
The Game of Lasker Morris 
 
 
 
 
 
 
 
 
 

 
 

1. Introduction 
 

In recent years some non trivial strategic games have completely been solved. 
Awari, for example was solved by John W. Romein and Henri E. Bal [J.W. 
Romein, H.E. Bal, 2002]. Qubic was solved by Victor Allis [V. Allis, 92] and 
Connect Four by Allis [V. Allis, 88] and by James Allen [J. Allen, 89]. 
Interestingly, these two solutions to Connect Four used complementary 
approaches: Allis employed a knowledge based approach, whereas Allen used 
brute force depth first search. The game of Nine Men’s Morris was solved by 
Ralph Gasser [R. Gasser, 1994] using a narrow alpha-beta database for the 
opening and a complete DTC (depth to conversation) database for the mid- and 

endgame. In other games, like chess [K. Thompson, 1986] and checkers 
[J. Schaeffer, 1997] the database approach was applied to solve important 
endgames 
We describe the development of an retrograde algorithm used to create a 
complete DTW (depth to win) Lasker Morris database comprising 
136,476,472,674 positions. 

 

2. Lasker Morris 
 

Nine Men’s Morris is a board game for two players with simple rules. It was 
popular in the 14th century, but  earlier versions with fewer than nine pieces 
have been found dating back to 1400 BC. As with  other medieval games, many 
different rules have evolved over the years. Lasker Morris was invented by 
Emanuel Lasker, chess world champion from 1894 to 1921. It is based on the 
rules of Nine Men’s Morris. In his book ‘Brettspiele der Völker’ from 1931 
[Em.Lasker,1931] he described the rules of his new variant as follows.  
(translation by the author): 
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Figure 1.  Typical situation for Lasker 
Morris. White to move has two pieces in his 
hand, black has three pieces left. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Nine Men’s Morris. The game is played on a square board, as illustrated in 
Figure 1. There are 24 points (intersections) and pieces may move between 
them only along the marked lines. Only one piece may be placed on any point. 
The players start with nine pieces, with a different color for each 
player.Typically one player is white and the other black. Unlike other games, 
the board is initially empty. The player with the white pieces starts. During the 
opening, players alternately place their pieces on vacant points. Each player 
tries to get three of his pieces in a row while preventing his opponent from 
doing the same. When a player gets three pieces in a row – this is known as 
closing a mill – he may take one of his opponent’s men off the board that is not 
part of a mill. After both players have put all their men on the board a piece is 
moved by sliding it from its square to a neighbouring empty square. Players 
keep trying to get three pieces in a row so they can take away an opponent’s 
man that is not part of a mill. As soon as a player has only three pieces left he 

may jump one of his pieces to any vacant point on the board. 
 
The game may end in the following ways: 
- a player who has less than three pieces loses 
- a player who is stalemated loses 

-  
There are two more subjects that need to be discussed: 

1. During the opening it is possible to close two mills simultaneously. 
Should the player then be allowed to remove two of his opponent’s 
pieces? 

2. When a player has just closed a mill, but there are not enough 
opponent’s pieces outside a mill. Should the player then be allowed to 
remove a piece out of a mill? 

In our implementation we answer the first question with yes and the second 
with no -  according to the rules of the World Association of Nine Men’s Morris. 
The difference between NMM and Lasker Morris is that in Lasker Morris not all 
pieces have to be placed in the very first moves. Placing moves and sliding 
moves may be executed in arbitrary order. 
 
 
 

‘One move consists in placing a stone 
on a vacant point or in sliding an 
already placed stone to a free 
neighbour point and the player may 
do either this or the other. The 
number of stones in the hand, at the 
beginning of the game, may be nine 
or better ten.’ 
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Figure 2.  Black to move. g7xb4,f4 (!) is the 
only move that does not lose the game. 
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Figure 3.  White to move is not  allowed to 
jump. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Solving Lasker Morris 
 

State Space  
The board consists of 24 points. Each of these points can be occupied by a 
black piece or a white piece or it can be empty. There are also a number of 
pieces left in the hand of both players. In a typical game situation we can 
define four natural numbers: nw,nb,nwh,nbh – where nw/nb is the number of 
white/black pieces placed on the board and nwh/nbh is the number of 
white/black pieces left in the hand of the white/black player. 
To calculate the number of elements in the complete state space we first can 
see that the whole state space can be divided into disjoint subspaces. Each 
subspace is characterized by the four parameters nw,nb,nwh,nbh. When 

assuming 0≤nw,nb,nwh,nbh≤ 10 and 0 ≤ nw+nwh, nb+nbh ≤ 10 we have 4356 
different subspaces. We can now reduce the number of subspaces by rejecting 

them when one side has less than three pieces left in the game (nw+nwh < 3). 
So there remain only 3,600 different subspaces. 

 
 
 
Unreachable positions 
We can eliminate some more subspaces that only contain positions that can 
never be reached in the course of a legal game. Additionally we can eliminate 
all non-reachable single positions found in any subspace. In our 
implementation we do not reject all these positions because we are – of course – 
interested in them as we are interested in every position where one side can 
make a legal move. 
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Figure 4.  White to move. Win in 65 
Paradise (unreachable) position. 

a b c d e f g  

7 

6 

5 

4 

3 

2 

1 

Figure 5.  White to move. Loss in 23 
Paradise position. 
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Figure 6.  Symmetry axes. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
Symmetrical positions 
Each subspace contains a lot of symmetrical positions. We have five symmetry 
axes, but one of these five is redundant, so we can expect at most a 16-fold 
reduction of the size of the state space. Constructing a function that perfectly 
solves the ‘symmetrical’ problem can be difficult. Therefore, as rapid 
computation is crucial, we only offer a semiperfect solution that reduces the 
state space by a factor of 15.66 instead of 16. The formula that calculates the 

size of a subspace is 
24 24

*
nw

nw nb

−   
   
   

. Taking symmetrical positions into 

account we can reduce the state space including all subspaces from about 
2,136 billion to 136.4 billion positions. 
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win in n position 

Candidate: loss-in-n q 

White to 

move 

Black to 

move 

Black 

moves back 

Black moves 

forward 

White moves 

back 

If all these positions are already marked 

as win for white, q is proven to be a loss 

Figure 7.  When q is a loss, we can mark all predecessors of q that are not jet evaluated as a win-in-n+1. 

win in ≤ n+1 

Hash function 
Our next goal is to define a hash function that compiles each particular 
position of a given state space with cardinality N into a unique natural number. 
Having such a hash function makes it unnecessary to store a compressed 
description of a position along with its game-theoretical value, because the 
description is encoded in the index of the hash function. 

Database 
The final database consists of 3600 files. For each subspace we have one file on 
the hard-disk. The value of a position is stored at the position that is returned 
from our hash function. The value is zero when the position is a draw or a loss, 
otherwise the value is equal to the number of (full) moves until white (to move) 
can force the win. We need 8 Bits to store this value, so the size of the complete 
database is about 136 billion bytes. To determine whether a position is a loss 
or a draw we have to apply a mini-max search of one ply. The cost of this 
search is about 10 to 30 hard-disc accesses per position – that’s equal to the 
number of possible moves in an average position. 

Calculation 
The first step in retrograde analysis is to initialize all win-in-1 positions. After 
the initialization has set these wins, it sets the value of all remaining positions 
to zero. An iterative process then determines the real games-theoretic values of 
these ‘zero’ positions. In the n-th step we calculate and mark all win-in-n 
positions with white to move. Assume all wins in n for white to move are 
already marked in the database. In the next iteration step we pick up a win-in-
n position. All predecessors of this position are potential losses for black (loss 
in n). If we know for sure that a predecessor q is lost for black regarding to our 
actual database we can mark all predecessors of q as a win-in-n+1 candidate 
for white (to move). To check  whether q is really lost for black we have to check 
all the successors of q. If there is a successor that is not jet marked as a win 
for white,  q is not a loss in n for black. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This algorithm sounds easy – and in fact, for all games with a small state space 
that easily fits into the main memory of today’s computers computing such a 
database is an easy job. The state space of Lasker Morris has 2,134 billion 



  

 

 

 
 
 

 

 

6                                   SOLVING LASKER MORRIS 
 

i,j,m,n 

i,j-1 

i+1,j i,j 

i+1,j-1 i+2,j-1 

i-1,j-1 i,j-1 i+1,j-1 i+2,j-1 

i+1,j i,j i-1,j i+2,j i-2,j 

i,j+1 i,j+1 i,j+1 i,j+1 

black to move forward 

black to move back 

n,m-1 

n,m 

n,m+1 

    legend 

Figure 8. To reduce random disc accesses we operate with cells that are completely  

loaded temporary into the main memory of the computer. 

13 cells 

Source Cell 

elements. Taking all symmetries into account we can reduce the state space to 
about 136 billion different positions. To speed up the computation of our 
database we have to avoid random disc accesses. Having even only one disc 
access for each position would increase the calculation time to more than 40 
years! (136 billion * 10ms). In our implementation we utilize the fact that the 
database consists of 3,600 files. These files give us the possibility to make use 
of a very efficient caching method that is described below: 
Consider an arbitrary subspace (nw=i, nb=j, nwh=m, nbh=n). After taking back 
any black move from any position from this subspace, we can find ourself in 
only five more different subspaces (Figure 8).Moving forward any move from 
these five subspaces (to prove the loss) throws us into at most thirteen more 
subspaces. And finally taking back all white moves from the proven loss 
positions leads also to  at most thirteen subspaces. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In our iteration algorithm we arrange a loop over all subspaces to separately 
find all win-in-n+1 positions of each subspace. This gives us the chance to 
completely load the few affected subspaces into the main memory of our 
computer to avoid many disc accesses. 
 
In the following we describe the iteration algorithm in detail that we have used 
to calculate the whole Lasker Morris database. 

 
Step 0 (Initialization) 
This step will be executed only once at the beginning of the iteration process. 
We create the main database: for each subspace we create one file on the hard 
disc. The file size is equal to the number of positions in the subspace taking all 
symmetries into account. All Bytes are set to zero. After this we apply a loop 
over all positions to explicitly find and mark all win-in-1 position. 
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MAIN DB 

Step 1 
In this step we create four bitfields. Each bitfield consists of 3600 files – for 
each subspace one cell (file). Instead of using one byte per position we now use 
only one single bit. So the size of one bitfield is only 1/8 of the size of the main 
database, but the number of files is equal. At first we 
initialize all four bitfields with zero. In bitfield 3 we 
store the ‘win-in-n’ information: a bit is set when the 
corresponding position in the main database signals 
a win-in-n. The bits in bit field 4 are set when the 
corresponding position in the main db signals a  win 
in at most n moves. 

 
 

 

Step 2 
In this step we store the candidates for a loss in n  (black moves and loses) into 
bitfield 2. We start a loop over all cells from bitfield 3. We load one cell from 
bitfield 3 and the five corresponding cells from bitfield 2 into the main memory 
of our computer. Then we apply another loop over all ‘win-in-n’ positions, we 
take back all black moves and mark them as ‘loss in n’ candidates in one of the 
five corresponding cells. After finishing the inner loop we store the five cells 
back to the hard-disk and switch to the next cell from bitfield 3. 

 

Step 3  
In this step we try to prove the loss candidates found in step 2. At the end of 
this step bitfield 2 contains all proven ‘black to move loss in n’ positions. 
Similar to step 2 we apply two loops over all cells from bitfield 2 and over all 
positions of one cell. We pick up every loss-candidate and generate the set of all 
successor positions. If one of these successor positions is not marked as a win 
for white in the corresponding cell from bitfield 4, we can reject the candidate. 
 

 

        0    0 Win = n   Win  ≤  n 

bitfield 1 bitfield 3 bitfield 2 bitfield 4 

        0    Proven  
loss = n 

Win = n   Win  ≤  n 

bitfield 1 bitfield 3 bitfield 2 bitfield 4 

        0    Candidates  
loss = n 

Win = n   Win  ≤  n 

bitfield 1 bitfield 3 bitfield 2 bitfield 4 
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Step 4 
Here we load all cells out of bitfield 2 and the corresponding five cells from 
bitfield 1. Now we take back all white moves from all ‘loss in n’ positions found 
in bitfield 2 and mark them as ‘win in n+1 candidate’ in bitfield1. 

 

 
 
 

Step 5  
In this step apply an update of the main database. A position is marked as ‘win 
in n’ when the following two conditions are true 

- the current state in the main database is zero 
- the corresponding bit in bitfield 1 is set (win-in-n+1 candidate) 

 

 
 
Improvements and Verification 
In our implementation we applied some more improvements. We connected 
step 5 and step 1, so the main database had not to be read again after 
updating. Secondly we managed a special path over the cells of one bitfield to 
reduce the data traffic when loading and storing the five corresponding cells. 
The idea is that the sets of the five cells of two neighbouring cells are not 
disjoint. So we can keep the common cells in the main memory when switching 
to another cell. 
 
The ten men database was computed between November 2002 and March 
2003. The calculation took approximately four month on an Athlon XP 
1533MHZ (XP1800+) Computer with 1 GB of main memory. The program is 
written in C and compiled with GNU C++. For the GUI we used Borland CPP 
Builder. 
During the calculation we experienced some hardware problems. Three of four 
hard drives involved had malfunctions. The complete database had to be 
calculated again since the backup hard drive was defective too. After changing 

all drives the calculation proceeded without any problems. In early and middle 
of 2002 we had calculated Lasker Morris with seven, eight and nine men. All 
databases are included in their successors. Since a  comparison of files showed 
no differences we have a good chance that our final database is free from any 
errors due to defective hardware. 

Candidates 

Win = n+1 
Proven  
loss = n 

Win = n   Win  ≤  n 

bitfield 1 bitfield 3 bitfield 2 bitfield 4 

Candidates 

Win = n+1 

 
bitfield 1 

MAIN DB 
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Figure 9.  Maximal position in Lasker 
Morris. White to move. Win in 171. 
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Figure 10.  Maximal position in Nine Men’s 
Morris. White to move. Win in 165. 

But how can we be sure that there are no software errors?  Presently we have 
no formal proof that our program to create all databases has no errors. But on 
the other side we have not found any anomaly during our test works in the last 
three years.  This test work include many hundreds of games that have been 
played in the last time with the Morris-GUI. This GUI always applys a one or 
two ply minimax search to determine the value of each possible move. In this 
search it performs a depth check to compare the value stored for the origin 
position with the values of  the positions after each move. Of course, it would 
be very reassuring when the game was recalculated by an independent 
database program. 
 
    

 
 
 

4. Results 
 
Up to the present day Lasker Morris is a relatively unknown game. So we 
present our results in comparison to the well known mother game Nine Men’s 
Morris. The initial position of Lasker Morris is a draw, if both sides play 
correctly.  
Our results for Nine Men’s Morris are based on our own DTM database that 
was calculated in the beginning of 2000. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
 
 
Lasker Morris is a draw. So it is interesting to look how early a mistake can 
happen. Figure 11 (12) shows the longest winning distance with two (four)  men 
sitting on board after an early mistake of black. Both positions are draws for 
Nine Men’s Morris. The earliest possible error that can occur in Nine Men’s 
Morris is the second move of white, namely 1.c3 f4 2.f2? 
Figure 5 (in section 2) shows the power of one single piece. With one piece less, 
Lasker Morris is won for the side that has the majority. 
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Figure 11.   Opening position with white to 
move. Win in 72.  
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Figure 12.   Opening position with white to 
move. Win in 132. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 13 to 16 show the distribution of the winning distances for all positions 
with white to move. The horizontal axis displays the distance in (full) moves 
and the vertical axis is labeled with the number of positions. We can see 
similarities between Lasker Morris and Nine Men’s Morris. Even the lokal peaks 
are approximately at the same position, the higher distances from Lasker 
Morris are shiftet about 4 moves rightwards. 
In Lasker Morris 51.47 % of all positions are won for white  with white to move 
whereas the winning probability  in Nine Men’s Morris is only 46.55%. The 
difference in percentage looks small but is an indicator for our practical 
observation that Lasker Morris is a much sharper game than Nine Men’s 
Morris. 
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Figure 13. Distribution of the winning distances of Lasker Morris. 
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Figure 14. Distribution of the winning distances of Nine Men’s Morris . 

 

Figure 15. Distribution of the winning distances of Lasker Morris.  

Enlargement of the distribution from Figure 13. 
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5. Conclusions 
 
The Game of Lasker Morris is a draw.  A DTW (depth to win) database with the 
game theoretic values of all possible 136 billion positions is now available. For 
the future we are planning  to find and implement a strategy that improves the 
chances of achieving more than the game theoretic value against a fallible 
opponent.   
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Figure 16. Distribution of the winning distances of Nine Men’s Morris. 

Enlargement of the distribution from Figure 14. 
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6. Appendix 
 
Table 1 shows an optimal movesequence to achive the game theoretic value of 
Figure 11 with perfect play of both sides. 

 

 
 
1.  g4!   a7  
2.  d2!   a1  
3.  a4!   f4  
4.  d3!   a1-d1  
5.  c3!   f6  
 
6.  e3xf6   f6  
7.  c3-c4!   d6xa4  
8.  c4-c3xd1! b6-b4 
9.  d1xd6!   c4  
10. e3-e4!   a7-a4xc3  
 
11. d2-f2!   b4-b6  
12. f2-d2xc4!  a4-b4  
13. d2-b2   d6xb2  
14. d3-d2!   d6-d5  
15. d7-d6!   b2xd6  
 
16. d6!   b4-c4  
17. b4!   c4-c3  
18. d1-a1   c3-d3  
19. a1-a4   d3-e3  
20. e4-e5   e3-d3  
 
21. b4-c4   b2-b4  
22. c4-c3   d5-c5  
23. e5-d5   c5-c4  
24. d5-c5   d3-e3  
25. c3-d3   e3-e4  
 
 

26. d2-f2   e4-e3  
27. g4-g7   e3-e4  
28. c5-d5   c4-c3  
29. g7-d7xe4   b4-b2  
30. a4-b4   b2-d2 
  
31. d5-c5   d2-d1  
32. d7-a7   d1-a1  
33. d3-e3   c3-d3  
34. e3-e4   d3-d2  
35. c5-d5   a1-d1  
 
36. a7-d7xd1   f4-g4  
37. f2-f4   g4-g7  
38. e4-e3   d2-d3  
39. d5-c5   d3-c3  
40. c5-c4   c3-d3  
 
41. c4-c3   g7-g4  
42. d7-g7   g4-g1  
43. e3-e4   g1-d1  
44. c3-c4   d3-c3  
45. e4-e5   d1-a1  
 
46. g7-d7   a1-a4  
47. d7-a7   c3-d3  
48. e5-d5  d3-d2  
49. c4-c5   d2-f2  
50. d5-e5   f2-d2  
 

51. e5-e4   d2-d3  
52. c5-d5   d3-d2  
53. d5-e5   d2-d3  
54. a7-d7   d3-d2  
55. e4-e3   d2-d3  
 
56. e5-e4   d3-d2  
57. e3-d3   a4-a1  
58. e4-e5  a1-a4  
59. d7-g7   a4-a1   
60. g7-g4   a1-a4 
  
61. g4-g1   d2-d1  
62. d3-d2   a4-a1  
63. f4-g4   a1-a4  
64. g4-g7   a4-a1  
65. e5-e4   f6-f4  
 
66. g7-d7   a1-a4  
67. d7-a7   f4-g4  
68. e4-f4   g4-g7  
69. f4-g4   a4-a1  
70. a7-a4   g7-d7  
 
71. g4-g7   d7-a7  
72. g7-d7# 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Table 1. Optimal move sequence. A move is marked by an exclamation mark when it is the only 

move that keeps the win. In his first 17 moves white has to find the unique win for 15 times. 
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