1853 lines
56 KiB
C
1853 lines
56 KiB
C
/* numeric.c
|
|
*
|
|
* Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
|
|
* 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
|
|
*
|
|
* You may distribute under the terms of either the GNU General Public
|
|
* License or the Artistic License, as specified in the README file.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* "That only makes eleven (plus one mislaid) and not fourteen,
|
|
* unless wizards count differently to other people." --Beorn
|
|
*
|
|
* [p.115 of _The Hobbit_: "Queer Lodgings"]
|
|
*/
|
|
|
|
/*
|
|
=head1 Numeric functions
|
|
|
|
=cut
|
|
|
|
This file contains all the stuff needed by perl for manipulating numeric
|
|
values, including such things as replacements for the OS's atof() function
|
|
|
|
*/
|
|
|
|
#include "EXTERN.h"
|
|
#define PERL_IN_NUMERIC_C
|
|
#include "perl.h"
|
|
|
|
#ifdef Perl_strtod
|
|
|
|
PERL_STATIC_INLINE NV
|
|
S_strtod(pTHX_ const char * const s, char ** e)
|
|
{
|
|
DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
|
|
NV result;
|
|
|
|
STORE_LC_NUMERIC_SET_TO_NEEDED();
|
|
|
|
# ifdef USE_QUADMATH
|
|
|
|
result = strtoflt128(s, e);
|
|
|
|
# elif defined(HAS_STRTOLD) && defined(HAS_LONG_DOUBLE) \
|
|
&& defined(USE_LONG_DOUBLE)
|
|
# if defined(__MINGW64_VERSION_MAJOR)
|
|
/***********************************************
|
|
We are unable to use strtold because of
|
|
https://sourceforge.net/p/mingw-w64/bugs/711/
|
|
&
|
|
https://sourceforge.net/p/mingw-w64/bugs/725/
|
|
|
|
but __mingw_strtold is fine.
|
|
***********************************************/
|
|
|
|
result = __mingw_strtold(s, e);
|
|
|
|
# else
|
|
|
|
result = strtold(s, e);
|
|
|
|
# endif
|
|
# elif defined(HAS_STRTOD)
|
|
|
|
result = strtod(s, e);
|
|
|
|
# endif
|
|
|
|
RESTORE_LC_NUMERIC();
|
|
|
|
return result;
|
|
}
|
|
|
|
#endif /* #ifdef Perl_strtod */
|
|
|
|
/*
|
|
|
|
=for apidoc my_strtod
|
|
|
|
This function is equivalent to the libc strtod() function, and is available
|
|
even on platforms that lack plain strtod(). Its return value is the best
|
|
available precision depending on platform capabilities and F<Configure>
|
|
options.
|
|
|
|
It properly handles the locale radix character, meaning it expects a dot except
|
|
when called from within the scope of S<C<use locale>>, in which case the radix
|
|
character should be that specified by the current locale.
|
|
|
|
The synonym Strod() may be used instead.
|
|
|
|
=cut
|
|
|
|
*/
|
|
|
|
NV
|
|
my_strtod(const char * const s, char **e)
|
|
{
|
|
dTHX;
|
|
|
|
PERL_ARGS_ASSERT_MY_STRTOD;
|
|
|
|
#ifdef Perl_strtod
|
|
|
|
return S_strtod(aTHX_ s, e);
|
|
|
|
#else
|
|
|
|
{
|
|
NV result;
|
|
char ** end_ptr = NULL;
|
|
|
|
*end_ptr = my_atof2(s, &result);
|
|
if (e) {
|
|
*e = *end_ptr;
|
|
}
|
|
|
|
if (! *end_ptr) {
|
|
result = 0.0;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
U32
|
|
Perl_cast_ulong(NV f)
|
|
{
|
|
if (f < 0.0)
|
|
return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f;
|
|
if (f < U32_MAX_P1) {
|
|
#if CASTFLAGS & 2
|
|
if (f < U32_MAX_P1_HALF)
|
|
return (U32) f;
|
|
f -= U32_MAX_P1_HALF;
|
|
return ((U32) f) | (1 + (U32_MAX >> 1));
|
|
#else
|
|
return (U32) f;
|
|
#endif
|
|
}
|
|
return f > 0 ? U32_MAX : 0 /* NaN */;
|
|
}
|
|
|
|
I32
|
|
Perl_cast_i32(NV f)
|
|
{
|
|
if (f < I32_MAX_P1)
|
|
return f < I32_MIN ? I32_MIN : (I32) f;
|
|
if (f < U32_MAX_P1) {
|
|
#if CASTFLAGS & 2
|
|
if (f < U32_MAX_P1_HALF)
|
|
return (I32)(U32) f;
|
|
f -= U32_MAX_P1_HALF;
|
|
return (I32)(((U32) f) | (1 + (U32_MAX >> 1)));
|
|
#else
|
|
return (I32)(U32) f;
|
|
#endif
|
|
}
|
|
return f > 0 ? (I32)U32_MAX : 0 /* NaN */;
|
|
}
|
|
|
|
IV
|
|
Perl_cast_iv(NV f)
|
|
{
|
|
if (f < IV_MAX_P1)
|
|
return f < IV_MIN ? IV_MIN : (IV) f;
|
|
if (f < UV_MAX_P1) {
|
|
#if CASTFLAGS & 2
|
|
/* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */
|
|
if (f < UV_MAX_P1_HALF)
|
|
return (IV)(UV) f;
|
|
f -= UV_MAX_P1_HALF;
|
|
return (IV)(((UV) f) | (1 + (UV_MAX >> 1)));
|
|
#else
|
|
return (IV)(UV) f;
|
|
#endif
|
|
}
|
|
return f > 0 ? (IV)UV_MAX : 0 /* NaN */;
|
|
}
|
|
|
|
UV
|
|
Perl_cast_uv(NV f)
|
|
{
|
|
if (f < 0.0)
|
|
return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f;
|
|
if (f < UV_MAX_P1) {
|
|
#if CASTFLAGS & 2
|
|
if (f < UV_MAX_P1_HALF)
|
|
return (UV) f;
|
|
f -= UV_MAX_P1_HALF;
|
|
return ((UV) f) | (1 + (UV_MAX >> 1));
|
|
#else
|
|
return (UV) f;
|
|
#endif
|
|
}
|
|
return f > 0 ? UV_MAX : 0 /* NaN */;
|
|
}
|
|
|
|
/*
|
|
=for apidoc grok_bin
|
|
|
|
converts a string representing a binary number to numeric form.
|
|
|
|
On entry C<start> and C<*len> give the string to scan, C<*flags> gives
|
|
conversion flags, and C<result> should be C<NULL> or a pointer to an NV.
|
|
The scan stops at the end of the string, or the first invalid character.
|
|
Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in C<*flags>, encountering an
|
|
invalid character will also trigger a warning.
|
|
On return C<*len> is set to the length of the scanned string,
|
|
and C<*flags> gives output flags.
|
|
|
|
If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
|
|
and nothing is written to C<*result>. If the value is > C<UV_MAX>, C<grok_bin>
|
|
returns C<UV_MAX>, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
|
|
and writes the value to C<*result> (or the value is discarded if C<result>
|
|
is NULL).
|
|
|
|
The binary number may optionally be prefixed with C<"0b"> or C<"b"> unless
|
|
C<PERL_SCAN_DISALLOW_PREFIX> is set in C<*flags> on entry. If
|
|
C<PERL_SCAN_ALLOW_UNDERSCORES> is set in C<*flags> then the binary
|
|
number may use C<"_"> characters to separate digits.
|
|
|
|
=cut
|
|
|
|
Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE
|
|
which suppresses any message for non-portable numbers that are still valid
|
|
on this platform.
|
|
*/
|
|
|
|
UV
|
|
Perl_grok_bin(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
|
|
{
|
|
const char *s = start;
|
|
STRLEN len = *len_p;
|
|
UV value = 0;
|
|
NV value_nv = 0;
|
|
|
|
const UV max_div_2 = UV_MAX / 2;
|
|
const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
|
|
bool overflowed = FALSE;
|
|
char bit;
|
|
|
|
PERL_ARGS_ASSERT_GROK_BIN;
|
|
|
|
if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
|
|
/* strip off leading b or 0b.
|
|
for compatibility silently suffer "b" and "0b" as valid binary
|
|
numbers. */
|
|
if (len >= 1) {
|
|
if (isALPHA_FOLD_EQ(s[0], 'b')) {
|
|
s++;
|
|
len--;
|
|
}
|
|
else if (len >= 2 && s[0] == '0' && (isALPHA_FOLD_EQ(s[1], 'b'))) {
|
|
s+=2;
|
|
len-=2;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (; len-- && (bit = *s); s++) {
|
|
if (bit == '0' || bit == '1') {
|
|
/* Write it in this wonky order with a goto to attempt to get the
|
|
compiler to make the common case integer-only loop pretty tight.
|
|
With gcc seems to be much straighter code than old scan_bin. */
|
|
redo:
|
|
if (!overflowed) {
|
|
if (value <= max_div_2) {
|
|
value = (value << 1) | (bit - '0');
|
|
continue;
|
|
}
|
|
/* Bah. We're just overflowed. */
|
|
/* diag_listed_as: Integer overflow in %s number */
|
|
Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
|
|
"Integer overflow in binary number");
|
|
overflowed = TRUE;
|
|
value_nv = (NV) value;
|
|
}
|
|
value_nv *= 2.0;
|
|
/* If an NV has not enough bits in its mantissa to
|
|
* represent a UV this summing of small low-order numbers
|
|
* is a waste of time (because the NV cannot preserve
|
|
* the low-order bits anyway): we could just remember when
|
|
* did we overflow and in the end just multiply value_nv by the
|
|
* right amount. */
|
|
value_nv += (NV)(bit - '0');
|
|
continue;
|
|
}
|
|
if (bit == '_' && len && allow_underscores && (bit = s[1])
|
|
&& (bit == '0' || bit == '1'))
|
|
{
|
|
--len;
|
|
++s;
|
|
goto redo;
|
|
}
|
|
if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
|
|
Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
|
|
"Illegal binary digit '%c' ignored", *s);
|
|
break;
|
|
}
|
|
|
|
if ( ( overflowed && value_nv > 4294967295.0)
|
|
#if UVSIZE > 4
|
|
|| (!overflowed && value > 0xffffffff
|
|
&& ! (*flags & PERL_SCAN_SILENT_NON_PORTABLE))
|
|
#endif
|
|
) {
|
|
Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
|
|
"Binary number > 0b11111111111111111111111111111111 non-portable");
|
|
}
|
|
*len_p = s - start;
|
|
if (!overflowed) {
|
|
*flags = 0;
|
|
return value;
|
|
}
|
|
*flags = PERL_SCAN_GREATER_THAN_UV_MAX;
|
|
if (result)
|
|
*result = value_nv;
|
|
return UV_MAX;
|
|
}
|
|
|
|
/*
|
|
=for apidoc grok_hex
|
|
|
|
converts a string representing a hex number to numeric form.
|
|
|
|
On entry C<start> and C<*len_p> give the string to scan, C<*flags> gives
|
|
conversion flags, and C<result> should be C<NULL> or a pointer to an NV.
|
|
The scan stops at the end of the string, or the first invalid character.
|
|
Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in C<*flags>, encountering an
|
|
invalid character will also trigger a warning.
|
|
On return C<*len> is set to the length of the scanned string,
|
|
and C<*flags> gives output flags.
|
|
|
|
If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
|
|
and nothing is written to C<*result>. If the value is > C<UV_MAX>, C<grok_hex>
|
|
returns C<UV_MAX>, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
|
|
and writes the value to C<*result> (or the value is discarded if C<result>
|
|
is C<NULL>).
|
|
|
|
The hex number may optionally be prefixed with C<"0x"> or C<"x"> unless
|
|
C<PERL_SCAN_DISALLOW_PREFIX> is set in C<*flags> on entry. If
|
|
C<PERL_SCAN_ALLOW_UNDERSCORES> is set in C<*flags> then the hex
|
|
number may use C<"_"> characters to separate digits.
|
|
|
|
=cut
|
|
|
|
Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE
|
|
which suppresses any message for non-portable numbers, but which are valid
|
|
on this platform.
|
|
*/
|
|
|
|
UV
|
|
Perl_grok_hex(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
|
|
{
|
|
const char *s = start;
|
|
STRLEN len = *len_p;
|
|
UV value = 0;
|
|
NV value_nv = 0;
|
|
const UV max_div_16 = UV_MAX / 16;
|
|
const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
|
|
bool overflowed = FALSE;
|
|
|
|
PERL_ARGS_ASSERT_GROK_HEX;
|
|
|
|
if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
|
|
/* strip off leading x or 0x.
|
|
for compatibility silently suffer "x" and "0x" as valid hex numbers.
|
|
*/
|
|
if (len >= 1) {
|
|
if (isALPHA_FOLD_EQ(s[0], 'x')) {
|
|
s++;
|
|
len--;
|
|
}
|
|
else if (len >= 2 && s[0] == '0' && (isALPHA_FOLD_EQ(s[1], 'x'))) {
|
|
s+=2;
|
|
len-=2;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (; len-- && *s; s++) {
|
|
if (isXDIGIT(*s)) {
|
|
/* Write it in this wonky order with a goto to attempt to get the
|
|
compiler to make the common case integer-only loop pretty tight.
|
|
With gcc seems to be much straighter code than old scan_hex. */
|
|
redo:
|
|
if (!overflowed) {
|
|
if (value <= max_div_16) {
|
|
value = (value << 4) | XDIGIT_VALUE(*s);
|
|
continue;
|
|
}
|
|
/* Bah. We're just overflowed. */
|
|
/* diag_listed_as: Integer overflow in %s number */
|
|
Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
|
|
"Integer overflow in hexadecimal number");
|
|
overflowed = TRUE;
|
|
value_nv = (NV) value;
|
|
}
|
|
value_nv *= 16.0;
|
|
/* If an NV has not enough bits in its mantissa to
|
|
* represent a UV this summing of small low-order numbers
|
|
* is a waste of time (because the NV cannot preserve
|
|
* the low-order bits anyway): we could just remember when
|
|
* did we overflow and in the end just multiply value_nv by the
|
|
* right amount of 16-tuples. */
|
|
value_nv += (NV) XDIGIT_VALUE(*s);
|
|
continue;
|
|
}
|
|
if (*s == '_' && len && allow_underscores && s[1]
|
|
&& isXDIGIT(s[1]))
|
|
{
|
|
--len;
|
|
++s;
|
|
goto redo;
|
|
}
|
|
if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
|
|
Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
|
|
"Illegal hexadecimal digit '%c' ignored", *s);
|
|
break;
|
|
}
|
|
|
|
if ( ( overflowed && value_nv > 4294967295.0)
|
|
#if UVSIZE > 4
|
|
|| (!overflowed && value > 0xffffffff
|
|
&& ! (*flags & PERL_SCAN_SILENT_NON_PORTABLE))
|
|
#endif
|
|
) {
|
|
Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
|
|
"Hexadecimal number > 0xffffffff non-portable");
|
|
}
|
|
*len_p = s - start;
|
|
if (!overflowed) {
|
|
*flags = 0;
|
|
return value;
|
|
}
|
|
*flags = PERL_SCAN_GREATER_THAN_UV_MAX;
|
|
if (result)
|
|
*result = value_nv;
|
|
return UV_MAX;
|
|
}
|
|
|
|
/*
|
|
=for apidoc grok_oct
|
|
|
|
converts a string representing an octal number to numeric form.
|
|
|
|
On entry C<start> and C<*len> give the string to scan, C<*flags> gives
|
|
conversion flags, and C<result> should be C<NULL> or a pointer to an NV.
|
|
The scan stops at the end of the string, or the first invalid character.
|
|
Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in C<*flags>, encountering an
|
|
8 or 9 will also trigger a warning.
|
|
On return C<*len> is set to the length of the scanned string,
|
|
and C<*flags> gives output flags.
|
|
|
|
If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
|
|
and nothing is written to C<*result>. If the value is > C<UV_MAX>, C<grok_oct>
|
|
returns C<UV_MAX>, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
|
|
and writes the value to C<*result> (or the value is discarded if C<result>
|
|
is C<NULL>).
|
|
|
|
If C<PERL_SCAN_ALLOW_UNDERSCORES> is set in C<*flags> then the octal
|
|
number may use C<"_"> characters to separate digits.
|
|
|
|
=cut
|
|
|
|
Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE>
|
|
which suppresses any message for non-portable numbers, but which are valid
|
|
on this platform.
|
|
*/
|
|
|
|
UV
|
|
Perl_grok_oct(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
|
|
{
|
|
const char *s = start;
|
|
STRLEN len = *len_p;
|
|
UV value = 0;
|
|
NV value_nv = 0;
|
|
const UV max_div_8 = UV_MAX / 8;
|
|
const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
|
|
bool overflowed = FALSE;
|
|
|
|
PERL_ARGS_ASSERT_GROK_OCT;
|
|
|
|
for (; len-- && *s; s++) {
|
|
if (isOCTAL(*s)) {
|
|
/* Write it in this wonky order with a goto to attempt to get the
|
|
compiler to make the common case integer-only loop pretty tight.
|
|
*/
|
|
redo:
|
|
if (!overflowed) {
|
|
if (value <= max_div_8) {
|
|
value = (value << 3) | OCTAL_VALUE(*s);
|
|
continue;
|
|
}
|
|
/* Bah. We're just overflowed. */
|
|
/* diag_listed_as: Integer overflow in %s number */
|
|
Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
|
|
"Integer overflow in octal number");
|
|
overflowed = TRUE;
|
|
value_nv = (NV) value;
|
|
}
|
|
value_nv *= 8.0;
|
|
/* If an NV has not enough bits in its mantissa to
|
|
* represent a UV this summing of small low-order numbers
|
|
* is a waste of time (because the NV cannot preserve
|
|
* the low-order bits anyway): we could just remember when
|
|
* did we overflow and in the end just multiply value_nv by the
|
|
* right amount of 8-tuples. */
|
|
value_nv += (NV) OCTAL_VALUE(*s);
|
|
continue;
|
|
}
|
|
if (*s == '_' && len && allow_underscores && isOCTAL(s[1])) {
|
|
--len;
|
|
++s;
|
|
goto redo;
|
|
}
|
|
/* Allow \octal to work the DWIM way (that is, stop scanning
|
|
* as soon as non-octal characters are seen, complain only if
|
|
* someone seems to want to use the digits eight and nine. Since we
|
|
* know it is not octal, then if isDIGIT, must be an 8 or 9). */
|
|
if (isDIGIT(*s)) {
|
|
if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
|
|
Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
|
|
"Illegal octal digit '%c' ignored", *s);
|
|
}
|
|
break;
|
|
}
|
|
|
|
if ( ( overflowed && value_nv > 4294967295.0)
|
|
#if UVSIZE > 4
|
|
|| (!overflowed && value > 0xffffffff
|
|
&& ! (*flags & PERL_SCAN_SILENT_NON_PORTABLE))
|
|
#endif
|
|
) {
|
|
Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
|
|
"Octal number > 037777777777 non-portable");
|
|
}
|
|
*len_p = s - start;
|
|
if (!overflowed) {
|
|
*flags = 0;
|
|
return value;
|
|
}
|
|
*flags = PERL_SCAN_GREATER_THAN_UV_MAX;
|
|
if (result)
|
|
*result = value_nv;
|
|
return UV_MAX;
|
|
}
|
|
|
|
/*
|
|
=for apidoc scan_bin
|
|
|
|
For backwards compatibility. Use C<grok_bin> instead.
|
|
|
|
=for apidoc scan_hex
|
|
|
|
For backwards compatibility. Use C<grok_hex> instead.
|
|
|
|
=for apidoc scan_oct
|
|
|
|
For backwards compatibility. Use C<grok_oct> instead.
|
|
|
|
=cut
|
|
*/
|
|
|
|
NV
|
|
Perl_scan_bin(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
|
|
{
|
|
NV rnv;
|
|
I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
|
|
const UV ruv = grok_bin (start, &len, &flags, &rnv);
|
|
|
|
PERL_ARGS_ASSERT_SCAN_BIN;
|
|
|
|
*retlen = len;
|
|
return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
|
|
}
|
|
|
|
NV
|
|
Perl_scan_oct(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
|
|
{
|
|
NV rnv;
|
|
I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
|
|
const UV ruv = grok_oct (start, &len, &flags, &rnv);
|
|
|
|
PERL_ARGS_ASSERT_SCAN_OCT;
|
|
|
|
*retlen = len;
|
|
return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
|
|
}
|
|
|
|
NV
|
|
Perl_scan_hex(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
|
|
{
|
|
NV rnv;
|
|
I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
|
|
const UV ruv = grok_hex (start, &len, &flags, &rnv);
|
|
|
|
PERL_ARGS_ASSERT_SCAN_HEX;
|
|
|
|
*retlen = len;
|
|
return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
|
|
}
|
|
|
|
/*
|
|
=for apidoc grok_numeric_radix
|
|
|
|
Scan and skip for a numeric decimal separator (radix).
|
|
|
|
=cut
|
|
*/
|
|
bool
|
|
Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send)
|
|
{
|
|
PERL_ARGS_ASSERT_GROK_NUMERIC_RADIX;
|
|
|
|
#ifdef USE_LOCALE_NUMERIC
|
|
|
|
if (IN_LC(LC_NUMERIC)) {
|
|
STRLEN len;
|
|
char * radix;
|
|
bool matches_radix = FALSE;
|
|
DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
|
|
|
|
STORE_LC_NUMERIC_FORCE_TO_UNDERLYING();
|
|
|
|
radix = SvPV(PL_numeric_radix_sv, len);
|
|
radix = savepvn(radix, len);
|
|
|
|
RESTORE_LC_NUMERIC();
|
|
|
|
if (*sp + len <= send) {
|
|
matches_radix = memEQ(*sp, radix, len);
|
|
}
|
|
|
|
Safefree(radix);
|
|
|
|
if (matches_radix) {
|
|
*sp += len;
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
/* always try "." if numeric radix didn't match because
|
|
* we may have data from different locales mixed */
|
|
if (*sp < send && **sp == '.') {
|
|
++*sp;
|
|
return TRUE;
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
=for apidoc grok_infnan
|
|
|
|
Helper for C<grok_number()>, accepts various ways of spelling "infinity"
|
|
or "not a number", and returns one of the following flag combinations:
|
|
|
|
IS_NUMBER_INFINITY
|
|
IS_NUMBER_NAN
|
|
IS_NUMBER_INFINITY | IS_NUMBER_NEG
|
|
IS_NUMBER_NAN | IS_NUMBER_NEG
|
|
0
|
|
|
|
possibly |-ed with C<IS_NUMBER_TRAILING>.
|
|
|
|
If an infinity or a not-a-number is recognized, C<*sp> will point to
|
|
one byte past the end of the recognized string. If the recognition fails,
|
|
zero is returned, and C<*sp> will not move.
|
|
|
|
=cut
|
|
*/
|
|
|
|
int
|
|
Perl_grok_infnan(pTHX_ const char** sp, const char* send)
|
|
{
|
|
const char* s = *sp;
|
|
int flags = 0;
|
|
#if defined(NV_INF) || defined(NV_NAN)
|
|
bool odh = FALSE; /* one-dot-hash: 1.#INF */
|
|
|
|
PERL_ARGS_ASSERT_GROK_INFNAN;
|
|
|
|
if (*s == '+') {
|
|
s++; if (s == send) return 0;
|
|
}
|
|
else if (*s == '-') {
|
|
flags |= IS_NUMBER_NEG; /* Yes, -NaN happens. Incorrect but happens. */
|
|
s++; if (s == send) return 0;
|
|
}
|
|
|
|
if (*s == '1') {
|
|
/* Visual C: 1.#SNAN, -1.#QNAN, 1#INF, 1.#IND (maybe also 1.#NAN)
|
|
* Let's keep the dot optional. */
|
|
s++; if (s == send) return 0;
|
|
if (*s == '.') {
|
|
s++; if (s == send) return 0;
|
|
}
|
|
if (*s == '#') {
|
|
s++; if (s == send) return 0;
|
|
} else
|
|
return 0;
|
|
odh = TRUE;
|
|
}
|
|
|
|
if (isALPHA_FOLD_EQ(*s, 'I')) {
|
|
/* INF or IND (1.#IND is "indeterminate", a certain type of NAN) */
|
|
|
|
s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return 0;
|
|
s++; if (s == send) return 0;
|
|
if (isALPHA_FOLD_EQ(*s, 'F')) {
|
|
s++;
|
|
if (s < send && (isALPHA_FOLD_EQ(*s, 'I'))) {
|
|
int fail =
|
|
flags | IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT | IS_NUMBER_TRAILING;
|
|
s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return fail;
|
|
s++; if (s == send || isALPHA_FOLD_NE(*s, 'I')) return fail;
|
|
s++; if (s == send || isALPHA_FOLD_NE(*s, 'T')) return fail;
|
|
s++; if (s == send || isALPHA_FOLD_NE(*s, 'Y')) return fail;
|
|
s++;
|
|
} else if (odh) {
|
|
while (*s == '0') { /* 1.#INF00 */
|
|
s++;
|
|
}
|
|
}
|
|
while (s < send && isSPACE(*s))
|
|
s++;
|
|
if (s < send && *s) {
|
|
flags |= IS_NUMBER_TRAILING;
|
|
}
|
|
flags |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT;
|
|
}
|
|
else if (isALPHA_FOLD_EQ(*s, 'D') && odh) { /* 1.#IND */
|
|
s++;
|
|
flags |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
|
|
while (*s == '0') { /* 1.#IND00 */
|
|
s++;
|
|
}
|
|
if (*s) {
|
|
flags |= IS_NUMBER_TRAILING;
|
|
}
|
|
} else
|
|
return 0;
|
|
}
|
|
else {
|
|
/* Maybe NAN of some sort */
|
|
|
|
if (isALPHA_FOLD_EQ(*s, 'S') || isALPHA_FOLD_EQ(*s, 'Q')) {
|
|
/* snan, qNaN */
|
|
/* XXX do something with the snan/qnan difference */
|
|
s++; if (s == send) return 0;
|
|
}
|
|
|
|
if (isALPHA_FOLD_EQ(*s, 'N')) {
|
|
s++; if (s == send || isALPHA_FOLD_NE(*s, 'A')) return 0;
|
|
s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return 0;
|
|
s++;
|
|
|
|
flags |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
|
|
|
|
/* NaN can be followed by various stuff (NaNQ, NaNS), but
|
|
* there are also multiple different NaN values, and some
|
|
* implementations output the "payload" values,
|
|
* e.g. NaN123, NAN(abc), while some legacy implementations
|
|
* have weird stuff like NaN%. */
|
|
if (isALPHA_FOLD_EQ(*s, 'q') ||
|
|
isALPHA_FOLD_EQ(*s, 's')) {
|
|
/* "nanq" or "nans" are ok, though generating
|
|
* these portably is tricky. */
|
|
s++;
|
|
}
|
|
if (*s == '(') {
|
|
/* C99 style "nan(123)" or Perlish equivalent "nan($uv)". */
|
|
const char *t;
|
|
s++;
|
|
if (s == send) {
|
|
return flags | IS_NUMBER_TRAILING;
|
|
}
|
|
t = s + 1;
|
|
while (t < send && *t && *t != ')') {
|
|
t++;
|
|
}
|
|
if (t == send) {
|
|
return flags | IS_NUMBER_TRAILING;
|
|
}
|
|
if (*t == ')') {
|
|
int nantype;
|
|
UV nanval;
|
|
if (s[0] == '0' && s + 2 < t &&
|
|
isALPHA_FOLD_EQ(s[1], 'x') &&
|
|
isXDIGIT(s[2])) {
|
|
STRLEN len = t - s;
|
|
I32 flags = PERL_SCAN_ALLOW_UNDERSCORES;
|
|
nanval = grok_hex(s, &len, &flags, NULL);
|
|
if ((flags & PERL_SCAN_GREATER_THAN_UV_MAX)) {
|
|
nantype = 0;
|
|
} else {
|
|
nantype = IS_NUMBER_IN_UV;
|
|
}
|
|
s += len;
|
|
} else if (s[0] == '0' && s + 2 < t &&
|
|
isALPHA_FOLD_EQ(s[1], 'b') &&
|
|
(s[2] == '0' || s[2] == '1')) {
|
|
STRLEN len = t - s;
|
|
I32 flags = PERL_SCAN_ALLOW_UNDERSCORES;
|
|
nanval = grok_bin(s, &len, &flags, NULL);
|
|
if ((flags & PERL_SCAN_GREATER_THAN_UV_MAX)) {
|
|
nantype = 0;
|
|
} else {
|
|
nantype = IS_NUMBER_IN_UV;
|
|
}
|
|
s += len;
|
|
} else {
|
|
const char *u;
|
|
nantype =
|
|
grok_number_flags(s, t - s, &nanval,
|
|
PERL_SCAN_TRAILING |
|
|
PERL_SCAN_ALLOW_UNDERSCORES);
|
|
/* Unfortunately grok_number_flags() doesn't
|
|
* tell how far we got and the ')' will always
|
|
* be "trailing", so we need to double-check
|
|
* whether we had something dubious. */
|
|
for (u = s; u < t; u++) {
|
|
if (!isDIGIT(*u)) {
|
|
flags |= IS_NUMBER_TRAILING;
|
|
break;
|
|
}
|
|
}
|
|
s = u;
|
|
}
|
|
|
|
/* XXX Doesn't do octal: nan("0123").
|
|
* Probably not a big loss. */
|
|
|
|
if ((nantype & IS_NUMBER_NOT_INT) ||
|
|
!(nantype && IS_NUMBER_IN_UV)) {
|
|
/* XXX the nanval is currently unused, that is,
|
|
* not inserted as the NaN payload of the NV.
|
|
* But the above code already parses the C99
|
|
* nan(...) format. See below, and see also
|
|
* the nan() in POSIX.xs.
|
|
*
|
|
* Certain configuration combinations where
|
|
* NVSIZE is greater than UVSIZE mean that
|
|
* a single UV cannot contain all the possible
|
|
* NaN payload bits. There would need to be
|
|
* some more generic syntax than "nan($uv)".
|
|
*
|
|
* Issues to keep in mind:
|
|
*
|
|
* (1) In most common cases there would
|
|
* not be an integral number of bytes that
|
|
* could be set, only a certain number of bits.
|
|
* For example for the common case of
|
|
* NVSIZE == UVSIZE == 8 there is room for 52
|
|
* bits in the payload, but the most significant
|
|
* bit is commonly reserved for the
|
|
* signaling/quiet bit, leaving 51 bits.
|
|
* Furthermore, the C99 nan() is supposed
|
|
* to generate quiet NaNs, so it is doubtful
|
|
* whether it should be able to generate
|
|
* signaling NaNs. For the x86 80-bit doubles
|
|
* (if building a long double Perl) there would
|
|
* be 62 bits (s/q bit being the 63rd).
|
|
*
|
|
* (2) Endianness of the payload bits. If the
|
|
* payload is specified as an UV, the low-order
|
|
* bits of the UV are naturally little-endianed
|
|
* (rightmost) bits of the payload. The endianness
|
|
* of UVs and NVs can be different. */
|
|
return 0;
|
|
}
|
|
if (s < t) {
|
|
flags |= IS_NUMBER_TRAILING;
|
|
}
|
|
} else {
|
|
/* Looked like nan(...), but no close paren. */
|
|
flags |= IS_NUMBER_TRAILING;
|
|
}
|
|
} else {
|
|
while (s < send && isSPACE(*s))
|
|
s++;
|
|
if (s < send && *s) {
|
|
/* Note that we here implicitly accept (parse as
|
|
* "nan", but with warnings) also any other weird
|
|
* trailing stuff for "nan". In the above we just
|
|
* check that if we got the C99-style "nan(...)",
|
|
* the "..." looks sane.
|
|
* If in future we accept more ways of specifying
|
|
* the nan payload, the accepting would happen around
|
|
* here. */
|
|
flags |= IS_NUMBER_TRAILING;
|
|
}
|
|
}
|
|
s = send;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
while (s < send && isSPACE(*s))
|
|
s++;
|
|
|
|
#else
|
|
PERL_UNUSED_ARG(send);
|
|
#endif /* #if defined(NV_INF) || defined(NV_NAN) */
|
|
*sp = s;
|
|
return flags;
|
|
}
|
|
|
|
/*
|
|
=for apidoc grok_number_flags
|
|
|
|
Recognise (or not) a number. The type of the number is returned
|
|
(0 if unrecognised), otherwise it is a bit-ORed combination of
|
|
C<IS_NUMBER_IN_UV>, C<IS_NUMBER_GREATER_THAN_UV_MAX>, C<IS_NUMBER_NOT_INT>,
|
|
C<IS_NUMBER_NEG>, C<IS_NUMBER_INFINITY>, C<IS_NUMBER_NAN> (defined in perl.h).
|
|
|
|
If the value of the number can fit in a UV, it is returned in C<*valuep>.
|
|
C<IS_NUMBER_IN_UV> will be set to indicate that C<*valuep> is valid, C<IS_NUMBER_IN_UV>
|
|
will never be set unless C<*valuep> is valid, but C<*valuep> may have been assigned
|
|
to during processing even though C<IS_NUMBER_IN_UV> is not set on return.
|
|
If C<valuep> is C<NULL>, C<IS_NUMBER_IN_UV> will be set for the same cases as when
|
|
C<valuep> is non-C<NULL>, but no actual assignment (or SEGV) will occur.
|
|
|
|
C<IS_NUMBER_NOT_INT> will be set with C<IS_NUMBER_IN_UV> if trailing decimals were
|
|
seen (in which case C<*valuep> gives the true value truncated to an integer), and
|
|
C<IS_NUMBER_NEG> if the number is negative (in which case C<*valuep> holds the
|
|
absolute value). C<IS_NUMBER_IN_UV> is not set if e notation was used or the
|
|
number is larger than a UV.
|
|
|
|
C<flags> allows only C<PERL_SCAN_TRAILING>, which allows for trailing
|
|
non-numeric text on an otherwise successful I<grok>, setting
|
|
C<IS_NUMBER_TRAILING> on the result.
|
|
|
|
=for apidoc grok_number
|
|
|
|
Identical to C<grok_number_flags()> with C<flags> set to zero.
|
|
|
|
=cut
|
|
*/
|
|
int
|
|
Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep)
|
|
{
|
|
PERL_ARGS_ASSERT_GROK_NUMBER;
|
|
|
|
return grok_number_flags(pv, len, valuep, 0);
|
|
}
|
|
|
|
static const UV uv_max_div_10 = UV_MAX / 10;
|
|
static const U8 uv_max_mod_10 = UV_MAX % 10;
|
|
|
|
int
|
|
Perl_grok_number_flags(pTHX_ const char *pv, STRLEN len, UV *valuep, U32 flags)
|
|
{
|
|
const char *s = pv;
|
|
const char * const send = pv + len;
|
|
const char *d;
|
|
int numtype = 0;
|
|
|
|
PERL_ARGS_ASSERT_GROK_NUMBER_FLAGS;
|
|
|
|
while (s < send && isSPACE(*s))
|
|
s++;
|
|
if (s == send) {
|
|
return 0;
|
|
} else if (*s == '-') {
|
|
s++;
|
|
numtype = IS_NUMBER_NEG;
|
|
}
|
|
else if (*s == '+')
|
|
s++;
|
|
|
|
if (s == send)
|
|
return 0;
|
|
|
|
/* The first digit (after optional sign): note that might
|
|
* also point to "infinity" or "nan", or "1.#INF". */
|
|
d = s;
|
|
|
|
/* next must be digit or the radix separator or beginning of infinity/nan */
|
|
if (isDIGIT(*s)) {
|
|
/* UVs are at least 32 bits, so the first 9 decimal digits cannot
|
|
overflow. */
|
|
UV value = *s - '0';
|
|
/* This construction seems to be more optimiser friendly.
|
|
(without it gcc does the isDIGIT test and the *s - '0' separately)
|
|
With it gcc on arm is managing 6 instructions (6 cycles) per digit.
|
|
In theory the optimiser could deduce how far to unroll the loop
|
|
before checking for overflow. */
|
|
if (++s < send) {
|
|
int digit = *s - '0';
|
|
if (inRANGE(digit, 0, 9)) {
|
|
value = value * 10 + digit;
|
|
if (++s < send) {
|
|
digit = *s - '0';
|
|
if (inRANGE(digit, 0, 9)) {
|
|
value = value * 10 + digit;
|
|
if (++s < send) {
|
|
digit = *s - '0';
|
|
if (inRANGE(digit, 0, 9)) {
|
|
value = value * 10 + digit;
|
|
if (++s < send) {
|
|
digit = *s - '0';
|
|
if (inRANGE(digit, 0, 9)) {
|
|
value = value * 10 + digit;
|
|
if (++s < send) {
|
|
digit = *s - '0';
|
|
if (inRANGE(digit, 0, 9)) {
|
|
value = value * 10 + digit;
|
|
if (++s < send) {
|
|
digit = *s - '0';
|
|
if (inRANGE(digit, 0, 9)) {
|
|
value = value * 10 + digit;
|
|
if (++s < send) {
|
|
digit = *s - '0';
|
|
if (inRANGE(digit, 0, 9)) {
|
|
value = value * 10 + digit;
|
|
if (++s < send) {
|
|
digit = *s - '0';
|
|
if (inRANGE(digit, 0, 9)) {
|
|
value = value * 10 + digit;
|
|
if (++s < send) {
|
|
/* Now got 9 digits, so need to check
|
|
each time for overflow. */
|
|
digit = *s - '0';
|
|
while ( inRANGE(digit, 0, 9)
|
|
&& (value < uv_max_div_10
|
|
|| (value == uv_max_div_10
|
|
&& digit <= uv_max_mod_10))) {
|
|
value = value * 10 + digit;
|
|
if (++s < send)
|
|
digit = *s - '0';
|
|
else
|
|
break;
|
|
}
|
|
if (inRANGE(digit, 0, 9)
|
|
&& (s < send)) {
|
|
/* value overflowed.
|
|
skip the remaining digits, don't
|
|
worry about setting *valuep. */
|
|
do {
|
|
s++;
|
|
} while (s < send && isDIGIT(*s));
|
|
numtype |=
|
|
IS_NUMBER_GREATER_THAN_UV_MAX;
|
|
goto skip_value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
numtype |= IS_NUMBER_IN_UV;
|
|
if (valuep)
|
|
*valuep = value;
|
|
|
|
skip_value:
|
|
if (GROK_NUMERIC_RADIX(&s, send)) {
|
|
numtype |= IS_NUMBER_NOT_INT;
|
|
while (s < send && isDIGIT(*s)) /* optional digits after the radix */
|
|
s++;
|
|
}
|
|
}
|
|
else if (GROK_NUMERIC_RADIX(&s, send)) {
|
|
numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */
|
|
/* no digits before the radix means we need digits after it */
|
|
if (s < send && isDIGIT(*s)) {
|
|
do {
|
|
s++;
|
|
} while (s < send && isDIGIT(*s));
|
|
if (valuep) {
|
|
/* integer approximation is valid - it's 0. */
|
|
*valuep = 0;
|
|
}
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
if (s > d && s < send) {
|
|
/* we can have an optional exponent part */
|
|
if (isALPHA_FOLD_EQ(*s, 'e')) {
|
|
s++;
|
|
if (s < send && (*s == '-' || *s == '+'))
|
|
s++;
|
|
if (s < send && isDIGIT(*s)) {
|
|
do {
|
|
s++;
|
|
} while (s < send && isDIGIT(*s));
|
|
}
|
|
else if (flags & PERL_SCAN_TRAILING)
|
|
return numtype | IS_NUMBER_TRAILING;
|
|
else
|
|
return 0;
|
|
|
|
/* The only flag we keep is sign. Blow away any "it's UV" */
|
|
numtype &= IS_NUMBER_NEG;
|
|
numtype |= IS_NUMBER_NOT_INT;
|
|
}
|
|
}
|
|
while (s < send && isSPACE(*s))
|
|
s++;
|
|
if (s >= send)
|
|
return numtype;
|
|
if (memEQs(pv, len, "0 but true")) {
|
|
if (valuep)
|
|
*valuep = 0;
|
|
return IS_NUMBER_IN_UV;
|
|
}
|
|
/* We could be e.g. at "Inf" or "NaN", or at the "#" of "1.#INF". */
|
|
if ((s + 2 < send) && strchr("inqs#", toFOLD(*s))) {
|
|
/* Really detect inf/nan. Start at d, not s, since the above
|
|
* code might have already consumed the "1." or "1". */
|
|
const int infnan = Perl_grok_infnan(aTHX_ &d, send);
|
|
if ((infnan & IS_NUMBER_INFINITY)) {
|
|
return (numtype | infnan); /* Keep sign for infinity. */
|
|
}
|
|
else if ((infnan & IS_NUMBER_NAN)) {
|
|
return (numtype | infnan) & ~IS_NUMBER_NEG; /* Clear sign for nan. */
|
|
}
|
|
}
|
|
else if (flags & PERL_SCAN_TRAILING) {
|
|
return numtype | IS_NUMBER_TRAILING;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
=for apidoc grok_atoUV
|
|
|
|
parse a string, looking for a decimal unsigned integer.
|
|
|
|
On entry, C<pv> points to the beginning of the string;
|
|
C<valptr> points to a UV that will receive the converted value, if found;
|
|
C<endptr> is either NULL or points to a variable that points to one byte
|
|
beyond the point in C<pv> that this routine should examine.
|
|
If C<endptr> is NULL, C<pv> is assumed to be NUL-terminated.
|
|
|
|
Returns FALSE if C<pv> doesn't represent a valid unsigned integer value (with
|
|
no leading zeros). Otherwise it returns TRUE, and sets C<*valptr> to that
|
|
value.
|
|
|
|
If you constrain the portion of C<pv> that is looked at by this function (by
|
|
passing a non-NULL C<endptr>), and if the intial bytes of that portion form a
|
|
valid value, it will return TRUE, setting C<*endptr> to the byte following the
|
|
final digit of the value. But if there is no constraint at what's looked at,
|
|
all of C<pv> must be valid in order for TRUE to be returned.
|
|
|
|
The only characters this accepts are the decimal digits '0'..'9'.
|
|
|
|
As opposed to L<atoi(3)> or L<strtol(3)>, C<grok_atoUV> does NOT allow optional
|
|
leading whitespace, nor negative inputs. If such features are required, the
|
|
calling code needs to explicitly implement those.
|
|
|
|
Note that this function returns FALSE for inputs that would overflow a UV,
|
|
or have leading zeros. Thus a single C<0> is accepted, but not C<00> nor
|
|
C<01>, C<002>, I<etc>.
|
|
|
|
Background: C<atoi> has severe problems with illegal inputs, it cannot be
|
|
used for incremental parsing, and therefore should be avoided
|
|
C<atoi> and C<strtol> are also affected by locale settings, which can also be
|
|
seen as a bug (global state controlled by user environment).
|
|
|
|
=cut
|
|
|
|
*/
|
|
|
|
bool
|
|
Perl_grok_atoUV(const char *pv, UV *valptr, const char** endptr)
|
|
{
|
|
const char* s = pv;
|
|
const char** eptr;
|
|
const char* end2; /* Used in case endptr is NULL. */
|
|
UV val = 0; /* The parsed value. */
|
|
|
|
PERL_ARGS_ASSERT_GROK_ATOUV;
|
|
|
|
if (endptr) {
|
|
eptr = endptr;
|
|
}
|
|
else {
|
|
end2 = s + strlen(s);
|
|
eptr = &end2;
|
|
}
|
|
|
|
if ( *eptr <= s
|
|
|| ! isDIGIT(*s))
|
|
{
|
|
return FALSE;
|
|
}
|
|
|
|
/* Single-digit inputs are quite common. */
|
|
val = *s++ - '0';
|
|
if (s < *eptr && isDIGIT(*s)) {
|
|
/* Fail on extra leading zeros. */
|
|
if (val == 0)
|
|
return FALSE;
|
|
while (s < *eptr && isDIGIT(*s)) {
|
|
/* This could be unrolled like in grok_number(), but
|
|
* the expected uses of this are not speed-needy, and
|
|
* unlikely to need full 64-bitness. */
|
|
const U8 digit = *s++ - '0';
|
|
if (val < uv_max_div_10 ||
|
|
(val == uv_max_div_10 && digit <= uv_max_mod_10)) {
|
|
val = val * 10 + digit;
|
|
} else {
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (endptr == NULL) {
|
|
if (*s) {
|
|
return FALSE; /* If endptr is NULL, no trailing non-digits allowed. */
|
|
}
|
|
}
|
|
else {
|
|
*endptr = s;
|
|
}
|
|
|
|
*valptr = val;
|
|
return TRUE;
|
|
}
|
|
|
|
#ifndef Perl_strtod
|
|
STATIC NV
|
|
S_mulexp10(NV value, I32 exponent)
|
|
{
|
|
NV result = 1.0;
|
|
NV power = 10.0;
|
|
bool negative = 0;
|
|
I32 bit;
|
|
|
|
if (exponent == 0)
|
|
return value;
|
|
if (value == 0)
|
|
return (NV)0;
|
|
|
|
/* On OpenVMS VAX we by default use the D_FLOAT double format,
|
|
* and that format does not have *easy* capabilities [1] for
|
|
* overflowing doubles 'silently' as IEEE fp does. We also need
|
|
* to support G_FLOAT on both VAX and Alpha, and though the exponent
|
|
* range is much larger than D_FLOAT it still doesn't do silent
|
|
* overflow. Therefore we need to detect early whether we would
|
|
* overflow (this is the behaviour of the native string-to-float
|
|
* conversion routines, and therefore of native applications, too).
|
|
*
|
|
* [1] Trying to establish a condition handler to trap floating point
|
|
* exceptions is not a good idea. */
|
|
|
|
/* In UNICOS and in certain Cray models (such as T90) there is no
|
|
* IEEE fp, and no way at all from C to catch fp overflows gracefully.
|
|
* There is something you can do if you are willing to use some
|
|
* inline assembler: the instruction is called DFI-- but that will
|
|
* disable *all* floating point interrupts, a little bit too large
|
|
* a hammer. Therefore we need to catch potential overflows before
|
|
* it's too late. */
|
|
|
|
#if ((defined(VMS) && !defined(_IEEE_FP)) || defined(_UNICOS) || defined(DOUBLE_IS_VAX_FLOAT)) && defined(NV_MAX_10_EXP)
|
|
STMT_START {
|
|
const NV exp_v = log10(value);
|
|
if (exponent >= NV_MAX_10_EXP || exponent + exp_v >= NV_MAX_10_EXP)
|
|
return NV_MAX;
|
|
if (exponent < 0) {
|
|
if (-(exponent + exp_v) >= NV_MAX_10_EXP)
|
|
return 0.0;
|
|
while (-exponent >= NV_MAX_10_EXP) {
|
|
/* combination does not overflow, but 10^(-exponent) does */
|
|
value /= 10;
|
|
++exponent;
|
|
}
|
|
}
|
|
} STMT_END;
|
|
#endif
|
|
|
|
if (exponent < 0) {
|
|
negative = 1;
|
|
exponent = -exponent;
|
|
#ifdef NV_MAX_10_EXP
|
|
/* for something like 1234 x 10^-309, the action of calculating
|
|
* the intermediate value 10^309 then returning 1234 / (10^309)
|
|
* will fail, since 10^309 becomes infinity. In this case try to
|
|
* refactor it as 123 / (10^308) etc.
|
|
*/
|
|
while (value && exponent > NV_MAX_10_EXP) {
|
|
exponent--;
|
|
value /= 10;
|
|
}
|
|
if (value == 0.0)
|
|
return value;
|
|
#endif
|
|
}
|
|
#if defined(__osf__)
|
|
/* Even with cc -ieee + ieee_set_fp_control(IEEE_TRAP_ENABLE_INV)
|
|
* Tru64 fp behavior on inf/nan is somewhat broken. Another way
|
|
* to do this would be ieee_set_fp_control(IEEE_TRAP_ENABLE_OVF)
|
|
* but that breaks another set of infnan.t tests. */
|
|
# define FP_OVERFLOWS_TO_ZERO
|
|
#endif
|
|
for (bit = 1; exponent; bit <<= 1) {
|
|
if (exponent & bit) {
|
|
exponent ^= bit;
|
|
result *= power;
|
|
#ifdef FP_OVERFLOWS_TO_ZERO
|
|
if (result == 0)
|
|
# ifdef NV_INF
|
|
return value < 0 ? -NV_INF : NV_INF;
|
|
# else
|
|
return value < 0 ? -FLT_MAX : FLT_MAX;
|
|
# endif
|
|
#endif
|
|
/* Floating point exceptions are supposed to be turned off,
|
|
* but if we're obviously done, don't risk another iteration.
|
|
*/
|
|
if (exponent == 0) break;
|
|
}
|
|
power *= power;
|
|
}
|
|
return negative ? value / result : value * result;
|
|
}
|
|
#endif /* #ifndef Perl_strtod */
|
|
|
|
#ifdef Perl_strtod
|
|
# define ATOF(s, x) my_atof2(s, &x)
|
|
#else
|
|
# define ATOF(s, x) Perl_atof2(s, x)
|
|
#endif
|
|
|
|
NV
|
|
Perl_my_atof(pTHX_ const char* s)
|
|
{
|
|
/* 's' must be NUL terminated */
|
|
|
|
NV x = 0.0;
|
|
|
|
PERL_ARGS_ASSERT_MY_ATOF;
|
|
|
|
#if ! defined(USE_LOCALE_NUMERIC)
|
|
|
|
ATOF(s, x);
|
|
|
|
#else
|
|
|
|
{
|
|
DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
|
|
STORE_LC_NUMERIC_SET_TO_NEEDED();
|
|
if (! (PL_numeric_radix_sv && IN_LC(LC_NUMERIC))) {
|
|
ATOF(s,x);
|
|
}
|
|
else {
|
|
|
|
/* Look through the string for the first thing that looks like a
|
|
* decimal point: either the value in the current locale or the
|
|
* standard fallback of '.'. The one which appears earliest in the
|
|
* input string is the one that we should have atof look for. Note
|
|
* that we have to determine this beforehand because on some
|
|
* systems, Perl_atof2 is just a wrapper around the system's atof.
|
|
* */
|
|
const char * const standard_pos = strchr(s, '.');
|
|
const char * const local_pos
|
|
= strstr(s, SvPV_nolen(PL_numeric_radix_sv));
|
|
const bool use_standard_radix
|
|
= standard_pos && (!local_pos || standard_pos < local_pos);
|
|
|
|
if (use_standard_radix) {
|
|
SET_NUMERIC_STANDARD();
|
|
LOCK_LC_NUMERIC_STANDARD();
|
|
}
|
|
|
|
ATOF(s,x);
|
|
|
|
if (use_standard_radix) {
|
|
UNLOCK_LC_NUMERIC_STANDARD();
|
|
SET_NUMERIC_UNDERLYING();
|
|
}
|
|
}
|
|
RESTORE_LC_NUMERIC();
|
|
}
|
|
|
|
#endif
|
|
|
|
return x;
|
|
}
|
|
|
|
#if defined(NV_INF) || defined(NV_NAN)
|
|
|
|
#ifdef USING_MSVC6
|
|
# pragma warning(push)
|
|
# pragma warning(disable:4756;disable:4056)
|
|
#endif
|
|
static char*
|
|
S_my_atof_infnan(pTHX_ const char* s, bool negative, const char* send, NV* value)
|
|
{
|
|
const char *p0 = negative ? s - 1 : s;
|
|
const char *p = p0;
|
|
const int infnan = grok_infnan(&p, send);
|
|
if (infnan && p != p0) {
|
|
/* If we can generate inf/nan directly, let's do so. */
|
|
#ifdef NV_INF
|
|
if ((infnan & IS_NUMBER_INFINITY)) {
|
|
*value = (infnan & IS_NUMBER_NEG) ? -NV_INF: NV_INF;
|
|
return (char*)p;
|
|
}
|
|
#endif
|
|
#ifdef NV_NAN
|
|
if ((infnan & IS_NUMBER_NAN)) {
|
|
*value = NV_NAN;
|
|
return (char*)p;
|
|
}
|
|
#endif
|
|
#ifdef Perl_strtod
|
|
/* If still here, we didn't have either NV_INF or NV_NAN,
|
|
* and can try falling back to native strtod/strtold.
|
|
*
|
|
* The native interface might not recognize all the possible
|
|
* inf/nan strings Perl recognizes. What we can try
|
|
* is to try faking the input. We will try inf/-inf/nan
|
|
* as the most promising/portable input. */
|
|
{
|
|
const char* fake = "silence compiler warning";
|
|
char* endp;
|
|
NV nv;
|
|
#ifdef NV_INF
|
|
if ((infnan & IS_NUMBER_INFINITY)) {
|
|
fake = ((infnan & IS_NUMBER_NEG)) ? "-inf" : "inf";
|
|
}
|
|
#endif
|
|
#ifdef NV_NAN
|
|
if ((infnan & IS_NUMBER_NAN)) {
|
|
fake = "nan";
|
|
}
|
|
#endif
|
|
assert(strNE(fake, "silence compiler warning"));
|
|
nv = S_strtod(aTHX_ fake, &endp);
|
|
if (fake != endp) {
|
|
#ifdef NV_INF
|
|
if ((infnan & IS_NUMBER_INFINITY)) {
|
|
# ifdef Perl_isinf
|
|
if (Perl_isinf(nv))
|
|
*value = nv;
|
|
# else
|
|
/* last resort, may generate SIGFPE */
|
|
*value = Perl_exp((NV)1e9);
|
|
if ((infnan & IS_NUMBER_NEG))
|
|
*value = -*value;
|
|
# endif
|
|
return (char*)p; /* p, not endp */
|
|
}
|
|
#endif
|
|
#ifdef NV_NAN
|
|
if ((infnan & IS_NUMBER_NAN)) {
|
|
# ifdef Perl_isnan
|
|
if (Perl_isnan(nv))
|
|
*value = nv;
|
|
# else
|
|
/* last resort, may generate SIGFPE */
|
|
*value = Perl_log((NV)-1.0);
|
|
# endif
|
|
return (char*)p; /* p, not endp */
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
#endif /* #ifdef Perl_strtod */
|
|
}
|
|
return NULL;
|
|
}
|
|
#ifdef USING_MSVC6
|
|
# pragma warning(pop)
|
|
#endif
|
|
|
|
#endif /* if defined(NV_INF) || defined(NV_NAN) */
|
|
|
|
char*
|
|
Perl_my_atof2(pTHX_ const char* orig, NV* value)
|
|
{
|
|
PERL_ARGS_ASSERT_MY_ATOF2;
|
|
return my_atof3(orig, value, 0);
|
|
}
|
|
|
|
char*
|
|
Perl_my_atof3(pTHX_ const char* orig, NV* value, const STRLEN len)
|
|
{
|
|
const char* s = orig;
|
|
NV result[3] = {0.0, 0.0, 0.0};
|
|
#if defined(USE_PERL_ATOF) || defined(Perl_strtod)
|
|
const char* send = s + ((len != 0)
|
|
? len
|
|
: strlen(orig)); /* one past the last */
|
|
bool negative = 0;
|
|
#endif
|
|
#if defined(USE_PERL_ATOF) && !defined(Perl_strtod)
|
|
UV accumulator[2] = {0,0}; /* before/after dp */
|
|
bool seen_digit = 0;
|
|
I32 exp_adjust[2] = {0,0};
|
|
I32 exp_acc[2] = {-1, -1};
|
|
/* the current exponent adjust for the accumulators */
|
|
I32 exponent = 0;
|
|
I32 seen_dp = 0;
|
|
I32 digit = 0;
|
|
I32 old_digit = 0;
|
|
I32 sig_digits = 0; /* noof significant digits seen so far */
|
|
#endif
|
|
|
|
#if defined(USE_PERL_ATOF) || defined(Perl_strtod)
|
|
PERL_ARGS_ASSERT_MY_ATOF3;
|
|
|
|
/* leading whitespace */
|
|
while (s < send && isSPACE(*s))
|
|
++s;
|
|
|
|
/* sign */
|
|
switch (*s) {
|
|
case '-':
|
|
negative = 1;
|
|
/* FALLTHROUGH */
|
|
case '+':
|
|
++s;
|
|
}
|
|
#endif
|
|
|
|
#ifdef Perl_strtod
|
|
{
|
|
char* endp;
|
|
char* copy = NULL;
|
|
|
|
if ((endp = S_my_atof_infnan(aTHX_ s, negative, send, value)))
|
|
return endp;
|
|
|
|
/* If the length is passed in, the input string isn't NUL-terminated,
|
|
* and in it turns out the function below assumes it is; therefore we
|
|
* create a copy and NUL-terminate that */
|
|
if (len) {
|
|
Newx(copy, len + 1, char);
|
|
Copy(orig, copy, len, char);
|
|
copy[len] = '\0';
|
|
s = copy + (s - orig);
|
|
}
|
|
|
|
result[2] = S_strtod(aTHX_ s, &endp);
|
|
|
|
/* If we created a copy, 'endp' is in terms of that. Convert back to
|
|
* the original */
|
|
if (copy) {
|
|
s = (s - copy) + (char *) orig;
|
|
endp = (endp - copy) + (char *) orig;
|
|
Safefree(copy);
|
|
}
|
|
|
|
if (s != endp) {
|
|
*value = negative ? -result[2] : result[2];
|
|
return endp;
|
|
}
|
|
return NULL;
|
|
}
|
|
#elif defined(USE_PERL_ATOF)
|
|
|
|
/* There is no point in processing more significant digits
|
|
* than the NV can hold. Note that NV_DIG is a lower-bound value,
|
|
* while we need an upper-bound value. We add 2 to account for this;
|
|
* since it will have been conservative on both the first and last digit.
|
|
* For example a 32-bit mantissa with an exponent of 4 would have
|
|
* exact values in the set
|
|
* 4
|
|
* 8
|
|
* ..
|
|
* 17179869172
|
|
* 17179869176
|
|
* 17179869180
|
|
*
|
|
* where for the purposes of calculating NV_DIG we would have to discount
|
|
* both the first and last digit, since neither can hold all values from
|
|
* 0..9; but for calculating the value we must examine those two digits.
|
|
*/
|
|
#ifdef MAX_SIG_DIG_PLUS
|
|
/* It is not necessarily the case that adding 2 to NV_DIG gets all the
|
|
possible digits in a NV, especially if NVs are not IEEE compliant
|
|
(e.g., long doubles on IRIX) - Allen <allens@cpan.org> */
|
|
# define MAX_SIG_DIGITS (NV_DIG+MAX_SIG_DIG_PLUS)
|
|
#else
|
|
# define MAX_SIG_DIGITS (NV_DIG+2)
|
|
#endif
|
|
|
|
/* the max number we can accumulate in a UV, and still safely do 10*N+9 */
|
|
#define MAX_ACCUMULATE ( (UV) ((UV_MAX - 9)/10))
|
|
|
|
#if defined(NV_INF) || defined(NV_NAN)
|
|
{
|
|
char* endp;
|
|
if ((endp = S_my_atof_infnan(aTHX_ s, negative, send, value)))
|
|
return endp;
|
|
}
|
|
#endif
|
|
|
|
/* we accumulate digits into an integer; when this becomes too
|
|
* large, we add the total to NV and start again */
|
|
|
|
while (s < send) {
|
|
if (isDIGIT(*s)) {
|
|
seen_digit = 1;
|
|
old_digit = digit;
|
|
digit = *s++ - '0';
|
|
if (seen_dp)
|
|
exp_adjust[1]++;
|
|
|
|
/* don't start counting until we see the first significant
|
|
* digit, eg the 5 in 0.00005... */
|
|
if (!sig_digits && digit == 0)
|
|
continue;
|
|
|
|
if (++sig_digits > MAX_SIG_DIGITS) {
|
|
/* limits of precision reached */
|
|
if (digit > 5) {
|
|
++accumulator[seen_dp];
|
|
} else if (digit == 5) {
|
|
if (old_digit % 2) { /* round to even - Allen */
|
|
++accumulator[seen_dp];
|
|
}
|
|
}
|
|
if (seen_dp) {
|
|
exp_adjust[1]--;
|
|
} else {
|
|
exp_adjust[0]++;
|
|
}
|
|
/* skip remaining digits */
|
|
while (s < send && isDIGIT(*s)) {
|
|
++s;
|
|
if (! seen_dp) {
|
|
exp_adjust[0]++;
|
|
}
|
|
}
|
|
/* warn of loss of precision? */
|
|
}
|
|
else {
|
|
if (accumulator[seen_dp] > MAX_ACCUMULATE) {
|
|
/* add accumulator to result and start again */
|
|
result[seen_dp] = S_mulexp10(result[seen_dp],
|
|
exp_acc[seen_dp])
|
|
+ (NV)accumulator[seen_dp];
|
|
accumulator[seen_dp] = 0;
|
|
exp_acc[seen_dp] = 0;
|
|
}
|
|
accumulator[seen_dp] = accumulator[seen_dp] * 10 + digit;
|
|
++exp_acc[seen_dp];
|
|
}
|
|
}
|
|
else if (!seen_dp && GROK_NUMERIC_RADIX(&s, send)) {
|
|
seen_dp = 1;
|
|
if (sig_digits > MAX_SIG_DIGITS) {
|
|
while (s < send && isDIGIT(*s)) {
|
|
++s;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
result[0] = S_mulexp10(result[0], exp_acc[0]) + (NV)accumulator[0];
|
|
if (seen_dp) {
|
|
result[1] = S_mulexp10(result[1], exp_acc[1]) + (NV)accumulator[1];
|
|
}
|
|
|
|
if (s < send && seen_digit && (isALPHA_FOLD_EQ(*s, 'e'))) {
|
|
bool expnegative = 0;
|
|
|
|
++s;
|
|
switch (*s) {
|
|
case '-':
|
|
expnegative = 1;
|
|
/* FALLTHROUGH */
|
|
case '+':
|
|
++s;
|
|
}
|
|
while (s < send && isDIGIT(*s))
|
|
exponent = exponent * 10 + (*s++ - '0');
|
|
if (expnegative)
|
|
exponent = -exponent;
|
|
}
|
|
|
|
/* now apply the exponent */
|
|
|
|
if (seen_dp) {
|
|
result[2] = S_mulexp10(result[0],exponent+exp_adjust[0])
|
|
+ S_mulexp10(result[1],exponent-exp_adjust[1]);
|
|
} else {
|
|
result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]);
|
|
}
|
|
|
|
/* now apply the sign */
|
|
if (negative)
|
|
result[2] = -result[2];
|
|
#endif /* USE_PERL_ATOF */
|
|
*value = result[2];
|
|
return (char *)s;
|
|
}
|
|
|
|
/*
|
|
=for apidoc isinfnan
|
|
|
|
C<Perl_isinfnan()> is utility function that returns true if the NV
|
|
argument is either an infinity or a C<NaN>, false otherwise. To test
|
|
in more detail, use C<Perl_isinf()> and C<Perl_isnan()>.
|
|
|
|
This is also the logical inverse of Perl_isfinite().
|
|
|
|
=cut
|
|
*/
|
|
bool
|
|
Perl_isinfnan(NV nv)
|
|
{
|
|
PERL_UNUSED_ARG(nv);
|
|
#ifdef Perl_isinf
|
|
if (Perl_isinf(nv))
|
|
return TRUE;
|
|
#endif
|
|
#ifdef Perl_isnan
|
|
if (Perl_isnan(nv))
|
|
return TRUE;
|
|
#endif
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
=for apidoc
|
|
|
|
Checks whether the argument would be either an infinity or C<NaN> when used
|
|
as a number, but is careful not to trigger non-numeric or uninitialized
|
|
warnings. it assumes the caller has done C<SvGETMAGIC(sv)> already.
|
|
|
|
=cut
|
|
*/
|
|
|
|
bool
|
|
Perl_isinfnansv(pTHX_ SV *sv)
|
|
{
|
|
PERL_ARGS_ASSERT_ISINFNANSV;
|
|
if (!SvOK(sv))
|
|
return FALSE;
|
|
if (SvNOKp(sv))
|
|
return Perl_isinfnan(SvNVX(sv));
|
|
if (SvIOKp(sv))
|
|
return FALSE;
|
|
{
|
|
STRLEN len;
|
|
const char *s = SvPV_nomg_const(sv, len);
|
|
return cBOOL(grok_infnan(&s, s+len));
|
|
}
|
|
}
|
|
|
|
#ifndef HAS_MODFL
|
|
/* C99 has truncl, pre-C99 Solaris had aintl. We can use either with
|
|
* copysignl to emulate modfl, which is in some platforms missing or
|
|
* broken. */
|
|
# if defined(HAS_TRUNCL) && defined(HAS_COPYSIGNL)
|
|
long double
|
|
Perl_my_modfl(long double x, long double *ip)
|
|
{
|
|
*ip = truncl(x);
|
|
return (x == *ip ? copysignl(0.0L, x) : x - *ip);
|
|
}
|
|
# elif defined(HAS_AINTL) && defined(HAS_COPYSIGNL)
|
|
long double
|
|
Perl_my_modfl(long double x, long double *ip)
|
|
{
|
|
*ip = aintl(x);
|
|
return (x == *ip ? copysignl(0.0L, x) : x - *ip);
|
|
}
|
|
# endif
|
|
#endif
|
|
|
|
/* Similarly, with ilogbl and scalbnl we can emulate frexpl. */
|
|
#if ! defined(HAS_FREXPL) && defined(HAS_ILOGBL) && defined(HAS_SCALBNL)
|
|
long double
|
|
Perl_my_frexpl(long double x, int *e) {
|
|
*e = x == 0.0L ? 0 : ilogbl(x) + 1;
|
|
return (scalbnl(x, -*e));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
=for apidoc Perl_signbit
|
|
|
|
Return a non-zero integer if the sign bit on an NV is set, and 0 if
|
|
it is not.
|
|
|
|
If F<Configure> detects this system has a C<signbit()> that will work with
|
|
our NVs, then we just use it via the C<#define> in F<perl.h>. Otherwise,
|
|
fall back on this implementation. The main use of this function
|
|
is catching C<-0.0>.
|
|
|
|
C<Configure> notes: This function is called C<'Perl_signbit'> instead of a
|
|
plain C<'signbit'> because it is easy to imagine a system having a C<signbit()>
|
|
function or macro that doesn't happen to work with our particular choice
|
|
of NVs. We shouldn't just re-C<#define> C<signbit> as C<Perl_signbit> and expect
|
|
the standard system headers to be happy. Also, this is a no-context
|
|
function (no C<pTHX_>) because C<Perl_signbit()> is usually re-C<#defined> in
|
|
F<perl.h> as a simple macro call to the system's C<signbit()>.
|
|
Users should just always call C<Perl_signbit()>.
|
|
|
|
=cut
|
|
*/
|
|
#if !defined(HAS_SIGNBIT)
|
|
int
|
|
Perl_signbit(NV x) {
|
|
# ifdef Perl_fp_class_nzero
|
|
return Perl_fp_class_nzero(x);
|
|
/* Try finding the high byte, and assume it's highest bit
|
|
* is the sign. This assumption is probably wrong somewhere. */
|
|
# elif defined(USE_LONG_DOUBLE) && LONG_DOUBLEKIND == LONG_DOUBLE_IS_X86_80_BIT_LITTLE_ENDIAN
|
|
return (((unsigned char *)&x)[9] & 0x80);
|
|
# elif defined(NV_LITTLE_ENDIAN)
|
|
/* Note that NVSIZE is sizeof(NV), which would make the below be
|
|
* wrong if the end bytes are unused, which happens with the x86
|
|
* 80-bit long doubles, which is why take care of that above. */
|
|
return (((unsigned char *)&x)[NVSIZE - 1] & 0x80);
|
|
# elif defined(NV_BIG_ENDIAN)
|
|
return (((unsigned char *)&x)[0] & 0x80);
|
|
# else
|
|
/* This last resort fallback is wrong for the negative zero. */
|
|
return (x < 0.0) ? 1 : 0;
|
|
# endif
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* ex: set ts=8 sts=4 sw=4 et:
|
|
*/
|