mirror of https://github.com/django/django.git
365 lines
16 KiB
Plaintext
365 lines
16 KiB
Plaintext
|
.. _ref-unicode:
|
||
|
|
||
|
======================
|
||
|
Unicode data in Django
|
||
|
======================
|
||
|
|
||
|
**New in Django development version**
|
||
|
|
||
|
Django natively supports Unicode data everywhere. Providing your database can
|
||
|
somehow store the data, you can safely pass around Unicode strings to
|
||
|
templates, models and the database.
|
||
|
|
||
|
This document tells you what you need to know if you're writing applications
|
||
|
that use data or templates that are encoded in something other than ASCII.
|
||
|
|
||
|
Creating the database
|
||
|
=====================
|
||
|
|
||
|
Make sure your database is configured to be able to store arbitrary string
|
||
|
data. Normally, this means giving it an encoding of UTF-8 or UTF-16. If you use
|
||
|
a more restrictive encoding -- for example, latin1 (iso8859-1) -- you won't be
|
||
|
able to store certain characters in the database, and information will be lost.
|
||
|
|
||
|
* MySQL users, refer to the `MySQL manual`_ (section 10.3.2 for MySQL 5.1) for
|
||
|
details on how to set or alter the database character set encoding.
|
||
|
|
||
|
* PostgreSQL users, refer to the `PostgreSQL manual`_ (section 21.2.2 in
|
||
|
PostgreSQL 8) for details on creating databases with the correct encoding.
|
||
|
|
||
|
* SQLite users, there is nothing you need to do. SQLite always uses UTF-8
|
||
|
for internal encoding.
|
||
|
|
||
|
.. _MySQL manual: http://www.mysql.org/doc/refman/5.1/en/charset-database.html
|
||
|
.. _PostgreSQL manual: http://www.postgresql.org/docs/8.2/static/multibyte.html#AEN24104
|
||
|
|
||
|
All of Django's database backends automatically convert Unicode strings into
|
||
|
the appropriate encoding for talking to the database. They also automatically
|
||
|
convert strings retrieved from the database into Python Unicode strings. You
|
||
|
don't even need to tell Django what encoding your database uses: that is
|
||
|
handled transparently.
|
||
|
|
||
|
For more, see the section "The database API" below.
|
||
|
|
||
|
General string handling
|
||
|
=======================
|
||
|
|
||
|
Whenever you use strings with Django -- e.g., in database lookups, template
|
||
|
rendering or anywhere else -- you have two choices for encoding those strings.
|
||
|
You can use Unicode strings, or you can use normal strings (sometimes called
|
||
|
"bytestrings") that are encoded using UTF-8.
|
||
|
|
||
|
.. admonition:: Warning
|
||
|
|
||
|
A bytestring does not carry any information with it about its encoding.
|
||
|
For that reason, we have to make an assumption, and Django assumes that all
|
||
|
bytestrings are in UTF-8.
|
||
|
|
||
|
If you pass a string to Django that has been encoded in some other format,
|
||
|
things will go wrong in interesting ways. Usually, Django will raise a
|
||
|
``UnicodeDecodeError`` at some point.
|
||
|
|
||
|
If your code only uses ASCII data, it's safe to use your normal strings,
|
||
|
passing them around at will, because ASCII is a subset of UTF-8.
|
||
|
|
||
|
Don't be fooled into thinking that if your :setting:`DEFAULT_CHARSET` setting is set
|
||
|
to something other than ``'utf-8'`` you can use that other encoding in your
|
||
|
bytestrings! :setting:`DEFAULT_CHARSET` only applies to the strings generated as
|
||
|
the result of template rendering (and e-mail). Django will always assume UTF-8
|
||
|
encoding for internal bytestrings. The reason for this is that the
|
||
|
:setting:`DEFAULT_CHARSET` setting is not actually under your control (if you are the
|
||
|
application developer). It's under the control of the person installing and
|
||
|
using your application -- and if that person chooses a different setting, your
|
||
|
code must still continue to work. Ergo, it cannot rely on that setting.
|
||
|
|
||
|
In most cases when Django is dealing with strings, it will convert them to
|
||
|
Unicode strings before doing anything else. So, as a general rule, if you pass
|
||
|
in a bytestring, be prepared to receive a Unicode string back in the result.
|
||
|
|
||
|
Translated strings
|
||
|
------------------
|
||
|
|
||
|
Aside from Unicode strings and bytestrings, there's a third type of string-like
|
||
|
object you may encounter when using Django. The framework's
|
||
|
internationalization features introduce the concept of a "lazy translation" --
|
||
|
a string that has been marked as translated but whose actual translation result
|
||
|
isn't determined until the object is used in a string. This feature is useful
|
||
|
in cases where the translation locale is unknown until the string is used, even
|
||
|
though the string might have originally been created when the code was first
|
||
|
imported.
|
||
|
|
||
|
Normally, you won't have to worry about lazy translations. Just be aware that
|
||
|
if you examine an object and it claims to be a
|
||
|
``django.utils.functional.__proxy__`` object, it is a lazy translation.
|
||
|
Calling ``unicode()`` with the lazy translation as the argument will generate a
|
||
|
Unicode string in the current locale.
|
||
|
|
||
|
For more details about lazy translation objects, refer to the
|
||
|
:ref:`internationalization <topics-i18n>` documentation.
|
||
|
|
||
|
Useful utility functions
|
||
|
------------------------
|
||
|
|
||
|
Because some string operations come up again and again, Django ships with a few
|
||
|
useful functions that should make working with Unicode and bytestring objects
|
||
|
a bit easier.
|
||
|
|
||
|
Conversion functions
|
||
|
~~~~~~~~~~~~~~~~~~~~
|
||
|
|
||
|
The ``django.utils.encoding`` module contains a few functions that are handy
|
||
|
for converting back and forth between Unicode and bytestrings.
|
||
|
|
||
|
* ``smart_unicode(s, encoding='utf-8', strings_only=False, errors='strict')``
|
||
|
converts its input to a Unicode string. The ``encoding`` parameter
|
||
|
specifies the input encoding. (For example, Django uses this internally
|
||
|
when processing form input data, which might not be UTF-8 encoded.) The
|
||
|
``strings_only`` parameter, if set to True, will result in Python
|
||
|
numbers, booleans and ``None`` not being converted to a string (they keep
|
||
|
their original types). The ``errors`` parameter takes any of the values
|
||
|
that are accepted by Python's ``unicode()`` function for its error
|
||
|
handling.
|
||
|
|
||
|
If you pass ``smart_unicode()`` an object that has a ``__unicode__``
|
||
|
method, it will use that method to do the conversion.
|
||
|
|
||
|
* ``force_unicode(s, encoding='utf-8', strings_only=False,
|
||
|
errors='strict')`` is identical to ``smart_unicode()`` in almost all
|
||
|
cases. The difference is when the first argument is a :ref:`lazy
|
||
|
translation <lazy-translations>` instance. While ``smart_unicode()``
|
||
|
preserves lazy translations, ``force_unicode()`` forces those objects to a
|
||
|
Unicode string (causing the translation to occur). Normally, you'll want
|
||
|
to use ``smart_unicode()``. However, ``force_unicode()`` is useful in
|
||
|
template tags and filters that absolutely *must* have a string to work
|
||
|
with, not just something that can be converted to a string.
|
||
|
|
||
|
* ``smart_str(s, encoding='utf-8', strings_only=False, errors='strict')``
|
||
|
is essentially the opposite of ``smart_unicode()``. It forces the first
|
||
|
argument to a bytestring. The ``strings_only`` parameter has the same
|
||
|
behavior as for ``smart_unicode()`` and ``force_unicode()``. This is
|
||
|
slightly different semantics from Python's builtin ``str()`` function,
|
||
|
but the difference is needed in a few places within Django's internals.
|
||
|
|
||
|
Normally, you'll only need to use ``smart_unicode()``. Call it as early as
|
||
|
possible on any input data that might be either Unicode or a bytestring, and
|
||
|
from then on, you can treat the result as always being Unicode.
|
||
|
|
||
|
URI and IRI handling
|
||
|
~~~~~~~~~~~~~~~~~~~~
|
||
|
|
||
|
Web frameworks have to deal with URLs (which are a type of IRI_). One
|
||
|
requirement of URLs is that they are encoded using only ASCII characters.
|
||
|
However, in an international environment, you might need to construct a
|
||
|
URL from an IRI_ -- very loosely speaking, a URI that can contain Unicode
|
||
|
characters. Quoting and converting an IRI to URI can be a little tricky, so
|
||
|
Django provides some assistance.
|
||
|
|
||
|
* The function ``django.utils.encoding.iri_to_uri()`` implements the
|
||
|
conversion from IRI to URI as required by the specification (`RFC
|
||
|
3987`_).
|
||
|
|
||
|
* The functions ``django.utils.http.urlquote()`` and
|
||
|
``django.utils.http.urlquote_plus()`` are versions of Python's standard
|
||
|
``urllib.quote()`` and ``urllib.quote_plus()`` that work with non-ASCII
|
||
|
characters. (The data is converted to UTF-8 prior to encoding.)
|
||
|
|
||
|
These two groups of functions have slightly different purposes, and it's
|
||
|
important to keep them straight. Normally, you would use ``urlquote()`` on the
|
||
|
individual portions of the IRI or URI path so that any reserved characters
|
||
|
such as '&' or '%' are correctly encoded. Then, you apply ``iri_to_uri()`` to
|
||
|
the full IRI and it converts any non-ASCII characters to the correct encoded
|
||
|
values.
|
||
|
|
||
|
.. note::
|
||
|
Technically, it isn't correct to say that ``iri_to_uri()`` implements the
|
||
|
full algorithm in the IRI specification. It doesn't (yet) perform the
|
||
|
international domain name encoding portion of the algorithm.
|
||
|
|
||
|
The ``iri_to_uri()`` function will not change ASCII characters that are
|
||
|
otherwise permitted in a URL. So, for example, the character '%' is not
|
||
|
further encoded when passed to ``iri_to_uri()``. This means you can pass a
|
||
|
full URL to this function and it will not mess up the query string or anything
|
||
|
like that.
|
||
|
|
||
|
An example might clarify things here::
|
||
|
|
||
|
>>> urlquote(u'Paris & Orléans')
|
||
|
u'Paris%20%26%20Orl%C3%A9ans'
|
||
|
>>> iri_to_uri(u'/favorites/François/%s' % urlquote(u'Paris & Orléans'))
|
||
|
'/favorites/Fran%C3%A7ois/Paris%20%26%20Orl%C3%A9ans'
|
||
|
|
||
|
If you look carefully, you can see that the portion that was generated by
|
||
|
``urlquote()`` in the second example was not double-quoted when passed to
|
||
|
``iri_to_uri()``. This is a very important and useful feature. It means that
|
||
|
you can construct your IRI without worrying about whether it contains
|
||
|
non-ASCII characters and then, right at the end, call ``iri_to_uri()`` on the
|
||
|
result.
|
||
|
|
||
|
The ``iri_to_uri()`` function is also idempotent, which means the following is
|
||
|
always true::
|
||
|
|
||
|
iri_to_uri(iri_to_uri(some_string)) = iri_to_uri(some_string)
|
||
|
|
||
|
So you can safely call it multiple times on the same IRI without risking
|
||
|
double-quoting problems.
|
||
|
|
||
|
.. _URI: http://www.ietf.org/rfc/rfc2396.txt
|
||
|
.. _IRI: http://www.ietf.org/rfc/rfc3987.txt
|
||
|
.. _RFC 3987: IRI_
|
||
|
|
||
|
Models
|
||
|
======
|
||
|
|
||
|
Because all strings are returned from the database as Unicode strings, model
|
||
|
fields that are character based (CharField, TextField, URLField, etc) will
|
||
|
contain Unicode values when Django retrieves data from the database. This
|
||
|
is *always* the case, even if the data could fit into an ASCII bytestring.
|
||
|
|
||
|
You can pass in bytestrings when creating a model or populating a field, and
|
||
|
Django will convert it to Unicode when it needs to.
|
||
|
|
||
|
Choosing between ``__str__()`` and ``__unicode__()``
|
||
|
----------------------------------------------------
|
||
|
|
||
|
One consequence of using Unicode by default is that you have to take some care
|
||
|
when printing data from the model.
|
||
|
|
||
|
In particular, rather than giving your model a ``__str__()`` method, we
|
||
|
recommended you implement a ``__unicode__()`` method. In the ``__unicode__()``
|
||
|
method, you can quite safely return the values of all your fields without
|
||
|
having to worry about whether they fit into a bytestring or not. (The way
|
||
|
Python works, the result of ``__str__()`` is *always* a bytestring, even if you
|
||
|
accidentally try to return a Unicode object).
|
||
|
|
||
|
You can still create a ``__str__()`` method on your models if you want, of
|
||
|
course, but you shouldn't need to do this unless you have a good reason.
|
||
|
Django's ``Model`` base class automatically provides a ``__str__()``
|
||
|
implementation that calls ``__unicode__()`` and encodes the result into UTF-8.
|
||
|
This means you'll normally only need to implement a ``__unicode__()`` method
|
||
|
and let Django handle the coercion to a bytestring when required.
|
||
|
|
||
|
Taking care in ``get_absolute_url()``
|
||
|
-------------------------------------
|
||
|
|
||
|
URLs can only contain ASCII characters. If you're constructing a URL from
|
||
|
pieces of data that might be non-ASCII, be careful to encode the results in a
|
||
|
way that is suitable for a URL. The ``django.db.models.permalink()`` decorator
|
||
|
handles this for you automatically.
|
||
|
|
||
|
If you're constructing a URL manually (i.e., *not* using the ``permalink()``
|
||
|
decorator), you'll need to take care of the encoding yourself. In this case,
|
||
|
use the ``iri_to_uri()`` and ``urlquote()`` functions that were documented
|
||
|
above_. For example::
|
||
|
|
||
|
from django.utils.encoding import iri_to_uri
|
||
|
from django.utils.http import urlquote
|
||
|
|
||
|
def get_absolute_url(self):
|
||
|
url = u'/person/%s/?x=0&y=0' % urlquote(self.location)
|
||
|
return iri_to_uri(url)
|
||
|
|
||
|
This function returns a correctly encoded URL even if ``self.location`` is
|
||
|
something like "Jack visited Paris & Orléans". (In fact, the ``iri_to_uri()``
|
||
|
call isn't strictly necessary in the above example, because all the
|
||
|
non-ASCII characters would have been removed in quoting in the first line.)
|
||
|
|
||
|
.. _above: `URI and IRI handling`_
|
||
|
|
||
|
The database API
|
||
|
================
|
||
|
|
||
|
You can pass either Unicode strings or UTF-8 bytestrings as arguments to
|
||
|
``filter()`` methods and the like in the database API. The following two
|
||
|
querysets are identical::
|
||
|
|
||
|
qs = People.objects.filter(name__contains=u'Å')
|
||
|
qs = People.objects.filter(name__contains='\xc3\85') # UTF-8 encoding of Å
|
||
|
|
||
|
Templates
|
||
|
=========
|
||
|
|
||
|
You can use either Unicode or bytestrings when creating templates manually::
|
||
|
|
||
|
from django.template import Template
|
||
|
t1 = Template('This is a bytestring template.')
|
||
|
t2 = Template(u'This is a Unicode template.')
|
||
|
|
||
|
But the common case is to read templates from the filesystem, and this creates
|
||
|
a slight complication: not all filesystems store their data encoded as UTF-8.
|
||
|
If your template files are not stored with a UTF-8 encoding, set the :setting:`FILE_CHARSET`
|
||
|
setting to the encoding of the files on disk. When Django reads in a template
|
||
|
file, it will convert the data from this encoding to Unicode. (:setting:`FILE_CHARSET`
|
||
|
is set to ``'utf-8'`` by default.)
|
||
|
|
||
|
The :setting:`DEFAULT_CHARSET` setting controls the encoding of rendered templates.
|
||
|
This is set to UTF-8 by default.
|
||
|
|
||
|
Template tags and filters
|
||
|
-------------------------
|
||
|
|
||
|
A couple of tips to remember when writing your own template tags and filters:
|
||
|
|
||
|
* Always return Unicode strings from a template tag's ``render()`` method
|
||
|
and from template filters.
|
||
|
|
||
|
* Use ``force_unicode()`` in preference to ``smart_unicode()`` in these
|
||
|
places. Tag rendering and filter calls occur as the template is being
|
||
|
rendered, so there is no advantage to postponing the conversion of lazy
|
||
|
translation objects into strings. It's easier to work solely with Unicode
|
||
|
strings at that point.
|
||
|
|
||
|
E-mail
|
||
|
======
|
||
|
|
||
|
Django's e-mail framework (in ``django.core.mail``) supports Unicode
|
||
|
transparently. You can use Unicode data in the message bodies and any headers.
|
||
|
However, you're still obligated to respect the requirements of the e-mail
|
||
|
specifications, so, for example, e-mail addresses should use only ASCII
|
||
|
characters.
|
||
|
|
||
|
The following code example demonstrates that everything except e-mail addresses
|
||
|
can be non-ASCII::
|
||
|
|
||
|
from django.core.mail import EmailMessage
|
||
|
|
||
|
subject = u'My visit to Sør-Trøndelag'
|
||
|
sender = u'Arnbjörg Ráðormsdóttir <arnbjorg@example.com>'
|
||
|
recipients = ['Fred <fred@example.com']
|
||
|
body = u'...'
|
||
|
EmailMessage(subject, body, sender, recipients).send()
|
||
|
|
||
|
Form submission
|
||
|
===============
|
||
|
|
||
|
HTML form submission is a tricky area. There's no guarantee that the
|
||
|
submission will include encoding information, which means the framework might
|
||
|
have to guess at the encoding of submitted data.
|
||
|
|
||
|
Django adopts a "lazy" approach to decoding form data. The data in an
|
||
|
``HttpRequest`` object is only decoded when you access it. In fact, most of
|
||
|
the data is not decoded at all. Only the ``HttpRequest.GET`` and
|
||
|
``HttpRequest.POST`` data structures have any decoding applied to them. Those
|
||
|
two fields will return their members as Unicode data. All other attributes and
|
||
|
methods of ``HttpRequest`` return data exactly as it was submitted by the
|
||
|
client.
|
||
|
|
||
|
By default, the :setting:`DEFAULT_CHARSET` setting is used as the assumed encoding
|
||
|
for form data. If you need to change this for a particular form, you can set
|
||
|
the ``encoding`` attribute on an ``HttpRequest`` instance. For example::
|
||
|
|
||
|
def some_view(request):
|
||
|
# We know that the data must be encoded as KOI8-R (for some reason).
|
||
|
request.encoding = 'koi8-r'
|
||
|
...
|
||
|
|
||
|
You can even change the encoding after having accessed ``request.GET`` or
|
||
|
``request.POST``, and all subsequent accesses will use the new encoding.
|
||
|
|
||
|
Most developers won't need to worry about changing form encoding, but this is
|
||
|
a useful feature for applications that talk to legacy systems whose encoding
|
||
|
you cannot control.
|
||
|
|
||
|
Django does not decode the data of file uploads, because that data is normally
|
||
|
treated as collections of bytes, rather than strings. Any automatic decoding
|
||
|
there would alter the meaning of the stream of bytes.
|