PERL_ARGS_ASSERT_AV_LEN;
|
|
|
|
return av_top_index(av);
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_fill
|
|
|
|
Set the highest index in the array to the given number, equivalent to
|
|
Perl's S<C<$#array = $fill;>>.
|
|
|
|
The number of elements in the array will be S<C<fill + 1>> after
|
|
C<av_fill()> returns. If the array was previously shorter, then the
|
|
additional elements appended are set to NULL. If the array
|
|
was longer, then the excess elements are freed. S<C<av_fill(av, -1)>> is
|
|
the same as C<av_clear(av)>.
|
|
|
|
=cut
|
|
*/
|
|
void
|
|
Perl_av_fill(pTHX_ AV *av, SSize_t fill)
|
|
{
|
|
MAGIC *mg;
|
|
|
|
PERL_ARGS_ASSERT_AV_FILL;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
if (fill < 0)
|
|
fill = -1;
|
|
if ((mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied))) {
|
|
SV *arg1 = sv_newmortal();
|
|
sv_setiv(arg1, (IV)(fill + 1));
|
|
Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(STORESIZE), G_DISCARD,
|
|
1, arg1);
|
|
return;
|
|
}
|
|
if (fill <= AvMAX(av)) {
|
|
SSize_t key = AvFILLp(av);
|
|
SV** const ary = AvARRAY(av);
|
|
|
|
if (AvREAL(av)) {
|
|
while (key > fill) {
|
|
SvREFCNT_dec(ary[key]);
|
|
ary[key--] = NULL;
|
|
}
|
|
}
|
|
else {
|
|
while (key < fill)
|
|
ary[++key] = NULL;
|
|
}
|
|
|
|
AvFILLp(av) = fill;
|
|
if (SvSMAGICAL(av))
|
|
mg_set(MUTABLE_SV(av));
|
|
}
|
|
else
|
|
(void)av_store(av,fill,NULL);
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_delete
|
|
|
|
Deletes the element indexed by C<key> from the array, makes the element
|
|
mortal, and returns it. If C<flags> equals C<G_DISCARD>, the element is
|
|
freed and NULL is returned. NULL is also returned if C<key> is out of
|
|
range.
|
|
|
|
Perl equivalent: S<C<splice(@myarray, $key, 1, undef)>> (with the
|
|
C<splice> in void context if C<G_DISCARD> is present).
|
|
|
|
=cut
|
|
*/
|
|
SV *
|
|
Perl_av_delete(pTHX_ AV *av, SSize_t key, I32 flags)
|
|
{
|
|
SV *sv;
|
|
|
|
PERL_ARGS_ASSERT_AV_DELETE;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
if (SvREADONLY(av))
|
|
Perl_croak_no_modify();
|
|
|
|
if (SvRMAGICAL(av)) {
|
|
const MAGIC * const tied_magic
|
|
= mg_find((const SV *)av, PERL_MAGIC_tied);
|
|
if ((tied_magic || mg_find((const SV *)av, PERL_MAGIC_regdata))) {
|
|
SV **svp;
|
|
if (key < 0) {
|
|
if (!S_adjust_index(aTHX_ av, tied_magic, &key))
|
|
return NULL;
|
|
}
|
|
svp = av_fetch(av, key, TRUE);
|
|
if (svp) {
|
|
sv = *svp;
|
|
mg_clear(sv);
|
|
if (mg_find(sv, PERL_MAGIC_tiedelem)) {
|
|
sv_unmagic(sv, PERL_MAGIC_tiedelem); /* No longer an element */
|
|
return sv;
|
|
}
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (key < 0) {
|
|
key += AvFILL(av) + 1;
|
|
if (key < 0)
|
|
return NULL;
|
|
}
|
|
|
|
if (key > AvFILLp(av))
|
|
return NULL;
|
|
else {
|
|
if (!AvREAL(av) && AvREIFY(av))
|
|
av_reify(av);
|
|
sv = AvARRAY(av)[key];
|
|
AvARRAY(av)[key] = NULL;
|
|
if (key == AvFILLp(av)) {
|
|
do {
|
|
AvFILLp(av)--;
|
|
} while (--key >= 0 && !AvARRAY(av)[key]);
|
|
}
|
|
if (SvSMAGICAL(av))
|
|
mg_set(MUTABLE_SV(av));
|
|
}
|
|
if(sv != NULL) {
|
|
if (flags & G_DISCARD) {
|
|
SvREFCNT_dec_NN(sv);
|
|
return NULL;
|
|
}
|
|
else if (AvREAL(av))
|
|
sv_2mortal(sv);
|
|
}
|
|
return sv;
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_exists
|
|
|
|
Returns true if the element indexed by C<key> has been initialized.
|
|
|
|
This relies on the fact that uninitialized array elements are set to
|
|
C<NULL>.
|
|
|
|
Perl equivalent: C<exists($myarray[$key])>.
|
|
|
|
=cut
|
|
*/
|
|
bool
|
|
Perl_av_exists(pTHX_ AV *av, SSize_t key)
|
|
{
|
|
PERL_ARGS_ASSERT_AV_EXISTS;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
if (SvRMAGICAL(av)) {
|
|
const MAGIC * const tied_magic
|
|
= mg_find((const SV *)av, PERL_MAGIC_tied);
|
|
const MAGIC * const regdata_magic
|
|
= mg_find((const SV *)av, PERL_MAGIC_regdata);
|
|
if (tied_magic || regdata_magic) {
|
|
MAGIC *mg;
|
|
/* Handle negative array indices 20020222 MJD */
|
|
if (key < 0) {
|
|
if (!S_adjust_index(aTHX_ av, tied_magic, &key))
|
|
return FALSE;
|
|
}
|
|
|
|
if(key >= 0 && regdata_magic) {
|
|
if (key <= AvFILL(av))
|
|
return TRUE;
|
|
else
|
|
return FALSE;
|
|
}
|
|
{
|
|
SV * const sv = sv_newmortal();
|
|
mg_copy(MUTABLE_SV(av), sv, 0, key);
|
|
mg = mg_find(sv, PERL_MAGIC_tiedelem);
|
|
if (mg) {
|
|
magic_existspack(sv, mg);
|
|
{
|
|
I32 retbool = SvTRUE_nomg_NN(sv);
|
|
return cBOOL(retbool);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (key < 0) {
|
|
key += AvFILL(av) + 1;
|
|
if (key < 0)
|
|
return FALSE;
|
|
}
|
|
|
|
if (key <= AvFILLp(av) && AvARRAY(av)[key])
|
|
{
|
|
if (SvSMAGICAL(AvARRAY(av)[key])
|
|
&& mg_find(AvARRAY(av)[key], PERL_MAGIC_nonelem))
|
|
return FALSE;
|
|
return TRUE;
|
|
}
|
|
else
|
|
return FALSE;
|
|
}
|
|
|
|
static MAGIC *
|
|
S_get_aux_mg(pTHX_ AV *av) {
|
|
MAGIC *mg;
|
|
|
|
PERL_ARGS_ASSERT_GET_AUX_MG;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
mg = mg_find((const SV *)av, PERL_MAGIC_arylen_p);
|
|
|
|
if (!mg) {
|
|
mg = sv_magicext(MUTABLE_SV(av), 0, PERL_MAGIC_arylen_p,
|
|
&PL_vtbl_arylen_p, 0, 0);
|
|
assert(mg);
|
|
/* sv_magicext won't set this for us because we pass in a NULL obj */
|
|
mg->mg_flags |= MGf_REFCOUNTED;
|
|
}
|
|
return mg;
|
|
}
|
|
|
|
SV **
|
|
Perl_av_arylen_p(pTHX_ AV *av) {
|
|
MAGIC *const mg = get_aux_mg(av);
|
|
|
|
PERL_ARGS_ASSERT_AV_ARYLEN_P;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
return &(mg->mg_obj);
|
|
}
|
|
|
|
IV *
|
|
Perl_av_iter_p(pTHX_ AV *av) {
|
|
MAGIC *const mg = get_aux_mg(av);
|
|
|
|
PERL_ARGS_ASSERT_AV_ITER_P;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
if (sizeof(IV) == sizeof(SSize_t)) {
|
|
return (IV *)&(mg->mg_len);
|
|
} else {
|
|
if (!mg->mg_ptr) {
|
|
IV *temp;
|
|
mg->mg_len = IVSIZE;
|
|
Newxz(temp, 1, IV);
|
|
mg->mg_ptr = (char *) temp;
|
|
}
|
|
return (IV *)mg->mg_ptr;
|
|
}
|
|
}
|
|
|
|
SV *
|
|
Perl_av_nonelem(pTHX_ AV *av, SSize_t ix) {
|
|
SV * const sv = newSV(0);
|
|
PERL_ARGS_ASSERT_AV_NONELEM;
|
|
if (!av_store(av,ix,sv))
|
|
return sv_2mortal(sv); /* has tie magic */
|
|
sv_magic(sv, NULL, PERL_MAGIC_nonelem, NULL, 0);
|
|
return sv;
|
|
}
|
|
|
|
/*
|
|
* ex: set ts=8 sts=4 sw=4 et:
|
|
*/
|