add Logistic Regression Classification stops

This commit is contained in:
xiaoxiao 2018-10-17 11:07:22 +08:00
parent 0942318d80
commit e0d36774e6
10 changed files with 413 additions and 3 deletions

Binary file not shown.

View File

@ -110,6 +110,11 @@
<artifactId>elasticsearch-spark-20_2.11</artifactId>
<version>5.6.3</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.11</artifactId>
<version>2.1.0</version>
</dependency>
</dependencies>

View File

@ -0,0 +1,38 @@
{
"flow":{
"name":"test",
"uuid":"1234",
"stops":[
{
"uuid":"0000",
"name":"NaiveBayesTraining",
"bundle":"cn.piflow.bundle.ml_classification.NaiveBayesTraining",
"properties":{
"training_data_path":"hdfs://10.0.86.89:9000/xx/watermellonDataset.txt",
"smoothing_value":"1.0",
"model_save_path":"hdfs://10.0.86.89:9000/xx/naivebayes/nb.model"
}
},
{
"uuid":"1111",
"name":"NaiveBayesPrediction",
"bundle":"cn.piflow.bundle.ml_classification.NaiveBayesPrediction",
"properties":{
"test_data_path":"hdfs://10.0.86.89:9000/xx/watermellonDataset.txt",
"model_path":"hdfs://10.0.86.89:9000/xx/naivebayes/nb.model"
}
}
],
"paths":[
{
"from":"NaiveBayesTraining",
"outport":"",
"inport":"",
"to":"NaiveBayesPrediction"
}
]
}
}

View File

@ -0,0 +1,43 @@
{
"flow":{
"name":"test",
"uuid":"1234",
"stops":[
{
"uuid":"0000",
"name":"LogisticRegressionTraining",
"bundle":"cn.piflow.bundle.ml_classification.LogisticRegressionTraining",
"properties":{
"training_data_path":"hdfs://10.0.86.89:9000/xx/watermellonDataset.txt",
"model_save_path":"hdfs://10.0.86.89:9000/xx/naivebayes/lr.model",
"maxIter":"50",
"minTol":"1E-7",
"regParam":"0.1",
"elasticNetParam":"0.1",
"threshold":"0.5",
"family":""
}
},
{
"uuid":"1111",
"name":"LogisticRegressionPrediction",
"bundle":"cn.piflow.bundle.ml_classification.LogisticRegressionPrediction",
"properties":{
"test_data_path":"hdfs://10.0.86.89:9000/xx/watermellonDataset.txt",
"model_path":"hdfs://10.0.86.89:9000/xx/naivebayes/lr.model"
}
}
],
"paths":[
{
"from":"LogisticRegressionTraining",
"outport":"",
"inport":"",
"to":"LogisticRegressionPrediction"
}
]
}
}

View File

@ -0,0 +1,59 @@
package cn.piflow.bundle.ml_classification
import cn.piflow.conf.bean.PropertyDescriptor
import cn.piflow.conf.util.MapUtil
import cn.piflow.conf.{ConfigurableStop, StopGroupEnum}
import cn.piflow.{JobContext, JobInputStream, JobOutputStream, ProcessContext}
import org.apache.spark.ml.classification.LogisticRegressionModel
import org.apache.spark.sql.SparkSession
class LogisticRegressionPrediction extends ConfigurableStop{
val authorEmail: String = "xiaoxiao@cnic.cn"
val description: String = "Make use of a exist LogisticRegressionModel to predict."
val inportCount: Int = 1
val outportCount: Int = 0
var test_data_path:String =_
var model_path:String=_
def perform(in: JobInputStream, out: JobOutputStream, pec: JobContext): Unit = {
val spark = pec.get[SparkSession]()
//load data stored in libsvm format as a dataframe
val data=spark.read.format("libsvm").load(test_data_path)
//data.show()
//load model
val model=LogisticRegressionModel.load(model_path)
val predictions=model.transform(data)
predictions.show()
out.write(predictions)
}
def initialize(ctx: ProcessContext): Unit = {
}
def setProperties(map: Map[String, Any]): Unit = {
test_data_path=MapUtil.get(map,key="test_data_path").asInstanceOf[String]
model_path=MapUtil.get(map,key="model_path").asInstanceOf[String]
}
override def getPropertyDescriptor(): List[PropertyDescriptor] = {
var descriptor : List[PropertyDescriptor] = List()
val test_data_path = new PropertyDescriptor().name("test_data_path").displayName("TEST_DATA_PATH").defaultValue("").required(true)
val model_path = new PropertyDescriptor().name("model_path").displayName("MODEL_PATH").defaultValue("").required(true)
descriptor = test_data_path :: descriptor
descriptor = model_path :: descriptor
descriptor
}
override def getIcon(): Array[Byte] = ???
override def getGroup(): List[String] = {
List(StopGroupEnum.MLGroup.toString)
}
}

View File

@ -0,0 +1,131 @@
package cn.piflow.bundle.ml_classification
import cn.piflow.conf.bean.PropertyDescriptor
import cn.piflow.conf.util.MapUtil
import cn.piflow.conf.{ConfigurableStop, StopGroupEnum}
import cn.piflow.{JobContext, JobInputStream, JobOutputStream, ProcessContext}
import org.apache.spark.sql.SparkSession
import org.apache.spark.ml.classification.LogisticRegression
class LogisticRegressionTraining extends ConfigurableStop{
val authorEmail: String = "xiaoxiao@cnic.cn"
val description: String = "Training a LogisticRegressionModel."
val inportCount: Int = 1
val outportCount: Int = 0
var training_data_path:String =_
var model_save_path:String=_
var maxIter:String=_
var minTol:String=_
var regParam:String=_
var elasticNetParam:String=_
var threshold:String=_
var family:String=_
def perform(in: JobInputStream, out: JobOutputStream, pec: JobContext): Unit = {
val spark = pec.get[SparkSession]()
//load data stored in libsvm format as a dataframe
val data=spark.read.format("libsvm").load(training_data_path)
//Param for maximum number of iterations (>= 0)
var maxIterValue:Int=50
if(maxIter!=""){
maxIterValue=maxIter.toInt
}
//Param for the convergence tolerance for iterative algorithms (>= 0)
var minTolValue:Double=1E-6
if(minTol!=""){
minTolValue=minTol.toDouble
}
//Param for regularization parameter (>= 0).
var regParamValue:Double=0.2
if(regParam!=""){
regParamValue=regParam.toDouble
}
//Param for the ElasticNet mixing parameter, in range [0, 1].
var elasticNetParamValue:Double=0
if(elasticNetParam!=""){
elasticNetParamValue=elasticNetParam.toDouble
}
//Param for threshold in binary classification prediction, in range [0, 1]
var thresholdValue:Double=0.5
if(threshold!=""){
thresholdValue=threshold.toDouble
}
//Param for the name of family which is a description of the label distribution to be used in the model
var familyValue="auto"
if(family!=""){
familyValue=family
}
//training a Logistic Regression model
val model=new LogisticRegression()
.setMaxIter(maxIterValue)
.setTol(minTolValue)
.setElasticNetParam(regParamValue)
.setElasticNetParam(elasticNetParamValue)
.setThreshold(thresholdValue)
.setFamily(familyValue)
.fit(data)
//model persistence
model.save(model_save_path)
import spark.implicits._
val dfOut=Seq(model_save_path).toDF
dfOut.show()
out.write(dfOut)
}
def initialize(ctx: ProcessContext): Unit = {
}
def setProperties(map: Map[String, Any]): Unit = {
training_data_path=MapUtil.get(map,key="training_data_path").asInstanceOf[String]
model_save_path=MapUtil.get(map,key="model_save_path").asInstanceOf[String]
maxIter=MapUtil.get(map,key="maxIter").asInstanceOf[String]
minTol=MapUtil.get(map,key="minTol").asInstanceOf[String]
regParam=MapUtil.get(map,key="regParam").asInstanceOf[String]
elasticNetParam=MapUtil.get(map,key="elasticNetParam").asInstanceOf[String]
threshold=MapUtil.get(map,key="threshold").asInstanceOf[String]
family=MapUtil.get(map,key="family").asInstanceOf[String]
}
override def getPropertyDescriptor(): List[PropertyDescriptor] = {
var descriptor : List[PropertyDescriptor] = List()
val training_data_path = new PropertyDescriptor().name("training_data_path").displayName("TRAINING_DATA_PATH").defaultValue("").required(true)
val model_save_path = new PropertyDescriptor().name("model_save_path").displayName("MODEL_SAVE_PATH").description("ddd").defaultValue("").required(true)
val maxIter=new PropertyDescriptor().name("maxIter").displayName("MAX_ITER").description("ddd").defaultValue("").required(true)
val minTol=new PropertyDescriptor().name("minTol").displayName("MIN_TOL").description("ddd").defaultValue("").required(true)
val regParam=new PropertyDescriptor().name("regParam").displayName("REG_PARAM").description("ddd").defaultValue("").required(true)
val elasticNetParam=new PropertyDescriptor().name("elasticNetParam").displayName("ELASTIC_NET_PARAM").description("ddd").defaultValue("").required(true)
val threshold=new PropertyDescriptor().name("threshold").displayName("THRESHOLD").description("ddd").defaultValue("").required(true)
val family=new PropertyDescriptor().name("family").displayName("FAMILY").description("ddd").defaultValue("").required(true)
descriptor = training_data_path :: descriptor
descriptor = model_save_path :: descriptor
descriptor = maxIter :: descriptor
descriptor = minTol :: descriptor
descriptor = regParam :: descriptor
descriptor = elasticNetParam :: descriptor
descriptor = threshold :: descriptor
descriptor = family :: descriptor
descriptor
}
override def getIcon(): Array[Byte] = ???
override def getGroup(): List[String] = {
List(StopGroupEnum.MLGroup.toString)
}
}

View File

@ -0,0 +1,60 @@
package cn.piflow.bundle.ml_classification
import cn.piflow.conf.bean.PropertyDescriptor
import cn.piflow.conf.util.MapUtil
import cn.piflow.conf.{ConfigurableStop, StopGroupEnum}
import cn.piflow.{JobContext, JobInputStream, JobOutputStream, ProcessContext}
import org.apache.spark.ml.classification.NaiveBayesModel
import org.apache.spark.sql.SparkSession
class NaiveBayesPrediction extends ConfigurableStop{
val authorEmail: String = "xiaoxiao@cnic.cn"
val description: String = "Make use of a exist NaiveBayesModel to predict."
val inportCount: Int = 1
val outportCount: Int = 0
var test_data_path:String =_
var model_path:String=_
def perform(in: JobInputStream, out: JobOutputStream, pec: JobContext): Unit = {
val spark = pec.get[SparkSession]()
//load data stored in libsvm format as a dataframe
val data=spark.read.format("libsvm").load(test_data_path)
//data.show()
//load model
val model=NaiveBayesModel.load(model_path)
val predictions=model.transform(data)
predictions.show()
out.write(predictions)
}
def initialize(ctx: ProcessContext): Unit = {
}
def setProperties(map: Map[String, Any]): Unit = {
test_data_path=MapUtil.get(map,key="test_data_path").asInstanceOf[String]
model_path=MapUtil.get(map,key="model_path").asInstanceOf[String]
}
override def getPropertyDescriptor(): List[PropertyDescriptor] = {
var descriptor : List[PropertyDescriptor] = List()
val test_data_path = new PropertyDescriptor().name("test_data_path").displayName("TEST_DATA_PATH").defaultValue("").required(true)
val model_path = new PropertyDescriptor().name("model_path").displayName("MODEL_PATH").defaultValue("").required(true)
descriptor = test_data_path :: descriptor
descriptor = model_path :: descriptor
descriptor
}
override def getIcon(): Array[Byte] = ???
override def getGroup(): List[String] = {
List(StopGroupEnum.MLGroup.toString)
}
}

View File

@ -0,0 +1,73 @@
package cn.piflow.bundle.ml_classification
import cn.piflow.conf.bean.PropertyDescriptor
import cn.piflow.conf.util.MapUtil
import cn.piflow.conf.{ConfigurableStop, StopGroupEnum}
import cn.piflow.{JobContext, JobInputStream, JobOutputStream, ProcessContext}
import org.apache.spark.ml.classification.NaiveBayes
import org.apache.spark.sql.SparkSession
class NaiveBayesTraining extends ConfigurableStop{
val authorEmail: String = "xiaoxiao@cnic.cn"
val description: String = "Training a NaiveBayesModel."
val inportCount: Int = 1
val outportCount: Int = 0
var training_data_path:String =_
var smoothing_value:String=_
var model_save_path:String=_
def perform(in: JobInputStream, out: JobOutputStream, pec: JobContext): Unit = {
val spark = pec.get[SparkSession]()
//load data stored in libsvm format as a dataframe
val data=spark.read.format("libsvm").load(training_data_path)
//get smoothing factor
var smoothing_factor:Double=0
if(smoothing_value!=""){
smoothing_factor=smoothing_value.toDouble
}
//training a NaiveBayes model
val model=new NaiveBayes().setSmoothing(smoothing_factor).fit(data)
//model persistence
model.save(model_save_path)
import spark.implicits._
val dfOut=Seq(model_save_path).toDF
dfOut.show()
out.write(dfOut)
}
def initialize(ctx: ProcessContext): Unit = {
}
def setProperties(map: Map[String, Any]): Unit = {
training_data_path=MapUtil.get(map,key="training_data_path").asInstanceOf[String]
smoothing_value=MapUtil.get(map,key="smoothing_value").asInstanceOf[String]
model_save_path=MapUtil.get(map,key="model_save_path").asInstanceOf[String]
}
override def getPropertyDescriptor(): List[PropertyDescriptor] = {
var descriptor : List[PropertyDescriptor] = List()
val training_data_path = new PropertyDescriptor().name("training_data_path").displayName("TRAINING_DATA_PATH").defaultValue("").required(true)
val smoothing_value = new PropertyDescriptor().name("smoothing_value").displayName("SMOOTHING_FACTOR").defaultValue("0").required(false)
val model_save_path = new PropertyDescriptor().name("model_save_path").displayName("MODEL_SAVE_PATH").defaultValue("").required(true)
descriptor = training_data_path :: descriptor
descriptor = smoothing_value :: descriptor
descriptor = model_save_path :: descriptor
descriptor
}
override def getIcon(): Array[Byte] = ???
override def getGroup(): List[String] = {
List(StopGroupEnum.MLGroup.toString)
}
}

View File

@ -18,5 +18,6 @@ object StopGroupEnum extends Enumeration {
val RedisGroup = Value("RedisGroup")
val SolrGroup = Value("SolrGroup")
val ESGroup = Value("ESGroup")
val MLGroup=Value("MLGroup")
}

View File

@ -14,7 +14,7 @@ class FlowTest_XX {
def testFlow(): Unit ={
//parse flow json
val file = "src/main/resources/flow.json"
val file = "src/main/resources/logistic.json"
val flowJsonStr = FileUtil.fileReader(file)
val map = OptionUtil.getAny(JSON.parseFull(flowJsonStr)).asInstanceOf[Map[String, Any]]
println(map)
@ -30,7 +30,7 @@ class FlowTest_XX {
.config("spark.driver.memory", "1g")
.config("spark.executor.memory", "2g")
.config("spark.cores.max", "2")
.config("spark.jars","/opt/project/piflow/out/artifacts/piflow_bundle/piflow-bundle.jar")
.config("spark.jars","/root/xx/piflow/out/artifacts/piflow_jar/piflow_jar.jar")
.enableHiveSupport()
.getOrCreate()
@ -49,7 +49,7 @@ class FlowTest_XX {
def testFlow2json() = {
//parse flow json
val file = "src/main/resources/flow.json"
val file = "src/main/resources/logistic.json"
val flowJsonStr = FileUtil.fileReader(file)
val map = OptionUtil.getAny(JSON.parseFull(flowJsonStr)).asInstanceOf[Map[String, Any]]