
The handbook of gStore System��

Edited by gStore team 1

March 26, 2017

1The mailing list is given in Chapter 12.

Contents

Preface 6

I Start 8
Chapter 00: A Quick Tour . 8

Getting Started . 8

Advanced Help . 9

Other Business . 9

Chapter 01: System Requirements 11

Chapter 02: Basic Introduction . 13

What Is gStore . 13

Why gStore . 13

Open Source . 14

Chapter 03: Install Guide . 15

Chapter 04: How To Use . 16

0. gconsole . 16

1. gbuild . 19

2. gquery . 19

3. gserver . 21

4. gclient . 22

5. test utilities . 23

II Advanced 25
Chapter 05: API Explanation . 25

Easy Examples . 25

API structure . 26

1

C++ API . 27

Interface . 28

Compile . 29

Java API . 30

Interface . 30

Compile . 31

PHP API . 32

Interface . 32

Run . 33

Python API . 33

Interface . 33

Run . 35

Chapter 06: Use gStore in Web . 36

Example . 36

Chapter 07: Project Structure . 41

The core source codes are listed below: 41

The parser part is listed below: 43

The utilities are listed below: 44

The interface part is listed below: 44

More details . 45

Others . 46

Chapter 08: Publications . 48

Publications related with gStore are listed here: 48

Chapter 09: Limitations . 49

Chapter 10: Frequently Asked Questions 50

When I use the newer gStore system to query the orig-
inal database, why error? 50

2

Why error when I try to write programs based on
gStore, just like the Main/gconsole.cpp? . . . 50

Why does gStore report “garbage collection failed” er-
ror when I use the Java API? 50

When I compile the code in ArchLinux, why the error
that “no -ltermcap” is reported? 50

Why does gStore report errors that the format of some
RDF datasets are not supported? 50

When I read on GitHub, why are some documents
unable to be opened? 51

Why sometimes strange characters appear when I use
gStore? . 51

In centos7, if the watdiv.db(a generated database af-
ter gbuild) is copied or compressed/uncom-
pressed, the size of watdiv.db will be differ-
ent(generally increasing) if using du -h com-
mand to check? 51

In gclient console, a database is built, queried,
and then I quit the console. Next time
I enter the console, load the originally
imported database, but no output for any
queries(originally the output is not empty)? . 52

If query results contain null value, how can I use the
full_test utility? Tab separated method will
cause problem here because null value cannot
be checked! 52

When I compile and run the API examples, it reports
the “unable to connect to server” error? . . . 52

When I use the Java API to write my own program,
it reports “not found main class” error? . . . 52

3

Chapter 11: Recipe Book . 53

III Others 54
Chapter 12: Contributors . 54

Faculty . 54

Students . 54

Alumni . 55

Chapter 13: Updated Logs . 56

Jan 10, 2017 . 56

Sep 15, 2016 . 56

Jun 20, 2016 . 56

Apr 01, 2016 . 57

Nov 06, 2015 . 57

Oct 20, 2015 . 58

Sep 25, 2015 . 58

Feb 2, 2015 . 58

Dec 11, 2014 . 59

Nov 20, 2014 . 59

Chapter 14: Test Result . 60

Preparation . 60

Result . 60

Chapter 15: Future Plan . 64

Improve The Core . 64

Better The Interface . 64

Idea Collection Box . 64

Chapter 16: Thanks List . 66

4

GitHub user zhangxiaoyang
https://github.com/zhangxiaoyang
1. add python api
2. fix logger message 66

Chapter 17: Legal Issues . 67

End 69

5

Preface

The RDF (Resource Description Framework) is a family of specifications
proposed by W3C for modeling Web objects as part of developing the
semantic web. In RDF model, each Web object is modeled as a uniquely
named resource and denoted by a URI (Uniform Resource Identifier). RDF
also uses URIs to name the properties of resources and the relationships
between resources as well as the two ends of the link (this is usually referred
to as a “triple”). Hence, an RDF dataset can be represented as a directed,
labeled graph where resources are vertices, and triples are edges with
property or relationship names as edge labels. For more details, please go to
RDF Introduction

To retrieve and manipulate an RDF graph, W3C also proposes a structured
query language, SPARQL (Simple Protocol And RDF Query Language), to
access RDF repository. SPARQL contains capabilities for querying required
and optional graph patterns along with their conjunctions and disjunctions.
SPARQL also supports aggregation, subqueries, negation, creating values
by expressions, extensible value testing, and constraining queries by source
RDF graph. Similar to RDF graphs, a SPARQL query can also be modeled
as a graph, which is a query graph with some variables. Then, evaluating a
SPARQL query is equivalent to finding subgraph (homomorphism) matches
of a query graph over an RDF graph. You can have a better understanding
of SPARQL at SPARQL Introduction.

Although there are some RDF data management systems (like Jena, Virtu-
oso, Sesame) that store the RDF data in relational systems, few existing
systems exploit the native graph pattern matching semantics of SPARQL.
Here, we implement a graph-based RDF triple store named gStore,
which is a joint research project by Peking University, University
of Waterloo and Hong Kong University of Science and Technology.

6

https://www.w3.org/RDF/
https://www.w3.org/TR/sparql11-query/

The system is developed and maintained by the database group in
Institute of Computer Science and Technology, Peking University,
China. A detailed description of gStore can be found at our papers [Zou
et al., VLDB 11] and [Zou et al., VLDB Journal 14] in the Publication
chapter. This HELP document includes system installment, usage, API, use
cases and FAQ. gStore is a open-source project in github under the BSD
license. You are welcome to use gStore, report bugs or suggestions, or join
us to make gStore better. It is also allowed for you to build all kinds of
applications based on gStore, while respecting our work.

Please make sure that you have read Legal Issues before using
gStore.

7

Part I

Start
Chapter 00: A Quick Tour

Gstore System(also called gStore) is a graph database engine for managing
large graph-structured data, which is open-source and targets at Linux oper-
ation systems. The whole project is written in C++, with the help of some
libraries such as readline, antlr, and so on. Only source tarballs are provided
currently, which means you have to compile the source code if you want to
use our system.

Getting Started

This system is really user-friendly and you can pick it up in several minutes.
Remember to check your platform where you want to run this system by
viewing System Requirements. After all are verified, please get this project’s
source code. There are several ways to do this:

• download the zip from this repository and extract it

• fork this repository in your github account

• type git clone git@github.com:Caesar11/gStore.git in your ter-
minal or use git GUI to acquire it

Then you need to compile the project, just type make in the gStore root
directory, and all executables will be ok. To run gStore, please type
bin/gbuild database_name dataset_path to build a database named
by yourself. And you can use bin/gquery database_name command to
query a existing database. What is more, bin/gconsole is a wonderful tool
designed for you, providing all operations you need to use gStore. Notice
that all commands should be typed in the root directory of gStore.

8

A detailed description can be found at Chapter 04 How to use in this docu-
ment.

Advanced Help

If you want to understand the details of the gStore system, or you want to try
some advanced operations(for example, using the API, server/client), please
see the chapters below.

• Basic Introduction: introduce the theory and features of gStore

• Install Guide: instructions on how to install this system

• How To Use: detailed information about using the gStore system

• API Explanation: guide you to develop applications based on our API

• Project Structure: show the whole structure and sequence of this
project

• Publications: contain essays and publications related with gStore

• Update Logs: keep the logs of the system updates

• Test Result: present the test results of a series of experiments

Other Business

We have written a series of short essays addressing recurring challenges in
using gStore to realize applications, which are placed in Recipe Book.

You are welcome to report any advice or errors in the github Issues part of
this repository, if not requiring in-time reply. However, if you want to urgent
on us to deal with your reports, please email to to submit your suggestions
and report bugs to us by emailing to . A full list of our whole team is in
Contributors.

9

There are some restrictions when you use the current gStore project, you can
see them on Limitations.

Sometimes you may find some strange phenomena(but not wrong case), or
something hard to understand/solve(don’t know how to do next), then do
not hesitate to visit the Frequently Asked Questions page.

Graph database engine is a new area and we are still trying to go further.
Things we plan to do next is in Future Plan chapter, and we hope more and
more people will support or even join us. You can support in many ways:

• watch/star our project

• fork this repository and submit pull requests to us

• download and use this system, report bugs or suggestions

• …

People who inspire us or contribute to this project will be listed in the Thanks
List chapter.

10

Chapter 01: System Requirements

We have tested on linux server with CentOS 6.2 x86_64 and CentOS 6.6
x86_64. The version of GCC should be 4.4.7 or later.

Item Requirement

operation system Linux, such as CentOS, Ubuntu and so on
architecture x86_64
disk size according to size of dataset
memory size according to size of dataset
glibc version >= 2.14
gcc version >= 4.4.7
g++ version >= 4.4.7
make need to be installed
readline need to be installed
readline-devel need to be installed
openjdk needed if using Java api
openjdk-devel needed if using Java api
realpath needed if using gconsole
ccache optional, used to speed up the compilation

Table 1: software requirement

NOTICE:

1. The name of some packages may be different in different platforms, just
install the corresponding one in your own operation system.

2. To install readline and readline-devel, just type dnf install
readline-devel in Redhat/CentOS/Fedora, or apt-get install
libreadline-dev in Debian/Ubuntu. Please use corresponding
commands in other systems. If you use ArchLinux, just type pacman

11

-S readline to install the readline and readline-devel.(so do other
packages)

3. You do not have to install realpath to use gStore, but if you want to
use the gconsole for its convenience, please do so by using dnf install
realpath or apt-get install realpath.

4. Our programs use regEx functions, which are provided by GNU/Linux
by default. You do not need to have to install boost and boost-devel
for more powerful regEx libraries.

5. ANTLR3.4 is used in gStore to produce lexer and parser code for
SPARQL query. However, you do not need to install the corresponding
antlr libraries because we have merged the libantlr3.4 in our system.

6. When you type make in the root directory of the gStore project, the
Java api will also be compiled. You can modify the makefile if you
do not have JDK in your system. However, you are advised to install
openjdk-devel in your Linux system.

7. To install ccache, you need to add epel repository if using CentOS,
while in Ubuntu you can directly install it by ’apt-get install ccache’
comand. If you can not install ccahe(or maybe you do not want to),
please go to modify the makefile(just change the CC variable to g++).

8. Any other questions, please go to FAQ page.

12

Chapter 02: Basic Introduction

The first essay to come up with Gstore System is gStore_VLDBJ, and you
can find related publications in Publications.

What Is gStore

gStore is a graph-based RDF data management system(or what is commonly
called a “triple store”) that maintains the graph structure of the original
RDF data. Its data model is a labeled, directed multi edge graph, where
each vertex corresponds to a subject or an object.

We represent a given SPARQL query by a query graph Q. Query processing
involves finding subgraph matches of Q over the RDF graph G, instead of
joining tables in relational data management system. gStore incorporates an
index over the RDF graph (called VS-tree) to speed up query processing. VS-
tree is a height balanced tree with a number of associated pruning techniques
to speed up subgraph matching.

The gStore project is supported by the National Science Founda-
tion of China (NSFC), Natural Sciences and Engineering Research
Council (NSERC) of Canada, and Hong Kong RGC.

Why gStore

After a series of test, we analyse and keep the result in Test Results. gStore
runs faster to answer complicated queries(for example, contain circles) than
other database systems. For simple queries, both gStore and other database
systems work well.

In addition, now is the big data era and more and more structured data is
coming, while the original relational database systems(or database systems
based on relational tables) cannot deal with them efficiently. In contrast,
gStore can utilize the features of graph data structures, and improve the
performance.

13

http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/sparql11-overview/

What is more, gStore is a high-extensible project. Many new ideas of graph
database have be proposed, and most of them can be used in gStore. For
example, our group is also designing a distributed gstore system, which is
expected to be released at the end of 2016.

Open Source

The gStore source code is available as open-source code under the BSD license.
You are welcome to use gStore, report bugs or suggestions, or join us to make
gStore better. It is also allowed for you to build all kinds of applications based
on gStore, while respecting our work.

14

Chapter 03: Install Guide

You are advised to read init.conf file, and modify it as you wish. (this file
will configure the basic options of gStore system)

gStore is a green software, and you just need to compile it with one command.
Please run make in the gStore root directory to compile the gStore code,
link the ANTLR lib, and build executable “gbuild”, “gquery”, “gserver”,
“gclient”, “gconsole”. What is more, the api of gStore is also built now.

If you want to use API examples of gStore, please run make APIexample to
compile example codes for both C++ API and Java API. For details of API,
please visit API chapter.

Use make clean command to clean all objects, executables, and use make
dist command to clean all objects, executables, libs, datasets, databases,
debug logs, temp/text files in the gStore root directory.

You are free to modify the source code of gStore and create your own project
while respecting our work, and type make tarball command to compress
all useful files into a .tar.gz file, which is easy to carry.

Type make gtest to compile the gtest program if you want to use this test
utility. You can see the HOW TO USE for details of gtest program.

15

Chapter 04: How To Use

gStore currently includes five executables and others.

All the commands of gStore should be used in the root directory
of gStore like bin/gconsole, because executables are placed in bin/,
and they may use some files whose paths are indicated in the code,
not absolute paths. We will ensure that all paths are absolute later
by asking users to give the absolute path in their own systems to
really install/configure the gStore. However, you must do as we
told now to avoid errors.

0. gconsole gconsole is the main console of gStore, which integrates with
all functions to operate on gStore, as well as some system commands. Com-
pletion of commands name, line editing features and access to the history
list are all provided. Feel free to try it, and you may have a wonderful
tour!(spaces or tabs at the beginning or end is ok, and no need to type any
special characters as separators)

[bookug@localhost gStore]$ bin/gconsole
Gstore Console(gconsole), an interactive shell based utility to communicate with
gStore repositories.
usage: start-gconsole [OPTION]
-h,--help print this help
-s,--source source the SPARQL script
For bug reports and suggestions, see https://github.com/Caesar11/gStore

notice that commands are a little different between native mode and remote mode!
now is in native mode, please type your commands.
please do not use any separators in the end.

gstore>help

16

gstore>help drop
drop Drop a database according to the given path.

gstore>connect 127.0.0.1 3305
now is in remote mode, please type your commands.

server>disconnect
now is in native mode, please type your commands.

gstore>build lubm_10 ./data/LUBM_10.n3
...
import RDF file to database done.

gstore>unload

gstore>load lubm_10
...
database loaded successfully!

gstore>show
lubm_10

gstore>query ./data/LUBM_q0.sql
...
final result is :
?x
<http://www.Department0.University0.edu/FullProfessor0>
<http://www.Department1.University0.edu/FullProfessor0>
<http://www.Department2.University0.edu/FullProfessor0>
<http://www.Department3.University0.edu/FullProfessor0>
<http://www.Department4.University0.edu/FullProfessor0>

17

<http://www.Department5.University0.edu/FullProfessor0>
<http://www.Department6.University0.edu/FullProfessor0>
<http://www.Department7.University0.edu/FullProfessor0>
<http://www.Department8.University0.edu/FullProfessor0>
<http://www.Department9.University0.edu/FullProfessor0>
<http://www.Department10.University0.edu/FullProfessor0>
<http://www.Department11.University0.edu/FullProfessor0>
<http://www.Department12.University0.edu/FullProfessor0>
<http://www.Department13.University0.edu/FullProfessor0>
<http://www.Department14.University0.edu/FullProfessor0>

gstore>query "select distinct ?x ?y where { ?x <rdf:type>
<ub:UndergraduateStudent> .
?x <ub:takesCourse> ?y . ?y <ub:name> <FullProfessor1> . }"
final result is :
?x ?y
[empty result]

gstore>unload

gstore>quit

Just type bin/gconsole in the root directory of gStore to use this console,
and you will find a gstore> prompt, which indicates that you are in native
mode and can type in native commands now. There are another mode of
this console, which is called remote mode. Just type connect in the native
mode to enter the remote mode, and type disconnect to exit to native
mode.(the console connect to a gStore server whose ip is ‘127.0.0.1’ and
port is 3305, you can specify them by type connect gStore_server_ip
gStore_server_port)

You can use help or ? either in native mode or remote mode to see the help
information, or you can type help command_name or ? command_name to see

18

the information of a given command. Notice that there are some differences
between the commands in native mode and commands in remote mode. For
example, system commands like ls, cd and pwd are provided in native mode,
but not in remote mode. Also take care that not all commands contained in
the help page are totally achieved, and we may change some functions of the
console in the future.

What we have done is enough to bring you much convenience to use gStore,
just enjoy it!

1. gbuild gbuild is used to build a new database from a RDF triple format
file.

bin/gbuild db_name rdf_triple_file_path

For example, we build a database from LUBM_10.n3 which can be found in
example folder.

[bookug@localhost gStore]$ bin/gbuild LUBM10 ./data/LUBM_10.n3
gbuild...
argc: 3 DB_store:LUBM10 RDF_data: ./data/LUBM_10.n3
begin encode RDF from : ./data/LUBM_10.n3 ...

2. gquery gquery is used to query an existing database with files contain-
ing SPARQL queries.(each file contains exact one SPARQL query)

Type bin/gquery db_name query_file to execute the SPARQL query re-
trieved from query_file in the database named db_name.

Use bin/gquery --help for detail information of gquery usage.

To enter the gquery console, type bin/gquery db_name. The program shows
a command prompt(“gsql>”), and you can type in a command here. Use
help to see basic information of all commands, while help command_t shows
details of a specified command.

Type quit to leave the gquery console.

19

For sparql command, input a file path which contains a single SPARQL
query. (answer redirecting to file is supported)

When the program finish answering the query, it shows the command prompt
again.

gStore2.0 only support simple “select” queries(not for predicates) now.

We also take LUBM_10.n3 as an example.

[bookug@localhost gStore]$ bin/gquery LUBM10
gquery...
argc: 2 DB_store:LUBM10/
loadTree...
LRUCache initial...
LRUCache initial finish
finish loadCache
finish loadEntityID2FileLineMap
open KVstore
finish load
finish loading
Type `help` for information of all commands
Type `help command_t` for detail of command_t
gsql>sparql ./data/LUBM_q0.sql
... ...
Total time used: 4ms.
final result is :
<http://www.Department0.University0.edu/FullProfessor0>
<http://www.Department1.University0.edu/FullProfessor0>
<http://www.Department2.University0.edu/FullProfessor0>
<http://www.Department3.University0.edu/FullProfessor0>
<http://www.Department4.University0.edu/FullProfessor0>
<http://www.Department5.University0.edu/FullProfessor0>
<http://www.Department6.University0.edu/FullProfessor0>

20

<http://www.Department7.University0.edu/FullProfessor0>
<http://www.Department8.University0.edu/FullProfessor0>
<http://www.Department9.University0.edu/FullProfessor0>
<http://www.Department10.University0.edu/FullProfessor0>
<http://www.Department11.University0.edu/FullProfessor0>
<http://www.Department12.University0.edu/FullProfessor0>
<http://www.Department13.University0.edu/FullProfessor0>
<http://www.Department14.University0.edu/FullProfessor0>

Notice:

• “[empty result]” will be printed if no answer, and there is an empty line
after all results.

• readline lib is used, so you can use arrow key in your keyboard to see
command history, and use and arrow key to move and modify your
entire command.

• path completion is supported for utility. (not built-in command com-
pletion)

3. gserver gserver is a daemon. It should be launched first when accessing
gStore by gclient or API. It communicates with client through socket.

[bookug@localhost gStore]$ bin/gserver -s
Server started at port 3305

[bookug@localhost gStore]$ bin/gserver -t
Server stopped at port 3305

You can also assign a custom port for listening.

[bookug@localhost gStore]$ bin/gserver -p 3307
Port changed to 3307.

21

Notice: Multiple threads are not supported by gserver. If you start up gclient
in more than one terminal in the same time, gserver will go down.

4. gclient gclient is designed as a client to send commands and receive
feedbacks.

[bookug@localhost gStore]$ bin/gclient
ip=127.0.0.1 port=3305
gsql>help
help - print commands message
quit - quit the console normally
import - build a database for a given dataset
load - load an existen database
unload - unload an existen database
sparql - load query from the second argument
show - show the current database's name
gsql>import lubm data/LUBM_10.n3
import RDF file to database done.
gsql>load lubm
load database done.
gsql>sparql "select ?s ?o where { ?s <rdf:type> ?o . }"
[empty result]

gsql>quit

You can also assign gserver’s ip and port.

[bookug@localhost gStore]$ bin/gclient 172.31.19.15 3307
ip=172.31.19.15 port=3307
gsql>

We can use these following commands now:

22

• help shows the information of all commands

• import db_name rdf_triple_file_name build a database from RDF
triple file

• load db_name load an existing database

• unload db_name unload database, but will not delete it on disk, you
can load it next time

• sparql "query_string" query the current database with a SPARQL
query string(quoted by “”)

• show displays the name of the current loaded database

Notice:

• at most one database can be loaded in the gclient console

• you can place ‘ ’ or ‘\t’ between different parts of command, but not
use characters like ‘;’

• you should not place any space or tab ahead of the start of any com-
mand

5. test utilities A series of test program are placed in the test/ folder,
and we will introduce the two useful ones: gtest.cpp and full_test.sh

gtest is used to test gStore with multiple datasets and queries.

To use gtest utility, please type make gtest to compile the gtest program
first. Program gtest is a test tool to generate structural logs for datasets.
Please type ./gtest --help in the working directory for details.

Please change paths in the test/gtest.cpp if needed.

You should place the datasets and queries in this way:

23

DIR/WatDiv/database/*.nt

DIR/WatDiv/query/*.sql

Notice that DIR is the root directory where you place all datasets waiting
to be used by gtest. And WatDiv is a class of datasets, as well as LUBM.
Inside WatDiv(or LUBM, etc. please place all datasets(named with .nt) in
a database/ folder, and place all queries(corresponding to datasets, named
with .sql) in a query folder.

Then you can run the gtest program with specified parameters, and the
output will be sorted into three logs in gStore root directory: load.log/(for
database loading time and size), time.log/(for query time) and result.log/(for
all query results, not the entire output strings, but the information to record
the selected two database systems matched or not).

All logs produced by this program are in TSV format(separated with ‘\t’),
you can load them into Calc/Excel/Gnumeric directly. Notice that time unit
is ms, and space unit is kb.

full_test.sh is used to compare the performance of gStore and other
database systems on multiple datasets and queries.

To use full_test.sh utility, please download the database system which you
want to tats and compare, and set the exact position of database systems
and datasets in this script. The name strategy should be the same as the
requirements of gtest, as well as the logs strategy.

Only gStore and Jena are tested and compared in this script, but it is easy to
add other database systems, if you would like to spend some time on reading
this script. You may go to test report or Frequently Asked Questions for
help if you encounter a problem.

24

Part II

Advanced
Chapter 05: API Explanation

This Chapter guides you to use our API for accessing gStore.

Easy Examples

We provide JAVA, C++, PHP and Python API for gStore now. Please refer
to example codes in api/cpp/example, api/java/example, api/php and
api/python/example. To use the four examples to have a try, please ensure
that executables have already been generated. Otherwise, for Java and C++,
just type make APIexample in the root directory of gStore to compile the
codes, as well as API.

Next, start up a gStore server by using ./gserver command. It is ok
if you know a running usable gStore server and try to connect to it, but notice
that the server ip and port of server and client must be matched.(you
don’t need to change any thing if using examples, just by default) Then, for
Java and C++ code, you need to compile the example codes in the directory
gStore/api/. We provide a utility to do this, and you just need to type
make APIexample in the root directory of gStore. Or you can compile the
codes by yourself, in this case please go to gStore/api/cpp/example/ and
gStore/api/java/example/, respectively.

Finally, go to the example directory and run the corresponding executables.
For C++, just use ./example command to run it. And for Java, use make
run command or java -cp ../lib/GstoreJavaAPI.jar:. JavaAPIExample
to run it. For PHP, use php ./PHPAPIExample. For python, use python
./PythonAPIExample. All these four executables will connect to a specified
gStore server and do some load or query operations. Be sure that you see the

25

query results in the terminal where you run the examples, otherwise please go
to Frequently Asked Questions for help or report it to us.(the report approach
is described in README)

You are advised to read the example code carefully, as well as the correspond-
ing Makefile. This will help you to understand the API, specially if you want
to write your own programs based on the API interface.

API structure

The API of gStore is placed in api/ directory in the root directory of gStore,
whose contents are listed below:

• gStore/api/

– cpp/ (the C++ API)

* src/ (source code of C++ API, used to build the lib/libgstore-
connector.a)

· GstoreConnector.cpp (interfaces to interact with gStore
server)

· GstoreConnector.h

· Makefile (compile and build lib)

* lib/ (where the static lib lies in)

· .gitignore

· libgstoreconnector.a (only exist after compiled, you need
to link this lib when you use the C++ API)

* example/ (small example program to show the basic idea of
using the C++ API)

· CppAPIExample.cpp

· Makefile

– java/ (the Java API)

26

* src/ (source code of Java API, used to build the lib/Gstore-
JavaAPI.jar)

· jgsc/GstoreConnector.java (the package which you need
to import when you use the Java API)

· Makefile (compile and build lib)

* lib/

· .gitignore

· GstoreJavaAPI.jar (only exist after compiled, you need to
include this JAR in your class path)

* example/ (small example program to show the basic idea of
using the Java API)

· JavaAPIExample.cpp

· Makefile

– php/ (the PHP API)

* GstoreConnector.php (source code of PHP API, you need to
include this file when you use the PHP API)

* PHPAPIExample.php (small example program to show the
basic idea of using the PHP API)

– python/ (the Python API)

* src/ (source code of Python API)

· GstoreConnector.py (the package which you need to im-
port when you use the Python API)

* example/ (small example program to show the basic idea of
using the Python API)

· PythonAPIExample.py

C++ API

27

Interface To use the C++ API, please place the phrase #include
"GstoreConnector.h" in your cpp code. Functions in GstoreConnector.h
should be called like below:

// initialize the Gstore server's IP address and port.
GstoreConnector gc("127.0.0.1", 3305);
// build a new database by a RDF file.
// note that the relative path is related to gserver.
gc.build("LUBM10", "example/LUBM_10.n3");
// then you can execute SPARQL query on this database.
std::string sparql = "select ?x where \
{\
?x <rdf:type> <ub:UndergraduateStudent>. \
?y <ub:name> <Course1>. \
?x <ub:takesCourse> ?y. \
?z <ub:teacherOf> ?y. \
?z <ub:name> <FullProfessor1>. \
?z <ub:worksFor> ?w. \
?w <ub:name> <Department0>. \
}";
std::string answer = gc.query(sparql);
// unload this database.
gc.unload("LUBM10");
// also, you can load some exist database directly and then query.
gc.load("LUBM10");
// query a SPARQL in current database
answer = gc.query(sparql);

The original declaration of these functions are as below:

GstoreConnector();
GstoreConnector(string _ip, unsigned short _port);

28

GstoreConnector(unsigned short _port);
bool load(string _db_name);
bool unload(string _db_name);
bool build(string _db_name, string _rdf_file_path);
string query(string _sparql);

Notice:

1. When using GstoreConnector(), the default value for ip and port is
127.0.0.1 and 3305, respectively.

2. When using build(), the rdf_file_path(the second parameter) should
be related to the position where gserver lies in.

3. Please remember to unload the database you have loaded, otherwise
things may go wrong.(the errors may not be reported!)

Compile You are advised to see gStore/api/cpp/example/Makefile for in-
structions on how to compile your code with the C++ API. Generally, what
you must do is compile your own code to object with header in the C++ API,
and link the object with static lib in the C++ API.

Let us assume that your source code is placed in test.cpp, whose position
is ${GSTORE}/gStore/.(if using devGstore as name instead of gStore, then
the path is ${GSTORE}/devGstore/ directory first:

Use g++ -c -I${GSTORE}/gStore/api/cpp/src/ test.cpp -o
test.o to compile your test.cpp into test.o, relative API header
is placed in api/cpp/src/.

Use g++ -o test test.o -L${GSTORE}/gStore/api/cpp/lib/
-lgstoreconnector to link your test.o with the libgstoreconnec-
tor.a(a static lib) in api/cpp/lib/.

29

Then you can type ./test to execute your own program, which uses our
C++ API. It is also advised for you to place relative compile commands in
a Makefile, as well as other commands if you like.

Java API

Interface To use the Java API, please place the phrase import
jgsc.GstoreConnector; in your java code. Functions in GstoreCon-
nector.java should be called like below:

// initialize the Gstore server's IP address and port.
GstoreConnector gc = new GstoreConnector("127.0.0.1", 3305);
// build a new database by a RDF file.
// note that the relative path is related to gserver.
gc.build("LUBM10", "example/LUBM_10.n3");
// then you can execute SPARQL query on this database.
String sparql = "select ?x where " + "{" +
"?x <rdf:type> <ub:UndergraduateStudent>. " +
"?y <ub:name> <Course1>. " +
"?x <ub:takesCourse> ?y. " +
"?z <ub:teacherOf> ?y. " +
"?z <ub:name> <FullProfessor1>. " +
"?z <ub:worksFor> ?w. " +
"?w <ub:name> <Department0>. " +
"}";
String answer = gc.query(sparql);
//unload this database.
gc.unload("LUBM10");
//also, you can load some exist database directly and then query.
gc.load("LUBM10");// query a SPARQL in current database
answer = gc.query(sparql);

The original declaration of these functions are as below:

30

GstoreConnector();
GstoreConnector(string _ip, unsigned short _port);
GstoreConnector(unsigned short _port);
bool load(string _db_name);
bool unload(string _db_name);
bool build(string _db_name, string _rdf_file_path);
string query(string _sparql);

Notice:

1. When using GstoreConnector(), the default value for ip and port is
127.0.0.1 and 3305, respectively.

2. When using build(), the rdf_file_path(the second parameter) should
be related to the position where gserver lies in.

3. Please remember to unload the database you have loaded, otherwise
things may go wrong.(the errors may not be reported!)

Compile You are advised to see gStore/api/java/example/Makefile for in-
structions on how to compile your code with the Java API. Generally, what
you must do is compile your own code to object with jar file in the Java API.

Let us assume that your source code is placed in test.java, whose position
is ${GSTORE}/gStore/.(if using devGstore as name instead of gStore, then
the path is ${GSTORE}/devGstore/ directory first:

Use javac -cp ${GSTORE}/gStore/api/java/lib/GstoreJavaAPI.jar
test.java to compile your test.java into test.class with the
GstoreJavaAPI.jar(a jar package used in Java) in api/java/lib/.

Then you can type java -cp ${GSTORE}/gStore/api/java/lib/GstoreJavaAPI.jar:.
test to execute your own program(notice that the “:.” in command cannot
be neglected), which uses our Java API. It is also advised for you to place
relative compile commands in a Makefile, as well as other commands if you
like.

31

PHP API

Interface To use the PHP API, please place the phrase include('GstoreConnector,php');
in your php code. Functions in GstoreConnector.php should be called like
below:

// initialize the Gstore server's IP address and port.
$gc = new Connector("127.0.0.1", 3305);
// build a new database by a RDF file.
// note that the relative path is related to gserver.
$gc->build("LUBM10", "example/LUBM_10.n3");
// then you can execute SPARQL query on this database.
$sparql = "select ?x where " + "{" +
"?x <rdf:type> <ub:UndergraduateStudent>. " +
"?y <ub:name> <Course1>. " +
"?x <ub:takesCourse> ?y. " +
"?z <ub:teacherOf> ?y. " +
"?z <ub:name> <FullProfessor1>. " +
"?z <ub:worksFor> ?w. " +
"?w <ub:name> <Department0>. " +
"}";
$answer = gc->query($sparql);
//unload this database.
$gc->unload("LUBM10");
//also, you can load some exist database directly and then query.
$gc->load("LUBM10");// query a SPARQL in current database
$answer = gc->query(sparql);

The original declaration of these functions are as below:

class Connector {
public function __construct($host, $port);
public function send($data);

32

public function recv();
public function build($db_name, $rdf_file_path);
public function load($db_name);
public function unload($db_name);
public function query($sparql);
public function __destruct();
}

Notice:

1. When using Connector(), the default value for ip and port is 127.0.0.1
and 3305, respectively.

2. When using build(), the rdf_file_path(the second parameter) should
be related to the position where gserver lies in.

3. Please remember to unload the database you have loaded, otherwise
things may go wrong.(the errors may not be reported!)

Run You can see gStore/api/php/PHPAPIExample for instructions on how
to use PHP API. PHP script doesn’t need compiling. You can run PHP file
directly or use it in your web project.

Python API

Interface To use the Python API, please place the phrase from
GstoreConnector import GstoreConnector in your python code. Func-
tions in GstoreConnector.py should be called like below:

// initialize the Gstore server's IP address and port.
gc = GstoreConnector('127.0.0.1', 3305)
// build a new database by a RDF file.
// note that the relative path is related to gserver.

33

gc.build('LUBM10', 'data/LUBM_10.n3')
// then you can execute SPARQL query on this database.
$sparql = "select ?x where " + "{" +
"?x <rdf:type> <ub:UndergraduateStudent>. " +
"?y <ub:name> <Course1>. " +
"?x <ub:takesCourse> ?y. " +
"?z <ub:teacherOf> ?y. " +
"?z <ub:name> <FullProfessor1>. " +

"?z <ub:worksFor> ?w. " +
"?w <ub:name> <Department0>. " +
"}";
answer = gc.query(sparql)
//unload this database.
gc.unload('LUBM10')
//also, you can load some exist database directly and then query.
gc.load('LUBM10')// query a SPARQL in current database
answer = gc.query(sparql)

The original declaration of these functions are as below:

class GstoreConnector {
def _connect(self)
def _disconnect(self)
def _send(self, msg):
def _recv(self)
def _pack(self, msg):
def _communicate(f):
def __init__(self, ip='127.0.0.1', port=3305):
@_communicate

def test(self)
@_communicate

34

def load(self, db_name)
@_communicate
def unload(self, db_name)
@_communicate
def build(self, db_name, rdf_file_path)
@_communicate
def drop(self, db_name)
@_communicate
def stop(self)
@_communicate
def query(self, sparql)
@_communicate
def show(self, _type=False)
}

Notice:

1. When using GstoreConnector(), the default value for ip and port is
127.0.0.1 and 3305, respectively.

2. When using build(), the rdf_file_path(the second parameter) should
be related to the position where gserver lies in.

3. Please remember to unload the database you have loaded, otherwise
things may go wrong.(the errors may not be reported!)

Run You are advised to see gStore/api/python/example/PythonAPIEx-
ample for examples on how to use python API. Python file doesn’t need
compiling, and you can run it directly.

35

Chapter 06: Use gStore in Web

This Chapter provides a specific example on how to use our API
in a web project.

Example

Now you have the basic idea on how to use our APIs to connect gStore. Yet
you might be still a little confused. Here we provide a simple demo to show
you what to do explicitly.

Let’s say, you need to use gStore in a web project. PHP is a popular general-
purpose scripting language that is especially suited to web development. So,
using our PHP API can meet your requirements. Here is what we implement:
http://59.108.48.18/Gstore/form.php.

First, get your web server ready so it can run PHP files. We won’t give
detailed instructions on this step here. You can easily google it according to
your web server(for example, Apache or Nginx, etc.)

Next, go to your web document root(usually in /var/www/html or apache/ht-
docs, you can check it in config file), and create a folder named ”Gstore”.
Then copy the GstoreConnector.php file into it. Create a ”PHPAPI.php”
file. Edit it like below:

<?php

include('GstoreConnector.php');
$host = '127.0.0.1';
$port = 3305;
$dbname = $_POST["databasename"];
$sparql = $_POST["sparql"];
$format = $_POST["format"];
$load = new Connector($host, $port);
$load->load($dbname);

36

$query = new Connector($host, $port);
$result = $query->query($sparql);
switch ($format) {

case 1:
$array = explode("<", $result);

$html = '<html><table class="sparql" border="1"><tr><th>' .
$array[0] . "</th></tr>";

for ($i = 1; $i < count($array); $i++) {
$href = str_replace(">", "", $array[$i]);
$html.= '<tr><td>' .

$href . '</td></tr>';
}
$html.= '</table></html>';
echo $html;
exit;

case 2:
$filename = 'result.txt';
header("Content-Type: application/octet-stream");
header('Content-Disposition: attachment;

filename="' . $filename . '"');
echo $result;
exit;

case 3:
$filename = 'result.csv';
header("Content-Type: application/octet-stream");
header('Content-Disposition: attachment;

filename="' . $filename . '"');
$array = explode("<", $result);
echo $array[0];

37

for ($i = 1; $i < count($array); $i++) {
$href = str_replace(">", "", $array[$i]);
echo $href;

}
exit;

}
?>

This PHP file get three parametres from a website, including databasename,
sparql and output format. Then it use our PHP API to connect gStore and
run the query. Finally, the ”switch” part gives the output.

After that, we need a website to collect those imformation(databasename,
sparql and output format). We create a html file and use a form to do it,
just like below:

<form id="form_1145884" class="appnitro" method="post" action="PHPAPI.php">
<div class="form_description">

<h2>Gstore SPARQL Query Editor</h2>
<p></p>

</div>

<li id="li_1" >
<label class="description" for="element_1">
Database Name

</label>
<div>
<input id="element_1" name="databasename" class="element text medium"

type="text" maxlength="255" value="dbpedia_2014_reduce">
</input>

</div>

38

<li id="li_3">
<label class="description" for="element_3">Query Text </label>

<div>
<textarea id="element_3" name="sparql" class="element textarea large">

SELECT DISTINCT ?uri
WHERE {
?uri <type> <Astronaut> .

{ ?uri <nationality> <Russia> . }
UNION
{ ?uri <nationality> <Soviet_Union> . }
}

</textarea>
</div>

<li id="li_5" >
<label class="description" for="element_5">
Results Format

</label>
<div>
<select class="element select medium" id="element_5" name="format">

<option value="1" selected="ture">HTML</option>
<option value="2" >Text</option>
<option value="3" >CSV</option>

</select>
</div>

<li class="buttons">
<input type="hidden" name="form_id" value="1145884" />
<input id="saveForm" class="button_text" type="submit"
name="submit" value="Run Query" />

39

</form>

As you can see in the code, we use a <input> element to get the database-
name, and <texarea> for sparql, <select> for output format. <form> lable
has an attribute ”action” which specifies which file to execute. So, when you
click the ”submit” button, it will call PHPAPI.php file and post the values
from the form.

Finally, don’t forget to start gserver on your server.

40

Chapter 07: Project Structure

This chapter introduce the whole structure of the gStore system
project.

The core source codes are listed below:

• Database/ (calling other core parts to deal with requests from interface
part)

– Database.cpp (achieve functions)

– Database.h (class, members and functions definitions)

– Join.cpp (join the node candidates to get results)

– Join.h (class, members„ and functions definitions)

• KVstore/ (a key-value store to swap between memory and disk)

– KVstore.cpp (interact with upper layers)

– KVstore.h

– heap/ (a heap of nodes whose content are in memory)

* Heap.cpp

* Heap.h

– node/ (all kinds of nodes in B+-tree)

* Node.cpp (the base class of IntlNode and LeafNode)

* Node.h

* IntlNode.cpp (internal nodes in B+-tree)

* IntlNode.h

* LeafNode.cpp (leaf nodes in B+-tree)

* LeafNode.h

– storage/ (swap contents between memory and disk)

41

* file.h
* Storage.cpp
* Storage.h

– tree/ (implement all tree operations and interfaces)

* Tree.cpp
* Tree.h

• Query/ (needed to answer SPARQL query)

– BasicQuery.cpp (basic type of queries without aggregate opera-
tions)

– BasicQuery.h

– IDList.cpp (candidate list of a node/variable in query)

– IDList.h

– ResultSet.cpp (keep the result set corresponding to a query)

– ResultSet.h

– SPARQLquery.cpp (deal with a entire SPARQL query)

– SPARQLquery.h

– Varset.cpp

– Varset.h

– QueryTree.cpp

– QueryTree.h

– GeneralEvaluation.cpp

– GeneralEvaluation.h

– RegexExpression.h

• Signature/ (assign signatures for nodes and edges, but not for literals)

– SigEntry.cpp

42

– SigEntry.h

– Signature.cpp

– Signature.h

• VSTree/ (an tree index to prune more efficiently)

– EntryBuffer.cpp

– EntryBuffer.h

– LRUCache.cpp

– LRUCache.h

– VNode.cpp

– VNode.h

– VSTree.cpp

– VSTree.h

The parser part is listed below:

• Parser/

– DBParser.cpp

– DBParser.h

– RDFParser.cpp

– RDFParser.h

– SparqlParser.c (auto-generated, subtle modified manually, com-
pressed)

– SparqlParser.h (auto-generated, subtle modified manually, com-
pressed)

– SparqlLexer.c (auto-generated, subtle modified manually, com-
pressed)

43

– SparqlLexer.h (auto-generated, subtle modified manually, com-
pressed)

– TurtleParser.cpp

– TurtleParser.h

– Type.h

– QueryParser.cpp

– QueryParser.h

The utilities are listed below:

• Util/

– Util.cpp (headers, macros, typedefs, functions…)

– Util.h

– Bstr.cpp (represent strings of arbitrary length)

– Bstr.h (class, members and functions definitions)

– Stream.cpp (store and use temp results, which may be very large)

– Stream.h

– Triple.cpp (deal with triples, a triple can be divided as sub-
ject(entity), predicate(entity), object(entity or literal))

– Triple.h

– BloomFilter.cpp

– BloomFilter.h

The interface part is listed below:

• Server/ (client and server mode to use gStore)

– Client.cpp

44

– Client.h

– Operation.cpp

– Operation.h

– Server.cpp

– Server.h

– Socket.cpp

– Socket.h

• Main/ (a series of applications/main-program to operate on gStore)

– gbuild.cpp (import a RDF dataset)

– gquery.cpp (query a database)

– gserver.cpp (start up the gStore server)

– gclient.cpp (connect to a gStore server and interact)

More details To acquire a deep understanding of gStore codes, please go
to Code Detail. See use case to understand the design of use cases, and see
OOA and OOD for OOA design and OOD design, respectively.

If you want to know the sequence of a running gStore, please view the list
below:

• connect to server

• disconnect server

• load database

• unload database

• create database

• delete database

45

• connect to database

• disconnect database

• show databases

• SPARQL query

• import RDF dataset

• insert a triple

• delete a triple

• create account

• delete account

• modify account authority

• compulsively unload database

• see account authority

It is really not strange to see something different with the original design in
the source code. And some designed functions may have not be achieved so
far.

Others The api/ folder in gStore is used to store API program, libs and
examples, please go to API for details. And test/ is used to store a series test
programs or utilities, such as gtest, full_test and so on. Chapters related
with test/ are How To Use and Test Result. This project need an ANTLR
lib to parse the SPARQL query, whose code is placed in tools/(also archived
here) and the compiled libantlr.a is placed in lib/ directory.

We place some datasets and queries in data/ directory as examples, and you
can try them to see how gStore works. Related instructions are in How To
Use. The docs/ directory contains all kinds of documents of gStore, including

46

a series of markdown files and two folders, pdf/ and jpg/. Files whose type
is pdf are placed in pdf/ folder, while files with jpg type are placed in jpg/
folder.

You are advised to start from the README in the gStore root directory, and
visit other chapters only when needed. At last, you will see all documents
from link to link if you are really interested in gStore.

47

Chapter 08: Publications

Publications related with gStore are listed here:

• Lei Zou, M. Tamer Özsu,Lei Chen, Xuchuan Shen, Ruizhe Huang,
Dongyan Zhao, gStore: A Graph-based SPARQL Query Engine, VLDB
Journal , 23(4): 565-590, 2014.

• Lei Zou, Jinghui Mo, Lei Chen,M. Tamer Özsu, Dongyan Zhao, gStore:
Answering SPARQL Queries Via Subgraph Matching, Proc. VLDB
4(8): 482-493, 2011.

• Xuchuan Shen, Lei Zou, M. Tamer Özsu, Lei Chen, Youhuan Li, Shuo
Han, Dongyan Zhao, A Graph-based RDF Triple Store, ICDE 2015:
1508-1511.

• Peng Peng, Lei Zou, M. Tamer Özsu, Lei Chen, Dongyan Zhao: Pro-
cessing SPARQL queries over distributed RDF graphs. VLDB Journal
25(2): 243-268 (2016).

• Dong Wang, Lei Zou, Yansong Feng, Xuchuan Shen, Jilei Tian, and
Dongyan Zhao, S-store: An Engine for Large RDF Graph Integrat-
ing Spatial Information, in Proc. 18th International Conference on
Database Systems for Advanced Applications (DASFAA), pages 31-47,
2013.

• Dong Wang, Lei Zou and Dongyan Zhao, gst-Store: An Engine for
Large RDF Graph Integrating Spatiotemporal Information, in Proc.
17th International Conference on Extending Database Technology
(EDBT), pages 652-655, 2014 (demo).

• Lei Zou, Yueguo Chen, A Survey of Large-Scale RDF Data Manage-
ment, Comunications of CCCF Vol.8(11): 32-43, 2012 (Invited Paper,
in Chinese).

48

http://www.icst.pku.edu.cn/intro/leizou/projects/papers/gStoreVLDBJ.pdf
http://www.icst.pku.edu.cn/intro/leizou/projects/papers/p482-zou.pdf
http://www.icst.pku.edu.cn/intro/leizou/projects/papers/p482-zou.pdf
http://www.icst.pku.edu.cn/intro/leizou/projects/papers/demo.pdf
http://arxiv.org/pdf/1411.6763v4.pdf
http://arxiv.org/pdf/1411.6763v4.pdf
http://www.icst.pku.edu.cn/intro/leizou/projects/papers/Store.pdf
http://www.icst.pku.edu.cn/intro/leizou/projects/papers/Store.pdf
http://www.icst.pku.edu.cn/intro/leizou/projects/papers/edbtdemo2014.pdf
http://www.icst.pku.edu.cn/intro/leizou/projects/papers/edbtdemo2014.pdf
http://www.icst.pku.edu.cn/intro/leizou/documentation/pdf/2012CCCF.pdf
http://www.icst.pku.edu.cn/intro/leizou/documentation/pdf/2012CCCF.pdf

Chapter 09: Limitations

1. Queries related with unbounded predicates are not supported.

2. This version only supports SPARQL select query.

3. Only support RDF file in N3 file format. More file formats will be
supported in the next version.

49

Chapter 10: Frequently Asked Questions

When I use the newer gStore system to query the original database,
why error?
The database produced by gStore contains several indexes, whose structures
may have been changed in the new gStore version. So, please rebuild your
dataset just in case.

Why error when I try to write programs based on gStore, just like
the Main/gconsole.cpp?
You need to add these phrases at the beginning of your main program, oth-
erwise gStore will not run correctly:
//NOTICE:this is needed to set several debug files
Util util;

Why does gStore report “garbage collection failed” error when I
use the Java API?
You need to adjust the parameters of jvm, see url1 and url2 for details.

When I compile the code in ArchLinux, why the error that “no
-ltermcap” is reported?
In ArchLinux, you only need to use -lreadline to link the readline library.
Please remove the -ltermcap in the makefile which is located in the root of
the gStore project if you would like to use ArchLinux.

Why does gStore report errors that the format of some RDF
datasets are not supported?
gStore does not support all RDF formats currently, please see formats for
details. However, it is quite easy for you to convey your RDF data format
to the N3 file format that is used in gStore.

50

http://www.cnblogs.com/edwardlauxh/archive/2010/04/25/1918603.html
http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html

When I read on GitHub, why are some documents unable to be
opened?
Codes, markdowns or other text files, and pictures can be read directly on
GitHub. However, if you are using some light weight browsers like midori,
for files in pdf type, please download them and read on your computer or
other devices.

Why sometimes strange characters appear when I use gStore?
There are some documents’s names are in Chinese, and you don’t need to
worry about it.

In centos7, if the watdiv.db(a generated database after gbuild) is
copied or compressed/uncompressed, the size of watdiv.db will be
different(generally increasing) if using du -h command to check?
It’s the change of B+-trees’ size in watdiv/kv_store/ that causes the change
of the whole database’s size. The reason is that in storage/Storage.cpp, many
operations use fseek to move file pointer. As everyone knows, file is organized
in blocks, and if we request for new block, file pointer may be moved beyond
the end of this file(file operations are all achieved by C in gStore, no errors
are reported), then contents will be written in the new position!

In Advanced Programming In The Unix Environment, “file hole” is
used to describe this phenomenon. “file hole” will be filled with 0, and it’s also
one part of the file. You can use ls -l to see the size of file(computing the size
of holes), while du -h command shows the size of blocks that directory/file
occupies in system. Generally, the output of du -h is large than that of ls
-l, but if “file hole” exists, the opposite is the case because the size of holes
are neglected.

The actual size of files containing holes are fixed, while in some operation sys-
tems, holes will be transformed to contents(also 0) when copied. Operation
mv will not affect the size if not across different devices.(only need to adjust
the file tree index) However, cp and all kinds of compress methods need to

51

scan the file and transfer data.(there are two ways to achieve cp command,
neglect holes or not, while the output size of ls -l not varies)

It is valid to use “file hole” in C, and this is not an error, which means you
can go on using gStore. We achieve a small program to describe the “file
holes”, you can download and try it yourself.

In gclient console, a database is built, queried, and then I quit the
console. Next time I enter the console, load the originally imported
database, but no output for any queries(originally the output is not
empty)?
You need to unload the using database before quiting the gclient console,
otherwise errors come.

If query results contain null value, how can I use the full_test
utility? Tab separated method will cause problem here because
null value cannot be checked!
You may use other programming language(for example, Python) to deal with
the null value cases. For example, you can change null value in output to
special character like ‘,’, later you can use the full_test utility.

When I compile and run the API examples, it reports the “unable
to connect to server” error?
Please use ./gserver command to start up a gStore server first, and notice
that the server ip and port must be matched.

When I use the Java API to write my own program, it reports
“not found main class” error?
Please ensure that you include the position of your own program in class
path of java. The whole command should be something like java -cp
/home/bookug/project/devGstore/api/java/lib/GstoreJavaAPI.jar:.
JavaAPIExample, and the “:.” in this command cannot be neglected.

52

Chapter 11: Recipe Book

This chapter introduces some useful tricks if you are using gStore
to implement applications.

no tips available now

53

Part III

Others
Chapter 12: Contributors

Please contact with Lei Zou(zoulei@pku.edu.cn), Li Zeng(zengli-
bookug@pku.edu.cn), Jiaqi Chen(chenjiaqi93@pku.edu.cn) and Peng
Peng(pku09pp@pku.edu.cn) if you have suggestions or comments about
gStore or you need help when using gStore.

Faculty

• Lei Zou (Peking University) Project Leader

• M. Tamer Özsu (University of Waterloo)

• Lei Chen (Hong Kong University of Science and Technology)

• Dongyan Zhao (Peking Univeristy)

Students

Li Zeng and Jiaqi Chen are responsible for the gStore system optimization.
Peng Peng is responsible for the distributed version of gStore, which is ex-
pected to be released before October.

• Peng Peng (Peking University) (PhD student)

• Youhuan Li (Peking University) (PhD student)

• Shuo Han (Peking University) (PhD student)

• Li Zeng (Peking University) (Master student)

• Jiaqi Chen (Peking University) (Master student)

54

Alumni

• Xuchuan Shen (Peking University) (Master’s student, graduated)

• Dong Wang (Peking University) (PhD student, graduated)

• Ruizhe Huang (Peking University) (Undergraudate intern, graduated)

• Jinhui Mo (Peking University) (Master’s, graduated)

55

Chapter 13: Updated Logs

Jan 10, 2017

preFilter() function in Join module is optimazed using the pre2num structure,
as well as the choose_next_node() function. A global string buffer is added
to lower the cost of getFinalResult(), and the time of answering queries is
reduced greatly.

In addition, we assign buffers of different size for all B+ trees.(some of them
are more important and more frequently used) WangLibo merges several B+
trees into one, and the num of all B+ trees are reduced to 9 from 17. This
strategy not only reduces the space cost, but also reduces the memory cost,
meanwhile speeding up the build process and query process.

What is more, ChenJiaqi has done a lot of work to optimaze the SPARQL
query. For example, some unconnected SPARQL query graphs are dealed
specially.

Sep 15, 2016

ZengLi splits the KVstore into 3 parts according to the types of key and
value, i.e. int2string, string2int and string2string. In addition, updates are
supported now. You can insert, delete or modify some triples in the gStore
database. In fact, only insert() and remove() are implemented, while the
modify() are supported by removing first and insert again.

Jun 20, 2016

ZengLi has enabled the gStore to answer queries with predicate variables. In
addition, the structures of many queries have been studied to speed up the
query processing. ChenJiaqi rewrites the sparql query plan to acquire a more
efficient one, which brings many benefits to us.

56

Apr 01, 2016

The structure of this project has changed a lot now. A new join method has
been achieved and we use it to replace the old one. The test result shows that
speed is improved and the memory cost is lower. We also do some change to
Parser/Sparql*, which are all generated by ANTLR. They must be modified
because the code is in C, which brings several multiple definition problems,
and its size is too large.

There is a bug in the original Stream module, which brings some control
characters to the output, such as ˆC, ˆV and so on. We have fixed it now
and enabled the Stream to sort the output strings(both internal and external).
In addition, SPARQL queries which are not BGP(Basic Graph Pattern) are
also supported now, using the naive method.

A powerful interactive console, which is named gconsole now, is achieved to
bring convenience to users. What is more, we use valgrind tools to test our
system, and deal with several memory leaks.

The docs and API have also changed, but this is of little importance.

Nov 06, 2015

We merge several classes(like Bstr) and adjust the project structure, as well
as the debug system.

In addition, most warnings are removed, except for warnings in Parser mod-
ule, which is due to the use of ANTLR.

What is more, we change RangeValue module to Stream, and add Stream for
ResultSet. We also better the gquery console, so now you can redirect query
results to a specified file in the gsql console.

Unable to add Stream for IDlist due to complex operations, but this is not
necessary. Realpath is used to supported soft links in the gquery console, but
it not works in Gstore.(though works if not in Gstore)

57

Oct 20, 2015

We add a gtest tool for utility, you can use it to query several datasets with
their own queries.

In addition, gquery console is improved. Readline lib is used for input instead
of fgets, and the gquery console can support commands history, modifying
command and commands completion now.

What is more, we found and fix a bug in Database/(a pointer for debugging
log is not set to NULL after fclose operation, so if you close one database
and open another, the system will fail entirely because the system think that
the debugging log is still open)

Sep 25, 2015

We implement the version of B+Tree, and replace the old one.

After testing on DBpedia, LUBM, and WatDiv benchmark, we conclude that
the new BTree performs more efficient than the old version. For the same
triple file, the new version spends shorter time on executing gload command.

Besides, the new version can handle the long literal objects efficiently, while
triples whose object’s length exceeds 4096 bytes result in frequent inefficient
split operations on the old version BTree.

Feb 2, 2015

We modify the RDF parser and SPARQL parser.

Under the new RDF parser, we also redesign the encode strategy, which
reduces RDF file scanning times.

Now we can parse the standard SPARQL v1.1 grammar correctly, and can
support basic graph pattern(BGP) SPARQL queries written by this standard
grammar.

58

Dec 11, 2014

We add API for C/CPP and JAVA.

Nov 20, 2014

We share our gStore2.0 code as an open-source project under BSD license on
github.

59

Chapter 14: Test Result

Preparation

We have compared the performance of gStore with several other database
systems, such as Jena, Sesame, Virtuoso and so on. Contents to be compared
are the time to build database, the size of the built database, the time
to answer single SPARQL query and the matching case of single query’s
results. In addition, if the memory cost is very large(>20G), we will record
the memory cost when running these database systems.(not accurate, just
for your reference)

To ensure all database systems can run correctly on all datasets and queries,
the format of datasets must be supported by all database systems and the
queries should not contain update operations, aggregate operations and
operations related with uncertain predicates. Notice that when measuring
the time to answer queries, the time of loading database index should not
be included. To ensure this principle, we load the database index first for
some database systems, and warm up several times for others.

Datasets used here are WatDiv, Lubm, Bsbm and DBpedia. Some of them
are provided by websites, and others are generated by algorithms. Queries are
generated by algorithms or written by us. Table 2 summarizes the statistics
of these datasets.

The experiment environment is a CentOS server, whose memory size is 82G
and disk size is 7T. We use full_test to do this test.

Result

The performance of different database management systems is shown in Fig-
ures 1, 2, 3 and 4.

Notice that Sesame and Virtuoso are unable to operate on DBpedia 2014

60

http://jena.apache.org/
http://www.rdf4j.org/
http://virtuoso.openlinksw.com/

and WatDiv 300M, because the size is too large. In addition, we do not use
Sesame and Virtuoso to test on the LUBM 5000 due to format questions.
Generally speaking, Virtuoso is not scalable, and Sesame is so weak.

This program produces many logs placed in result.log/, load.log/ and
time.log/. You can see that all results of all queries are matched by viewing
files in result.log/, and the time cost and space cost of gStore to build
database are larger than others by viewing files in load.log/. More precisely,
there is an order of magnitude difference between gStore and others in the
time/space cost of building database.

Through analysing time.log/, we can find that gStore behave better than oth-
ers on very complicated queries(many variables, circles, etc). For other sim-
ple queries, there is not much difference between the time of these database
systems.

Generally speaking, the memory cost of gStore when answering queries is
higher than others. More complicated the query is and more large the dataset
is, more apparent the phenomenon is.

You can find more detailed information in original test report. Notice that
some questions in the test report have already be solved now. The latest test
report is formal experiment.

Dataset Number of Triples RDF N3 File Size(B) Number of Entities

WatDiv 300M 329,539,576 47,670,221,085 15,636,385
LUBM 5000 66718642 8134671485 16437950

DBpedia 2014 170784508 23844158944 7123915
Bsbm 10000 34872182 912646084 526590

Table 2: Datasets

61

Q0 Q1 Q2 Q3 Q4 Q5 Q6

102

103

104

105

106

107

Q
ue
ry

R
es
po

ns
e
T
im

e
(in

m
s)

gStore
Jena
Virtuoso

Figure 1: Query Performance over DBpedia 2014

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

101

102

103

104

105

Q
ue

ry
Re

sp
on

se
Ti

m
e

(in
m

s) gStore
Jena
Virtuoso
Sesame

Figure 2: Query Performance over Bsbm 10000

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21

102

103

104

105

Q
ue

ry
Re

sp
on

se
Ti

m
e

(in
m

s) gStore
Jena

(a) LUBM 5000

Figure 3: Query Performance over LUBM

62

C1 C2 C3 F1 F2 F3 L1 L2 L3 S 1 S 2 S 3

102

103

104

105

106

Q
ue

ry
Re

sp
on

se
Ti

m
e

(in
m

s) gStore
Jena

(a) WatDiv 300M

Figure 4: Query Performance over WatDiv

63

Chapter 15: Future Plan

Improve The Core

• optimize the join operation of node candidates. multiple methods
should be achieved, and design a score module to select a best one

• add numeric value query function. need to answer numeric range query
efficiently and space consume cannot be too large

• add a control module to heuristically select an kind of index for a
SPARQL query to filter(not always vstree)

• typedef all frequently used types, to avoid inconsistence and high mod-
ify cost

Better The Interface

• build a console named gconsole, which provides all operations sup-
ported by gStore.(parser and auto-complete is required)

• write web interface for gStore, and a web page to operate on it, just
like virtuoso

Idea Collection Box

• to support soft links in console: realpath not work…(redefined in
ANTLR?)

• store command history for consoles

• warnings remain in using Parser/(antlr)!(modify sparql.g 1.1 and regen-
erate). change name to avoid redefine problem, or go to use executable
to parse

64

• build compress module(such as key-value module and stream module),
but the latter just needs one-pass read/write, which may causes the
compress method to be used both in disk and memory. all opera-
tions of string in memory can be changed to operations after compress:
provide compress/archive interface, compare function. there are many
compress algorithms to be chosen, then how to choose? what about utf-
8 encoding problem? this method can lower the consume of memory
and disk, but consumes more CPU. However, the time is decided by iso-
morphism. Simple compress is not good, but too complicated method
will consume too much time, how to balance? (merge the continuous
same characters, Huffman tree)

• mmap to speedup KVstore?

• the strategy for Stream:is 85% valid? consider sampling, analyse the
size of result set and decide strategy? how to support order by: sort in
memory if not put in file; otherwise, partial sort in memory, then put
into file, then proceed external sorting

65

Chapter 16: Thanks List

This chapter lists people who inspire us or contribute to this project.

GitHub user zhangxiaoyang
https://github.com/zhangxiaoyang
1. add python api
2. fix logger message

66

Chapter 17: Legal Issues

Copyright (c) 2016 gStore team
All rights reserved.

Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

Neither the name of the Peking University nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

67

What’s more, you need to include the label ”powered by gStore”, as well as
the logo of gStore, in your software product which is using gStore.

We would be very grateful if you are willing to tell us about your name, insti-
tution, purpose and email. Such information can be sent to us by emailing
to gStoreDB@gmail.com, and we promise not to reveal privacy.

68

mailto:gStoreDB@gmail.com

End

Thank you for reading this document. If any question or advice,
or you have interests in this project, please don’t hesitate to get in
touch with us.

69

	Preface
	I Start
	Chapter 00: A Quick Tour
	Getting Started
	Advanced Help
	Other Business

	Chapter 01: System Requirements
	Chapter 02: Basic Introduction
	What Is gStore
	Why gStore
	Open Source

	Chapter 03: Install Guide
	Chapter 04: How To Use
	0. gconsole
	1. gbuild
	2. gquery
	3. gserver
	4. gclient
	5. test utilities

	II Advanced
	Chapter 05: API Explanation
	Easy Examples
	API structure
	C++ API
	Interface
	Compile

	Java API
	Interface
	Compile

	PHP API
	Interface
	Run

	Python API
	Interface
	Run

	Chapter 06: Use gStore in Web
	Example

	Chapter 07: Project Structure
	The core source codes are listed below:
	The parser part is listed below:
	The utilities are listed below:
	The interface part is listed below:
	More details
	Others

	Chapter 08: Publications
	Publications related with gStore are listed here:

	Chapter 09: Limitations
	Chapter 10: Frequently Asked Questions
	When I use the newer gStore system to query the original database, why error?
	Why error when I try to write programs based on gStore, just like the Main/gconsole.cpp?
	Why does gStore report garbage collection failed error when I use teh Java API?
	When I compile the code in ArchLinux, why the error that no -ltermcap is reported?
	Why does gStore report errors that the format of some RDF datasets are not supported?
	When I read on GitHub, why are some documents unable to be opened?
	Why sometimes strange characters appear when I use gStore?
	In centos7, if the watdiv.db(a generated database after gbuild) is copied or compressed/uncompressed, the size of watdiv.db will be different(generally increasing) if using du -h command to check?
	In gclient console, a database is built, queried, and then I quit the console. Next time I enter the console, load the originally imported database, but no output for any queries(originally the output is not empty)?
	If query results contain null value, how can I use the full_test utility? Tab separated method will cause problem here because null value cannot be checked!
	When I compile and run the API examples, it reports the unable to connect to server error?
	When I use the Java API to write my own program, it reports not found main class error?

	Chapter 11: Recipe Book

	III Others
	Chapter 12: Contributors
	Faculty
	Students
	Alumni

	Chapter 13: Updated Logs
	Jan 10, 2017
	Sep 15, 2016
	Jun 20, 2016
	Apr 01, 2016
	Nov 06, 2015
	Oct 20, 2015
	Sep 25, 2015
	Feb 2, 2015
	Dec 11, 2014
	Nov 20, 2014

	Chapter 14: Test Result
	Preparation
	Result

	Chapter 15: Future Plan
	Improve The Core
	Better The Interface
	Idea Collection Box

	Chapter 16: Thanks List
	GitHub user zhangxiaoyang https://github.com/zhangxiaoyang 1. add python api 2. fix logger message

	Chapter 17: Legal Issues

	End

