Converted model_inheritance doctests to unittests. We have always been at war with doctests.

git-svn-id: http://code.djangoproject.com/svn/django/trunk@14348 bcc190cf-cafb-0310-a4f2-bffc1f526a37
This commit is contained in:
Alex Gaynor 2010-10-25 18:20:07 +00:00
parent 248b1dea3d
commit 321e48f51b
2 changed files with 271 additions and 234 deletions

View File

@ -143,237 +143,3 @@ class Copy(NamedURL):
def __unicode__(self): def __unicode__(self):
return self.content return self.content
__test__ = {'API_TESTS':"""
# The Student and Worker models both have 'name' and 'age' fields on them and
# inherit the __unicode__() method, just as with normal Python subclassing.
# This is useful if you want to factor out common information for programming
# purposes, but still completely independent separate models at the database
# level.
>>> w = Worker(name='Fred', age=35, job='Quarry worker')
>>> w.save()
>>> w2 = Worker(name='Barney', age=34, job='Quarry worker')
>>> w2.save()
>>> s = Student(name='Pebbles', age=5, school_class='1B')
>>> s.save()
>>> unicode(w)
u'Worker Fred'
>>> unicode(s)
u'Student Pebbles'
# The children inherit the Meta class of their parents (if they don't specify
# their own).
>>> Worker.objects.values('name')
[{'name': u'Barney'}, {'name': u'Fred'}]
# Since Student does not subclass CommonInfo's Meta, it has the effect of
# completely overriding it. So ordering by name doesn't take place for Students.
>>> Student._meta.ordering
[]
# However, the CommonInfo class cannot be used as a normal model (it doesn't
# exist as a model).
>>> CommonInfo.objects.all()
Traceback (most recent call last):
...
AttributeError: type object 'CommonInfo' has no attribute 'objects'
# A StudentWorker which does not exist is both a Student and Worker which does not exist.
>>> try:
... StudentWorker.objects.get(id=1)
... except Student.DoesNotExist:
... pass
>>> try:
... StudentWorker.objects.get(id=1)
... except Worker.DoesNotExist:
... pass
# MultipleObjectsReturned is also inherited.
>>> sw1 = StudentWorker()
>>> sw1.name = 'Wilma'
>>> sw1.age = 35
>>> sw1.save()
>>> sw2 = StudentWorker()
>>> sw2.name = 'Betty'
>>> sw2.age = 34
>>> sw2.save()
>>> try:
... StudentWorker.objects.get(id__lt=10)
... except Student.MultipleObjectsReturned:
... pass
... except Worker.MultipleObjectsReturned:
... pass
# Create a Post
>>> post = Post(title='Lorem Ipsum')
>>> post.save()
# The Post model has distinct accessors for the Comment and Link models.
>>> post.attached_comment_set.create(content='Save $ on V1agr@', is_spam=True)
<Comment: Save $ on V1agr@>
>>> post.attached_link_set.create(content='The Web framework for perfectionists with deadlines.', url='http://www.djangoproject.com/')
<Link: The Web framework for perfectionists with deadlines.>
# The Post model doesn't have an attribute called 'attached_%(class)s_set'.
>>> getattr(post, 'attached_%(class)s_set')
Traceback (most recent call last):
...
AttributeError: 'Post' object has no attribute 'attached_%(class)s_set'
# The Place/Restaurant/ItalianRestaurant models all exist as independent
# models. However, the subclasses also have transparent access to the fields of
# their ancestors.
# Create a couple of Places.
>>> p1 = Place(name='Master Shakes', address='666 W. Jersey')
>>> p1.save()
>>> p2 = Place(name='Ace Hardware', address='1013 N. Ashland')
>>> p2.save()
Test constructor for Restaurant.
>>> r = Restaurant(name='Demon Dogs', address='944 W. Fullerton',serves_hot_dogs=True, serves_pizza=False, rating=2)
>>> r.save()
# Test the constructor for ItalianRestaurant.
>>> c = Chef(name="Albert")
>>> c.save()
>>> ir = ItalianRestaurant(name='Ristorante Miron', address='1234 W. Ash', serves_hot_dogs=False, serves_pizza=False, serves_gnocchi=True, rating=4, chef=c)
>>> ir.save()
>>> ItalianRestaurant.objects.filter(address='1234 W. Ash')
[<ItalianRestaurant: Ristorante Miron the italian restaurant>]
>>> ir.address = '1234 W. Elm'
>>> ir.save()
>>> ItalianRestaurant.objects.filter(address='1234 W. Elm')
[<ItalianRestaurant: Ristorante Miron the italian restaurant>]
# Make sure Restaurant and ItalianRestaurant have the right fields in the right
# order.
>>> [f.name for f in Restaurant._meta.fields]
['id', 'name', 'address', 'place_ptr', 'rating', 'serves_hot_dogs', 'serves_pizza', 'chef']
>>> [f.name for f in ItalianRestaurant._meta.fields]
['id', 'name', 'address', 'place_ptr', 'rating', 'serves_hot_dogs', 'serves_pizza', 'chef', 'restaurant_ptr', 'serves_gnocchi']
>>> Restaurant._meta.ordering
['-rating']
# Even though p.supplier for a Place 'p' (a parent of a Supplier), a Restaurant
# object cannot access that reverse relation, since it's not part of the
# Place-Supplier Hierarchy.
>>> Place.objects.filter(supplier__name='foo')
[]
>>> Restaurant.objects.filter(supplier__name='foo')
Traceback (most recent call last):
...
FieldError: Cannot resolve keyword 'supplier' into field. Choices are: address, chef, id, italianrestaurant, lot, name, place_ptr, provider, rating, serves_hot_dogs, serves_pizza
# Parent fields can be used directly in filters on the child model.
>>> Restaurant.objects.filter(name='Demon Dogs')
[<Restaurant: Demon Dogs the restaurant>]
>>> ItalianRestaurant.objects.filter(address='1234 W. Elm')
[<ItalianRestaurant: Ristorante Miron the italian restaurant>]
# Filters against the parent model return objects of the parent's type.
>>> Place.objects.filter(name='Demon Dogs')
[<Place: Demon Dogs the place>]
# Since the parent and child are linked by an automatically created
# OneToOneField, you can get from the parent to the child by using the child's
# name.
>>> place = Place.objects.get(name='Demon Dogs')
>>> place.restaurant
<Restaurant: Demon Dogs the restaurant>
>>> Place.objects.get(name='Ristorante Miron').restaurant.italianrestaurant
<ItalianRestaurant: Ristorante Miron the italian restaurant>
>>> Restaurant.objects.get(name='Ristorante Miron').italianrestaurant
<ItalianRestaurant: Ristorante Miron the italian restaurant>
# This won't work because the Demon Dogs restaurant is not an Italian
# restaurant.
>>> place.restaurant.italianrestaurant
Traceback (most recent call last):
...
DoesNotExist: ItalianRestaurant matching query does not exist.
# An ItalianRestaurant which does not exist is also a Place which does not exist.
>>> try:
... ItalianRestaurant.objects.get(name='The Noodle Void')
... except Place.DoesNotExist:
... pass
# MultipleObjectsReturned is also inherited.
>>> try:
... Restaurant.objects.get(id__lt=10)
... except Place.MultipleObjectsReturned:
... pass
# Related objects work just as they normally do.
>>> s1 = Supplier(name="Joe's Chickens", address='123 Sesame St')
>>> s1.save()
>>> s1.customers = [r, ir]
>>> s2 = Supplier(name="Luigi's Pasta", address='456 Sesame St')
>>> s2.save()
>>> s2.customers = [ir]
# This won't work because the Place we select is not a Restaurant (it's a
# Supplier).
>>> p = Place.objects.get(name="Joe's Chickens")
>>> p.restaurant
Traceback (most recent call last):
...
DoesNotExist: Restaurant matching query does not exist.
# But we can descend from p to the Supplier child, as expected.
>>> p.supplier
<Supplier: Joe's Chickens the supplier>
>>> ir.provider.order_by('-name')
[<Supplier: Luigi's Pasta the supplier>, <Supplier: Joe's Chickens the supplier>]
>>> Restaurant.objects.filter(provider__name__contains="Chickens")
[<Restaurant: Ristorante Miron the restaurant>, <Restaurant: Demon Dogs the restaurant>]
>>> ItalianRestaurant.objects.filter(provider__name__contains="Chickens")
[<ItalianRestaurant: Ristorante Miron the italian restaurant>]
>>> park1 = ParkingLot(name='Main St', address='111 Main St', main_site=s1)
>>> park1.save()
>>> park2 = ParkingLot(name='Well Lit', address='124 Sesame St', main_site=ir)
>>> park2.save()
>>> Restaurant.objects.get(lot__name='Well Lit')
<Restaurant: Ristorante Miron the restaurant>
# The update() command can update fields in parent and child classes at once
# (although it executed multiple SQL queries to do so).
>>> Restaurant.objects.filter(serves_hot_dogs=True, name__contains='D').update(name='Demon Puppies', serves_hot_dogs=False)
1
>>> r1 = Restaurant.objects.get(pk=r.pk)
>>> r1.serves_hot_dogs == False
True
>>> r1.name
u'Demon Puppies'
# The values() command also works on fields from parent models.
>>> d = {'rating': 4, 'name': u'Ristorante Miron'}
>>> list(ItalianRestaurant.objects.values('name', 'rating')) == [d]
True
# select_related works with fields from the parent object as if they were a
# normal part of the model.
>>> from django import db
>>> from django.conf import settings
>>> settings.DEBUG = True
>>> db.reset_queries()
>>> ItalianRestaurant.objects.all()[0].chef
<Chef: Albert the chef>
>>> len(db.connection.queries)
2
>>> ItalianRestaurant.objects.select_related('chef')[0].chef
<Chef: Albert the chef>
>>> len(db.connection.queries)
3
>>> settings.DEBUG = False
"""}

View File

@ -0,0 +1,271 @@
from operator import attrgetter
from django.core.exceptions import FieldError
from django.test import TestCase
from models import (Chef, CommonInfo, ItalianRestaurant, ParkingLot, Place,
Post, Restaurant, Student, StudentWorker, Supplier, Worker)
class ModelInheritanceTests(TestCase):
def test_abstract(self):
# The Student and Worker models both have 'name' and 'age' fields on
# them and inherit the __unicode__() method, just as with normal Python
# subclassing. This is useful if you want to factor out common
# information for programming purposes, but still completely
# independent separate models at the database level.
w1 = Worker.objects.create(name="Fred", age=35, job="Quarry worker")
w2 = Worker.objects.create(name="Barney", age=34, job="Quarry worker")
s = Student.objects.create(name="Pebbles", age=5, school_class="1B")
self.assertEqual(unicode(w1), "Worker Fred")
self.assertEqual(unicode(s), "Student Pebbles")
# The children inherit the Meta class of their parents (if they don't
# specify their own).
self.assertQuerysetEqual(
Worker.objects.values("name"), [
{"name": "Barney"},
{"name": "Fred"},
],
lambda o: o
)
# Since Student does not subclass CommonInfo's Meta, it has the effect
# of completely overriding it. So ordering by name doesn't take place
# for Students.
self.assertEqual(Student._meta.ordering, [])
# However, the CommonInfo class cannot be used as a normal model (it
# doesn't exist as a model).
self.assertRaises(AttributeError, lambda: CommonInfo.objects.all())
# A StudentWorker which does not exist is both a Student and Worker
# which does not exist.
self.assertRaises(Student.DoesNotExist,
StudentWorker.objects.get, pk=12321321
)
self.assertRaises(Worker.DoesNotExist,
StudentWorker.objects.get, pk=12321321
)
# MultipleObjectsReturned is also inherited.
# This is written out "long form", rather than using __init__/create()
# because of a bug with diamond inheritance (#10808)
sw1 = StudentWorker()
sw1.name = "Wilma"
sw1.age = 35
sw1.save()
sw2 = StudentWorker()
sw2.name = "Betty"
sw2.age = 24
sw2.save()
self.assertRaises(Student.MultipleObjectsReturned,
StudentWorker.objects.get, pk__lt=sw2.pk + 100
)
self.assertRaises(Worker.MultipleObjectsReturned,
StudentWorker.objects.get, pk__lt=sw2.pk + 100
)
def test_multiple_table(self):
post = Post.objects.create(title="Lorem Ipsum")
# The Post model has distinct accessors for the Comment and Link models.
post.attached_comment_set.create(content="Save $ on V1agr@", is_spam=True)
post.attached_link_set.create(
content="The Web framework for perfections with deadlines.",
url="http://www.djangoproject.com/"
)
# The Post model doesn't have an attribute called
# 'attached_%(class)s_set'.
self.assertRaises(AttributeError,
getattr, post, "attached_%(class)s_set"
)
# The Place/Restaurant/ItalianRestaurant models all exist as
# independent models. However, the subclasses also have transparent
# access to the fields of their ancestors.
# Create a couple of Places.
p1 = Place.objects.create(name="Master Shakes", address="666 W. Jersey")
p2 = Place.objects.create(name="Ace Harware", address="1013 N. Ashland")
# Test constructor for Restaurant.
r = Restaurant.objects.create(
name="Demon Dogs",
address="944 W. Fullerton",
serves_hot_dogs=True,
serves_pizza=False,
rating=2
)
# Test the constructor for ItalianRestaurant.
c = Chef.objects.create(name="Albert")
ir = ItalianRestaurant.objects.create(
name="Ristorante Miron",
address="1234 W. Ash",
serves_hot_dogs=False,
serves_pizza=False,
serves_gnocchi=True,
rating=4,
chef=c
)
self.assertQuerysetEqual(
ItalianRestaurant.objects.filter(address="1234 W. Ash"), [
"Ristorante Miron",
],
attrgetter("name")
)
ir.address = "1234 W. Elm"
ir.save()
self.assertQuerysetEqual(
ItalianRestaurant.objects.filter(address="1234 W. Elm"), [
"Ristorante Miron",
],
attrgetter("name")
)
# Make sure Restaurant and ItalianRestaurant have the right fields in
# the right order.
self.assertEqual(
[f.name for f in Restaurant._meta.fields],
["id", "name", "address", "place_ptr", "rating", "serves_hot_dogs", "serves_pizza", "chef"]
)
self.assertEqual(
[f.name for f in ItalianRestaurant._meta.fields],
["id", "name", "address", "place_ptr", "rating", "serves_hot_dogs", "serves_pizza", "chef", "restaurant_ptr", "serves_gnocchi"],
)
self.assertEqual(Restaurant._meta.ordering, ["-rating"])
# Even though p.supplier for a Place 'p' (a parent of a Supplier), a
# Restaurant object cannot access that reverse relation, since it's not
# part of the Place-Supplier Hierarchy.
self.assertQuerysetEqual(Place.objects.filter(supplier__name="foo"), [])
self.assertRaises(FieldError,
Restaurant.objects.filter, supplier__name="foo"
)
# Parent fields can be used directly in filters on the child model.
self.assertQuerysetEqual(
Restaurant.objects.filter(name="Demon Dogs"), [
"Demon Dogs",
],
attrgetter("name")
)
self.assertQuerysetEqual(
ItalianRestaurant.objects.filter(address="1234 W. Elm"), [
"Ristorante Miron",
],
attrgetter("name")
)
# Filters against the parent model return objects of the parent's type.
p = Place.objects.get(name="Demon Dogs")
self.assertIs(type(p), Place)
# Since the parent and child are linked by an automatically created
# OneToOneField, you can get from the parent to the child by using the
# child's name.
self.assertEqual(
p.restaurant, Restaurant.objects.get(name="Demon Dogs")
)
self.assertEqual(
Place.objects.get(name="Ristorante Miron").restaurant.italianrestaurant,
ItalianRestaurant.objects.get(name="Ristorante Miron")
)
self.assertEqual(
Restaurant.objects.get(name="Ristorante Miron").italianrestaurant,
ItalianRestaurant.objects.get(name="Ristorante Miron")
)
# This won't work because the Demon Dogs restaurant is not an Italian
# restaurant.
self.assertRaises(ItalianRestaurant.DoesNotExist,
lambda: p.restaurant.italianrestaurant
)
# An ItalianRestaurant which does not exist is also a Place which does
# not exist.
self.assertRaises(Place.DoesNotExist,
ItalianRestaurant.objects.get, name="The Noodle Void"
)
# MultipleObjectsReturned is also inherited.
self.assertRaises(Place.MultipleObjectsReturned,
Restaurant.objects.get, id__lt=12321
)
# Related objects work just as they normally do.
s1 = Supplier.objects.create(name="Joe's Chickens", address="123 Sesame St")
s1.customers = [r, ir]
s2 = Supplier.objects.create(name="Luigi's Pasta", address="456 Sesame St")
s2.customers = [ir]
# This won't work because the Place we select is not a Restaurant (it's
# a Supplier).
p = Place.objects.get(name="Joe's Chickens")
self.assertRaises(Restaurant.DoesNotExist,
lambda: p.restaurant
)
self.assertEqual(p.supplier, s1)
self.assertQuerysetEqual(
ir.provider.order_by("-name"), [
"Luigi's Pasta",
"Joe's Chickens"
],
attrgetter("name")
)
self.assertQuerysetEqual(
Restaurant.objects.filter(provider__name__contains="Chickens"), [
"Ristorante Miron",
"Demon Dogs",
],
attrgetter("name")
)
self.assertQuerysetEqual(
ItalianRestaurant.objects.filter(provider__name__contains="Chickens"), [
"Ristorante Miron",
],
attrgetter("name"),
)
park1 = ParkingLot.objects.create(
name="Main St", address="111 Main St", main_site=s1
)
park2 = ParkingLot.objects.create(
name="Well Lit", address="124 Sesame St", main_site=ir
)
self.assertEqual(
Restaurant.objects.get(lot__name="Well Lit").name,
"Ristorante Miron"
)
# The update() command can update fields in parent and child classes at
# once (although it executed multiple SQL queries to do so).
rows = Restaurant.objects.filter(
serves_hot_dogs=True, name__contains="D"
).update(
name="Demon Puppies", serves_hot_dogs=False
)
self.assertEqual(rows, 1)
r1 = Restaurant.objects.get(pk=r.pk)
self.assertFalse(r1.serves_hot_dogs)
self.assertEqual(r1.name, "Demon Puppies")
# The values() command also works on fields from parent models.
self.assertQuerysetEqual(
ItalianRestaurant.objects.values("name", "rating"), [
{"rating": 4, "name": "Ristorante Miron"}
],
lambda o: o
)
# select_related works with fields from the parent object as if they
# were a normal part of the model.
self.assertNumQueries(2,
lambda: ItalianRestaurant.objects.all()[0].chef
)
self.assertNumQueries(1,
lambda: ItalianRestaurant.objects.select_related("chef")[0].chef
)